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Preface

When I started giving lectures on Quantum field theory, I had no intention to write a book on
the subject. There are plenty of such books available on the market and it seemed to make
a little sense to add another one. But, unfortunately, none of them was exactly to my taste.
My favorite The Quantum Theory of Fields by Steven Weinberg did not suit that well as an
introductory course. I decided to use An Introduction to Quantum Field Theory by Peskin and
Schroeder, which was, and perhaps still is, one of the standard modern textbooks on the subject.
The book, however, leaves much to be desired, so I started to write some notes to provide a set
of hopefully useful comments and remarks to it. The original plan was

e to reorganize the material in a bit different way
e to offer sometimes a slightly different point of view
e to add some material

Eventually, the text became more and more self-contained, and the resemblance to the Peskin-
Schroeder became weaker and weaker. At the present point, the text has very little to do with
the Peskin-Schroeder, except perhaps the largely common notation.

The aim of this course is to explain not only what we are doing, but why we are doing it. I
tried my best not to provide complicated answers to questions that were not asked. This applies
not only to particular aspects of the subject, but also to the structure of the whole course.

In the quite extended first part almost no interesting particle physics is discussed at all. We
only deal with scalar fields and spinless particles, the emphasis is on the logic of the theory (with
all the necessary technicalities, of course). In this part students should learn and understand
why and how do we quantize classical fields, why and how the machinery of Feynman diagrams
works, why and how do we renormalize parameters of lagrangians, why and how do we utilize
path integral formulation of QFT.

The physics enters only in the second part, devoted to Quantum Electrodynamics. Here the
technical complications brought up by higher spins, as well as important physical results are
discussed thoroughly. All this is done step by step. We start with spinless particles in classical
electromagnetic field, then the QED of spinless particles is developed, and only afterwards the
full (spinor) QED appears.

The third part concerns the Standard Model. Large portion of this part, however, does not
deal with the SM itself, but rather with the particle physics before the SM. It is my firm belief,
that students exposed directly to the SM Lagrangian, with insufficient knowledge of the prior
theoretical (and experimental) development, can miss the essence of the whole business. But it
is not only the historic perspective what makes the pre-SM particle physics very useful for the
SM course. Virtually all the ingredients of the SM originated in pre-SM physics and so they can
be introduced in a quite natural way. Only once these ingredients are grasped to a reasonable
level, the SM is discussed.

iii
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Chapter 1

Introductions

Let us state at the very beginning that Quantum field theory is
e a theory of particles (in a way Quantum mechanics is a theory of atoms)?
e mathematically ill-defined
e the most precise theory mankind ever had
e conceptually and technically quite demanding

Mainly because of the last feature, it seems reasonable to spend enough time with introductions.
The reason for plural is that we shall try to introduce the subject in couple of different ways.

Our first introduction is in fact a summary. We shall try to show how QFT is used in practical
calculations, without any attempt to understand why it is used in this way. The reason for this
strange maneuver is that, surprisingly enough, it is much easier to grasp the bulk of QFT on this
operational level than to really understand it. We believe that even a superficial knowledge of
how QFT is usually used can be quite helpful in a subsequent, more serious, study of the subject.

The second introduction is a brief exposition of the non-relativistic many-particle quantum
mechanics. This enables a natural introduction of many basic ingredients of QFT (the Fock
space, creation and annihilation operators, calculation of vacuum expectation values, etc.) and
simultaneously to avoid the difficult question of merging relativity and quantum theory.

It is the third introduction, which sketches that difficult question (merging relativity and
quantum theory) and this is done in the spirit of the Weinberg’s book. Without going into
technical details we try to describe how the notion of a relativistic quantum field enters the game
in a natural way. The main goal of this third introduction is to clearly formulate the question,
to which the canonical quantization provides an answer.

Only after these three introductions we shall try to develop QFT systematically. Initially,
the development will concern only the scalar fields (spinless particles). More realistic theories
for particles with spin 1/2 and 1 are postponed to the subsequent parts of the book.

L According to His Envyness, The High Inquisitor of Marseille, HSP (Hrdina Stato¢nej Prace) and SI unit of
heterosexuality, may Peroon and other slavic gods bless Him forever — QFT is a theory of many other things,
like e.g. an elephant ear, trunk, tail, etc.

In spite of the fact that His Envyness is sometimes quite a liar, here he is right. QFT can be defined in such
a way (a useful one) that particles are not present from the beginning as basic building blocks, but they rather
emerge (not neccessarilly) as a feature of the theory. If so, the QFT is a theory of these particles.
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1.1 Conclusions

The machinery of QFT works like this:

e typical formulation of QFT — specification of a Lagrangian £
e typical output of QFT — cross-sections do/dS2

e typical way of obtaining the output — Feynman diagrams
The machinery of Feynman diagrams works like this:

e For a given process (particle scattering, particle decay) there is a well defined set of pic-
tures (graphs, diagrams). The set is infinite, but there is a simple criterion, allowing for
identification of a relatively small number of the most important diagrams. Every diagram
consists of several types of lines and several types of vertices. The lines either connect ver-
tices (internal lines, propagators) or go out of the diagrams (external legs). An example:

e Every diagram has a number associated with it. The sum of these numbers is the so-called
scattering amplitude. Once the amplitude is known, it is straightforward to obtain the
cross-section — one just plugs the amplitude into a simple formula.

e The number associated with a diagram is the product of factors corresponding to the
internal lines, external lines and the vertices of the diagram. Which factor corresponds to
which element of the diagram is the content of the so-called Feynman rules. These rules
are determined by the Lagrangian.

e The whole scheme is Lagrangian

!

Feynman rules

1

Feynman diagrams

I

scattering amplitude

1

cross-section

e Derivation of the above scheme is a long and painful enterprise. Surprisingly enough, it is
much easier to formulate the content of particular steps than to really derive them. And
this formulation (without derivation?) is the theme of our introductory summary.

21t is perhaps worth mentioning that the direct formulation (without derivation) of the above scheme can be
considered a fully sufficient formulation of the real content of QFT. This point of view is advocated in the famous
Diagrammar by Nobel Prize winners 't Hooft and Veltman, where ”corresponding to any Lagrangian the rules
are simply defined”
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1.1.1 Feynman rules

The role of the Lagrangian in QFT may be a sophisticated issue, but for the purposes of this
summary the Lagrangian is just a set of letters containing the information about the Feynman
rules. To decode this information one has to know, first of all, which letters represent fields (to
know what the word field means is not necessary). For example, in the toy-model Lagrangian
(of the so-called @3-theory)

1 1 1
_ - MW -2 2 - o 3

Llp] = 50up0"0 — 17" — 5149
the field is represented by the letter ¢. Other symbols are whatever but not fields (as a matter
of fact, they correspond to space-time derivatives, the so-called bare mass and the so-called
bare coupling constant, but this is not important here). Another example is the Lagrangian of
quantum electrodynamics (QED)
(9, A")?

— . . . 1 v
L W,’LZ&A;J = w(Z’Yﬂau - quHA,u - m)l/} - ZF;LDFH -

1
28
where F,, = 9,A, — 0,4, and the fields are ¢, ¢ and A, (the symbol * stands for the so-
called Dirac matrices, ¢ is the so-called bare charge and £ is called a gauge parameter, but this
information is not relevant here).

Now to the rules. Different fields are represented by different types of lines. The usual choice
is a simple line for ¢ (called the scalar field), the wiggly line for A, (called in general the massless
vector field, in QED the photon field) and a simple line with an arrow for ¢ and v (called in
general the spinor field, in QED usually the electron-positron field).

a6

ANNNY
o

G

<

—

The arrows are commonly used for complex fields, like 1 and v (or ¢* and ¢, if ¢ is complex)3.
The arrow orientation is very important for external legs, where different orientations correspond
to particles and antiparticles respectively (as we will see shortly). Every line is labelled by a
momentum (and perhaps some other quantum numbers). The arrows discussed above and their
orientation do not represent the momentum associated with the line!

The Feynman rules associate a specific factor with every internal line (propagator), line
junction (vertex) and external line. Propagators are defined by the part of the Lagrangian
quadratic in fields. Vertices are given by the rest of the Lagrangian. External line factor depends
on the whole Lagrangian and usually (but not necessarily) it takes a form of the product of two
terms. One of them is simple and is fully determined by the field itself, i.e. it does not depend
on the details of the Lagrangian, while the other one is quite complicated and is determined by
the whole Lagrangian.

3 Actually, in practice arrows are not used for scalar field, even if it is complex. The reason is that no factors
depend on the arrows in this case, so people just like to omit them (although in principle the arrows should be
present).
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vertices
For a theory of one field ¢, the factor corresponding to the n-leg vertex is*
oL
n-leg vertex =i ——
8(10 @=0

For a theory with more fields, like QED, the definition is analogous, e.g. the vertex with I, m

and n legs corresponding to 1,9 and A,-fields respectively, is

al+m+n£
AL OYmaY"

(I,m,n)-legs vertex = i

fields=0

Each derivative with respect to a field produces a corresponding leg entering the vertex. For
terms containing space-time derivative of a field, e.g. J,¢, the derivative with respect to ¢ is
defined in a bit bizarre way as®

0
——0u ¢ x something = —ip,, x something + d,¢ x a—something
¥

dyp

where p,, is the momentum (towards the vertex) of the leg produced by this derivative.

Clearly, examples are called for. In our toy-model given above (the so-called @3-theory) the
non-quadratic part of the Lagrangian contains the third power of the field, so there will be only

the 3-leg vertex
0? 1, 3 .
= 187@3 _5990 = —1g

In QED the non-quadratic part of the Lagrangian is —Ec}’y”AMz/J7 leading to the single vertex

0 (—Gpy*
_ O (A g
PIIA,

and for purely didactic purposes, let us calculate the vertex for the theory with the non-quadratic
Lagrangian given by —§p20,,00" ¢

o . 9
= ZaTo‘* (*980 8;&8“90)

03 )
=053 (200,00" @ — 2ip*p! 0,9)
. 0? . .
~i5 3 (20,,p0" @ — dipph 0, — diop! O — 20°p!'pa,y)

L. 0 . ) -
= —249% (—ip5 0, — iph Oup — paps — i O — ©p1Ps — @P1p2)

= 4ig (p1p2 + p1p3 + p1pa + P2p3 + P2pa + P3ps)

4The RHS of this definition could (should) contain a factor (21)* 8% (p1 + p2 + ... + pn) where p; is the mo-
mentum corresponding to the i-th leg (all momenta are understood to be pointing towards the vertex). However,

we prefer to include this factor elsewhere.
5

% L is by definition equal to —ip,, and the Leibniz rule applies to %, as it should apply to anything
worthy of the name derivative.
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propagators

Propagators are defined by the quadratic part of the Lagrangian. They are negative inverses of
the 2-leg vertices with an ie adornment (and with momenta p and p’ = —p pointing towards the

vertex)
-1
+ ie
»=0,p'=—p

The symbol e stands for any positive infinitesimal quantity, therefore we will always replace
e x finite quantity by the ¢ itself. For complex fields one uses 02L£/9p*d¢p, definitions for other
fields are similar.

The examples below are more than examples, they are universal tools to be used over and
over. The point is that the quadratic parts of Lagrangians are the same in almost all theories,
so once the propagators are calculated, they can be used in Virtually all QFT calculations.

The quadratic part of the scalar field Lagrangian is given by 8M<p8“<p — fm 2?2, leading to
O?L)0p?|p=0 pr=—p = —p.P — M |p=—p = p* — 17, ie.

e
02

propagator = i <

T

p? —m? +ic
The quadratic part of the spinor field Lagrangian is given by P (iy9,, — 1) 1, leading to
82£/8wa¢‘ﬁeldszo,p/:fp =v'pu — m, i.e.
i i (Y'p, + 1i
| _ I Gl e ii)
YD, — 1+ i€ p? —m? +ic
where we have utilized the identity (y*p, — ) (y*p, + ) = p® —1m?, which at this stage is just
a God-given identity, allowing us to rewrite the propagator in the standard way with p? —m? +ic
in the denominator.
Finally, for the massless vector field the quadratic Lagrangian is 7%Fa5F af _ 2% (8&140‘)2

leading t0% 78 02L£/0A,,0A, |felds=0p=—p = (1 — %)p“p” — p*n*¥ where n*¥ is the metric tensor
{ _ —1 (Wu - (1 - f) pupu/pZ)

Surprisingly enough, this is almost everything one would ever need as to the propagators.
In the Standard Model, the spinor propagator describes quarks and leptons, the massless vector
propagator describes photon and gluons, the scalar propagator describes the Higgs boson. The
only missing propagator is the massive vector one, describing the W* and Z° bosons. This
can be, however, worked out easily from the Lagrangian —iFagFO"B + %anAaAa (the result is
—i (" — pt'p¥ /1h?) (p? — 1? + ie) !, the derivation is left as an exercise).

SFor £ = l [(8 Ag) (0P A%) — (8aAg) (0%AP) — % (0o A%) (BﬁA'B)] the derivatives are straightforward
aaAL“ = <pa7758BAa ~ Panj0* A% — Lpan A7) = i (pad AT — pad® A — 1pr9s A7)

T = —pap 0™ + pap NP + PP = pp/nt — Pt + ptp’

’L;To find the matrix inverse to M = 1-¢ )p p* — p?n M one may either make an educated guess
MH_,, = A'r],w + Bpupy (tl)l\ere is nothing else at our dlsposal) and solve for A and B, or one may simply check
that [(1— &) p# — p?n ] (=nuw + (1 = &) pupv /p?) /P* = ).

8Let us remark that without the term i (Oa AO‘)2 the propagator would not exist, since the 2-leg vertex would

have no inverse. Two specific choices of the parameter ¢ are known as the Feynman gauge (£ = 1) and the Landau
gauge (£ = 0).
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external legs

The factor corresponding to an external leg is, as a rule, the product of two factors. Let us
start with the simpler one. For the scalar field ¢ (representing a particle with zero spin) this
factor is the simplest possible, it equals to 1. For other fields (representing particles with higher
spins) there is a nontrivial first factor for each external leg. This factor is different for particles
and antiparticles. It also distinguishes between ingoing and outgoing particles (i.e. between the
initial and the final state). The factor depends on the particle momentum and spin, but we are
not going to discuss this dependence in any detail here.

As to the massless vector field A, (e.g. for the photon, where antiparticle = particle) this
factor is

ingoing particle Eu

outgoing particle €L

For the spinor field (e.g. for the electron and positron, which are distinguished in diagrams by
the orientation of the arrow) the factor is

ingoing particle arrow towards the diagram U
ingoing antiparticle arrow out of the diagram v
outgoing particle arrow out of the diagram u
outgoing antiparticle arrow towards the diagram v

These rules are universal, independent of the specific form of the Lagrangian.
Examples for electrons and photons may illuminate the general rules. We will draw diagrams

from the left to the right, i.e. ingoing particles (initial state) are on the left and outgoing particles
(final state) on the right®.

process typical diagram first external legs factors

ey —e U, Ep, U, €Y,

ety — ety

- *
U, €, U, )

ete™ = ete™

e e —e e

LK

9Note that some authors, including Peskin-Schroeder, draw the Feynman diagrams other way round, namely
from the bottom to the top.
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Now to the second factor corresponding to an external leg. It has a pretty simple appearance,
namely it equals to v/Z, where Z is a constant (the so-called wave-function renormalization
constant) dependent on the field corresponding to the given leg. The definition and calculation
of Z are, however, anything but simple.

Fortunately, the dominant part of vast majority of cross-sections and decay rates calculated
by means of Feynman diagrams is given by the so-called tree diagrams (diagrams containing no
closed loops), and at the tree level the Z constant is always equal to 1. So while staying at the
tree level, one can forget about Z completely. And since our first aim is to master the tree level
calculations, we can ignore the whole Z-affair until the discussion of loops and renormalization.
The following sketch of the Z definition is presented only for the sake of completeness (and can
be skipped safely at this moment).

Unlike all other Feynman rules, the Z constant is defined not directly via the Lagrangian, but
rather via an infinite sum of Feynman diagrams'®. The said sum, called the dressed propagator,
contains all diagrams with two external legs corresponding to the field under consideration. These
two external legs are treated in a specific way — the corresponding factor is not the external
leg factor but rather the propagator. The dressed propagator is a function of the external leg
momentum (both legs have the same momentum due to the vertex momentum é-functions) and,
as a rule, has a pole in the p?-variable. The residuum at this pole is the wanted Z.

This definition, as it stands, applies only to the scalar fields. For higher spins the dressed
propagator is a matrix and the Z constant is defined via the eigenvalues of this matrix. So one
can have, in principle, several different Z constants corresponding to one field. For the electron-
positron field, however, there turns out to be only one such constant and the same is true for
the photon field.

In addition to this, there is yet another very important ingredient in the external leg treat-
ment. The external leg factor stands not only for the simple (bare) external leg, but rather for
the dressed external leg (with all loop corrections). In other words, when calculating a scatter-
ing amplitude, one should not include diagrams with loop corrections on external legs. These
diagrams are, in a sense, taken into account via the v/Z factors!!.

Too complicated? Never mind. Simply forget everything about Z, it will be sufficient to
recall it only much later, when dealing with renormalization.

Remark: As we have indicated, in some circumstances the external leg factor may be even more
complicated than the product of two terms (one of them being ﬁ) This happens in presence of
non-vanishing sums of all diagrams with two external legs corresponding to different fields. This
is only rarely the case and always indicates that our choice of fields was not the most appropriate
one. The remedy for this trouble is quite ordinary: after a suitable re-definition (just a simple
linear combination) of the fields, the trouble simply drops out.

10For the defininition of Feynman diagrams see the next subsection.
H After being forced to calculate the loop corrections to a simple line in order to obtain Z, one does not need
to calculate them again when calculating the scattering amplitude. There is at least some justice in this world.
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1.1.2 Feynman diagrams
diagrams for a given process contributing at a given order

A process defines external legs, both ingoing and outgoing. A Feynman diagram corresponding
to this process is any diagram (graph) with this set of external legs interconnected by the internal
lines (propagators) of the theory, via the vertices of the theory, with exception of:

e diagrams with no vertices at all

e diagrams containing so-called ”vacuum bubbles”, i.e. subdiagrams not connected to any
external leg

e diagrams containing so called ”corrections on external legs”, i.e. subdiagrams with two
outgoing lines, one of which is an external leg

There is usually an infinite number of such diagrams. Still, only a finite number contribute
at a given order. The order may be defined in at least three different ways, namely as a) the
number of vertices, b) the power of the coupling constant or ¢) the number of (independent)
loops. If there is only one type of vertex in the theory, these three definitions are equivalent!?. If
one has more types of vertices, but all characterized by the same coupling constant'3, then the
first definition is not used and the other two are not equivalent.

As an example, let us consider a scattering AB — 12, described by either ¢3- or ¢*-theory.
At the leading order (the lowest nonzero order, tree level) one has for the @*-theory

A 1 A 1 A 2
B 2 B 2 B 1

while for the *-theory (L [p] = 58,90 ¢ — %ﬁﬂ(pQ — 5199

Note that the second and the third diagrams for the p>-theory are not equivalent, they contain
different vertices (intersections of different lines).

12Proof: The equivalence of the first two definitions is evident (every vertex contributes by the same coupling
constant). As to the equivalence of the third definition, let us denote the number of vertices, internal lines, external
lines and independent loops by V', I, E and L respectively. The famous Euler’s Theorem states V. =1 — L + 1.
This is to be combined with nV = 2I + E where n is the number of legs of the vertex of the theory. The
latter equation is nothing but a simple observation that we can count the number of lines by counting vertices
and multiplying their number by n, but we are double-counting internal lines in this way. When combined, the
equations give (n —2)V = 2L 4+ E — 2, i.e. for a given E the dependence of V on L is linear.

13A good example is the so-called scalar electrodynamics (spinless particles and photons) defined by the La-
grangian £ [p] = (Du)* DFe —1h2p*p — 2 Fu, Fr — i (0 AM)?, where Dy, = 9, + iGA,.
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At the next to leading order (1-loop level) one has for the p3-theory
A 1 A 1 A 1 A 1
B 2 B 2 B 2 B 2
A 1 A 1 A 1 A 1
B 2 B 2 B 2 B 2
A 2 A 2 A 2 A 2
B 1 B 1 B 1 B 1

A 1 A 2 A 1

A X X

B 2 B 1 B 2

Note that in the last diagram the crossing of external legs B and 2 does not represent a vertex
(we just did not manage to draw the diagram in plane without crossing). Let us remark that the
3 diagrams in the last column (so-called tadpole diagrams) are often omitted, since the factors
corresponding to these diagrams usually turn out to vanish.

The next to leading order (1-loop level) result for the p*-theory is

A 1 A 1 A 2

B 2 B 2 B 1
As examples of diagrams not included among Feynman diagrams corresponding to the process
under consideration let us mention

A 1
no vertices at all
B 2
A 1
>< 8 vacuum bubble subdiagram
B 2

1

A
% correction on external leg
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the factor corresponding to a given diagram

The factor corresponding to a diagram is the product!# of factors corresponding to all external
lines, internal lines and vertices of the diagram, multiplied by

e an extra factor (2m)* 6% (p1 + pa + ...+ py) for each vertex (p; is the momentum corre-
sponding to the i-th leg, pointing towards the vertex).

e an extra factor f 4 for each propagator (with the four-momentum k)

e an extra so-called combinatorial factor, to be discussed later

e some extra factors of (—1) related to fermionic lines'®

Examples'®
A 1
X = igen) 5 at e - - p2)
B 2
A 1
>—< = 27T f(2 )4m(5 (pA+pB—k)54(k—p1—p2)
B 2
. 52 4
= —prB)g—z_m% (2m)" 6% (pa +pB — P1 — P2)
A 1
D 8 4 4./ 3
M - 2 f (gwl;4 (éﬂ'k)4 k2 —m?2+4ie k’z—m2+155 (pA +pp— k- k/) X
0
B 2 combinatorial factor x 0 (k4K —p1 —p2)
= 38 ) ke Gap T erEd (Pa+ D5 —p1—p2)
A 1
o 8 i(y by +1htie
= ¢ 2m)" [ Ghun ot (k—p1 —p2) %X
B 2 X7 0% (pa +pB — k) upey 64,
oo TV (YN (pa+pE)A+)Y uB 4
= i e e @0) 5 (a4 P — 1 p2)

141f individual factors are simple numbers, one does not care about their ordering. In some cases, however,
these factors are matrices, and then the proper ordering is necessary. The basic rule here is that for every line
with an arrow, the factors are to be ordered ”against the arrow”, i.e. starting from the end of the arrow and
going in the reverse direction.

15The factor (—1) for every closed fermionic loop, and the relative minus sign for the diagrams, which can be
obtained from each other by an interchange of two fermionic lines. Diagrams related to each other by the omission
or addition of boson lines have the same sign.

16 A1l momenta in these examples are understood to flow from the left to the right. One can, of course, choose
another orientation of momenta and change the signs in d-functions correspondingly.



1.1. CONCLUSIONS 13

the factor corresponding to a given diagram — an alternative formulation

There is another, a bit more economic way, of producing the factor corresponding to a given
diagram. When using this method, diagrams are drawn in such a way that all the momentum
d-functions in vertices are satisfied (e.g. in (>-theory instead of denoting legs going into the
vertex as p1, P2, p3, one denotes the third leg directly as —p; — p2). The factor corresponding to
a diagram is the product of factors corresponding to all external lines, internal lines and vertices
of the diagram, multiplied by

e an overall momentum d-function factor: (2r)* §(Pr— P;)

(P; and Py are sums of the ingoing and outgoing momenta respectively)

d*k
(2m)*

e an extra factor [ for each independent loop

e an extra so-called combinatorial factor, to be discussed later

e some extra factors of (—1) related to fermionic lines

The new rules are obtained from the previous ones by performing all trivial integrations over
the vertex momentum J-functions. We will show now that after such integrations are performed
one is indeed left with just the one non-integrated d-function and L(= number of independent
loops) integrals yet to be evaluated.

Let us start with any internal line connecting two vertices. After integration over the mo-
mentum of this line, one gets rid of one of the vertex d-functions and the momentum of the line
is fixed (in terms of the other momenta entering the vertex with the said d-function).

The reader may check, that in all the previous examples the results are obtained more directly
with this formulation. The new rules are obtained from the previous one by performing all trivial
integrations over the vertex J-functions. To see this, let us ignore all factors corresponding to
a diagram except of momentum integrations for internal legs and momentum J-functions for
vertices. Each integration corresponding to an internal line connecting two different vertices can
now be depicted as omission of the corresponding internal line and merging two vertices into
one vertex. Repeating this procedure over and over, one eventually gets rid of all internal lines
connecting two different vertices. So finally one obtains a daisy-like diagram with only one vertex
and some loopy internal lines going from this vertex and returning back. The number of these
loops is the same, as the number of independent loops in the original diagram (this is due to the
Euler’s theorem L = I — V 4 1 and the fact that at each step the numbers I and V' decrease by
one). The remaining integrals are the loop-integrals mentioned in the alternative formulation.
The §-function corresponding to the last vertex is the overall d-function. (Convince yourself
about the last two statements.)
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combinatorial factors

Beyond the tree level, a diagram may require the so-called combinatorial factor!'”, which is
usually the most cumbersome factor to evaluate. Therefore, it seems reasonable to start with
some simple rules of thumb:

e If two vertices are connected by n different internal lines, the corresponding combinatorial

factor is 1/n!
1 1

o If a line starts and ends in the same vertex, it contributes by 1/2 to the combinatorial factor

S ) 1 11
2 22!
e If N permutations of n vertices do not change the diagram, the corresponding combinatorial
factor is 1/N (note that if not all n! permutations leave the diagram untouched, then N # n!)

o i
2 3! 23 3!

e The above list is not exhaustive, e.g. it does not allow to find the correct combinatorial factor
in the following case

1

8

A systematic, but less illustrative, prescription goes something like this: Let us assign a label
to each end of every line in the diagram. The labeled diagram is characterized by sets of labels
belonging to the common vertex, and by pairs of labels connected by a line. Permutation of
labels would typically lead to a diagram labeled in a different way. Some permutations, however,
lead to the identically labeled diagram. Find out the number N of all such permutations (leaving
the labeled diagram unchanged). The combinatorial factor of the diagram is 1/N.

Needless to say, this prescription is not that easy to follow practically. Fortunately, in simple
cases (and one seldom needs to go much further) it can be reduced easily to the above rules of
thumb. To provide the reader with a systematic procedure of generating all diagrams with right
combinatorial factors, we will formulate one such method in the next paragraph. If found too
clumsy, the paragraph can be skipped safely.

"Why such a name: the diagrams represent specific terms of perturbative expansion, the number of terms
corresponding to a given diagram is given by some combinatorics.
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a systematic way of drawing the diagrams with correct combinatorial factors

Let us consider diagrams with [ external legs. We will represent the sum of all such diagrams
(including diagrams with no vertices at all, diagrams containing vacuum bubbles and diagrams
containing corrections on external legs) by a shaded blob with [ legs.

Now let us focus on one of the external legs. What is it connected to? It can be connected
either directly to one of the other external legs, or it goes to some m-leg vertex. In the former
case, the sum of all diagrams equals to one leg with no vertices at all and the sum of all diagrams
with [-2 external legs (a simple line disconnected to a (I-2)-legged shaded blob). In the latter
case, the sum of all diagrams contains this leg going to the said vertex and the sum of all diagrams
with [+m—2 external legs, m—1 coming from the said vertex and -1 being true external legs (the
vertex connected to a [+m—2 shaded blob). If the external leg can go to different vertices, all of
them has to be taken into account.

The combinatorial factors come as follows: If the vertex contains ni, no, ... non-external legs
corresponding to the same field, then the combinatorial factor is 1/(n1! ng! ...). The result is
the known as the Dyson-Schwinger equation. For combined ¢3- and ¢*-theories it reads

To get all diagrams up to a given order with correct combinatorial factors, the DS equation
is used in an iterative way: one starts the equation itself, then one takes any leg and applies the
equation to it, then the same is repeated with some other leg etc., until one reaches

(the structure one is interested in) x

with ellipsis standing for diagrams with disconnected external legs + higher orders.

Let us illustrate the procedure by the diagram with two external legs within the @*-theory.
The starting point is the DS equation for 2 external legs

1
+ 50

Now the DS equation is applied to some other leg, say to the 2nd external leg

3 % 11
o8

3! 313!

If we are interested only in the 1st order (in the number of vertices), then the last term is already
of higher order, and the second term is again processed by the DS equation, to finally give

= +%JL X (

The factor in front of the second diagram in the brackets is the correct combinatorial factor for
this diagram. (As an exercise the reader may try to go one order higher.)
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As another example let us consider the AB — 12 scattering within the ¢*-theory. Again, the
starting point is the DS equation

1 A
1
T

2 B

where the ellipsis stands for terms with disconnected external legs. The DS equation is now
applied to some other leg, say the external leg B

A 1

B 2
The RHS enjoys yet another DS equation, now say on the external leg 1, to give
A 1 A 1 1 A 1
13
_ Y Q) L 13 28 18
& 313!
B 2 B 2 2 B 2

The first two (last two) terms on the RHS come from the first (second) diagram on the RHS
above, terms with more than two vertices are included into ellipsis. The first diagram is now
treated with the help of the previous result for the 2-leg diagrams, the other three are treated
all in the same way, which we will demonstrate only for the second diagram: we use the DS
equation once more, now say for the external leg 2

A 1
_ 21 \@
23|
B 2
A 1
. + +
2 3| ’
B 2

Putting the pieces together, one finally obtains the one-loop diagrams with the correct combina-
torial factors

3
.-
K.
.
_x
K
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1.1.3 Scattering amplitude
The definition of the scattering amplitude My; is quite simple:

the sum of Feynman diagrams = iMy; (2m)* 6@ (Pr—F)

where P; and Py are the overall initial and final momentum respectively. By the sum of the
diagrams, the sum of the corresponding factors is meant, of course.

Examples (to be checked by the reader):

o ¢3-theory, AB — 12 scattering

o2 02 52

ree-level ;= — e g - g
tree-level My, (patpp)?—m2+ic  (pa—p1)°—m2+ic  (pa—p2)>—1mh2+ie

1-loop-level the result is intricate and not that illuminating
but the reader is encouraged to work out some loop diagrams

e ¢*-theory, AB — 12 scattering
tree-level My, = —g
1-loop-level My, = —14%[I (pa +pg) + 1 (pa —p1) + I (pa — p2)]

_ i d*k 1 1
Ip) =i (2m)% BZ—m2tic (p—k)2—m>+ie

o ©’®-theory'® , A — 12 decay
1
tree-level A-- < Mg =—g
2
1-loop-level A —-< My; = —3*J (p1,p2)
2
_ i [ _d'% 1 1 1
J(p1,p2) =i f (2m)T k202 (p1+k)°—m2+ie (pa—k)2—m>+ie

I8 A theory for two different fields ¢ and ®, defined by the Lagrangian

1 1 1 1. g
Llp, @) = J0upto — Sin®@® + S0, 20 ® — _AI7D? ng‘b
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1.1.4 Cross-sections and decay rates

The cross-section for a scattering AB — 12...n is given by

1 e dgpi
do = (27)" 5" (P; — P) : ML mam
4\/(pA.pB) —m4m% i1 (2m)° 2E;

while the analogous quantity for a decay A — 12...n is

1 - d3p;
dr = (27)* 6% (P; — P) — M| [ ———
)" " (P = P g M T 1 e
where the so-called width I' is related to the particle life-time 7 by I' = 1/7.

Because of the d-function present in these formulae, one can relatively easily perform four
integrations on the RHS. For the quite important case of n = 2, i.e. for AB — 12 and A — 12,
the result after such integrations is' in the CMS (centre of mass system)

L |py 1 2
docms = 5 |47| 5 |[Myi|” dy
6472 |Pal (pa + pp)

171
3212 m?

dl'cuvs = |Mfz‘|2 d

while in the laboratory system (the rest frame of the target particle B)

1 mf 1 1
6472 |pa| mp (Ea +mp) [Pi| — E1 |Pal cos?

2
dO’]ab = |Mfl‘ dQl

and the formula for a decay is exactly the same as in the CMS (the two systems coincide in this
case). All quantities (energies, momenta, angles) are, of course, understood in the corresponding
frames and the non-present (integrated out) d-functions are understood to be satisfied.

Remark: [t is perhaps worth noticing that before §-function integrations the cross-section do is
a product of Lorentz scalars (indeed §* (P — P;), (pa.pp)’ — miym, |Mfi|2 and d3p; /2E; are
separately scalars), while dTU is a product of scalars and one non-scalar quantity 1/2E 4. After
the integrations this neat structure is completely lost and this is the reason of the sad fact that
one cannot simply and directly translate cross-sections and life-times from one frame to another.

19The specific formulae are obtained from the general ones by three trivial integrations over d®py leading to
do = (2m)* 6 (E1 + B2 — Eo — Ep) L |M;)?

4\/(pA»pB)2—m?4m23

(in the CMS). Integration over the last §-function is usually performed in the spherical coordinates d3p; =
k?dkdS where k = |pi|. The last d-function is of the form d(g(k)) with g(k) = (/k2 +m? + \/k2 +m3 —

Ea — Ep. This function is monotonous and it has therefore only one zero (iff m1 + m2 < Eas + ER), so
one can write d(g(k)) = 6(k — ko)/ |9’ (ko)| where g(ko) = 0. Now g¢'(k) = k(E1 + E2)/E1E2 and after some

algebra one gets in the CMS \/(pA.pB)2 —m%m% = |pa| (Ea + Eg). All this together lead to the result

a3 . - o
(277)+21E1(27\')+2E2 with every p> replaced by —p1

for docnrs, where |pi] is to be replaced everywhere (including My;) by the zero point ko of the g-function

ko = %\/E%MS —2(m2 + m3) + (m? —m2)2/E2,,s- The result for dl'c g is obtained in the same way. The
calculation of the cross-section in the lab system is just slightly more cumbersome, due to p2 = p'a — p1.
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Examples:?°
e ©*-theory, AB — 12 scattering, tree level
docms = 1QQCZQ s=(pa+pp)’
6472 s

In this case the differential cross-section does not depend on angles, so one can immediately
write down the total cross-section ooys = g2/167s.

o @3-theory, AB — 12 scattering, tree level

4 2 = ’
; ) 1 1 t=(pa—pm1)
o a0
oCMS 647r2s(s—m2+t—m2+u_m2> uw=(pa —p2)°

where s, t,u are the frequently used so-called Mandelstam variables.

Exercises:

e AB — 12 scattering at the tree level, within "the ¢*-theory with derivatives”, i.e. the
theory of scalar fields with the non-quadratic part of the Lagrangian L,y = f%gﬁauga@“go.

o & — pyp decay rate, pp — o, P® — PP and pp — PP cross-sections at the tree level,
for the p?®-theory defined in the footnote on the page 17.

20Ty final results the limit € — 0 is usually understood, therefore there are no ic terms in propagators.
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1.2 Many-Body Quantum Mechanics

The main characters of QFT are quantum fields or perhaps creation and annihilation operators
(since the quantum fields are some specific linear combinations of the creation and annihilation
operators). In most of the available textbooks on QFT, the creation and annihilation operators
are introduced in the process of the so-called canonical quantization?'. This, however, is not the
most natural way. In opinion of the present author, it may be even bewildering, as it may distort
the student’s picture of relative importance of basic ingredients of QFT (e.g. by overemphasizing
the role of the canonical quantization). The aim of this second introduction is to present a more
natural definition of the creation and annihilation operators, and to demonstrate their main
virtues.

1.2.1 Fock space, creation and annihilation operators
Fock space

1-particle system
the states constitute a Hilbert space H! with an orthonormal basis |i), i € N

2-particle system??
the states constitute the Hilbert space H? or H} or H3, with the basis |, j)
non-identical particles H?=H!@H! |i,j) = i) @ |j)

identical bosons HECH ' @HY i,j) = % (I9) @ |5) + |7) ® 7))
identical fermions HECH ' @H' |i,j) = % (I7) ® [7) — 17) @ 13))

n-particle system (identical particles)
the Hilbert space is either H}3 or Hi C H' ®...® H', with the basis
—_————

n

|z’,j,...,k):% () @) ®...® k)

* permutations

n

where p is the parity of the permutation, the [P sign applies to fbosons

T ermions

0-particle system

1-dimensional Hilbert space H® with the basis vector |0) (no particles, vacuum)

Fock space
direct sum of the bosonic or fermionic n-particle spaces

He = PHy e = P H
n=0 n=0

21There are exceptions. In the Weinberg’s book the creation and annihilation operators are introduced exactly
in the spirit we are going to adopt in this section. The same philosophy is to be found in some books on
many-particle quantum mechanics. On the other hand, some QFT textbooks avoid the creation and annihilation
operators completely, sticking exclusively to the path integral formalism.

22This is the keystone of the whole structure. Once it is really understood, the rest follows smoothly. To achieve
a solid grasp of the point, the reader may wish to consult the couple of remarks following the definition of the
Fock space.
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Remark: Let us recall that for two linear spaces U (basis e;, dimension m) and V' (basis f;,
dimension n), the direct sum and product are linear spaces U DV (basis generated by both e; and
fj, dimension m+n) and U @V (basis generated by ordered pairs (e;, f;), dimension m.n).

Remark: The fact that the Hilbert space of a system of two non-identical particles is the direct
product of the 1-particle Hilbert spaces may come as not completely obvious. If so, it is perhaps
a good idea to start from the question what exactly the 2-particle system is (provided that we
know already what the 1-particle system is). The answer within the quantum physics is not that
straightforward as in the classical physics, simply because we cannot count the quantum particles
directly, e.g. by pointing the index finger and saying one, two. Still, the answer is not too
complicated even in the quantum physics. It is natural to think of a quantum system as being
2-particle iff

a) it contains states with sharp quantum numbers (i.e. eigenvalues of a complete system of
mutually commuting operators) of both 1-particle systems, and this holds for all combinations of
values of these quantum numbers

b) such states constitute a complete set of states

This, if considered carefully, is just the definition of the direct product.

Remark: A triviality which, if not explicitly recognized, can miz up one’s mind: H' NH? =0,
i.e. the 2-particle Hilbert space contains no vectors corresponding to states with just one particle,
and vice versa.

Remark: The fact that multiparticle states of identical particles are represented by either com-
pletely symmetric or completely antisymmetric vectors should be familiar from the basic QM
course. The former case is called bosonic, the latter fermionic. In all formulae we will try, in
accord with the common habit, to treat these two possibilities simultaneously, using symbols like
+ and F, where the upper and lower signs apply to bosons and fermions respectively.

Remark: As to the basis vectors, our notation is not the only possible one. Another widely
used convention (the so-called occupation number representation) denotes the basis vectors as
|n1,na,...), where n; is the number of particles in the i-th 1-particle state. So e.g. |2,2,2,4,4) <
|0,3,0,2,0,0,0,...), where the LHS is in our original notation while the RHS is in the occupation
number representation. The main drawback of the original notation is that it is not unique, e.g.
I1,2,3) and £11,3,2) denotes the same vector. One should be therefore careful when summing
over all basis states. The main drawback of the occupation number representation is typographical:
one cannot write any basis vector without the use of ellipsis, and even this may sometimes become
unbearable (try e.g. to write |49,87,642) in the occupation number representation,).

Remark: The basis vectors |i,j,...,k) or |ni,na,...) are not all normalized to unity (they
are, but only if all i,3,...,k are mutually different, i.e. if none of n; exceeds 1). If some of
the i,j,...,k are equal, i.e. if at least one n; > 1, then the norm of the fermionic state is

automatically zero (this is the Pauli exclusion principle), while the norm of the bosonic state is

vni! na! ... Prove this.

Remark: A triviality which, if not explicitly recognized, can mixz up one’s mind: the vacuum |0)
s a unit vector which has nothing to do with the zero vector 0.
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creation and annihilation operators

Let |i) (i = 1,2,...) be an orthonormal basis of a 1-particle Hilbert space, and |0), |i), |4, ),
li,7,k), ... (1 <j <k <...)an orthogonal basis of the Fock space. The creation and annihilation
operators are defined as follows

creation operator a;

is a linear operator, which maps the n-particle basis vector to the (n + 1)-particle vector by
adding one particle in the i-th state (the particle is added at the first position in the resulting
vector; for bosons this rule does not matter, for fermions it determines the sign)

af [0y =)  af i) =1i5)  af i k.. =14k, ...)

annihilation operator a;

is a linear operator, which maps the n-particle basis vector to the (n — 1)-particle vector by
removing one particle in the i-th state. The particle is removed from the first position of the
original vector, and if it is not there, the original vector must be reshuffled (for bosons this rule
does not matter, for fermions it determines the sign). If the original vector contains more than
one particle in the i-th state, the whole procedure is performed with each of them and the results
are summed up. If the original vector does not contain a particle in the i-th state, the result is
the zero vector.

ai [0) =0 ailj) = 6:;0)
a; |j,k,l> = 6” ‘k,l,> :l:(;lk |j,l,> +67.l |j,k,> +...
Both creation and annihilation operators are linear and they are defined on the basis vectors.

Consequently they are defined for any vector.

Remark: In the occupation number representation, the definitions read

bosons af|ni,...,ng .y =Ing,.oni+1,00)
ai|n1,...,ni,...>:ni|n1,...,ni—1,...>
fermions a; |ni,...,n; =0,...)= (=" |nq,...,n; =1,...)
aj|n1,...,ni:1,...>:O
ai|n1,...,ni:O,...>:O
ai|n1,...,ni: 7>:(_1)p7 ni, 7712‘:0, >
pi:ZZ_—lnk

Creation and annihilation operators are very useful, because

e they enable the most natural description of processes in which the number of particles is not
conserved, i.e. in which particles are created and/or destroyed

e any linear operator can be expressed in terms of the creation and annihilation operators,
namely as a sum of products of these operators

e there is a standard and routine method of how to calculate matrix elements of operators
expressed in terms of the creation and annihilation operators.

In view of how frequent the processes of particle creation and annihilation are (decays and in-
elastic scatterings in the atomic, nuclear, subnuclear and solid state physics), the first point is
evidently very important. And in view of how often the QM calculations are just the calcula-
tions of various matrix elements of linear operators, the other two points are clearly also very
important.
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key attributes of the creation and annihilation operators

Perhaps the three most important are?3

e af =a! ie. af and a; are Hermitian conjugated

e aa; (no summation) is the operator of number of particles in the i-th state
(and consequently . a;"ai is the operator of the overall number of particles)

[ ] [ai, aj']

=0;j lai, a;]; = [aj',aj’]I =0 where [z,y]. = 2y F yx

q:

The proof is an easy and very useful exercise, recommended to anybody who wants to become
quickly accustomed to elementary manipulations with the a;“, a; operators. The following sketch
of the proof is therefore intended only as a check of reader’s own work (the proof is performed
in the occupation number formalism, which is more convenient for this purpose).

e Hermitian conjugation

(oompedai |ooomg )y = (oongng = 1o ) ng = (o) (i = D ng 0 n, 1
(oomioJaf |ooonl )y =(ong b +100) = (| ni 8y

where for bosons n;,n; € N and for fermions n;,n} € {0,1}

e particle number operator

bosons

afail...ni..y=ain;|...n;—1...) = na ni—1..)=n;|...n;...)

fermions

afa;i|...1 ..y =af ()" ]...0...) = (=1)*]...1..))

e (anti)commutation relation
bosons
[ai,aﬂ\...ni...> = ai\...ni+1...>—niaj'|...ni—1...)
[ai,aﬂ\...ni...nj...> = ai|...ni...nj—|—1...>—a;r|...ni—1...nj...)
fermions
i 2p;

{a;,af} ... ..>:0+(f1)paj'|...0...>:(71)2’.’|...1...>:|...1...>
{aj,af }|...0.. )= (=) a;|...1..0 +0=(=1)7"[...0...)=]...0...)

{ai,a;'} l...
{aha;'} [ ..
{ai7aj} [ ..
{ai7aj} [...

The other (anti)commutation relations are treated in the same way.

~1)Pa;]...0...1..)40=0

== O O O =

)= (
)=0
= (=P 0 ) ()PP 0.1..) =0
)=0+(-1)"af|...0...1...) =0

= o = O

23Note that a?‘ and a; operators could be (and often are) introduced in the reversed order. In that case, the
(anti)commutation relations are postulated and the Fock space is constructed afterwards for a;" and a; to have
something to live in. It is perhaps just a matter of taste, but the present author strongly prefers the ” more natural
logic” of this section. Later in these lectures, however, we will encounter also the reversed logic of the canonical
quantization.
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creation and annihilation vs. raising and lowering operators

The reader is perhaps already familiar with operators a* and a satisfying the above commutation
relations. Such operators are introduced for the LHO (linear harmonic oscillator) in every basic
QM course?*. What is the relation between the LHO raising and lowering operators (commonly
known also as ladder operators) and our creation and annihilation operators? Three important
points are to be emphasized:

1. The creation and annihilation operators have (in principle) nothing to do with the LHO
ladder operators. They are naturally defined (as we have seen) in the Fock space without
any reference (or even presence) of harmonic oscillators.

2. The definition of raising and lowering operators (with the mw factor replaced by an arbi-
trary real number \) applies to any 1-particle system, not only to the LHO. Indeed, for a™
and a defined as

R i 5 _ A s i
@t =\ T s P a=\g T+ 755 P
one can show (just like in the case of LHO) that

(a) they are hermitian conjugate to each other
(b) the canonical commutation relation [&,p] = ih implies [a,a™] =1
(c¢) the eigenvalues of the operator N = aTa are natural numbers plus zero

Let us stress that the definition of these operators have nothing to do with the LHO. What
makes the LHO special in this respect is the Hamiltonian, which is exceptionally simple
in terms of a™,a. But ladder operators can be useful for any system. Naturally, they are
most useful for systems ”close to the LHO”, where the difference in Hamiltonians can be
treated as a small perturbation.

3. In spite of the first two points the creation and annihilation operators are usually closely
related to the ladder operators. The reason is twofold.

(a) The LHO ladder operators can be viewed as the creation and annihilation operators
of some formal particles in some bizarre states. The point is that LHO is formally
equivalent to the ideal gas of arbitrary number of formal particles, all of which can
be, however, in just one state. This is a simple consequence of equidistant spectrum
of the LHO Hamiltonian (the n-th excited state of the LHO can be treated as a state
of n formal particles with equal energies)

(b) Any ideal gas is in some sense equivalent to a system of harmonic oscillators. The
point is that when expressed in terms of creation and annihilation operators, the
Hamiltonian of an ideal gas is equivalent to the Hamiltonian of several formal harmonic
oscillators. This will follow from the explicit form of the ideal gas Hamiltonian which
we shall derive in the next section.

Due to the point 3b the LHO ladder operators play an important (even if only an auxiliary)
role in one particular development of QF T, namely in the canonical quantization of classical fields
(we will learn a lot about it later on). Since this is perhaps the most common development of the
theory, the role of the LHO ladder operators can be easily overestimated. Let us therefore stress
once more that creation and annihilation operators do not need any mention of LHO whatsoever.

24Recall at = &+/mw/2h — ip/V2hmw , a = &+/mw/2h + ip/V/2limw and they are by definition conjugated to
each other. The canonical commutation relation [#,p] = ih implies for a and a the commutation relation of the
creation and annihilation operators and the eigenvalues of the operator N = ata are natural numbers plus zero
(this follows from the commutation relation).
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Remark: [t may come as a kind of miracle that the specific complex linear combinations of
x(t) and p(t) solve the spectrum of the LHO Hamiltonian so efficiently (as everybody knows from
an elementary QM course). In quantum mechanics these linear combinations come out of thin
air and they are, frankly speaking, quite mysterious. But at the classical level they are not as
artificial as they may appear at the first sight. It is quite common to write down the solution
of the classical equation of motion for LHO in the complex form as x (t) = Ae” ™! + Be'! and
p(t) = —imw(Ae=™t — Bett) (both z (t) and p (t) are in general complex, but if one starts with
real initial conditions, then B = A*, and they remain real forever). Now one sees that linear
combinations z(t) + ~=p(t) = 2Ae™“" and x(t) — -=p(t) = 2Be™" are just two independent
classical solutions. It is therefore not so much surprising that the linear combinations inspired
by the classical solutions (even if rescaled by the factor \/mw/2h)?> solve the problem relatively

quickly also at the quantum level.

Remark: The previous remark did not investigate any deep connection between the classical
and quantum physics, it was just a rough classical inspiration of the notoriously known treatment
of the quantum LHO. We will have more to say about formal connections between the classical
and quantum physics,?S but it is worth emphasizing that at this point our discussion is purely
quantum. The same applies to the following remark on phonons, which is again purely quantum
(in spite of the fact that many authors start the discussion of phonons at the classical level).

Remark: An ideal gas of formal particles, which arises more or less naturally in discussion of
LHO, is even more appealing in case of coupled harmonic oscillators. And this is indeed a very
important case, due to the famous miracle of systems in the vicinity of their stable equilibriums:
any such system is well approximated by the system of coupled harmonic oscillators which, in
turn, is equivalent to the system of decoupled harmonic oscillators.

Stationary states of the system of the independent harmonic oscillators are characterized by
the sequence (N1, Na,...) where N, defines the energy level of the n-th oscillator. Energies of
individual oscillators are Iwy(N,, +1/2). Energy of the system is Y, hwn(N, +1/2).

Now let us imagine a system of free particles, each of them having energy eigenstates labeled by n
with eigenvalues hw,. If there are N,, particles in the n-th state, the energy of the system will be
> hwn Ny This is equivalent (up to a constant) to the Hamiltonian of independent oscillators.
It is common habit to describe a system of independent harmonic oscillators in terms of the
equivalent system of free formal particles. These formal particles are called phonons.

Phonons are would-be particles (often called quasiparticles or collective excitations) widely used
for the formal description of real particles behaving as coupled harmonic oscillators (e.g. nuclei
or positive ions in a crystal lattice). These formal particles may look like real ones, especially
in systems with translational symmetry. In such systems decoupling of oscillators is provided by
the Fourier transformation, which brings (quasi)momentum in the game.?” In that case phonons
behave like having well defined energy and (quasi)momentum. Nevertheless, phonon is not a kind
of particle. Strictly speaking, it is just a word.

25In this section we are going to use explicit 4, just to make comparison with standard QM textbooks easier.

26 At the end of this section we will discuss an important issue of the classical limit of a quantum theory. The
whole second chapter will be, on the other hand, devoted to the reverse procedure, namely to the canonical tech-
nique of obtaining a quantum theory from the given classical one. But to appreciate the logic of this Introduction,
it is important to be aware of the fact that no classical physics is involved.

2TMany remarks in this second introduction presume a reader with a basic knowledge of the solid state theory.
For those readers who are not familiar with the quoted notions, the Appendix 7?7 is intended to fill the gap at
least to some minimal extend.
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creation and annihilation operators in different bases

So far our definition of the creation and annihilation operators was based on the specific choice
of basis in the 1-particle Hilbert space H'. Have we started from some other orthonormal basis,
we would get a different set of creation and annihilation operators. What is the relation between
the two sets of these operators?

Let |@) (o € N) be an orthonormal basis of H!, different from our original basis |i). The
new basis vectors can be expressed in terms of the old ones as |a) = |i) (i|]a) (with the Einstein
summation convention understood). Since the al operator acts by adding the particle in the
a-state and the state |a) is the specific superposition of the states |i), the al creation operator
has to be the same linear combination of the a;” creation operators

af = (ila)af o =) (ali)a;
i i
(the relation for the annihilation operators was obtained simply by hermitian conjugation). These

relations become handy whenever a need arises for a switch between different bases.

Another point worth discussion is that of continuous bases. Let us recall that the generalized
basis vectors |Z) or |p) are not elements of the l-particle Hilbert space, since they are not
properly normalized. The generalized normalization condition for the orthonormal z-basis reads
(Z|2') = 63(Z — £') and any vector [¢) from H! can be written as [¢) = [d3z |T)(Z|y).
All the relations valid for discrete orthonormal bases hold also for continuous orthonormal bases
after the Kronecker deltas are replaced by Dirac deltas and sums by integrals

bij — 03(F—2") Z—>/d3x

The basic relations for the creation and annihilation operators in the z-representation are
e ot (%) =al(Z) ie. a*(¥) and a(¥) are Hermitian conjugated

e for normalized states from the Fock space a™ (% )a(Z) is not the operator of number of particles
with the position &, but rather the operator of density of particles at position Z
(consequently [ d®z at(Z)a(Z) is the operator of the overall number of particles)

o [a(@),a®(@)]g =8@F-2")  [a(@) a(@)]; = [a*(&),a"(F)]L =0

The important relations between the creation and annihilation operators in the z-representation
and p-representations are just continuous versions of the discrete relations given above

i‘:/d% (F15) at /d3 7)) a

1 L
==\ ip.Z/h
<.1' |p> - (27Th)3/2 €

for orthonormal®® p-representation basis, i.e. for (p'|p’) = §%(7— p’). For this basis the relations
for the operators a™t(p), a(p) are completely analogous to the above relations for a™ (%), a(%).

where

128

28 et us remark that there is a quite common habit to use a specific unnormalized basis in the p-representation,
namely the one where (F|p’) = (27h)363(5 — §’). For this basis (Z|p) = eP%/" the basic (anti)commutation
relation reads [a(p), a® (p”)]x = (27h)3 63(p — p’) and the operator of density of particles with the momentum p

is (27h) "3at (P)a(p).
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Remark: Orthonormality of the basis |i) in the 1-particle Hilbert space H' played a crucial
role in the definition of the specific non-normalized orthogonal basis in the Fock space and in the
definition of the creation and annihilation operators. Important features of these operators were
consequences of the specific normalization of this Fock space basis. So why should anyone use
unnormalized basis in H'?

The point is that, as we have mentioned several times already, the a™(p) and a(p’) operators
are usually introduced via the so-called canonical quantization, where the starting point is some
classical theory. At the classical level, the Fourier transformation is involved, bringing the func-
tion €'P% into the game. Now the notoriously known factor of (21)3 can be used at different
places in the definition of the Fourier transformation. And the commonly used choice leads,
after quantization, to the non-unit normalization of the basis vectors in the p-representation.

Remark: When speaking about different bases in the Fock space, yet another issue should be
mentioned. When dealing with various types of particles, one needs a Fock space which contains
the Fock spaces of all particle species under consideration. The obvious first choice is the direct
product of the corresponding Fock spaces, e.g. H = Ha ® Hg ® Hc. In such a case any
creation/annihilation operator for one particle type commutes with any c/a operator for any
other particle type. Sometimes, however, different particle species may be viewed just as different
states of the same particle (due to isospin, eightfold way, etc. symmetries). If so, it is clearly
favorable to have a basis and the corresponding (anti)commutation rules which do not need a
radical modification with every change of viewpoint. This is achieved by the appropriate choice
of the (anti-)symmetrized subspace of the direct product of some of the Fock subspaces, i.e. by
the appropriate (anti-)symmetrization of bases of these subspaces, leading to change of some
commutation rules by anti-commutation ones.

Remark: On top of the creation and annihilation operators, one can encounter yet another —
completely different — set of similar operators. The point is that the basis |i, j,...) (or|ni,na,...)
in the occupation number formalism), which arises from a particular basis |i) of the 1-particle
Hilbert space, is perhaps the most natural, but not the only reasonable basis in the Fock space.
Actually, any complete set of (physically relevant) commuting operators defines some (relevant)
basis. (From this point of view, the basis |ni,mna,...) is just the basis of eigenvectors of the
occupation number operators.)

If the eigenvalues of a complete system of commuting operators are discrete and bounded from
below, then one can label both eigenvalues and eigenvectors by natural numbers. In such a case,
the basis defined by the considered system of operators looks like [Ny, Na,...), and for a basis of
this type we can define the so-called raising and lowering operators, just as we have defined the
creation and annihilation operators: Af (A;) raises (lowers) the quantum number N; by one.
Of a special interest are the cases when the Hamiltonian can be written as a sum of two terms,
one of which has eigenvectors |N1, Na,...) with eigenvalues E1 N1 + EoNo + ... and the second
one can be understood as a small perturbation. If so, the system formally looks like an almost
ideal gas (see the next section) made of a new type of particles (created by the A;." operators
from the state in which all the N; vanish). These formal particles are not to be mistaken for the
original particles, which the system consists of.

It may come as a kind of surprise that such formal particles do appear frequently in many-
body systems. They are called elementary excitations and they come in great variety (phonons,
plasmons, magnons, etc.). Their relation to the original particles is more or less known as the
result of either detailed calculations, or an educated guess, or some combination of the two. The
description of the system is, as a rule, much simpler in terms of the elementary excitations
than in terms of the original particles. This explains the wide use of the elementary excitations
language by both theorists and experimentalists.
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1.2.2 Important operators expressed in terms of a;, q;

As already announced, any linear operator in the Fock space can be written as a polynomial (per-
haps infinite) in creation and annihilation operators. However interesting this general statement
may sound, the particular examples are even more interesting and very important in practice.
We will therefore start with the examples and return to the general statement only later on.

Hamiltonian of a system of non-interacting particles

Let us consider non-interacting particles (ideal gas) in an external classical field with a potential
energy U (z). The most suitable choice of basis in the 1-particle Hilbert space is the set of
eigenstates of the 1-particle Hamiltonian p?/2m + U (), i.e. the states |i) satisfying

1
(57 + V@) 1) = Eili)
By this choice, the standard basis of the whole Fock space is determined, namely |0), |i), |4, j),
7,7, k), etc. And since the particles do not interact, each of these basis states has a sharp value
of energy, namely 0, E;, E; + E;, F; + E; + I}, etc., respectively. The Hamiltonian of the system
with any number of particles is the linear operator with these eigenvectors and these eigenvalues.
It is very easy to guess such an operator, namely Hy = ). E;n;, where n; is the operator of
number of particles in the i-th state. And since we know how to express 7; in terms of the
creation and annihilation operators, we are done

H() = ZEZ ajai

e If for any reason, we would need to express Hy in terms of another set of creation and
annihilation operators af = Y. (ila)aj and a, = 3, (ali) a;, it is straightforward to do so:
Hy =3, 3 Eapalag where Eop = 3, E; (ali) (i|8).

e If one has a continuous quantum number ¢, rather than the discrete index i, then (as we have
already discussed) the sum ), is replaced by the integral [dq: Ho = [ dq E (q) a;}‘aq. Another

change is that any Kronecker ¢;; is replaced by the Dirac delta 6 (¢ — ¢’).

Free particles. 1-particle states labeled by the momentum p, with E (p) = £

2m

Hy= [ & ia+a~
0= p2m 5 Ap

Periodic external field (the 0-th approximation for electrons in solids). Bloch theorem: 1-particle
states are labeled by the level n, the quasi-momentum k, and the spin o. The energy e,(k)
depends on details of the periodic field

Hy = Z/d% sn(E) a:;{yanﬁg

Spherically symmetric external field (the 0-th approximation for electrons in atoms and nucleons
in nuclei). 1l-particle states are labeled by the quantum numbers n,l,m,c. The energy E,;
depends on details of the field

— +
Hoy = § : Eng Ay 1m,odnlm,o

n,l,m,o
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Remark: The ideal gas approximation is very popular for electrons in atoms, molecules and
solids. At the first sight, however, it looks like a rather poor approximation. The dominant
(Coulombd) interaction between electrons is enormous at atomic scale and cannot be neglected in
any decent approach.

But there is no mystery involved, the ideal gas approximation used for electrons does not neglect
the Coulomb interaction. The point is that the external field for the electron ideal gas contains
not only the Coulomb field of positively charged nuclei, but also some kind of mean field of all
negatively charged electrons. This mean field is usually given by the Hartree-Fock approximation.
The corner-stone of this approximation is a restriction on electron states taken into consideration:
only the direct products of single electron states are accounted for. In this restricted set of states
one looks for what in some sense is the best approximation to the stationary states. This leads
to the specific integro-differential equation for the 1-electron states and corresponding energies,
which is then solved iteratively. 2° The creation and annihilation operators for these Hartree-Fock
states and the corresponding energies then enter the electron ideal gas Hamiltonian.

Remark: The ground state of a fermionic system in the Hartree-Fock approzimation (the ideal
gas approzimation with 1-particle states and energies given by the Hartree-Fock equation) is quite
simple: all the 1-particle states with energies below some boundary energy, the so-called Fermi
energy £, are occupied, while all the states with energies above ep are free. The Fermi energy
depends, of course, on the number of particles in the system.

In solids, the 1-particle Hartree-Fock states are characterized by (n, E, o) (level, quasi-momentum,
spin). The 1-particle n-th level Hartree-Fock energy is, as a rule, an ascending function of k? in
any direction of k. In any direction, therefore, there exists the level n and the vector ko (¢, 0) for
which 5n(EF) = ¢ep. The endpoints of vectors kg (p, ) form a surface, called the Fermi surface.
In the many-body ground state, the 1-particle states beneath (above) the Fermi surface are occupied
(free).

It turns out that for a great variety of phenomena in solids, only the low excited states of the
electron system are involved. They differ from the ground state by having a few 1-particle states
above the Fermi surface occupied. The particular form of the Fermi surface therefore determines
many macroscopic properties of the material under consideration. For this reason the knowledge
of the Fermi surface is very important in the solid state physics.

Remark: The ideal gas of fermions is frequently treated by means of a famous formal trick

known as the electron-hole formalism. The ground state of the N fermion ideal gas is called the
+

i

Fermi vacuum, and denoted by |0p). For i < N one defines new operators bj‘ =a; and b; = a
The original aj' and a; operators are taken into account only for i > N.

Both a- and b-operators satisfy the commutation relations, and both b; (i < N) and a; (i > N)
annihilate the Fermi vacuum (indeed, b; |0F) = 0 because of anti-symmetry of fermion states, i.e.
because of the Pauli exclusive principle). So, formally we have two types of particles, the holes and
the new electrons, created from the Fermi vacuum by bj and aj respectively. The Hamiltonian
reads Hy = ZiSN Ezb,b:'_ + Zi>N Eiaj'ai = EigN E; — ZiSN Ezb:'_bz + Zi>N Eiajai. The
popular interpretation of the minus sign: the holes have negative energy.

29For details consult any reasonable textbook on QM or solid state physics, or for a very concise introduction
perhaps the Appendix 77.
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Hamiltonian of a system of particles with the pair interaction

Perhaps the most important interaction to be added to the previous case of the ideal gas is the
pair interaction, i.e. an interaction characterized by a potential energy of pairs of particles (most
of applications in the solid state, atomic and nuclear physics involve such an interaction). In this
case, the most suitable choice of basis in the 1-particle Hilbert space is the z-representation |Z),
since the 2-particle states |Z, 7) have a sharp value of the pair potential energy V(Z, ).

Due to the fact that we are dealing with the pair interaction, the 3-particle state |Z1, Z2, 3)
does also have the sharp value of the potential energy, namely V (Z1,Zs) + V (&1, T3) + V (&2, T3),
and the same holds for other multiparticle states (this, in fact, is the definition of the pair
interaction).

What is the potential energy of the state with n(Z;) particles at the position #;, where
i =1,2,...7 The number of pairs contributing by V (;, ;) is £nzngz, for i # j, by which we
understand also &; # &; (the % is there to avoid double-counting). For i = j there is a subtlety
involved. One has to include the potential energy of a particle with all other particles sharing the
same position, but not with itself (a particle With itself does not constitute a pair). The number
of pairs contributing by V(Z;,Z;) is therefore an (ng, —1). This makes the total potential
energy in the state under consideration equal to 3 > V@i, &j)nang; — 23 V(T &)na,

Using the same logic as in the case of the ideal gas, 1t is now easy to write down the operator of
the total potential energy in terms of operators ng = agaf. Using the commutation relations for
the creation and annihilation operators the resulting expression can be simplified to the form3°

Hopir = /dga: Py V (Z,7) a%‘a;}fagaf

Note the order of the creation and annihilation operators, which is mandatory. It embodies the
above mentioned subtlety.

As we have seen before, the z-representation is usually not the most suitable for the ideal gas
Hamiltonian. To have the complete Hamiltonian of a system with the pair interaction presented
in a single representation, it is useful to rewrite the potential energy operator Hp.; in the other
representation.

ip.E /R

3
dp agy
v/ (27h)3

Free particles. All one needs is az = [ d®p (Z|p)az= [

1 Lo

Hpair = § /d3p1d3p2d3p3d3p4 Vv <p17p27p37p4> a;,tl a;£2ap‘3aﬁ4
a3 d3y

(2nh)® (2mh)?

L i(ps —p1) T i (p3 — pa) ¥
V (Z,9) exp ( 7 ) exp ( W )

V (v, s s, 1) :/

Periodic external field. Replace the plane waves (Z|) by the Bloch functions (Z|n, k) = u,, (k)ei*-

Spherically symmetric external field. Replace the plane waves (Z|p) by the product of the radial
Schrodinger equation solutions and spherical harmonics (Z|n,l, m) = Ry () Yim (¢, 9).

SOU:%fd?%dSyV( 7) a
=1 [d3zd3y V(7))
=41 [dzd’y V (&,

ag — ;5 Lrddzv(z %) a'zfaf
)tal ax> ag— % [ d®z V(Z, ) axfaa—g
agag = ;3 fd3:c d3y V(Z,7) a;fa;fagaf

I?Y
T —

o

f
+
T
a
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Remark: FEven if it is not necessary for our purposes, it is hard to resist the temptation to
discuss perhaps the most itmportant pair interaction in the non-relativistic quantum physics,
namely the Coulomb interaction. This is of general interest not only because of the vast amount
of applications, but also due to the fact that the standard way of dealing with the Coulomb
potential in the p-representation involves a mathematical inconsistency. The way in which this
inconsistency is treated is in a sense generic, and therefore quite instructive.

In the x-representation Vooulomn (T, Y) = e 1

4m |Z—y|’

i.e. in the p-representation (which is relevant
in the case with no external field)

R N R BN ST R N N

Vooulomb (1, D2, D3, P1) i / @n) ) I = me e

(for the sake of brevity, we use the Heaviside-Lorentz convention in electrodynamics and h = 1
units in QM). This integral, however, is badly divergent. The integrand simply does not drop out
fast enough for |Z| = oo and |§| — oo.

Instead of giving up the use of the p-representation for the Coulomb potential energy, it is a
common habit to use a dirty trick. It starts by considering the Yukawa (or Debey) potential

€2 1

energy Voevey (T,9) = - =7 e HT=91 | for which the p-representation is well defined and can be

evaluated readily®!

2
oL e 1 1 Lo L
Vbebey (D1, P2, P3,Da) = I o2 —M2 e )25 (P1 + P2 — P3 — pa)
4 — P1

Now comes the dirty part. It is based on two simple (almost trivial) observations: the first is that
Veoulomb (%, ) = im0 Vbebey (%, ¥), and the second is that the limit lim, o Vbebey (D1, P2, D3, P1)
is well defined. From this, a brave heart can easily conclude that Voouomb (1,02, P3,P4) =

;%mé (P1 + Po — Ps — Pa). And, believe it or not, this is indeed what is commonly used as
the Coulomb potential energy in the p-representation.

Needless to say, from the mathematical point of view, this is an awful heresy (called illegal change
of order of a limit and an integral). How does it come about that physicists are working happily
with something so unlawful?

The most popular answer is that the Debey is nothing else but a screened Coulomb, and that in
most systems this is more realistic than the pure Coulomb. This is a reasonable answer, with a
slight off-taste of a cheat (the limit u — O convicts us that we are nevertheless interested in the
pure Coulomb).

Perhaps a bit more fair answer is this one: For u small enough, one cannot say experimentally
the difference between Debey and Coulomb. And the common plausible belief is that measurable
outputs should not depend on immeasurable inputs (if this was not typically true, whole science
would hardly be possible). If mathematics nevertheless reveals inconsistencies for some values
of an immeasurable parameter, one should feel free to choose another value, which allows for
mathematically sound treatment.

— — — - o o 2 3 d3 1 — i(Fr—51) 7 il Fa—5 = =)
31For ¥ = & — ¥, Vukawa (91, D2, D3, P1) = e f %ﬁ;e wr oi(Pa—P1)-7 oi(P3 —P2+Pa—P1)-F
2 3 —pr o
= 275 (P1 + P2 — P3 — Pa) f (gﬂg;g € Tu e'?" where ¢ = py — p1. The remaining integral in the spherical coordi-

nates: ﬁ Jo© drremHT f—ll dcos® etdrcos? — i% Jo° dr e7#T singr. For the integral I = [ dr e #" sinqr

272

2
<€ %I, and putting everything together, one comes

one obtains by double partial integration the relation I = 2

to the quoted result.
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Hamiltonian of a system of unstable particles

Let us consider a system of particles of three types A, B and C, one of which decays into other
two, say C' — AB. The decay can be understood as the annihilation of the decaying particle and
the simultaneous creation of the products. The corresponding interaction Hamiltonian, i.e. the
part of the time-evolution generator responsible for this kind of change, is almost self-evident. It
should contain the combination a;r bj+ ¢k, where the lowercase letters for creation and annihilation
operators correspond to the uppercase letters denoting the type of particle, and subscripts specify
the states of the particles involved.

The decay is usually allowed for various combinations of the quantum numbers i, j, k, so the
interaction Hamiltonian should assume the form of the sum of all legal alternatives. This is
usually written as the sum of all alternatives, each of them multiplied by some factor, which
vanishes for the forbidden combinations of quantum numbers: Zi, ik gijkaj'b;'ck.

There is still one problem with this candidate for the interaction Hamiltonian: it is not
Hermitian. But this is quite easy to take care of, one just adds the Hermitian conjugate operator
g;‘jkcﬁbjai. So the Hermiticity of the Hamiltonian requires, for any decay, the existence of the
reverse process AB — C. All in all

_ +1+ +
Hiyy = E 9ijka; b i + g7 bjai
1,5,k

Generalizations (decays with 3 or more products, or even some more bizarre processes, with more
than one particle annihilated) are straightforward.

For a Hamiltonian of this type the C particles need not to be necessary unstable. If the mass
of the C particle is smaller than the masses of A na B particles then decay may be kinematically
forbidden (due to the momentum J-function in the final formula for the decay rate). Many of
the realistic Hamiltonians of this type describe stable particles, in spite of the fact that we have
introduce it naturally for unstable particles.

The factor g;;1 is usually called the coupling constant, although it depends on the quantum
numbers i, j, k. The reason for the name constant is that most of decays are local and translation
invariant (they do not vary with changes in position). In the z-representation the locality means
that gz 7z = 970 (Z—7)0 (¥ — Z) and translational invariance requires that g does not depend on &

Hy = /d3x ga%‘b%‘cf + g*c;fbggaf

Remark: electron-photon interaction

Remark: electron-phonon interaction
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any linear operator expressed in terms of a™,a

The only purpose of this paragraph is to satisfy a curious reader (if there is any). It will be of
no practical importance to us.

First of all, it is very easy to convince oneself that any linear operator can be expressed in
terms of creation operators a;", annihilation operators a; and the vacuum projection operator

7 7

0) (0]. Indeed, if A is a linear operator, then

A = Z Aijm,kl___a;"aj' e |0> <0‘ arajg ...

where A;j .. = <”<|szj‘)1?l€kzl|;cz) Proof: both LHS and RHS have the same matrix

elements for all combinations of basis vectors (check this).

The only question therefore is how to get rid of |0) (0. This is done by induction. First, one
expresses the A operator only within the O-particle subspace H%of the Fock space, where it is
nothing else but the multiplication by the constant

AQ = A0,0 = <0| A |0>

Then, one expresses the A =A— A, operator within the 0- and 1-particle subspace H° @ H!.
Here one gets (check it) R . . B
A = Ai’ja:ra]— + Ai’oazr + Ao,jaj

where A;; = (i| A — Ag |j), Aso = (i| A— Ay |0) and Ay ; = (0] A — Ag|4). If one restricts oneself
to HO @ M, then A = Ay + A; (why?). So we have succeeded in writing the operator A in
terms of a;r, a;, even if only in the subspace of the Fock space. This subspace is now expanded
to HO @ H! @ H?2, ete.

It may be instructive now to work out the operator Ay = A — Ay — Aywithin H° @ H! & H2
in terms of af,ai (try it). We will, however, proceed directly to the general case of A, =

A=YV A, within @" _ H™

m=0 m=0

i = E ’ i + .+
A’ﬂ - Aij...,kl“_ai a’j L..agag ...

allowed
combinations

A,, _ <Z’j7|A72:;:=10 Am‘k7la"~>
R R F N P U5 IR B

and the ”allowed combinations” are either ij...,kl...orij... kl....
~— = N

n m<n m<n n

If restricted to @Z:o H™, then A = anzo A,,, i.e. we have A expressed in terms of aj, a;.
To get an expression valid not only in subspaces, one takes

A=Y A,

m=0
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1.2.3 Calculation of matrix elements — the main trick

One of the most valuable benefits of the use of the creation and annihilation operator formalism
is the completely automatous way of matrix elements calculation. The starting point is twofold:
e any ket (bra) vector can be written as a superposition of the basis vectors, which in turn can
be obtained by a; (a;) operators acting on |0)
e any linear operator can be written as a linear combination of products of the a; and a;
operators
Consequently, any matrix element of a linear operator is equal to some linear combination of the
vacuum expectation values (VEVs) of the products of the creation and annihilation operators.
Some of the VEVs are very easy to calculate, namely those in which the last (first) operator
in the product is the annihilation (creation) one. Indeed, due to a; |0) = 0 and (0| a; = 0, any
such VEV vanishes. Other VEVs are easily brought to the previous form, one just has to use the
(anti)commutation relations [ai, a;r] = 0;; to push the creation (annihilation) operators to the
right (left). By repeated use of the (anti)commutation relations, the original VEV is brought to
the sum of scalar products (0|0) multiplied by pure numbers, and the VEVs vanishing because
of (0] a;” = 0 or a; |0) = 0. An example is perhaps more instructive than a general exposition.

Example: Let us consider a decay-like Hamiltonian for just one type of particles Hyecay =
Ei’j}kgijk(ajaj'ak + afaja;) (e.g. phonons, as well as gluons, enjoy this kind of interaction,).
Note that the coupling “constant” is real giji = gjj- And let us say we want to calculate
(I| Haecay |m, ). First, one writes

(Ul Haceay [m,n) = > gige (0] e af axatal |0) + (0| aayf aja,ar,alt [0))

1,5,k
Then one starts to reshuffle the operators. Take, e.g., the first two and use alaj' =, = a;"a,l

(or with i replaced by k in the second term), to obtain

decay |7, N) = ik li a; ara,, a; aa; apa,,a
I| Haecay it (01 (0] af aratat 0) + (0] aff ara; ararhal 0
.5,k

+d11 (0] ajaia;ga;f |0) £ (0] azalajaia;aj; |O>)

Three of the four terms have a* next to (0|, and consequently they vanish. In the remaining
term (the third one) one continues with reshuffling

(I| Haecay |m,n) = Z 9iji0te (8im (0] aja;f |0) £ (0] ajataia) |0))

1,5,k
= Z 9iik0tk (8imOjn £ Gjm (0] asa} |0) 4 0)
ig.k
- Z gijkélk (6lm6]n + 5j’rn6in) = Gmnl + Inml
7,k

The result could be seen directly from the beginning. The point was not to obtain this particular
result, but rather to illustrate the general procedure. It should be clear from the example, that
however complicated the operator and the states (between which it is sandwiched) are, the cal-
culation proceeds in the same way: one just reshuffles the creation and annihilation operators.
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The example has demonstrated an important common feature of this type of calculations:
after all the rubbish vanishes, what remains are just products of deltas (Kronecker or Dirac for
discrete or continuous cases respectively), each delta originating from some pair of aa™*. This
enables a short-cut in the whole procedure, namely to take into account only those terms in which
all @ and a™operators can be organized (without leftovers) in the pairs a a™(in this order!), and
to assign the appropriate d to every such pair.

This is usually done within the ”clip” notation, like e.g. ...a;... a;r ..., which tells us that

a; is paired with a;". The factor corresponding to this particular clip is therefore §;;. In the case
of fermions one has to keep track of signs. The reader may try to convince him/herself that the
rule is: every pair of clips biting into each other, generates the minus sign for fermions.

Example: The same example as above, now using the clip short-cut.
(| Hiecay |m,n) = Zgwk (0 ara” a} aratart |0) + (0| aay ajasa,at |0))
.5,k

The first term cannot be organized (without leftovers) in pairs of aa™, so it does not contribute.
As to the rest, one has

V—\ [l | —
(0| alagajaia;;a: |0y = (0| alak aja;a at |0) + (0] ala;:ajai at al |0) = 81,60 0im & 6160 jmbin
l_l | I

leading immediately to the same result as before (Gmni £+ Grmi)-

The common habit is to make the short-cut even shorter. Instead of writing the clips above or
under the corresponding operators, one draws just the clips and then assigns the corresponding
factor to the whole picture. In this comics-like formalism our matrix element would become

l k l k
J n + j m
| =—m 7 n

If the interaction is local, the picture is changed slightly. Local interactions contain products
of operators in the same position e.g. a;’:b;Cf, which in our discrete case would correspond to
Hiccay = Y, g(a a a; + a; Fa;a;). For fermions this Hamiltonian vanishes (why?), for bosons
result becomes g Zz(éhémfim + 01i0im0in) and the above picture is changed to

m n

Exercise: (a useful one) For bosonic particles with Hiecay = ZZ g(aja:“ai—i—a:raiai) calculate
(k, 1] Hyccay Haecay |m, n) and draw the corresponding pictures.

Answer: 12¢2 for k=1 = n (and 0 otherwise).
The pictures correspondlng to the matrix element are >—< I I

(contributing 4 times each).
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Feynman diagrams — a comics version of a perturbation theory

The pictures from the exercise at the end of the previous paragraph may suggest some relation
to the Feynman diagrams and indeed they are closely related. In this subsection (which can be
skipped safely) we will demonstrate that in a theory with the interaction Hamiltonian written
in terms of creation and annihilation operators various terms of a perturbation series can be
represented by such diagrams. We will not derive the Feynman rules presented in Conclusions
yet (this will be achieved only later on), but the basic idea should become clear already now.

One can illustrate the whole procedure on a simple example of time-independent perturbation
theory, where eigenvalues E,, and eigenstates |i,,) of a complete Hamiltonian H = Hyo+ aH' are
expressed in terms of eigenvalues &, and eigenstates |p,) of the unperturbed Hy. Let us recall
that this is achieved by expanding the E,, and |t,,) in powers of oz E,, =&, + > po, akE,(Ik) and
[Vn) = [pn)+D pey ak|w,(lk)>, where Hy |, ) = &, |¢n) and <gon|w7(f)> = 0. Comparing coefficients
of various powers of « in the equation (Hy + aH') [¢,) = E,, |1),,) one obtains explicit formulae
for the expansion coefficients. The lowest order results are well known from any textbook on
quantum mechanics, in non-degenerate case one gets

Er(zz) _ Z {(@n| H' [om) (om| H' |¢n)

B = (pul H' lon) s

m#n

The higher orders are more involved, e.g.

nHl m mH, m/’ m/’ H n
B9 = ¥ (enl H' [m) (om| H' [omr) {(om:| H' |n)

(gn_&n) (gn_gm’) e

m,m’#n

where ellipses stand for additional terms, which have a similar structure (product of the inter-
action Hamiltonians sandwiched between various states in the numerator and product of energy
differences in the denominator) and their complexity increases with increasing order.

Let us consider, as an example, a system of free non-relativistic bosons with a local decay-like
interaction (with real ¢g). The unperturbed and the perturbation Hamiltonians are

2
D
H, = /dgp %a;aﬁ H = g/d3x (a;fa;faf + a;fagaf)

respectively. Since the eigenstates of the Hy are the vectors |p), it is convenient to rewrite H’ into

. : : S OnG e — &’k ik.&/h, + _ &k —ik.Z/h+
the p-representation, using the relations az = [ Gnh) 7€ ap and aj = i @nhy 77 € az.

After plugging this into H' and integrating over d3z (recall [ dze™*** = 2r§(k)) one obtains

I — A3k, A3k d3ks 2 h)3/2 5(];; Iy E) + o+ Th
=9 | @nn)32 @rn)e (2rh)siz " L2 = Rs) ag ag ag, + e
For such a H' the only non-vanishing matrix elements are those between states in which number
of particles differ precisely by one. The first order correction to energy of one-particle state
Ez(;) = (p| H'|p) is therefore zero. In the second order correction one has non-vanishing matrix

= =

elements (p] H' |¢.,) for two-particle states |p,,) = |p”,0"), i.e.

E£2) _ /d3p/d3p// <ﬁ|H/ |ﬁ/7ﬁ//> <ﬁ/aﬁ//| H' |ﬁ>
P P —p2=p")/2m
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Now using the technique of the previous subsection one can represent the matrix elements in
the numerator of E;f) by two pictures, namely — and )— . And since the RHS two-particle
state of the first picture is the same as the LHS two-particle state of the second picture, one can

draw their product as —O— . Now just like in the previous subsection one gets

(P aglagza,;a +he |7, 57) = 6(5 — ks) 6(5" — k2) 6(5" — k1) + 6(5 — ka) 5(5" — El) (5" — k)
and so for bosons
0@ +p" —p)

29
— H/ —/ =/ —
(| H" [p",p") @rhy

while for fermions this matrix element vanishes. Our expression for the second order correction

to the energy of bosons (not only the numerator, but rather the whole second order correction)
can be therefore written as the diagram

E® _ N

with the following rules®?
e To every internal line assign the factor [ dp

e To every vertex assign the factor (27%7%)3 o(p" +p" —p)

e To every intermediate state |¢,,) assign the factor = 1 z

The intermediate states are the states of several free particles (with specific momenta) represented
by internal lines of the diagram. When going from left to right, every vertex changes the number
of particles, i.e. the intermediate state is changed and the corresponding energy denominator
should be added.

The point of the diagrams and the rules is that they work in the same way also for higher
order corrections, e.g. with these rules one can easily write (draw)

n

B OO\ O T W

We are not going to elaborate further and to derive the rules in their full complexity (e.g. we
are not going to formulate the rules for terms hidden in ellipses). The purpose of this paragraph
was just to give a basic taste of how do the Feynman diagrams and rules emerge in a quantum
theory. All the details are to be discussed only when the specific perturbation theory within the
relativistic quantum theory is developed in the next chapter.

32Note that these diagrams are not exactly the ones described in Conclusions. They represent different quantities
(the energy eigenvalues, not the scattering amplitude) and the rules are also different (the factors for intermediate
states, not for internal lines). But what they do have in common is that they are just pictorial representations of
various terms in perturbative expansion of some quantity in some version of the perturbation theory.
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Remark: It is probably worth mentioning that there exists an equivalent, but slightly different
version of the perturbation theory for energy eigenvalues, in which complezity of terms does
not increase with the increasing order. It is known as the Brillouin—Wigner perturbation theory
(while the standard version notoriously known from textbooks is called the Rayleigh—Schrédinger
perturbation theory). In the BW version one obtains equally simple expressions in all orders (for
derivation see the next remark)

3 (onl H' [0my) - - {Lmu_y | H' | n)

EF =
(Bn = &my) - (Bn = Emy_y)

mi,...,Mr_17n

Note the presence of E, (instead of &€,) on the RHS of the last relation. Because of this, the
relation is only an implicit one and has to be solved (either iteratively or by expansion of E, in
powers of «) to get the explicit result for Ey(Lk) (which is, as it should be, equal to the standard
version of the perturbation theory). Due to its simpler structure the BW wversion of the perturba-
tion theory is better suited for the Feynman diagrammatical representation than the RS version.
Reason: no ellipses in the BW version (the terms corresponding to the ellipses in the RS version
can be also represented by Feynman diagrams, but with more complicated rules). Moral: for some
versions of the perturbation theory the Feynman diagrams are more suitable than for the others.

Remark: For the sake of completeness we will sketch here the derivation of the Brillouin- Wigner
perturbation theory (see the previous remark). One possible way is to start with another version
of a perturbation theory, namely the one for the particle scattering. This is of interest by itself,
because it provides us with yet another example of Feynman diagrams in Quantum mechanics.

In QM textbooks the potential scattering is usually treated by solving the time-independent
Schrédinger equation in the x-representation.>® This, however, is not best suited for the formal-
ism of creation and annihilation operators. Fortunately, the whole idea can be generalised in a
relatively easy way. One writes the Schrodinger equation in the form (E — Hy) |1) = oH' |[¢),
where | stays for a label (which is continuous in the case of scattering). This equation is solved
formally using the inverse operator 3* (E — Hy)~1. The inverse operator for E — Hy, however,
does not exist, since the operator E — Hy has the zero eigenvalue. It is therefore a common habit
to consider the operator E — Hy + ic instead (this can be viewed as a generalisation of the ie
prescription in the complex plane integration for the Green function). The implicit solution of
the Schridinger equation is written as the so-called Lippman-Schwinger equation

[¥) = |@) + (E — Ho +ie) taH' |3)

where |@) is a solution of the homogeneous equation (E — Hp) |¢) = 0.

33 A brief reminder: The Schrédinger equation for potential scattering is rewritten as a Helmholtz-like equation
2
(E — Ho)yY(7) = aH'¢(7) with Hy = —g—mA and H' = U(7). The solution of this equation is expressed via the

-

Green function G4 (7, 7') satisfying (%A + E) G4+ (7,7") = 6(F—7") and the ”outgoing wave” boundary condi-

= ) 2
tion G4 (7,0)r—00 — Memr where F = ;—m The Green function is usually found by Fourier transforming the
equation, solving the resulting algebraic equation and backward Fourier transforming the solution with integration
ik.(F—7")

in the complex plane, the result is G4 (7,7') = The implicit solution of the Schrédinger

*me
equation is given by ¥(7) = p(7) + [d3r' G4 (7,7")U(7")(7'), where ((7) is a solution of the homogeneous
Helmholtz equation (usually one takes ¢(7) = €**#, which is a general solution of the homogeneous equation with
free parameters fixed by initial conditions) ). As a final step the implicit equation is solved iteratively.

34 An inverse operator is, so to speak, a generalisation of the Green function. Indeed, the inverse operator is
defined by A A~! = 1, the Green function by A G(# — #/) = §(# — #') and the delta-function can be understood

as a matrix-like representation of the unit operator 1.



1.2. MANY-BODY QUANTUM MECHANICS 39

It is quite straightforward to find the operator (E — Ho+i€)~t. One just has to realise that in
the basis |¢;) in which the operator Hy is diagonal, one has E— Hy+ie = Y, (E—&+1€) [o1) (1],
where sum, of course, stands for integrals over the continuous label . As a direct consequence

(E—Hy+ie)"t =Y, E“mg(ﬁ’l'e and therefore

|Sﬁl /
= aH
B Sy prrer B e )

This implicit relation is solved iteratively, leading to the same structure as in the previous remark
(matriz elements of H' in the numerator, energy differences in the denominator). The diagrams
are as natural and useful as in the previous case. This version of perturbation theory with energy
denominators is called the old-fashioned perturbation theory. To get the modern version presented
in Conclusions, one should work with the time-dependent perturbation theory. We will derive this
version later on, in the framework of the relativistic quantum theory.

As the last point let us focus mot on the continuous, but rather of the discrete part of the
spectrum. The analogue of the Lippmann-Schwinger equation becomes (in the € — 0 limit)

W)n _ Z |90m @m| Hlll/)n>

m#n

This is now solved iteratively, leading to

! ! .

[n) = lon) + 0 > |@meni|1; [on) 2 3D |om) wmIH Iso)?g@mglff)wn) izzizle;“

m#n m m#n m’'#n n m’
where the higher terms have the same structure as the explicitly presented ones (note that the
iterative solution provided the result in the form of power expansion in the parameter «). The
final step is to multiply the iterative solution by {(p,|H and to use {on|H|n) = En{on|tn)
and {(op|H|@n) = Enlonlon) + alon|H' |on). With the standard normalization (the same as in
the Rayleigh—Schrédinger perturbation theory), i.e. for (onlon) = (@nlthn) = 1 one obtains the
Brillouin—Wigner expansion

|H'| o) (om|H'|¢n)

By = Eut alpnl Hlpn) +02 3 22

men En - gm
3 {(nH'|om) {(Pm| H'|@m ) (P | H'|on) higher
o Z Z (En —En)(En — Env) + terms
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1.2.4 Quantum particles and classical fields

We are going to finish this second introduction by discussing a remarkable classical limit (of
quantum theory expressed in terms of the creation and annihilation operators) which differs
significantly from the notoriously known classical limit provided by the Ehrenfest theorems.
In their simplest version these theorems state that the mean values of particle position and
momentum operators in one dimension fulfill the following equations
@ — —V’(.’L‘) dl = g
dt dt m

where A = ()| A ) for some state [¢) (not denoted explicitly, to avoid overloaded notation).
Generalization to three dimensions and to several particles is straightforward.

Let us emphasize that since in general V'(z) # V'(Z) , the Ehrenfest equation % = -V'(z)
is not a classical one. The difference between the Ehrenfest and Newton equations is given by

the Taylor expansion around the mean value Z: f(z) = f(2) + f'(z)Az + L f"(z)(Az)* +

(where Az = z — ) leading to f(z) = f(z) + 3f"(Z)(Az)? + --- (the term linear in Az is
missing, due to Az = 0). The Ehrenfest equation

dp _
D (@)~ VB
is a quantum equation for mean values, which looks like the Newton equation % = —V'(z) with

the corrections proportional to the variance and higher central momenta of the position operator
in the state |[¢). If these corrections are small enough, the Ehrenfest equation becomes quasi-
classical. If the corrections are negligible (or even vanishing), the Ehrenfest equation becomes
truly classical Newton equation.

The Ehrenfest equations demonstrate how the classical physics can emerge from the quantum
mechanics. One possibility is the (at most) quadratic potential V(x) = a + bx + ca?, for which
the third and higher derivatives vanish. For such a potential the Ehrenfest equations are truly
classical for any state |¢).

Another possibility is a potential which contains a quadratic part and a ”small correction”. In
this case the Ehrenfest equations are only quasi-classical (since the terms with higher derivatives
are present, even if small), again for any state |i).

Yet another example of classical or quasi-classical behavior of quantum systems is provided
not by the properties of the potential, but rather by the smallness of the higher central momenta
(Az)™ (n > 2) for some specific states |1)).

Remark: 1

NN © 0 NS G o

~
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The Ehrenfest theorems are special cases of general time evolution of mean values in QM.
In the Schrodinger picture operators are time independent and states evolve according to the
Schrédinger equation ih- (1)) = H |(t)) (for the bra-vectors —ih (Y(t)] = (W(t)] H). As a
consequence, the evolution of the mean value of an operator A is described by

iht A=A H|
The same result is, of course, obtained in the Heisenberg picture, where states are time inde-
pendent and operators evolve according to the Heisenberg equation ih%fl(t) = [A(t), H). This
equation is quite similar to the classical Hamilton equation 2 A(t) = {A(t), H} and relation
between the two is much closer than mere similarity.

The Poisson brackets in the Hamilton equation are defined as {B,C} =), g—i gpci — gg gg
(beware of different overall sign used by different authors) and they are usually evaluated by
explicit differentiation. This, however, is not the only possibility. An alternative version of their
evaluation is provided by two properties of the brackets which follow directly from the definition:

e {B,CD}={B,CYD+C{B,D} {BC,D}=B{C,D}+{B,D}C

e {¢i,9;} ={pip;j} =0 {¢i,pj} = di;
If the functions A(q,p) and H(g,p) are polynomials in the variables ¢;, p; (as they usually are)
then the brackets {A, B} can be calculated by repeated use of the first property. In each step
one g; or p; is brought outside a bracket, so that at the end only the brackets of ¢; and p; are
present. Once these are evaluated according to the second property, the result becomes a sum
of polynomials in ¢;,p;. We will denote this specific sum of polynomials as S(g, p), so that

{Alg,p), H(q,p)} = S(q,p)

Now the same technique can be used for evaluation of the commutator [/1, H ] if the operators
A and H are polynomials in operators §;, p; satisfying the canonical commutation relations. The
point is that commutators also have the property analogous to the first property of Poisson
brackets and canonical commutation relations are (up to a constant) analogous to the second
property of Poisson brackets

e [B,CD|=[B,C|D+C|B,D] [BC,D]=B|C,D]+[B,D|C

® [Gi,4;] = [pi, D1 =0 [Gi, D] = ihdi;
So the same line of evaluation leads us to the same sum of polynomials as it did in the case of
Poisson brackets

[A(¢.9), H(d.p)) = ihS(4, p)
where S is (up to the ordering of the operators in products) the same polynomial of §,p as S
was of ¢, p.

So at the quantum level we obtained ih%ﬁ = ihé(cj,]ﬁ). Taylor expanding the function

S(g,p) around the mean values g, p one obtains (just like in the case of the Ehrenfest theorem)
ih%A = thS(q,p) + - - - where ellipsis stand for corrections proportional to variances and higher
central momenta of ¢ and p. Taking everything together one gets

@A =1{A@p), H(g,p)}+
which is the generalization of the Ehrenfest theorems. Indeed, without ellipsis this is nothing else

but the truly classical equation for time evolution in the Hamiltonian formalism of the classical
mechanics (written in terms of Poisson brackets).
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What does the Hamiltonian formalism in the classical mechanics have to do with the formal-
ism of creation and annihilation operators in the quantum mechanics? The bridge between the
two is spanned by a simple fact that for every pair of bosonic creation and annihilation operators
one can define another two operators satisfying the canonical commutation relations. Indeed, for

any creation and anihilation operators satisfying [a;, aﬂ =04;; and [a;,a;] = [a], a;r] =0 one
can define specific hermitian linear combinations3®
®; = %(a;r—i—ai) IT, =1 Z(a?—ai)

These operators do not have a physical meaning of position and momentum operators, never-
theless they do satisfy the canonical commutation relations (check it)

[®;,11;] = iho;, [®;,®,] = [[T;, ;] = 0
As a consequence, their mean values satisfy the generalized Ehrenfest theorems
&, = {®;, H(®, )} +--- 10, = {T0;, H(®,T)} +---

for any Hamiltonian H (i), f[) and in any state. If the terms hidden in the ellipses are negligible
in some states then the mean values ®; and II; in these states are classical quantities emerging
naturally from the many-particle quantum mechanics.

The question now is, if there are states in many-particle systems in which the said ellipses
are negligible and if these states are somehow typical for these systems. The answer is affirma-
tive. The point is that the Hamiltonian for non-interacting particles (ideal gas) turns out to be
quadratic in canonical operators. Indeed, since a;” = (<i>Z — zﬁz)/\/ﬁ and a; = (@Z + zﬂl)/\/ﬁ

H = ZEiaj'ai = QLEZEZ((iZZ +ﬁ12 — h)

For such a Hamiltonian the generalized Ehrenfest equations for the mean values of the canonical
operators are truly classical, with no ellipses present (check it)36

@i(t) = Eimi(t) T = —Ei@i(t)
So for an ideal gas the mean values ®;, II; in any state are truly classical quantities. For a slightly
non-ideal gas (with the interaction Hamiltonian being just a small correction to the ideal gas

Hamiltonian), the ellipses in the generalized Ehrenfest equations are present again, but only as
a small correction to the ideal gas case.

We have achieved quite a remarkable result. For an ideal gas of bosons (with no bound states
at all, not to mention macroscopic ones) canonical operators with mean values (in any state)
obeying classical equations of motion are always present. These operators do not have (so far)
an obvious physical interpretation, but they are hermitian and therefore they should correspond
to some observables of the quantum theory of this gas. The mean values of these observables, on
the other hand, should represent some classical quantities. What are these classical quantities
and how do we measure them?

35Similar linear combinations should be familiar from the notoriously known treatment of the LHO exploiting
the raising and lowering operators. Let us stress, however, that we are not discussing raising and lowering
operators for harmonic oscillators here, but creation and annihilation operators of some real particles (which may
have nothing to do with harmonic oscillators).

36Up to the irrelevant (infinite) constant this is the Hamiltonian of a system of harmonic oscillators. So even if
the harmonic oscillators were of no importance for the definition of the operators <i>i, f[i, they are quite important
in other respect: the ideal gas is equivalent to a system of harmonic oscillators and for harmonic oscillators the
Ehrenfest theorems are not only quasi-classical, but truly classical for any state.
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To reveal the physical nature of the new classical quantity emerging from quantum mechanics
let us consider an ideal gas of free spinless particles. For such a gas the discrete quantum number
1 is to be replaced by continuous momentum p and the Ehrenfest equations become

with E(p) = p and E(p) = y/m? + p? for non-relativistic and relativistic gases respectively.

It is now instructive to obtain more combine the two equations into one

$(p.t) = —E*(p) #(p. 1)

and then to trade the powers of p for partial derivatives by means of the Fourier transformation

f o 3 ePZ f(,t). The resulting equations are (check it)

S 1 L P L L

in non-relativistic and relativistic cases respectively. So we have demonstrated that the new clas-
sical quantity behaves like a classical field satisfying some specific partial differential equation.?”

Do we know such fields from classical physics? Well, in fact not, because of simple reason:
there are no stable spinless particles in our nature and therefore there are no corresponding
classical fields. Nevertheless these

But what if there were stable spinless bosons in our world. Then we would observe the
corresponding classical fields. The relativistic case for massless particles, however, turns out to
be familiar the notoriously known wave equation.

37The non-relativistic field equation does not look very familiar, the relativistic one is much more common,
especially in the case of massless particles (where it is just the well known wave equation). But this is not the
point. These very classical fields may not exist in our nature for a simple reason. There are no stable spinless
particles in nature and so there is no corresponding classical field. The situation is different for particles with
spin 1, where massless photons do exist.
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1.3 Relativity and Quantum Theory

Actually, as to the quantum fields, the keyword is relativity. Even if QFT is useful also in
the nonrelativistic context (see the previous section and the Appendix), the very notion of the
quantum field originated from an endeavor to fit together relativity and quantum theory. This
is a nontrivial task: to formulate a relativistic quantum theory is significantly more complicated
than it is in a nonrelativistic case. The reason is that specification of a Hamiltonian, the crucial
operator of any quantum theory, is much more restricted in relativistic theories.

To understand the source of difficulties, it is sufficient to realize that to have a relativistic
quantum theory means to have a quantum theory with measurable predictions which remain
unchanged by the relativistic transformations. The relativistic transformations at the classical
level are the space-time transformations conserving the interval ds = n,,dz"dz", i.e. boosts,
rotations, translations and space-time inversions (the list is exhaustive). They constitute a group.

Now to the quantum level: whenever macroscopic measuring and/or preparing devices enjoy
a relativistic transformation, the Hilbert (Fock) space should transform according to a corre-
sponding linear3® transformation. It is also almost self-evident that the quantum transformation
corresponding to a composition of classical transformations (at the level of macroscopic devices)
should be equal to the composition of quantum transformations corresponding to the individ-
ual classical transformations. So at the quantum level the relativistic transformations should
constitute a representation of the group of classical transformations.

The point now is that the Hamiltonian, as the time-translations generator, is just one of
ten generators of the Poincaré group (boosts, rotations, translations). Consequently, unlike in a
nonrelativistic QM, in a relativistic quantum theory one cannot specify the Hamiltonian alone,
one has rather to specify it within a complete representation of the Poincaré algebra. This is
the starting point of any effort to get a relativistic quantum theory, even if it is not always
stated explicitly. The outcome of such efforts are quantum fields. Depending on the philosophy
adopted, they use to emerge in at least two different ways. We will call them particle-focused
and field-focused.

The particle-focused approach, represented mostly by the Weinberg’s book, is very much in
the spirit of the previous section. One starts from the Fock space, which is systematically built
up from the 1-particle Hilbert space. Creation and annihilation operators are then defined as
very natural objects, namely as maps from the n-particle subspace into (n + 1)-particle ones,
and only afterwards quantum fields are built from these operators in a bit sophisticated way
(keywords being cluster decomposition principle and relativistic invariance).

The field-focused approach (represented by Peskin—Schroeder, and shared by the majority
of textbooks on the subject) starts from the quantization of a classical field, introducing the
creation and annihilation operators in this way as quantum incarnations of the normal mode
expansion coefficients, and finally providing Fock space as the world for these operators to live
in. The logic behind this formal development is nothing else but construction of the Poincaré
group generators. So, again, the corner-stone is the relativistic invariance.

38 inearity of transformations at the quantum level is necessary to preserve the superposition principle. The
symmetry transformations should not change measurable things, which would not be the case if the superposition
[1) = c1 [¥1) + c2 |¢2) would transform to T [9) # c1T |¢1) + c2T |2).
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1.3.1 Lorentz and Poincaré groups

This is by no means a systematic exposition to the Lorentz and Poincaré groups and their
representations. It is rather a summary of important relations, some of which should be familiar
(at some level of rigor) from the previous courses.

the groups

The classical relativistic transformations constitute a group, the corresponding transformations
at the quantum level constitute a representation of this group. The group transformations are

at — ALY + ot

where A¥ are combined space rotations, boosts and space-time inversions, while a” describe

space-time translations. The rotations around (and the boosts along) the space axes are 39
1 0 0 0 chpg shg 0 0
1 01 0 0 | shB chp 0 O
Ry (9) = 0 0 cost —sind By (6) = 0 0 1 0
0 0 sind cos? 0 0 0 1
1 0 0 0 chp 0 shp 0
0 cos?d 0 sind 0O 1 0 O
R (0) =1 0 1 0 By (8) = shB 0 chp 0
0 —sind 0 cost 0o 0 0 1
1 0 0 0 chpg 0 0 shp
0 cos?d —sind 0 0 1 0 O
Bs@) =10 9 coso 0 BsB)=1 o 01 o0
0 0 0 1 shg 0 0 chp

where ¢ is the rotation angle (in counterclockwise direction) and tanh f = v/c where v is the
velocity of the boost. They constitute the Lorentz group. It is a non-compact (since 8 €
(—00,00)) Lie group. The translations along the space-time axes are

« 0 0 0
0 0 0
Toy@=|, Ty (a) = ‘8‘ Ty(a)=| Ty =|
0 0 0 «

Together with the boosts and rotations they constitute the Poincaré group. It is a non-compact
Lie group (on top of the non-compactness of the Lorentz subgroup one has a € (—o0,00)).
The space-time inversions are three different diagonal matrices. The time inversion is given by
T = diag (—1,1,1,1), the space inversion is given by P = diag (1,—1,—1,—1) and their product
is PT = diag (—1,-1,-1,-1).

39 A comment on sings seems to be appropriate here. Transformations can be understood as active ones (trans-
formations of objects) or passive ones (transformations of viewpoints). In the quantum mechanics we usually
understand rotations and translations as active transformations within one reference frame. In the special rela-

tivity, however, we usually understand Lorentz transformations as passive transformations between two different
reference frames. If the primed frame is rotated or boosted with respect to the unprimed frame then we can

express the unprimed coordinates as functions of the primed ones: x# = AF:/,CCV/. Our choice of signs in front of
sin(¥) and sh(B) corresponds to this choice (which, by the way, is equivalent to active transformations). If we
decide to express primed coordinates as functions of unprimed, we would get opposite signs.
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the Lie algebra

The standard technique of finding representations of a Lie group is to find representations of
the corresponding Lie algebra (the commutator algebra of the generators). The standard choice
of the generators corresponds to the 10 types of (infinitesimal) transformations listed above:
rotations R; () = 1 — ieJ; + O(g2), boosts B; (¢) = 1 — icK; + O(c?), space translations?’
T; (e) = —ieP; + O(?) and time translation®! Ty () = iePy + O(e?).

000 0 010 0
{1 ooo0o o 11000
Si=il g 0 0 -1 Kr=il o 0 0 o0
001 0 000 0
0 0 0 0 0010
0 0 0 1 1 oo0oo0o0
=il g g o 0 Ka=il 1 0 0 o0
0 -1 0 0 000 0
00 0 0 000 1
00 -1 0 1 oo0oo0o0
B=il g1 0 o0 Ks=il 4 0 0 o0
00 0 0 100 0
1 0 0 0
0 o1 0 0
PO—Z 0 P1:Z 0 PQ—I 1 Pg—l 0
0 0 0 1

Calculation of the commutators is straightforward*? (even if not very exciting)

[, J;] = ieiji i [Ji, Po] = 0

[Ji, K] = igiji K, [Ji, Pj] = igiju P
(K, K] = —ieijiJk [K;, Po] = —iP;
[P,,P,] =0 (K, Pj] = —iPyd;j

40For additive group the unit element is zero (no translation at all) and therefore we have 0 instead of 1 in the
definition of the translation generator.

41 The sign in the definition of this generator is plus instead of the usual minus. Such a choice of sign is a common
habit in quantum mechanics and it leads to the standard relations for the space translation generators P; = —i0;
(the momentum operator in the z-representation) and the time translation generator Py = idp i.e. H = i0; (the
Schrodinger equation). In the non-relativistic QM this choice of signs may look a bit weird (even if we are all
used to it), but in relativity it is quite natural, since it corresponds to the relativistic relation P, = i0,. Recall
that the sign of space components of a 4-vector and the 4-gradient are opposite: P, = (P, 713), O = (00, V).

42Commutators of J; (or K;) and P, follow from Af, (z¥ + a”) — (Aha¥ 4+ a*) = Aha” —a* = (A —1)* a¥,
i.e. one obtains the commutator by acting of the corresponding generator J; or K; on the (formal) vector P,.
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Remark: As the matter of fact (a sad one), there are multiple possibilities for choice of sign when
speaking about symmetry groups and their representations. One can understand transformations
in either active or passive sense (the difference being just the sign). One can use either plus
or minus sign in the definition of generators U(e) = 1 + ieG + O(e?) (and we have already
used both — one for time translations and the other one for all the others). One can, but is
not obliged to, use the explicit i in this definition, which change the sign of commutators (let
us note that the standard physicists’s argument that with the i the generators become hermitian
does not work for the Lorentz boosts, as we could notice). One can define transformations of
operators either as A — UAU ' or as A — U~YAU. The first choice corresponds to simultaneous
transformations of state vectors and operators, the second choice corresponds to the Heisenberg
picture of transforming operators and untouched states. For infinitesimal transformations the
difference is again just the sing. And one can use different signatures for Minkowski metric
tensor, i.e. either 1, = diag(1,—1,—1,—-1) or n,, = diag(—1,1,1,1). In this text we will (try
to) use: active transformations, U(e) = 1 —ieG+O(e?) (with exception of the time translations),
A—UAU! and n,, = diag(1,-1,-1,-1).

Remark: The commutation relations hold for the Lie algebra as well as for its representa-
tions. For representations in Hilbert space of quantum states, the generators of time-translations,
space-translations and space-rotations are energy, momentum and angular momentum operators
respectively. From their commutation relations one can conclude that

1. Representations of J;, K;, P; transform as components of 3-vectors.*
2. Representations of Py, Pj, J; are conserved quantities (they commute with the hamiltonian).
3. Representations of K; are not conserved (they do not commute with the hamiltonian,).

4, Representations of P, transform as components of 4-vector.**

5. Representations of J; and K; transform as components of antisymmetric 4-tensor.

3

45

Remark: The generators of the Lorentz group are 4 X 4 matrices with only non-zero elements
being +i. Such matrices can be written using just the metric tensor n. As an example let us write
the matriz (K1), as i(n{no, — nbm.). In general one can write (as the reader should check)

(Mag)h, =i (nﬁnﬁu - Wgﬁow) Ji = %EijkMij K; = M;
The matrices Myg are numbered by the indices o, B and are antisymmetric in them. One can
therefore write the general infinitesimal Lorentz transformation as A = 1 — %eaﬁMa/g with an
antisymmetric €*P. The advantage of the matrices M®? is twofold. First, it provides a compact
notation, and second, it reveals clearly the 4-tensor character of the Lorentz generators. Indeed,
since 1 is the (metric) 4-tensor, the M is by definition J-tensor with four indices (rank 4), i.e.
it is a second rank tensor with respect to the indices o and 3.

43Infinitesimal rotations of three operators A; are given by (1 —icJ;)A;(1 + ieJ;) = Aj — ie[J;, A;] + O(£?),
which for A; = J;, K;, P; is equal to A; +e&;jp Ak + O(e?) (due to the commutation relations). Components of
a 3-vector @, on the other hand, are transformed according to the defining representation of the rotation group
d — (1 —ieJ;) @, which for (J;);x = —i€;; (in this representation), equals to a; — a; — € ;5,ar + O(e?).
So up to the sign the operators A; = J;, K;, P; transform as the components of a 3-vector. And since in this case
the difference in the sign is just the difference between e.g. active and passive transformations, we may conclude
that operators J;, K;, P; do indeed transform as components of 3-vectors.

44Infinitesimal Lorentz transformations of four operators A; are (1 —ieJ;)Pu(1+ieJ;) = Py —ie[J;, Pu]+O(e?)
and (1 —ieK;) Py (1 +ieK;) = P, — ie[K;, P,] + O(e?). Components of a 4-vector a,, are transformed according
to the defining representation of the Lorentz group a — (1 — ieJ;) a and a — (1 —ieK;) a. The commutators (in
general) and the generators in the defining representation are given explicitly at the previous page, from where
one can conclude (just like in the previous footnote) that indeed up to the sign the operators P, transform as the
components of a 4-vector.

45This should be clear from the next remark.
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the scalar representation of the Poincaré group

Representations of the Poincaré group are of vital importance to any serious attempt to discuss
relativistic quantum theory. It is, however, not our task right now. For quite some time we
will need only the simplest representation — the so-called scalar one, which is quite easy to
guess (and that’s what we are going to do now). Systematic analysis of representations of the
Lorentz and Poincaré groups and all the complications introduced by non-scalar representations
are postponed to next chapters.

Let us consider a Hilbert space in which some representation of the Poincaré group is defined.
Perhaps the most convenient basis of such a space is the one defined by the eigenvectors of the
representations of the translation generators P,, commuting with each other. The eigenvectors
are usually denoted as |p, o), where p = (po, p1, P2, p3) stands for eigenvalues of P and o stands
for any other quantum numbers. In this notation P, |p, o) = p, [p, o).

At this point we are going to consider only the simplest case, the so-called scalar represen-
tation, in which no o is involved. The states in this representation are characterized completely
by the 4-momentum p, which is exactly what one expects to be the case for one spinless particle.
For the translation generators in this representation one has

Pulp) =pulp)

The representation of non-infinitesimal space-time translations is obtained by exponentiation of
the generators. If an operator U (A, a) is the element of the representation, corresponding to the
Poincaré transformation z — Ax + a, then U (1,a) = e~%". And since |p) is an eigenstate of
P, one has

U(1,a) |p) = e~""*|p)

where pa = p,a* is a scalar product of 4-vectors.

How does the representation of the Lorentz transformations look like? Since p is a 4-vector,
the obvious first guess for generators is

Ji|p) = |Jip)
Kilp) = |Kip)

or, at the level of non-infinitesimal Lorentz transformations
U(A,0) Ip) = [Ap)
It is straightforward to check (do it) that this, indeed, is a representation of the Lorentz group.
Finally one puts the Lorentz transformations and translations together to get
U (A a)|p) = e 4P| Ap)

where (Ap)a = A . Pvat. It is again easy to check directly (do it) that this defines a representation
of the Poincaré group.6

461 et us remark that once the spin is involved, the parameter o enters the game and the transformation is a bit
more complicated. It goes like this: U (A, a) |p,0) = >, e~ HAP)2C_ _/ |Ap,o’) and the coefficients C,,,s define
the particular representation of the Lorentz group. These complications, however, do not concern us now. For
our present purposes the simplest scalar representation will be sufficient.
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The next step is to realize that the operator P? = P, P* commutes with all the generators
of the Poincaré group (check it), i.e. it is a Casimir operator of this group. If we use the
symbol m? to denote the eigenvalue of this operator then the irreducible representations of the
Poincaré group can be classified by the value of the m2. The relation between the energy and
the 3-momentum of the state |p) is

E? — 5% = m?

i.e. for each value of m? one has the Hilbert space of states of a free spinless relativistic particle
with the mass m. The question now is how to add some interaction and this turns out to be a
surprisingly difficult task.

Nevertheless, this rather trivial representation is a very important one — it becomes the
starting point of what we call the particle-focused approach to the quantum field theory. We
shall comment on this briefly in the next paragraph.
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the scalar representation of the Poincaré group. OLD

Investigations of the Poincaré group representations are of vital importance to any serious at-
tempt to discuss relativistic quantum theory. It is, however, not our task right now. For quite
some time we will need only the simplest representation, the so-called scalar one. All complica-
tions introduced by higher representations are postponed to the next parts of the text.

Let us consider a Hilbert space in which some representation of the Poincaré group is defined.
Perhaps the most convenient basis of such a space is the one defined by the eigenvectors of the
translation generators P, commuting with each other. The eigenvectors are usually denoted as
|p, o), where p = (po, p1, p2, p3) stands for eigenvalues of P and o stands for any other quantum
numbers. In this notation one has

P,LL |pa0> :p,u |p70>

The representation of space-time translations are obtained by exponentiation of generators. If
an operator U (A, a) is the element of the representation, corresponding to the Poincaré trans-
formation  — Az + a, then U (1,a) = e~*". And since |p, o) is an eigenstate of P,, one has

U(1,a)|p,0) = e~ |p,a)
where pa = p,a" is a scalar product of 4-vectors.

And how does the representation of the Lorentz subgroup look like? Since the p,, is a 4-vector,

one may be tempted to try U (A, 0) |p, o) < |Ap, o). This really works, but only in the simplest,
the so-called scalar representation, in which no o is involved. It is straightforward to check that
in such a case the relation

U (A, a)|p) = e~ |Ap)

defines indeed a representation of the Poincaré group (check it).4”

Now it looks like if we had reached our goal — we have a Hilbert space with a representation
of the Poincaré group acting on it, i.e. we have a relativistic quantum theory. A short inspection
reveals, however, that this is just the rather trivial case of the free particle. To see this, it
is sufficient to realize that the operator P? = P,P" commutes with all the generators of the
Poincaré group (check it), i.e. it is a Casimir operator of this group. If we denote the eigenvalue
of this operator by the symbol m? then the irreducible representations of the Poincaré group can
be classified by the value of the m2. The relation between the energy and the 3-momentum of the
state |p) is B2 — p? = m?, i.e. for each value of m? we really do have the Hilbert space of states
of a free relativistic particle with the mass m. (The reader is encouraged to clarify him/herself
how should the Hilbert space of the states of free relativistic particle look like. He/she should
come to conclusion, that it has to be equal to what we have encountered just now.)

Nevertheless, this rather trivial representation is a very important one — it becomes the
starting point of what we call the particle-focused approach to the quantum field theory. We
shall comment on this briefly in the next paragraph.

47Let us remark that once the spin is involved, the parameter o enters the game and the transformation is a bit
more complicated. It goes like this: U (A, a) |p,0) = >, e~ HAP)2C_ _/ |Ap,o’) and the coefficients C,,,s define
the particular representation of the Lorentz group. These complications, however, do not concern us now. For
our present purposes the simplest scalar representation will be sufficient.
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The Hilbert space spanned over the eigenvectors |p, o) of the translation generators P, is
not the only possible choice of a playground for the relativistic quantum theory. Another quite
natural Hilbert space is provided by the functions ¢ (z). A very simple representation of the
Poincaré group is obtained by the mapping

v(x) = oAz +a)

This means that with any Poincaré transformation x — Ax+a one simply pulls back the functions
in accord with the transformation. It is almost obvious that this, indeed, is a representation
(if not, check it in a formal way). Actually, this representation is equivalent to the scalar
representation discussed above, as we shall see shortly. (Let us remark that more complicated
representations can be defined on n-component functions, where the components are mixed by
the transformation in a specific way.)

It is straightforward to work out the generators in this representation (and we shall need them
later on). The changes of the space-time position z* and the function ¢ () by the infinitesimal
Poincaré transformation are dz* and dz*0,p (x) respectively, from where one can directly read
out the Poincaré generators in this representation

Tip (x) = (Jiz)" Oup ()
Kip (z) = (Kiz)" 0, (2)
Pup (z) = 0, (2)
Using the explicit knowledge of the generators J; and K; one obtains

i

Ji () 5
Kip (x) = i (6F'n0, — 64miv) 7 0uep (x) = ixodiep (x) — ix;00p ()

Eiji (05 My — Ojnjv) &0 (x) = —icijpa;Opep (2)

or even more briefly J ¢ (z) = —iZ x Vi (z) and K ¢ (z) = itV (z) — idp ().

At this point the reader may be tempted to interpret ¢ (z) as a wave-function of the ordinary
quantum mechanics. There is, however, an important difference between what have now and the
standard quantum mechanics. In the usual formulation of the quantum mechanics in terms of
wave-functions, the Hamiltonian is specified as a differential operator (with space rather than
space-time derivatives) acting on the wave-function ¢ (). Our representation of the Poincaré
algebra did not provide any such Hamiltonian, it just states that the Hamiltonian is the generator
of the time translations.

However, if one is really keen to interpret ¢ (x) as the wave-function, one is allowed to do so.
Then one may try to specify the Hamiltonian for this irreducible representation by demanding
p? = m? for any eigenfunction e 7. In this way, one is lead to some specific differential equation
for ¢ (x), e.g. to the equation

i0yp (x) = V/m? — 0;0; ¢ ()

Because of the square root, however, this is not very convenient equation to work with. First of
all, it is not straightforward to check, if this operator obeys all the commutation relations of the
Poincaré algebra. Second, after the Taylor expansion of the square root one gets infinite number
of derivatives, which corresponds to a non-local theory (which is usually quite non-trivial to be
put in accord with special relativity). Another ugly feature of the proposed equation is that it
treated the time and space derivatives in very different manner, which is at least strange in a
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would-be relativistic theory. The awkwardness of the square root becomes even more apparent
once the interaction with electromagnetic field is considered, but we are not going to penetrate
in such details here.

For all these reasons it is a common habit to abandon the above equation and rather to
consider the closely related so-called Klein—Gordon equation

(0,0" +m?) ¢ (z) =0

as a kind of a relativistic version of the Schrédinger equation (even if the order of the Schrédinger
and Klein—Gordon equations are different).

Note, however, that the Klein-Gordon equation is only related, but not equivalent to the
equation with the square root. One of the consequences of this non-equivalence is that the
solutions of the Klein-Gordon equation may have both positive and negative energies. This does
not pose an immediate problem, since the negative energy solutions can be simply ignored, but
it becomes really puzzling, once the electromagnetic interactions are switched on.

Another unpleasant feature is that one cannot interpret |¢ (z)|> as a probability density,
because this quantity is not conserved. For the Schrédinger equation one was able to derive the
continuity equation for the density |¢ (;1:)|2 and the corresponding current, but for the Klein—
Gordon equation the quantity |¢ (:1:)\2 does not obey the continuity equation any more. One
can, however, perform with the Klein—Gordon equation a simple massage analogous to the one
known from the treatment of the Schrodinger equation, to get another continuity equation with
the density ©*dpp — pdpp*. But this density has its own drawback — it can be negative. It
cannot play, therefore the role of the probability density.

All this was well known to the pioneers of the quantum theory and eventually led to rejection
of wave-function interpretation of ¢ (z) in the Klein-Gordon equation. Strangely enough, the
field ¢ (x) equation remained one of the cornerstones of the quantum field theory. The reason
is that it was not the function and the equation which were rejected, but rather only their
wave-function interpretation.

The function ¢ (z) satisfying the Klein-Gordon is very important — it becomes the starting
point of what we call the field-focused approach to the quantum field theory. In this approach
the function ¢ () is treated as a classical field (transforming according to the considered repre-
sentation of the Poincaré group) and starting from it one develops step by step the corresponding
quantum theory. The whole procedure is discussed in quite some detail in the following chapters.
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1.3.2 The logic of the particle-focused approach to QFT

The relativistic quantum theory describes, above all, the physics of elementary particles. There-
fore the particle-focused approach looks like the most natural. Nevertheless, it is by far not the
most common, for reasons which are mainly historical. Now we have to confess (embarrassed)
that in these lectures we are going to follow the less natural, but more wide-spread field-focused
approach.® The particle-focused approach is only very briefly sketched in this paragraph. Not
everything should and could be understood here, it is sufficient just to catch the flavor. If too
dense and difficult (as it is) the paragraph should be skipped.

One starts with an irreducible representation of the Poincaré group on some 1-particle Hilbert
space. The usual basis vectors in the Hilbert space are of the form |p, o), where p is the (overall)
momentum of the state and all the other characteristics are included in o. For a multiparticle
state, the o should contain a continuous spectrum of momenta of particular particles. This
provides us with a natural definition of 1-particle states as the ones with discrete o. In this case
it turns out that values of o correspond to spin (helicity) projections.

Irreducible representations are characterized by eigenvalues of two Casimir operators (op-
erators commuting with all generators), one of them being m?, the eigenvalue of the Casimir
operator P2, and the second one having to do with the spin. The states in the Hilbert space are
therefore characterized by eigenvalues of 3-momentum, i.e. the notation |p, o) is more appropri-
ate than |p,o) (nevertheless, when dealing with Lorentz transformations, the |p, o) notation is
very convenient). The |p, o) states are still eigenstates of the Hamiltonian, with the eigenvalues
Ey = /% +m2.

Once a representation of the Poincaré group on a 1-particle Hilbert space is known, one can
systematically build up the corresponding Fock space from direct products of the Hilbert ones.
The motivation for such a construction is that this would be a natural framework for processes
with nonconserved numbers of particles, and such processes are witnessed in the nature. This
Fock space benefits from having a natural representation of Poincaré group, namely the one
defined by the direct products of the representations of the original 1-particle Hilbert space.
The Hamiltonian constructed in this way, as well as all the other generators, correspond to a
system of noninteracting particles. In terms of creation and annihilation operators, which are
defined as very natural operators in the Fock space the free Hamiltonian has a simple form

3
HO :f (;iﬂz;gEﬁa;aﬁ.

The next step, and this is the hard one, is to find another Hamiltonian which would de-
scribe, in a relativistic way, a system of interacting particles. One does not start with a
specific choice, but rather with a perturbation theory for a generic Hamiltonian H = Hy +
Hini. The perturbation theory is neatly formulated in the interaction picture, where |1y (t)) =

U(t,0)]1r (0)), with U(t,0) satisfying iU (¢,0) = Hing,s (t) U(t,0) with the initial condition

48The explanation for this is a bit funny.

As to what we call here the particle-centered approach, the textbook is the Weinberg’s one. We strongly
recommend it to the reader, even if it would mean that he/she will quit these notes. The present author feels
that he has nothing to add to the Weinberg’s presentation.

But even if the approach of the Weinberg’s book is perhaps more natural than any other, it is certainly not a
good idea to ignore the traditional development, which we call here the field-centered approach. If for nothing else,
then simply because it is traditional and therefore it became a part of the standard background of the majority
of particle physicists.

Now as to the textbooks following the traditional approach, quite a few are available. But perhaps in all of
them there are points (and unfortunately not just one or two) which are not explained clearly enough, and are
therefore not easy to grasp. The aim of the present notes is to provide the standard material with perhaps a bit
more emphasis put on some points which are often only glossed over. The hope is, that this would enable reader
to penetrate into the subject in combination of a reasonable depth with a relative painlessness.

Nevertheless, beyond any doubt, this hope is not to be fulfilled. The reader will surely find a plenty of
disappointing parts in the text.
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U(0,0) = 1. The perturbative solution of this equation leads to the sum of integrals of the form
ftto dty...dt, T Hing,1 (t1) ... Hine,1 (tn), where T orders the factors with respect to decreasing
time. For a relativistic theory, these integrals should better be Lorentz invariant, otherwise the
scalar products of the time-evolved states would be frame dependent. This presents nontrivial
restrictions on the interaction Hamiltonian Hj,;. First of all, the space-time variables should
be treated on the same footing, which would suggest an interaction Hamiltonian of the form
Hiy = f d3z Hine and Hiye should be a Lorentz scalar. Furthermore, the T-ordering should
not change the value of the product when going from frame to frame, which would suggest
[Hint (), Hine ()] = 0 for (z —y)* < 0 (for time-like intervals, the ordering of the Hamiltonians
in the T-product is the same in all the reference frames, for space-like intervals the ordering is
frame-dependent, but becomes irrelevant for Hamiltonians commuting with each other).

All these requirements do not have a flavor of rigorous statements, they are rather simple
observations about how could (would) a relativistic quantum theory look like. It comes as a kind
of surprise, that the notion of quantum fields is a straightforward outcome of these considerations.
Without going into details, let us sketch the logic of the derivation:

1. As any linear operator, the Hamiltonian can be written as a sum of products of the creation
and annihilation operators. The language of the a;)i' and a; operators is technicaly advantageous,
e.g. in the formulation of the so-called cluster decomposition principle, stating that experiments
which are sufficiently separated in space, have unrelated results.

2. Poincaré transformations of apf and ay (inherited from the transformations of states) are given
by p-dependent matrices, and so the products of such operators (with different momenta) have
in general complicated transformation properties. One can, however, combine the apf and ap

operators into simply transforming quantities called the creation and annihilation fields <pl+(x) =
> [ Epw(z,p, a)a;)f and ¢; (z) = >, [ d®*pu(x, p,o)az, which are much more suitable for a
construction of relativistic quantum theories.

3. The required simple transformation properties of gpli are the ones independent of any x or g,
namely goli(m) — > D (A71)30# (z)(Az + a), where the D matrices furnish a representation of
the Lorentz group. The coefficients u; and v; are calculable for any such representation, e.g. for

the trivial one Dy (A~1) = 1 one gets u(xz, p,0) = ——2—¢€? and v(x, P, 0) = ———e 2.
e (2m)3,/2E; »e (2m)3,/2E;

4. One can easily construct a scalar Hin(z) from the creation and annihilation fields. The
vanishing commutator of two such Hi,(z) for time-like intervals, however, is not automatically
guaranteed. But if Hiy(z) is constructed from a specific linear combination of the creation
and annihilation fields, namely form the fields ¢;(z) = ¢/ (z) + ¢, (z), then the commutator is
really zero for time-like intervals. This is the way how the quantum fields are introduced in the
Weinberg’s approach — as (perhaps the only) the natural objects for construction of interaction
Hamiltonians leading to relativistic quantum theories.
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1.3.3 The logic of the field-focused approach to QFT

The basic idea of the field-focused approach to quantum fields is to take a classical relativistic
field theory and to quantize it canonically (the exact meaning of this statement is to be explained
in the next chapter). This makes a perfect sense in case of the electromagnetic field, since the
primary task of the canonical quantization is to provide a quantum theory with a given classical
limit. If the field is classically well known, but one suspects that there is some underlying
quantum theory, then the canonical quantization is a handy tool.

This tool, however, is used also for quantum fields for which there is no such thing as the
corresponding classical fields, at least not one observed normally in the nature (the electron-
positron field is perhaps the prominent example). This may sound even more surprising after
one realizes that there is a well known classical counterpart to the quantum electron, namely the
classical electron. So if one is really keen on the canonical quantization, it seems very natural to
quantize the (relativistic) classical mechanics of the electron particle, rather than a classical field
theory of non-existing classical electron field. But still, what is quantized is indeed the classical
field. What is the rationale for this?

First, let us indicate why one avoids the quantization of relativistic particles. Actually even
for free particles this would be technically more demanding than it is for free fields. But this is
not the main reason in favor of field quantization. The point is that we are not interested in free
(particles or field) theory, but rather in a theory with interaction. And while it is straightforward
to generalize a relativistic classical free field theory to a relativistic classical field theory with
interaction (and then to quantize it), it is quite non-trivial to do so for particles.

Second, it should be perhaps emphasized that the nickname ”second quantization”, which is
sometimes used for the canonical quantization of fields, provides absolutely no clue as to any real
reasons for the procedure. On the contrary, the nickname could be very misleading. It suggests
that what is quantized is not a classical field, but rather a wave-function, which may be regarded
to be the result of (the first) quantization. This point of view just obscures the whole problem
and is of no relevance at all (except of, perhaps, the historical one).

So why are the fields quantized? The reason is this: In the non-relativistic quantum theories
the dynamics is defined by the Hamiltonian. Important point is that any decent Hamiltonian
will do the job. In the relativistic quantum theories, on the other hand, the Hamiltonian, as
the time-translations generator, comes in the unity of ten generators of the Poincaré group.
Not every decent Hamiltonian defines a relativistic dynamics. The reason is that for a given
Hamiltonian, one cannot always supply the nine friends to furnish the Poincaré algebra. As
a matter of fact, it is in general quite difficult, if not impossible, to find such nine friends.
Usually the most natural way is not to start with the Hamiltonian and then to try to find the
corresponding nine generators, but to define the theory from the beginning by presenting the
whole set of ten generators*®. This is definitely much easier to say than to really provide. And
here comes the field quantization, a clever trick facilitating simultaneous construction of all ten
Poincaré generators.

The starting point is a relativistic classical field theory. This means, first of all, that the
Poincaré transformations of the field are well defined (as an example we may take the function
¢ (x) discussed on p. 51, which is now treated as a classical field transforming according to the
scalar representation® of the Poincaré group). Then only theories which are symmetric under

49From this it should be clear that even the formulation, not to speak about solution, of the relativistic quantum
theory is about 10 times more difficult than that of non-relativistic quantum theory. The situation is similar to
the one in general relativity with 10 components of the metric tensor as opposed to one potential describing the
Newtonian gravity.

50Why representation, why not any (possibly non-linear) realization? We have answered this question (the
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these transformations are considered. Now one could expect that, after the canonical quanti-
zation, the Poincaré transformations of classical fields become somehow the desired Poincaré
transformations of the Hilbert space of states. The reality, however, is a bit more sophisticated.
Here we are going to sketch it only very briefly, details are to be found in the next chapter

At the classical level, to each symmetry there is a conserved charge (Noether’s theorem).
When formulated in the Hamiltonian formalism, the Poisson brackets of these charges obey the
same algebra, as do the Poincaré generators. After canonical quantization, the Noether charges
become operators (in the Hilbert space of states), the Poisson brackets become commutators,
and the Poisson bracket algebra becomes the Poincaré algebra itself (or, strictly speaking, some
representation of the Poincaré algebra). Consequently, the Noether charges become, in the
process of the canonical quantization, the generators of the symmetry at the quantum level.

Precisely this is going to be the logic behind the field quantization adopted in these lecture
notes: field quantization is a procedure leading in a systematic way to a quantum theory with a
consistent package of the ten Poincaré generators.

Let us emphasize once more that another important aspect of canonical quantization, namely
that it leads to a quantum theory with a given classical limit, is not utilized here. We ignore
this aspect on purpose. In spite of the immense role it has played historically and in spite of the
undisputed importance of this aspect in the case of the electromagnetic field, for other fields it
is illusory and may lead to undue misconceptions.

To summarize: Enlightened by the third introduction (Relativity and Quantum Theory) we
are now going to penetrate a bit into the technique of the canonical quantization of relativistic
classical fields. The result will be a relativistic quantum theory in terms of creation and annihila-
tion operators familiar from the second introduction (Many-Body Quantum Mechanics). Clever
version of the perturbation theory formulated within the obtained theories will then lead us to
the Feynman rules discussed in the first introduction (Conclusions).

Remark: For the sake of completeness let us mention yet another approach to the quantum field
theory — the one which can be naturally called the path integral-focused approach. We will have
much to say about it in the chapter 77

keyword was the superposition principle) supposing realization in the Hilbert space of quantum states. Now ¢ (z)
does not correspond to the quantum state, so it is legitimate to raise the question again.

The answer (pretty unclear at the moment) is that non-linear transformations of classical fields would lead,
after quantization, to transformations not conserving the number of particles, which is usually ”unphysical” in a
sense that one could discriminate between two inertial systems by counting particles.



Chapter 2

Free Scalar Quantum Field

In this chapter the simplest QF T, namely the theory of the free scalar field, is developed along
the lines described at the end of the previous chapter. The keyword is the canonical quantization
(of the corresponding classical field theory).

2.1 Elements of Classical Field Theory

2.1.1 Lagrangian Field Theory

mass points nonrelativistic fields relativistic fields
o (t) a=1,2,... o (Z,t) 7e R? v (x) x € R(3,1)
§= [t L(a,d) S= [l d LYo 8= [d L(p 00

The third column is just a straightforward generalization of the first one, with the time
variable replaced by the corresponding space-time analog. The purpose of the second column is

to make such a formal generalization easier to digest!. For more than one field ¢, (z) a =1,...,n
one hasl (@1, 0.1, - - -, ¥n, Oupn) and there are n Lagrange-Euler equations
oL oL
Oz —5—=0
(8H<pa) dpa

IThe dynamical variable is renamed (g — ¢) and the discrete index is replaced by the continuous one
(ga — wa = ¢@(x)). The kinetic energy T, in the Lagrangian L = T — U, is written as the integral
(>,T(da) — [d3z T(¢(z))). The potential energy is in general the double integral (ZapUasa) —
Jd3z d®y U (¢ (x),¢ (y))), but for the continuous limit of the nearest neighbor interactions (e.g. for an elastic
continuum) the potential energy is the function of ¢ () and its gradient, with the double integral reduced to the

single one ([ d®z d3y U (¢ (), ¢ (y)) = [d®z u(p(z), Ve (2)))

o7
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The fundamental quantity in the Lagrangian theory is the variation of the Lagrangian density
with a variation of fields

0L =L(p+ebp,0up +€0,00) — L (p,0u9)

0L (p,0,0) L (¢, 0up) ] 2
=¢ dp + 0,00 +0(e
{ o 7T T, e HOE)

=< [t (& ~o) + (.9%)] + o)

It enters the variation of the action

08 = /5[3 d*x

= (@ o)+ (@) o)

which in turn defines the equations of motion, i.e. the Lagrange-Fuler equations for extremal
action S (for dp vanishing at space infinity always and for initial and final time everywhere)

S=0 = /w(aﬁ—auaaﬁ )d4x+/ oL 5. i =0

dp (Oup) 9(0up)
The second term vanishes for d¢ under consideration, the first one vanishes for any allowed d¢
iff 52 — Ougi3tsy =0
£4 e

Example: Free real Klein-Gordon field L [p] = 30,90 ¢ — $m%p?

00" + m2p=0
This Lagrange-Euler equation is the so-called Klein-Gordon equation. It entered physics as a
relativistic generalization of the Schriodinger equation (p = —iV, E = 0y, (p2 — m2) p =0,
recall h = ¢ =1). Here, however, it is the equation of motion for some classical field .

Example: Interacting Klein-Gordon field L [p] = 10,p0"¢ — im?*@? — 1 gp*

1
00" +m*p + Zgp® =0
3!
Nontrivial interactions lead, as a rule, to nonlinear equations of motion.

Example: Free complex Klein-Gordon field L [p] = 0,00 p —m2p*p
The fields ¢* and @ are treated as independent.?

(0,0" +m?) =0
(8N8“ + mz) =0

The first (second) equation is the Lagrange-Euler equation for ¢* (@) respectively.

21t seems more natural to write ¢ = (1 +ipa, where ; are real fields and treat these two real fields as indepen-
dent variables. However, one can equally well take their linear combinations ¢} = ¢;;¢; as independent variables,
and if complex c;; are allowed, then ¢* and ¢ can be viewed as a specific choice of such linear combinations.
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Noether’s Theorem

Symmetries imply conservation laws. A symmetry is an (infinitesimal, local) field transformation

¢ () = ¢ () +edp(x)

leaving unchanged (maybe up to a 4-divergence) either the Lagrangian density £, or (maybe
up to a total time derivative) the Lagrangian L = [ £ d®z. Conservation laws are either local
0,j" = 0 or global 9;Q) = 0, and they hold only for fields satisfying the Lagrange-Euler equations.

symmetry conservation law current or charge
L=0 O =0 jM:a(gi,io)‘s@
0L =0, T" (x) o =0 jH = a(gifw)(;@ —gH
5L =0 2Q =0 szd?’m%&p
0L =<8,Q (1) %HQ =0 Q= [ d 5200 - Q

The first two lines (the stronger version of the Noether’s theorem) follow directly from 0L given
above (supposing the untransformed field ¢ obeys the Lagrange-Euler equations). The next two
lines (the weaker version of the Noether’s theorem) follow from the §£ integrated through the

space [ 9, ((9(27%54,0) d®z = 0, which can be written as

oL oL oL
8/d3x 5/d3:1:5‘1-( 5>/d5i 5o =0
0 9(0p) ¢ 2(0:0)"7 8(0i0) "7

for the fields obeying the Lagrange-Euler equations and vanishing in the spatial infinity. The
conserved quantity has a form of the spatial integral of some ”density”, but this is not necessary
a time-component of a conserved current.

Remark: For more than one field in the Lagrangian and for the symmetry transformation
©Ya (T) = 4 (z) + €0ap (), the conserved current is given by

Proof: 6L=¢), [5@(1 (% - 6#%) +0, (%&paﬂ + O(£?).

On the other hand, if more symmetries are involved, i.e. if the Lagrangian density is symmetric
under different transformations ¢ () — ¢ (z) +dpp (x), then there is one conserved current for
every such transformation

oL 5
9(0,0) "%

Je =

Proof: 6L =¢ [(5kg0 (% -0, 6('35@) +0, (mgi‘fwékcp)} + O(e?).
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Example: Phase change — field transformations o — @e™®, ¢* — p*e!®. Infinitesimal

form ¢ — @ —icp, ¥ — P* +icp*, i.e. dp = —ip and dp* = ip*. Lagrangian density
L[p] = 0,0 00 —m2p*p — ig (gp*<p)2. Symmetry 6L =0
oL oL
= dp + 09" = —ipd" " +ip oy
() (0ue*)

Q= /dsx] i/d3x (go*@ogafgaﬁoga*)

Once the interaction with the electromagnetic field is turned on, this happens to be the electro-
magnetic current of the Klein-Gordon field.

Example: Internal symmetries — field transformations ¢; — Tijp; (i, =1,...,N), where T €
G and G is some Lie group of linear transformations. Infinitesimal form p; — ¢; —iey (tr);; ¢,
i.e. Oppi = —i(ty);; pj. Lagrangian density L[y, ..., on] = 50,0:i0" i — 5m*¢} — 1g (pigi)®.
Symmetry 6L =0

oL
s = — .= —q “ o .. -
Jk a(a‘uwl)ék@l ? (8 QDI) (tk)zj QO]

Qr = /dgx Jp (x) = —i/d3x Pi (tk)ij Pj

Example: Space-time translations — field transformations ¢ (x) — ¢ (z +a) (four indepen-
dent parameters a, will give four independent conservation laws). Infinitesimal transformations
o (x) = o () +,0"0 (2), i.e. ¢ () =08"¢(x). The Lagrangian density L[] = 30,p0"¢p —
%m2<p2 — %g(p‘l as a specific example, but everything holds for any scalar Lagrangian density.
Symmetry 6L = ¢,0"L (note that a scalar Lagrangian density is transformed as L (x) —
L (xz+a), since this holds for any scalar function of x). Technically more suitable form of

the symmetry 6L = €,0,T" () = €, 00" L (z).

oL oL
L —JHw =
= 560" m >

Oy
Q /dSSC] < 1/ nOVﬁ)

The conserved quantity is the energy-momentum

QOZE:/d3x <g£90 £> Qi:Pi:/d?’xZ—gaigo

which in our specific example gives

O — L

1
—g¢*)

1 -
Q*=F= 5/0de (@% + [Vo|* + m2p? + 5

Q:ﬁ:/ﬁ%¢v¢

Example: Lorentz transformations — field transformations  (x) — ¢ (Ax). Infinitesimal trans-
formations ¢ (z) = @(x) — swP? (Myo )" x"0p(x) (sorry)®, ie. Spop = —i(Mpo)! a¥0up =

3For an explanation of this spooky expression see 1.3.1. Six independent parameters w?”? correspond to 3
rotations (w%) and 3 boosts (w%). The changes in ¢ due to these six transformations are denoted as §po¢ with
p<o.
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(6gﬁau — 5f,‘np,,) 2’ 0pp = (2,05 — x50,) . The Lagrangian density L [¢] = % Hapﬁ“ga—%m2<p2—
%gcp"‘ again only as a specific example, important is that everything holds for any scalar Lagrangian density.
Symmetry 6L = —EwP? (Mpg)’\u TV ONL = w2, 0\L, is processed further to §L = w Oy (x,L) —
WL = w Oy (z,L) = w O (gruzL). So one can write §L = wx, 0, T* where* JHW =
n Irp W
At ve
gt

oL

SHAV xua)\ o I)\au o )\p,l,uﬁ
= B A
rotations
3 oL o o
I = /0" — ') o — el L
= 50,0 Je=n
3 or o
g 3 9] .Ja9t
Q /d 6(,0 ( & —alo ) ®
boosts
, oL , . ‘
ip0t xzao _ 1,081 _ Oszﬁ
= o) A

0i _ 3a£ Oz_iO %
Q /d v g (@00 a0t 'L

= / —x x Vo
boosts = / T —Vg@ /d3x z (aﬂgo — E)
¢

and finally in our specific ezample

In a slightly different notation

@1

rotations

rotations Qr = / xpZx Ve
boosts QB = —t/d3m o Ve

1 o 1
+3 /d3x T (@ + |Vel” +m?e? + gt
These bunches of letters are not very exciting. The only purpose of showing them is to demon-
strate how one can obtain conserved charges for all 10 generators of the Poincaré group. After
quantization, these charges will play the role of the generators of the group representation in the

Fock space.

4The index p is the standard Lorentz index from the continuity equation, the pair Av specifies the transfor-
mation, and by coincidence in this case it has the form of Lorentz indices.
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2.1.2 Hamiltonian Field Theory

mass points relativistic fields
Ga (1) 5 Pa (t) = & P (@), m(2) = 52k = 524
H=3dapa—L H=[d (¢ (x)7(z) - L(z))
Gl ={H. 1+ &I 4F={HF}+ F
{9y =Za 508 — oo (F.6y = [ &= (555 — 5252t

The only non-trivial issue is the functional derivative 0 F'/dp(x) which is the generalization of the
partial derivative 9 f/0z, (note that in the continuous case ¢ plays the role of the variable and x
plays the role of index, while in the discrete case x is the variable and n is the index). For functions
of n variables one has 0f [Z] = f [+ edZ] — f[T] = £0Z.grad f + O(e?) = 3, €dx,,.0f [0z, +

O(e?). For functionals®, i.e. for functions with continuous infinite number of variables

O0F [p] = Fp+edp] — Flp| = /dm edp(x) fsf;([fj + 0(£?)

Clearly f&% = 5a0 E)G + F 5%;) and 5];55]) = dz[g] 62@)7 which are the basic properties of
anything deserving the name derivative.
For our purposes the most important functionals are going to be of the form [ dy f (¢, dyp),

where 0, = a . In such a case one has®

Y Of (¢ (@), 0y (x)  Of (p(2),0yp (x))
ey | 7 (o000 ) = SHEG D O 00 )
For 3-dimensional integrals in field Lagrangians this reads
0 3 : _Of (g, 6, Ve)  Of (¢, 0, V)
§ 5 . _Of (¢, &, Vo)
i | e ve) = 2HEETE)

where RHS are evaluated at the point T.

As illustrations one can take 5%(:6) = gigzg used in the table above, and ;= fdg V|

—2VVp = —2/Ap used in the example below.

5Functional is a mapping from the set of functions to the set of numbers (real or complex).
56 [dy [ (0,0y0) = [dy f (¢ +ebp,8yp +dydp) — f (¢, 0yp)

= o [ay? 52 5, 4 af((gdy@ayawo@)

_ afdy (8f(‘P’6y<P) —_d Bf(“PvayW)) (5904’ VanlShlng +O(52)

2 Y 0(0y ) surface term
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Example: Klein-Gordon field L[p] = 30,00"¢ — 3m?*¢?  (—39¢)

w($)g§g§<p(x) H:/d?’x”ﬂ(:r)
H (@) = ¢ @) 7 (@) ~ L(z) = 37+ 3 [Vl + 5m??
p={He}=m i ={H,m} = Ap—m?p

Inserting the last relation to the time derivative of the second last one obtains the Klein-Gordon
equation ¢ — ANp +m2p =0

Poisson brackets of Noether charges

The conserved Noether charges have an important feature, which turns out to be crucial for our
development of QFT: their Poisson brackets obey the Lie algebra of the symmetry group. That
is why after the canonical quantization, which transfers functions to operators in a Hilbert space
and Poisson brackets to commutators, the Noether charges become operators obeying the Lie
algebra of the symmetry group. As such they are quite natural choice for the generators of the
group representation in the Hilbert space.

The proof of the above statement is straightforward for internal symmetries. The infinitesi-
mal internal transformations are dpp; = —i (ty); i P> where t; are the generators of the group,
satisfying the Lie algebra [t;,¢;] = ifijxtx. The Poisson brackets of the Noether charges are

(@@ ={ [ m@sioe), [y mwien]|
= 0y 0, { [ 2 mi@es(o), [ mnont
-/ 2 3 08) () o Vo~ S ()

_— / 02 w(2) [t ta] ol2) = / @2 7(2)i framtomo(2)
= Z‘fkthm

For the Poincare symmetry the proof is a bit more involved. First of all, the generators now
contain derivatives, but this is not a serious problem. For the space translations and rotations,
e.g., the proof is just a continuous index variation of the discrete index proof for the internal sym-
metries, one just writes P' = [ d3z d3y 7 (y) t'(y, 2)p () and QY = [d3z d3y 7 (y) tY (y, z)p(x)
where t'(z,y) = 0%(z — y)0" and ¥ (z,y) = 63(z — y) (270" — 2°97).

For the time-translation and boosts the generators are not linear in 7w and ¢, the universal
proof for such generators is a bit tricky’. But for any particular symmetry one may prove the
statement just by calculating the Poisson brackets for any pair of generators. In the case of the
Poincare group this ”exciting” exercise is left to the reader®.

7P. Severa, private communication.
8Just kidding, the reader has probably better things to do and he or she is invited to take the statement for
granted even for the Poincare group.
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2.2 Canonical Quantization

2.2.1 The procedure

The standard way of obtaining a quantum theory with a given classical limit?:

classical mechanics in any formalism

!

classical mechanics in the Hamiltonian formalism
(with Poisson brackets)

]

replacement of canonical variables by linear operators

replacement of Poisson brackets by commutators {f,g} — % [ f , g}

!

explicit construction of a Hilbert space H
explicit construction of the operators

1

quantum mechanics in the Heisenberg picture

Example: A particle in a potential U (x)

L=m [ (z)

22¢
H= 2 +U @)
oz} =1 . AL _ (H, P}
H=42+U(2)
B3l = e _ i (7,r]
!
H= L2
) (z) = 29 (2) 0 (z) = —ihdy) (z)
f=ilns]=-av@  #=i[i]= e

When written in the Schrodinger picture, the Schrédinger equation is obtained.

The above example is not very impressive, since the final result (in the Schrodinger picture)
is the usual starting point of any textbook on quantum mechanics. More instructive examples
are provided by a particle in a general electromagnetic field or by the electromagnetic field itself.
The latter has played a key role in the development of the quantum field theory, and is going to
be discussed thoroughly later on (QFT II, summer term). Here we are going to concentrate on
the scalar field quantization. Even this simpler case is sufficient to illustrate some new conceptual
problems, not present in the quantization of ordinary mechanical systems with a finite number
of degrees of freedom.

9As already mentioned in the first chapter, for our purposes, the classical limit is not the issue. Nevertheless,
the technique (of the canonical quantization) is going to be very useful.
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Example: The scalar field
L= [d% %GMgpa“w — %mQ@Q

1
H=[d n? + Vol + tm2p?

(r (@), 0@} =8 F - el — (H, F}

. A2 5
H = [dz 372 + 5 |VP|" + 3m?¢?

[ (Z,1), @ (§.t)] = —ihd® (& — ) e 184
1

H =777
to be continued

The problem with the example (the reason why it is not finished): H is in general a non-
separable Hilbert space. Indeed: for one degree of freedom (DOF) one gets a separable Hilbert
space, for finite number of DOF one would expect still a separable Hilbert space (e.g. the direct
product of Hilbert spaces for one DOF), but for infinite number of DOF there is no reason for the
Hilbert space to be separable. Even for the simplest case of countable infinite many spins 1/2 the
cardinality of the set of orthogonal states is 2% = ¢. For a field, being a system with continuously
many DOF (with infinitely many possible values each) the situation is to be expected at least
this bad.

The fact that the resulting Hilbert space comes out non-separable is, on the other hand, a
serious problem. The point is that the QM works the way it works due to the beneficial fact
that many useful concepts from linear algebra survive a trip to the countable infinite number of
dimensions (i.e. the functional analysis resembles in a sense the linear algebra, even if it is much
more sophisticated). For continuously many dimensions this is simply not true any more.

Fortunately, there is a way out, at least for the free fields. The point is that the free quantum
field can be, as we will see shortly, naturally placed into a separable playground — the Fock
space'®. This is by no means the only possibility, there are other non-equivalent alternatives
in separable spaces and yet other alternatives in non-separable ones. However, it would be
everything but wise to ignore this nice option. So we will, together with the rest of the world,
try to stick to this fortunate encounter and milk it as much as possible.

The Fock space enters the game by changing the perspective a bit and viewing the scalar
field as a system of coupled harmonic oscillators. This is done in the next section. The other
possibilities and their relation to the Fock space are initially ignored, to be discussed afterwards.

Scalar Field as Harmonic Oscillators

The linear harmonic oscillator is just a special case of the already discussed example, namely a
particle in the potential U(z). One can therefore quantize the LHO just as in the above general

10For interacting fields the Fock space is not so natural and comfortable choice any more, but one usually tries
hard to stay within the Fock space, even if it involves quite some benevolence as to the rigor of mathematics in
use. These issues are the subject-matter of the following chapter.
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example (with the particular choice U(z) = mw?z?/2), but this is not the only possibility.

Let us recall that search of the solution of the LHO in the QM (i.e. the eigenvalues and
eigenvectors of the Hamiltonian) is simplified considerably by introduction of the operators a
and at. Analogous quantities can be introduced already at the classical level'! simply as

m(,u+ i
a=1xy/ —

2 b 2mw
n mw 1
o =1y — — p—

2 P 2mw

The point now is that the canonical quantization can be performed in terms of the variables a
and a*

_ mi? mw3z?
L= -5
H=2 yme’e® _ ot or H=¢ (aTa+ aa™)
= 2m > = =3
{a,a™} =i a=—iwa &t =iwaT

H=wata or H=%(a"a+aat)
[a,at] =1 a=—iwa &t =iwaT
+

H = space spanned by [0),|1),...

aln) = n— 1) a* n) = In+ 1)

Note that we have returned back to the convention 7 = ¢ = 1 and refrained from writing the
hat above operators. We have considered two (out of many possible) Hamiltonians equivalent
at the classical level, but non-equivalent at the quantum level (the standard QM choice being
H =w(aTa+ 1/2)). The basis |n) is orthogonal, but not orthonormal.

The relevance of the LHO in the context of the QFT is given by a "miracle” furnished by the
3D Fourier expansion
@0 = [ Lrerss g
:Z:’ = € ’ p7
¥ ( 27r)3 ¥
which when applied to the Klein-Gordon equation 9,0*¢ (Z,t) + m?¢ (Z,t) = 0 leads to

@ (@) + (72 +m?)p (,t) =0

1 The complex linear combinations of x (t) and p (t) are not as artificial as they may appear at the first sight.
It is quite common to write the solution of the classical equation of motion for LHO in the complex form as
z(t) = (Ae ™! + Bet) and p(t) = — 2% (Ae~ ! — Bet). Both x(t) and p(t) are in general complex,
but if one starts with real quantities, then B = A*, and they remain real forever. The a(t) is just a rescaled

Ae=®t a(t) = /mw/2Ae” 1,
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for any p. Conclusion: the free classical scalar field is equivalent to the (infinite) system of
decoupled LHOs'2, where ¢ (75, t) plays the role of the coordinate (not necessarily real, even if
 (Z,t) is real), 1 = ¢ the role of the momentum and p the role of the index. Note that m has
nothing to do with the mass of the oscillators which all have unit mass and

Quantization of each mode proceeds in the standard way described above. At the classical
level we define

We have used the symbol A;E instead of the usual ag, since we want to reserve the symbol a; for
the complex conjugate to az. It is essential to realize that for the ”complex oscillators” ¢ (p,t)
there is no reason for Ag (t) to be equal to the complex conjugate a;)f (t) = ¢* (P)t) Jwp/2 —
i (7.) | /2.

For the real classical field, however, the condition ¢ (Z,t) = ¢* (#,t) implies ¢ (—p,t) = ©*
P,t) (check it) and the same holds also for the conjugate momentum = (#,¢). As a consequence
a;)f (t)= AT ;7 (t) and therefore one obtains

o (Z,t) = / (;l?;?’\/%ﬁ (aﬁ(t) CPE | a;E 0 e—iﬁj)

(@)= [ 22 ) [ (o 0077 - af )75%)

Now comes the quantization, leading to commutation relations

las ()@ (0] = @0)* 6 G =) las(t),ap ()] = |af (1), a5 (8)] =0

The reader may want to check that these relations are consistent with another set of commutation
relations, namely with [ (7, ) , 7 (§,t)] = 6% (& — §) and [p (Z,) . (,0)] = [x (Z,£) .7 (7)) =

0 (hint: [ 22 e = §3(k)).

The ”"miracle” is not over yet. The free field have turned out to be equivalent to the system of
independent oscillators, and this system will now turn out to be equivalent to still another system,
namely to the system of free non-teracting relativistic particles. Indeed, the free Hamiltonian

12What is behind the miracle: The free field is equivalent to the continuous limit of a system of linearly coupled
oscillators. Any such system can be ”diagonalized”, i.e. rewritten as an equivalent system of decoupled oscillators.
For a system with translational invariance, the diagonalization is provided by the Fourier transformation. The
keyword is diagonalization, rather than Fourier.
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written in terms of ajz (t) and a;E (t) becomes!3

H = /d3x (;7‘(2 + % IVol? + ;m2¢2)
- 2o )

where the last term is an infinite constant (since [az (t) ,a; (t)] = (27)363(p — p)). This is our
first example of the famous (infinite) QFT skeletons in the cupboard. This one is relatively easy
to get rid of (to hide it away) simply by subtracting the appropriate constant from the overall
energy, which sounds as a legal step.

Another way leading to the same result is to realize that the canonical quantization does not
fix the ordering in products of operators. One can obtain different orderings at the quantum level
(where the ordering does matter) starting from the different orderings at clasical level (where
it does not). One may therefore choose any of the equivalent orderings at the classical level to
get the desired ordering at the quantum level. Then one can postulate that the correct ordering
is the one leading to the decent Hamiltonian. Anyway, the standard form of the free scalar field
Hamiltonian in terms of creation and annihilation operators is

d3
= [ s s W as)
This looks pretty familiar. Was it not for the explicit time dependence of the creation and
annihilation operators, this would be the Hamiltonian of the ideal gas of free relativistic particles
(relativistic because of the relativistic energy wy = /p? +m?). The explicit time dependence
of the operators, however, is not an issue — the hamiltonian is in fact time-independent, as we
shall see shortly (the point is that the time dependence of the creation and annihilation operators
turns out to be a (t) = af ™" and az (1) = age” 7" respectively).

Still, it is not the proper Hamiltonian yet, since it has nothing to act on. But once we hand
over an appropriate Hilbert space, it will indeed become the old friend.

For the relativistic quantum theory (and this is what we are after) the Hamiltonian is not the
whole story, one rather needs all 10 generators of the Poincare group. For the space-translations

P = [ d®z © Vi one obtains'
ﬁ:/ d3p ﬁa
(2m)°

13The result is based on the following algebraic manipulations

37)3 3,1/ WsW = iﬂﬂ,f
J o n? = — [ EECBEY VI (a5(1) — at 5 (1)) (ap (1) — aTy (1)) P

(2m)8 2

o4

(t) ap (t)

= — LYY (a5 (1) — a5 (1) (o () — 0t (1) 85+ 7)

em® 2
=~ &2 (ap (1) 0T, (9) (ap(®) - af ()

313 3/7»_4m2 i_'_'/._'
J &z [Vl +m?p? = [ SSTEE SPEL (a5 () +at ;) (a5 ©) +aty (1)) i FH07

= [ &5 F (ap () +a7 ;) (a5 (0 +af 1)

where in the last line we have used (52 + m?)/wy = wp.

Putting everything together, one obtains the result.
= a3 =
MP = [ 55 B ey (1) — ol (D) (a—p (B) +af ()

= [ B (ap () ap(t) - at () a_p () +ap () af (1) —aT, (D af (1)
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while for the rotations and the boosts, i.e. for Q¥ = [d%z 7 (mj(?i —xiaj) @ and QY =
[ &Pz % (279° — 2°9") p — 'L the result is'®

i, [ P 90 _ i) -
QY = /( ) 5(t)(p8 pja) p(t)

Q°i='/(d§’3 wpa (1) Diaz (1)

where 9° = 9/dp; in these formulae.

The reason why these operators are regarded as good candidates for the Poincare group
generators is that at the classical level their Poisson brackets obey the corresponding Lie algebra.
After the canonical quantization they are supposed to obey the algebra as well. This, however,
needs a check.

The point is that the canonical quantization does not fix the ordering of terms in products.
One is free to choose any ordering, each leading to some version of the quantized theory. But
in general there is no guarantee that a particular choice of ordering in the 10 generators will
preserve the Lie algebra. Therefore one has to check if his or her choice of ordering did not spoil
the algebra. The alert reader may like to verify the Lie algebra of the Poincare group for the
generators as given above. The rest of us may just trust the printed text.

Now both the first and the last term vanish since they are integrals of odd functions, so

P= [ &2 B (af (1) ap(0) + a5 () af (1) = [ Slsilad (1) ap (1) + Slap (1) af (0))

and the last term again vanishes as a symmetric integral of an odd function.
d3zd3pd®p’
Qs = [ LLELLL furs g (ay (1) = a* 1 (0) (g (1) + aT (0)aIpiePHDT — i g5

We start with aﬁafﬁ/ = [ap, a_ﬁ,} +at ap = @2m)3s(@+9)+ a_ﬁ, az, where az stands for a; (t) etc. The term

with the é-function vanishes after trivial integration. Then we write :J:jp”‘ei(ﬁJrﬁJ)'i as 7ip’i8’jei(ﬁ+ﬁ,)'f, after
which the dSz integration leads to 8763 (p'+ §') and then using [ dk f (k) Okd (k) = —Ok f (k) |k=0 one gets
+

Qij f 2(2ﬂ)3 7\ /wﬁ—/wﬁ/ (atﬁ,aﬁ — afﬁa 5+ agaz — a"'ﬁa 5 )p'* \ Gt i ]
Now using the Leibniz rule and symetricxantlsymmetric cancelatlons one obtains
Qij=—if 2(2ﬂ)3p ((87a+)a‘57 a qaja_p +azdla_g—a’ qaja Y+ier g
At this point one uses per partes integration for the ﬁrst term the substitution p’— —p for the second term, and
the commutation relations (and p— —p ) for the last two terms, to get

a3
+. .+

Qij=1if (%)3(1 (p'07 —pidt)ay —i [ 4<27r)3( ptoI — p387‘)(2a ay+aza_g—aga’ )
In the second term the dp® or dp? integral is trivial, leading to momenta with some components infinite. This term
would be therefore important only if states containing particles with infinite momenta are allowed in the game.
Such states, however, are considered unphysical (having e.g. infinite energy in the free field case). Therefore the
last term can be (has to be) ignored. (One can even show, that this term is equal to the surface term in the
z-space, which was set to zero in the proof of the Noether’s theorem, so one should set this term to zero as well.)

Boost generators are left as an exercise for the reader.
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Side remark on complex fields

For the introductory exposition of the basic ideas and techniques of QFT, the real scalar field is

an appropriate and sufficient tool. At this point, however, it seems natural to say a few words

also about complex scalar fields. If nothing else, the similarities and differences between the real

and the complex scalar fields are quite illustrative. The content of this paragraph is not needed

for the understanding of what follows, it is presented here rather for sake of future references.
The Lagrangian density for the free complex scalar fields reads

Lp*, @] = 00" 0 —mPp*p

where ¢ = @1 + ip2. The complex field ¢ is a (complex) linear combination of two real fields ¢
and ¢s5. One can treat either 1 and @3, or ¢ and ¢* as independent variables, the particular
choice is just the mater of taste. Usually the pair ¢ and ¢* is much more convenient.

It is straightforward to check that the Lagrange-Euler equation for ¢ and ¢* (as well as for
1 and o) is the Klein-Gordon equation. Performing now the 3D Fourier transformation of
both ¢ (Z,t) and ¢* (Z,t), one immediately realizes (just like in the case of the real scalar field)
that ¢ (p,t) and ¢* (p,t) play the role of the coordinate of a harmonic oscillator

¢ (1) + (7 +m?)p (7,t) = 0

G (1) + (7 +m?)p” (p.t) =0

while 7 (p,t) = ¢* (p,t) and 7* (P, t) = & (P, t) play the role of the corresponding momenta. The

variable p’ plays the role of the index and the frequency of the oscillator with the index p’is
w% = ;5’2 + m?

Quantization of each mode proceeds again just like in the case of the real field. For the ¢

field one obtains'®
@ (pyt) ) F + 7 (it oo

A;I (t) = ¢ () \E “ (7, t) \/g

but now, on the contrary to the real field case, there is no relation between A;; and a;;. It is a
17

common habit to replace the symbol A;)i' by the symbol bfﬁ = A}' and to write the fields as

o (%,t) = / (3;2;3 \/;75 (aﬁ (t) ePE 4 b;E (1) e—iﬁ.f)

* (7 d’p 1 —ip.@ i3
o (@) = [ ST (0 (0 4 by (e) )

(b5 (1) .05 (8] = 2m)* 3 (7~ 7)

16For the go ﬁeld one has the complex conjugated relations

T)=¢ ) Vw/2 +in (Pyt) /2wy and Ay (t) = ©* (B, 1) Jwy/2 —im (P, t) /1205

1ﬂ‘pFor the momenta one has
T L L
T (Z,t) = [ 2 (2”)3 —i)\/ o (aﬁ(t)e“””fb+ (t) e~ pz)

7 (@,0) = [ ki F (af ()% — by (1) 7)
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while all the other commutators vanish.
The standard form of the Hamiltonian becomes
d3p

= [ iy (o Q)+ 05 01500)

which looks very much like the Hamiltonian of the ideal gas of two types (a and b) of free
relativistic particles. The other generators can be obtained just like in the case of the real field.

The main difference with respect to the real field is that now there are two types of particles
in the game, with the creation operators a;I and b; respectively. Both types have the same mass
and, as a rule, they correspond to a particle and its antiparticle. This becomes even more natural
when the interaction with the electromagnetic field is introduced in the standard way (which we
are not going to discuss now). It turns out that the particles created by a;I and b:; have strictly
opposite electric charge.

Remark: At the end of the Introduction No. 2 (many-body quantum mechanics) we have seen
that lines in Feynman diagrams originate form reshuffling of creation and annihilation operators
in computation of vacuum expectation values of specific operators. Once there are two sets of
creation and annihilation operators in the game (like the a;, ag and b;)f, by for the complex scalar
field) one should perhaps use two different types of lines (plain, dashed, wiggly, etc.) in diagrams.
It is a common habit to use the same type of line for a- and b-operators and to distinguish between
them using an arrow. A line with one orientation of the arrow coresponds to the a-operators,
while the opposite orientation corresponds to the b-operators.

So far we have mentioned only one type of lines with arrows in Feynman diagrams, namely the
lines corresponding to electrons and positrons. These arrows are present due to the fact that the
corresponding field is complex (the presence of two types of creation and annihilation operators
ag, ap and b;{, by is a typical feature of any complex field).

Strangely enough (at least at the first sight), for the scalar complex field the arrows are not used.
The reason is that the factor corresponding to the line coming from reshuffling of ag and ag is

exactly the same as the factor for the line corresponding to reshuffling of b; and bz. So for the
scalar field there is no need to distinguish these two cases by arrows or by any other means.
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Time dependence of free fields

Even if motivated by the free field case, the operators az (¢), a;,f (t) can be introduced equally
well in the case of interacting fields. The above (so-called equal-time) commutation relations
would remain unchanged. Nevertheless, in the case of interacting fields, one is faced with very
serious problems which are, fortunately, not present in the free field case.

The crucial difference between the free and interacting field lies in the fact that for the free
fields the time dependence of these operators is explicitly known. At the classical level, the
independent oscillators enjoy the simple harmonic motion, with the time dependence et™st. At

the quantum level the same is true, as one can see immediately by solving the equation of motion

. : : d*p’ :
a;I (t)=1 {H, a:; (t)} =1 [/ Wwﬁ/ a;;, (t)ap (t) 7a; ()| = iwy ag (t)
and az (t) = —iwy az (t) along the same lines. From now on, we will therefore write for the free

fields

where ag and ay are time-independent creation and annihilation operators (they coincide with

a;)f (0) and a (0)). This enables us to write the free quantum field in a bit nicer way as

_ d3p 1 —ipT + ipx
0(0) = [ fomys v (o™ - ape)

where p° = wp. For interacting fields there is no such simple expression and this very fact makes
the quantum theory of interacting fields such a complicated affair.

Remark: The problem with the interacting fields is not only merely that we do not know their
time dependence explicitly. The problem is much deeper and concerns the Hilbert space of the
QFT. In the next section we are going to build the separable Hilbert space for the free fields, the
construction is based on the commutation relations for the operators az (t) and a;)f (t). Since these
commutation relations hold also for the interacting fields, one may consider this construction as
being valid for both cases. This, however, is not true.

The problem is that once the Hilbert space is specified, one has to check whether the Hamiltonian
1s a well defined operator in this space, i.e. if it defines a decent time evolution. The explicitly
known time-dependence of the free fields answers this question for free fields. For the interacting
fields the situation is much worse. Not only we do not have a proof for a decent time evolution,
on contrary, in some cases we have a proof that the time evolution takes any initial state away
from this Hilbert space. We will come back to these issues in the next chapter. Until then, let us
enjoy the friendly (even if not very exciting) world of the free fields.
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Hilbert Space

The construction of the Hilbert space for any of the infinitely many LHOs representing the free

scalar field is straightforward, as described above. Merging all these Hilbert spaces together is also

straightforward, provided there is a common ground state |0). Once such a state is postulated!®,

the overall Hilbert space is built as an infinite direct sum of Hilbert spaces of individual LHOs.
Such a space is simply the space spanned by the basis

0)
p) = /2wzaj |0)
19,5 = /2wy D)
5.5, 5") = 2wz a5 5")
where all creation operators are taken at a fixed time, say t = 0, i.e. a;I = a:g(O). The

normalization (with notation Ep = wy = \/p? + m?)
(P1p') = 25 (2n)* 6° (5 — )

is Lorentz invariant (without y/2Ej in the definition of |p) it would not be). Reason: The integral
J d®p 5%(p) = 1 is Lorentz invariant, while d®p and §°(p) individually are not. The ratio E/d*p,
on the other hand, is invariant!? and so is the d®p 6%(p) E/d®p = E 6%(p).

The Hilbert space constructed in this way is nothing else but the Fock space introduced in
the first chapter. This leads to another shift in perspective: first we have viewed a classical field
as a system of classical oscillators, now it turns out that the corresponding system of quantum
oscillators can be viewed as a system of particles. Perhaps surprising, and very important.

Let us remark that the Fock space is a separable Hilbert space. Originally our system looked
like having continuously infinite dimensional space of states, nevertheless now the number of
dimensions seems to be countable. How come? This question is definitely worth discussing, but
let us postpone it until the last section of this chapter.

At this point we can continue with the scalar field quantization. It was interrupted at the point
H =777, where one now takes H = the Fock space. Once the Hilbert space is given explicitly, the
last step is the explicit construction of the relevant operators. As to the Hamiltonian, we know
it in terms of creation and annihilation operators already, and so it happened that it is just the
Hamiltonian of a system of free noninteracting relativistic particles.

An important consequence of the explicit form of the Poincare generators are the transforma-
tion properties of the basis vectors |p). For this purpose the suitable notation is the 4-vector one:
instead of |p) one writes [p) where p® = wj (dependent variable). The Lorentz transformation
takes a simple form

p) 5 [Ap)

I8For infinite number of oscillators (unlike for the finite one) the existence of such a state is not guaranteed.
One is free to assume its existence, but this is an independent assumption, not following from the commutation
relations. We will search more into this issue in a while.

9Indeed, let us consider the boost along the x3 axis, with the velocity 8. The Lorentz transformation
of a 4-momentum p = (E,p) is E — ~E + vB8p3, p1 — p1, p2 — p2 and p3 — 7p3 + yBE (where
v = +/1— $2), and the same transformation holds for an infinitesimal 4-vector dp. Clearly, d3p is not invariant
d3p — dpidps (vdps +YBdE) = d3p (v + vBdE/dps). For dE = 0 this would be just a Lorentz contraction, but
if both p and p + dp correspond to the same mass m, then E = \/m?2 + p2 and dE/dp3 = p3/\/m? + p? = p3/E.

P

3 3 ) d&p _, dp(ytyBps/E) _ dp
Therefore d°p — d°p (v + vBp3/E) and finally B ~YE+~Bp3 T E
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This may seem almost self-evident, but it is not. As we will see in a moment, for another basis
(x-representation) where this transformation rule looks equally self-evident, it simply does not
hold. The proof of the transformation rule, i.e. the calculation of how the generators act on the
states |p), is therefore mandatory. For rotations at, say, ¢ = 0 one has

:Yij a*p/ io1j j i
—iQ" |p) = / m)ga;, (p'07 —p0") ap \/2wya’ 0)

— V2 [ il (50— p00) 5~ ) )

—V/2w;5 (p'0 = p’0") al 0) = — (p'0’ — p'0") Ip)

where in the last step we have used (p'0? —p’9") /2wy = 0. Now the derivative of |p) in a direction
k is defined by |p + €k) = |p) + €k, 0" |p). For rotations k = —iJ*p (k; = —i(J*)ijp; = —€ijup;)
= ‘p — ieJkp> = |p) — e.cixp;0; |p), i.e.

(1 - ieQij) Ip) = ’(1 — ieJk) p>

which is an infinitesimal form of the transformation rule for rotations.
For boosts one gets along the same lines

. 10i *p' i
72Q0 |p> = / Wwﬁra;f,@/ Qpr w/2wﬁa;5 |0>

— /25 [ dpatds 7 - 70
T [0 = — 2 ) oy o)
4 PP 2(4.]5 P

and since ‘p — i€Kip> = |p) — ie (Ki)jk pr0j [p) = |p) — €piOo |p) — €pod; |p), one finally obtains
(realizing that dy |p) = 0o 2p0a; |0) = ﬁa}' 0y = ﬁ D))
(1—ieQ”) |p) = | (1 —ieK") p)

which is an infinitesimal form of the transformation rule for boosts.
As to the translations, the transformation rule is even simpler

lp) = e |p)

as follows directly from the explicit form of the translation generators, which implies P |p) = p|p)
(where P° = H).

So far everything applied only to ¢ = 0. However, once the explicit time dependence of the
creation and annihilation operators in the free field case is found in the next section, the proof
is trivially generalized for any t¢.

Quasilocalized states

So far, the quantum field have played a role of merely an auxiliary quantity, appearing in the
process of the canonical quantization. The creation and annihilation operators look more ” phys-
ical”, since they create or annihilate physically well defined states (of course, only to the extent
to which we consider the states with the sharp momentum being well defined). Nevertheless the
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fields will appear again and again, so after a while one becomes so accustomed to them, that
one tends to consider them to be quite natural objects. Here we want to stress that besides this
psychological reason there is also a good physical reason why the quantum fields really deserve
to be considered ”physical”.

Let us consider the Fourier transform of the creation operator

dgp —ip.Z dsp ipT
@@= [ e T = [ e

ezpz

Acting on the vacuum state one obtains a™ (z f

(2703 21 |p), which is the superpo-
-5

sition (of normalized momentum eigenstates) correspondlng to the state of the particle localized
at the point x. This would be a nice object to deal with, was there not for the unpleasant fact
that it is not covariant. The state localized at the point z is in general not Lorentz transformed?’
to the state localized at the point Az. Indeed

3
@ @10~ [ e

and this is in general not equal to at (Ax) |0> The problem is the non-invariance of d®p/,/2w;.
Were it invariant, the substitution P —> AT p would do the job.

Now let us consider ¢ f o 3 oo E 5+—¢'P |p) where E, = wy = p°

dp 1 i AT A p 1 i(A=10) 0 B
@ (x) |O>%/(2ﬂ_)3 2Ep6p |Ap>P a P/(%-)SQEAIPQ( p) |AA 1p>

3 TR 3 ;
:/ (;l;)?szflzflm e ‘p>:/ (glw?e)z;,@”(“) Ip) = @ (Az) [0)

so this object is covariant in a well defined sense. On the other hand, the state ¢ (x) |0) is well

localized, since
010 @) o @10 = 0] [ 2Lt
(2m)® V295

and this integral decreases rapidly for |Z — 2’| greater than the Compton wavelength of the
particle fi/me, i.e.l/m. (Exercise: convince yourself about this. Hint: use Mathematica or
something similar.)

Conclusion: ¢ (x)|0) is a reasonable relativistic generalization of a state of a localized particle.
Together with the rest of the world, we will treat o (x)|0) as a handy compromise between
covariance and localizability.

20We are trying to avoid the natural notation a™ () |0) = |z) here, since the symbol |z) is reserved for a different
quantity in Peskin-Schroeder. Anyway, we want to use it at least in this footnote, to stress that in this notation
|z) - |Az) in spite of what intuition may suggest. This fact emphasizes a need for proof of the transformation
|p) - |Ap) which is intuitively equally ”clear”.
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2.2.2 Contemplations and subtleties

Let us summarize our achievements: we have undergone a relatively exhaustive journey to come
to almost obvious results. The (relativistic quantum) theory (of free particles) is formulated in
the Fock space, which is something to be expected from the very beginning. The basis vectors of
this space transform in the natural way. Hamiltonian of the system of free particles is nothing
else but the well known beast, found easily long ago (see Introductions).

Was all this worth the effort, if the outcome is something we could guess with almost no
labor at all? Does one get anything new? One new thing is that now we have not only the
Hamiltonian, but all 10 Poincare generators — this is the ”leitmotiv” of our development of
the QFT. All generators are expressible in terms of a;E (t) and ap(t) but, frankly, for the free
particles this is also relatively straightforward to guess.

The real yield of the whole procedure remains unclear until one proceeds to the interacting
fields or particles. The point is that, even if being motivated by the free field case, the Fourier
expansion of fields and quantization in terms of the Fourier coefficients turns out to be an
efficient tool also for interacting fields. Even in this case the canonical quantization provides the
10 Poincare generators in terms of the fields ¢ (Z,t), i.e. in terms of a:)f (t) and az(t), which
again have (in a sense) a physical meaning of creation and annihilation operators.

Unfortunately, all this does not go smoothly. In spite of our effort to pretend the opposite,
the canonical quantization of systems with infinitely many DOF is much more complex than
of those with a finite number of DOF. The only reason why we were not faced with this fact
hitherto, is that for the free fields the difficulties are not inevitably manifest. More precisely,
there is a representation (one among infinitely many) of canonical commutation relations which
looks almost like if the system has a finite number of DOF. Not surprisingly, this is the Fock
representation — the only one discussed so far. For interacting fields, however, the Fock space is
not the trouble-free choice any more. In this case neither the Fock space, nor any other explicitly
known representation, succeeds in avoiding serious difficulties brought in by the infinite number
of DOF.

In order to understand, at least to some extent, the problems with the quantization of inter-
acting fields, the said difficulties are perhaps worth discussion already for the free fields. So are
the reasons why these difficulties are not so serious in the free field case.

Let us start with recollections of some important properties of systems defined by a finite

number of canonical commutation relations [p;,q;] = —id;; and [p;,p;] = [gi,¢q;] = 0, where
i,7 =1,...,n. One can always introduce operators a; = ¢;¢;/2 + ip; /¢c; and aj' =q;c; /2 —ipi/c
where ¢; is a constant (for harmonic oscillators the most convenient choice is ¢; = +/2m;w;)
satisfying [ai,aﬂ = 4,5 and [a;,a;] = [a?,aﬂ = 0. The following holds:

e a state |0) annihilated by all a; operators does exist (3 |0) Via; |0) = 0)
e the Fock representation of the canonical commutation relations does exist
e all irreducible representations are unitary equivalent to the Fock one

e Hamiltonians and other operators are usually well-defined

For infinite number of DOF, i.e. for the same set of commutation relations, but with 4, j =
...,00 the situation is dramatically different:

e existence of |0) annihilated by all a; operators is not guaranteed

e the Fock representation, nevertheless, does exist
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e there are infinitely many representations non-equivalent to the Fock one

e Hamiltonians and other operators are usually ill-defined in the Fock space

Let us discuss these four point in some detail.

As to the existence of |0), for one oscillator the proof is notoriously known from QM courses.
It is based on well-known properties of the operator N = a™a: 1. N|n) = n|n) = Naln) =
(n—1)aln) (ataa =[a",ala+aata = —a+aN)

2.0 < |la|n)||> = (n|ata|n) = n(n|n) implying n > 0, which contradicts 1 unless the set of
eigenvalues n contains 0. The corresponding eigenstate is |0).

For a finite number of independent oscillators the existence of the common |0) (Vi a; |0) = 0)
is proven along the same lines. One considers the set of commuting operators N; = a;"ai and
their sum N = )", a;ral-. The proof is basically the same as for one oscillator.

For infinite number of oscillators, however, neither of these two approaches (nor anything
else) really works. The step by step argument proves the statement for any finite subset of N;,
but fails to prove it for the whole infinite set. The proof based on the operator N refuses to work
once the convergence of the infinite series is discussed with a proper care.

Instead of studying subtleties of the breakdown of the proofs when passing from finite to
infinite number of oscillators, we will demonstrate the existence of the so-called strange rep-
resentations of aj,a; (representations for which there is no vacuum state [0)) by an explicit
construction (Haag 1955). Let af,al- be the creation and annihilation operators in the Fock
space with the vacuum state |0). Introduce their linear combinations b; = a; cosh @ + a; sinh «
and b:‘ = a;sinha + a;-" cosh a. Commutation relations for the b-operators are the same as for
the a-operators (check it). Now let us assume the existence of a state vector |0,) satisfying Vi
b; |0o) = 0. For such a state one would have

0 = (3| bj [0a) = (¢, 7|0a) cosh a+ (0|04) 6;; sinh «

which implies (i,]|0,) = const (no i dependence). Now for ¢ being an element of an infinite index
set this constant must vanish, because otherwise the norm of the |0,) state comes out infinite
((0a]00) > 302, I, i04)]* = > -2, const?). And since const = — (0|0, ) tanh o the zero value of
this constant implies (0|0,) = 0. Moreover, vanishing (0]0,) implies (i, j|0,) = 0.

It is straightforward to show that also (i|0,) = 0 (0 = (0] b; |04} = (i|04) cosh ) and finally
(4,7, ...]04) = 0 by induction

(0,7, bk |0a) = (7,7, .. .| Oq) cosha + (i,7,...| 0)sinh
S—— S——— S——
n n+1 n—1
But (i, j,...| form a basis of the Fock space, so we can conclude that within the Fock space there

is no vacuum state, i.e. a non-zero normalized vector |0,) satisfying Vi b; [0,) = 0.
Representations of the canonical commutation relations without the vacuum vector are called
the strange representations. The above example?! shows not only that such representations exist,

21 Another instructive example (Haag 1955) is provided directly by the free field. Here the standard annihilation
operators are given by az = ¢ (p,0) \/wz/2 + i7 (p,0) //2wp, where wy = 52 +m?2. But one can define another
set a% in the same way, just with m replaced by some m’ # m. Relations between the two sets are (check it)

o + '+ + — / / : :
az = crag+c-a’y and ay =c-az +cra_p, where 2c4 = | /wﬁ/wﬁ =+, /wﬁ/wﬁ. The commutation relations

I+ _ 3 T _ + 1+ _
become [a%, ag ] = (2m) 6(p7k)(w%fw5)/2w;7 and [a%, a’E] = [aﬁ s ] = 0. The rescaled operators by = rﬁa%
and b;f = rﬁa;' where 7‘127 = Qw%/ (u.);7 — wp) constitutes a representation of the canonical commutation relations.

If there is a vacuum vector for a-operators, i.e. if 3|0) V5 az|0) = 0, then there is no |0") satisfying Vp bz [0') = 0
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but that one can obtain (some of) them from the Fock representation by very simple algebraic
manipulations.

As to the Fock representation, it is always available. One just has to postulate the existence
of the vacuum |0) and then to build the basis of the Fock space by repeated action of a;” on |0).
Let us emphasize that even if we have proven that existence of such a state does not follow from
the commutation relations in case of infinite many DOF, we are nevertheless free to postulate its
existence and investigate the consequences. The very construction of the Fock space guarantees
that the canonical commutation relations are fulfilled.

Now to the (non-)equivalence of representations. Let us consider two representations of
canonical commutation relations, i.e. two sets of operators a;, a;-" and a}, af’ in Hilbert spaces
H and H' correspondingly. The representations are said to be equivalent if there is an unitary
mapping H Sw satisfying a} = Ua;,U~! and a)t = Ua UL,

It is quite clear that the Fock representation cannot be equivalent to a strange one. Indeed,
if the representations are equivalent and the non-primed one is the Fock representation, then
defining [0’) = U |0) one has Vi a,|0') = Ua;U~'U|0) = Ua; |0) = 0, i.e. there is a vacuum
vector in the primed representation, which cannot be therefore a strange one.

Perhaps less obvious is the fact that as to the canonical commutation relations, any irre-
ducible representation (no invariant subspaces) with the vacuum vector is equivalent to the Fock
representation. The proof is constructive. The considered space H' contains a subspace H; C H’
spanned by the basis [0'), a/t |0'), a§+a;+ |0), ... One defines a linear mapping U from the sub-
space H; on the Fock space H as follows: U [0') = [0), Ua;" [0) = a]" 0), Ua;"a}" |0') = a; a} |0),
... The mapping U is clearly invertible and preserves the scalar product, which implies unitarity
(Wigner’s theorem). It is also straightforward that operators are transformed as U a;*U — a;r
and Ua,U~! = a;. The only missing piece is to show that H; = H’' and this follows, not
surprisingly, form the irreducibility assumption?2.

An immediate corollary of the above considerations is that all irreducible representations
of the canonical commutation relations for finite number of DOF are equivalent (Stone—von
Neumann). Indeed, having a finite number of DOF they are obliged to have a vacuum state, and
having a vacuum state they are necessarily equivalent. As to the (non-)equivalence of various
strange representations, we are not going to discuss the subject here. Let us just remark that a
complete classification of strange representations of the canonical commutation relations is not
known yet.

Before going further, we should mention an important example of a reducible representation
with a vacuum state. Let us consider perhaps the most natural (at least at the first sight)
representation of a quantized system with infinite many DOF — the one in which a state is rep-
resented by a function (g1, 2, . . .) of infinitely many variables?3. The function 1o (q1,q2,...) =
[1;2, ©0(qi), where g is a wavefunction of the ground state of LHO, is killed by all annihilation

(the proof is the same as in the example in the main text). In other words at least one of the representations
under consideration is a strange one.

Yet another example is provided by an extremely simple prescription by = az + a(p), where a(p) is a complex-
valued function. For [ |(P)|?> = oo this representation is a strange one (the proof is left to the reader as an
exercise)

22 As always with this types of proofs, if one is not quite explicit about definition domains of operators, the
”proof” is a hint at best. For the real, but still not complicated, proof along the described lines see Berezin,
Metod vtornicnovo kvantovania, p.24.

230f course, not any such function can represent a state. Recall that for one variable, only functions from
L? qualify for states. To proceed systematically, one has to define a scalar product, which can be done for
specific functions of the form 9(q1,q2,...) = [[2; ¥i(¢:) in a simple way as .9’ = [[2, [ daiv} (q:)v](q:)-
This definition can be extended to the linear envelope of the ”quadratically integrable specific functions” and the
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operators, so it represents the vacuum state. Nevertheless, the Hilbert space H of such functions
cannot be unitary mapped on the Fock space Hpg, because of different dimensionalities (as already
discussed, H is non-separable, while Hp is separable). The Fock space can be constructed from
this vacuum, of course, and it happens to be a subspace of H (invariant with respect to creation
and annihilation operators). This Fock space, however, does not cover the whole H. What is
missing are states with actually infinite number of particles. The point is that only states with
finite, although arbitrarily large, number of particles are accessible by repeated action of the
creator operators on the vacuum vector??.

This brings us back to the question of how does it come that for infinitely many oscillators
we got a separable, rather then a non-separable, Hilbert space. It should be clear now that this
is just a matter of choice — the Fock space is not the only option, we could have chosen a non-
separable Hilbert space (or a separable strange representation) as well. The main advantage of
the Fock space is that the relevant mathematics is known. On the other hand, the Fock space also
seems to be physically acceptable, as far as all physically relevant states do not contain infinitely
many particles. It would be therefore everything but wise to ignore the fact that thanks to the
Fock space we can proceed further without a development of a new and difficult mathematics.
So we will, like everybody does, try to stick to this fortunate encounter and milk it as much as
possible.

Anyway, the choice of the Fock space as the playground for QFT does not close the discussion.
It may turn out that the Hamiltonian and other Poincare generators are ill-defined in the Fock
space. For the free field, fortunately, the generators turn out to be well defined. But the reader
should make no mistake, this is an exception rather than a rule.

The last point from the above lists of characteristic features of systems of finite and infinite
DOF concern definitions of operators. This is a subtle point already for a finite number of
DOF?5. For systems with an infinite number of DOF the situation is usually even worse. The
reason is that many ”natural” operators are of the form O™ where O = >"°°, cia;-" + cfa;. The
trouble now is that for infinite sum one can have y .-, |les]? = o0, the quantum field o (z) is
a prominent example. Such an operator leads to a state with an infinite norm acting on any
standard basis vector in the Fock space (convince yourself). But this simply means that such
operators are not defined within the Fock space.

Nevertheless, the operator O, as well as the quantum field ¢ (z), has a finite matrix elements
between any two standard basis vectors. This enables us to treat them as objects having not a
well defined meaning as they stand, but only within scalar products — a philosophy similar to

space of normalized functions is to be checked for completeness. But as to the mathematical rigor, this remark
represents the utmost edge of our exposition.

24This may come as a kind of surprise, since due to the infinite direct sum D5 H™ in the definition of the
Fock space, one may expect (incorrectly) that it also contains something like H®. This symbol, however, is just
an abuse of notation — it does not correspond to any many-particle subspace of the Fock space. An analogy may
be of some help in clarifying this issue: the set of natural numbers N does not contain an infinite number co, even
if it contains every n where n =1,..., co.

25The point is that (unbounded) operators in quantum theory usually enter the game in the so-called formal
way, i.e. without a precise specification of domains. Precise domains, on the other hand, are of vital importance for
such attributes as selfadjointness, which in turn is a necessary condition for a Hamiltonian to define a dynamics,
i.e. a unitary time evolution (Stone theorem). Formal Hamiltonians are usually Hermitian (symmetric) on a dense
domain in the Hilbert space, and for some (but not for all) such symmetric operators the selfadjoint extensions
do exist. If so, the Hamiltonian is considered to be well-defined.

For our present purposes the important thing is that the Hamiltonian of the LHO is well-defined in this strict
sense. One can even show, using sophisticated techniques of modern mathematical physics, that the Hamiltonian
of an anharmonic oscillator H = p?/2m + ¢% + ¢* is well defined (see e.g. Reed-Simon, volume 2, for five proofs of
this statement) and this holds for any finite number of oscillators. On the other hand, some formal Hamiltonians
are doomed to be ill-defined and lead to no dynamics whatsoever.
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that of distributions like the d-function. Operators which can be defined only in this sense are
sometimes called improper operators.

But the main problem is yet to come. Were all operators appearing in QFT proper or
improper ones, the QFT would be perhaps much easier and better understood then it actually
is. Unfortunately, for many “natural” operators even the scalar products are infinite. Such
objects are neither proper, nor improper operators, they are simply senseless expressions.

Nevertheless, the free field Hamiltonian H = [ d®p a;r (t) ay (t) wy/ (27)° is a proper (even if
unbounded) operator in the Fock space, since it maps an n-particle basis state to itself, multiplied
by a finite number?. The other generators map n-particle basis states to normalized n-particle
states, so all these operators are well defined. That is why all difficulties discussed in this section
remain hidden in the free field case. But they will reappear quickly, once the interacting fields
are considered.

26The remaining question is if this unbounded Hamiltonian has a selfadjoint extension. The answer is affirma-
tive, the proof, however, is to be looked for in books on modern mathematical physics rather than in introductory
texts on QFT. One may raise an objection that we have demonstrated selfadjointness of the free field Hamilto-
nian indirectly by finding the explicit unitary time evolution of states (which follows from the time evolution of
the creation and annihilation operators). This, however, was found by formal manipulations, without bothering
about if the manipulated objects are well defined. Needless to say, such an approach can lead to contradictions.
Anyway, for the free fields the formal manipulations are fully supported by more careful analysis.

All this applies, of course, only for one particular ordering of creation and annihilation operators — not
surprisingly the one we have adopted. Other orderings are, strictly speaking, the above mentioned senseless
expressions with infinite matrix elements between basis vectors.



Chapter 3

Interacting Quantum Fields

3.1 Naive approach

In the last section of the previous chapter we have discussed several unpleasant features which
may appear in a theory of interacting fields (strange representations, ill-defined operators, no
dynamics in a sense of unitary time evolution). In the first two sections of the present chapter
we are going to ignore all this completely. On top of that, in the first section we will oversimplify
the matters even more than is the common habit.

The reason for this oversimplification is purely didactic. As we will see, one can get pretty
far using a bit simple-minded approach and almost everything developed in this framework will
survive, with necessary modifications, later critical reexamination. The said modifications are, on
the other hand, quite sophisticated and both technically and conceptually demanding. We prefer,
therefore, to postpone their discussion until the basic machinery of dealing with interacting fields

is developed in the simplified naive version®.

As the matter of fact, the naive approach is the most natural one. It is based on the assump-
tion that the free field lagrangian defines what particles are?, and the interaction lagrangian
defines how do these particles interact with each other. Life, however, turns out to be surpris-
ingly more complex.

So it happens that by switching on the interaction, one in fact redefines what particles are.
This rather non-trivial and surprising fact has to be taken into account — otherwise one is,
sooner or later, faced with serious inconsistencies in the theory. In the standard approach one
indeed develops the theory of interacting quantum fields having in mind from the very beginning
that ”particle content” of the free and interacting theories may differ significantly.

In our naive approach we will ignore all this and move on happily until we will understand
almost completely where the Feynman rules come from. The few missing ingredients will be
obtained afterwards within the standard approach.

1Tt should be stressed that even after all known modifications (see section 3.2) the resulting theory of interacting
quantum fields is still not satisfactory in many respects (see section ??). The difference between the oversimplified
and the standard approach is not that they are incorrect and correct respectively, but rather that they are incorrect
to different degrees.

2 According to the naive approacg, one-particle states are those obtained by acting of the creation operator a;.r
on the vacuum state |0), two-particle states are those obtained by acting of two creation operators on the vacuum
state, etc.

81
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canonical quantization of interacting fields

For interacting fields the quantization proceeds basically along the same lines as for the free
fields. A particular theory is defined by a Lagrangian density in the form of a sum of the
free and the interaction Lagrangian densities. For relativistic theory this Lagrangian density
is a Lorentz (as well as Poincaré) scalar. Invariance of the Lagrangian density with respect to
Poincaré transformations provides us with 10 Noether’s charges.

Example: ¢*-theory (we obtained the following results already in 2.1.1)

1
t-translations Q" = §/d3x (@ + |Vol* + m?p?)

1 1
- d3 7 4
+ 2/ T 129%

Z-translations @ = /de p Vo

rotations Qr f/dgx o x Vo

~ 1
boosts Qp = —t/d?’:v ® Vo + 3 /dsx 7 (9% + |Vo|* + m?p?)

1 1
- d3 = = 4
+2/ xacuggo

After Hamiltonian reformulation of the theory, the Poisson algebra of these charges is iso-
morphic to the Lie algebra of the corresponding Poincaré generators. And after subsequent
quantization, this Poisson algebra leads to the Lie algebra of the quantized charges, which de-
fines a relativistic quantum theory (a representation of the Poincaré group in a Hilbert space).
Example: ¢*-theory

L= [d %@ch@“g& — %m2802 — ﬁ9§04

H = [ d% 3n + 3 |Vol +5m?0* + 390"
{F(l‘,t),(p(y,t)} =0 (Z‘ _y)
{m(@t), 7.0} ={e@1),eH1)}=0
el = (. F)

i
H=[dz 17+ 1|V + im2p? + Lgpt
7 (Z.1), ¢ (4,1)] = —iho® (¥ — §)
[ﬁ(fat) 77%(_'375)] = [@(fvt) 7@(373”] =0
AL
!
H =777

As in the case of free fields, the problem now is that natural choice of H is a non-separable

Hilbert space. For free fields we managed to avoid the problem by taking a strange detour route,
i.e. by rewriting the scalar field in terms of harmonic oscilators. This lead us to a Fock subspace
of the non-separable space, which turned out to be a sufficient playground (when starting form
this subspace, one was never expelled from it by the free field dynamics). It is quite natural to
try the same trick also for interacting fields.
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So the next step is the Fourier expansion of the classical fields and the conjugated momenta

o (Z,t) = / (;iil))g \/;75 (aﬁ (t) eiPZ 4 at (t) efiﬁ.i‘>

which leads (after quatization) to the commutation relations

lag (1) as (] = @n)*6(F—F)  lag(t), a5 ()] = [a (t),af ()] =0

Let us emphasize that the commutation relations hold for arbitrary time ¢ which, however, must
be the same for both operators in the commutator — that is why they are known as ”equal-time
commutation relations”. At any fixed time, these commutation relations can be represented by
creation and annihilation operators in the Fock space.

So far, it looks like there is no serious difference between quantization of free fields and the
interacting ones. Poincaré generators are, as a rule, more complicated for interacting fields, but
otherwise the whole procedure looks pretty similar in both cases. For the free fields, appearence
of the Fock space was the last important step which enabled us to complete the canonical
quantization program. For the interacting fields, however, one does not have the Fock space, but
rather Fock spaces.

The point is that for different times ¢ the a}' (t) and ap (t) operators are, in principle, rep-
resented in different Fock subspaces of the ”large” non-separable space. For the free fields all
these Fock spaces coincide, they are in fact just one Fock space — we were able to demonstrate
this due to the explicit knowledge of the time evolution of ag and ap. For interacting fields,
however, such a knowledge is not at our disposal anymore. One of the main differences between
the free and interacting fields is that the time evolution becomes highly nontrivial for the latter.
In the Heisenberg picture, the equations for az(t) and a;I/ (t) do not lead to simple harmonic
time-dependence, nor do the equations for the basis states in the Schrodinger picture (let us
epmhasize that basis vectors are eigenstates of the free, rather than the full Hamiltonian).

One of the consequences of the non-trivial and unknown time dependence of the interacting
fields is that, frankly speaking, we do not understand our playground. For interacting fields
the Fock spaces defined by a;I (t) and ap (t) at different times cannot be proven to coincide.
And even if they did, we do not know the representation of the Poincaré algebra explicitly. The
generators are defined in terms of a;;f (t) and ap (t) and these operators are explicitly known only
at one specific moment (let’s say at t = 0)

How to proceed further in such circumstances? It is a common habit in quantum field theory
to ignore the difficulties related to non-separability as long as possible (which is usualy rather
long indeed, for most of us it is simply life-long ignorance). The said difficulties are evaded (to
a certain degree) by a clever approximative scheme, namely by the perturbation theory in the
so-called interaction picture. In this section, we will develop the scheme and learn how to use it
in the simplified version. The scheme is valid also in the standard approach, but its usage is a
bit different (as will be discussed thoroughly in the next section).
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3.1.1 Interaction picture

Our main aim will be the development of some (approximate) techniques of solving the time
evolution of interacting fields in the interaction picture of the time evolution in QFT. Operators
and states in the interaction picture are defined as?

AI (t) _ eiHote—thAH (t) ethe—iHot

[y (1)) = eote™ M [gy)

where the operators H and Hj are understood in the Schrodinger picture.

The time evolution of operators in the interaction picture is quite simple, it is equal to the
time evolution of the free fields. Indeed, both time evolutions (the one of the free fields and the
one of the interacting fields in the interaction picture) are controlled by the same Hamiltonian
Hy.

Let us emphasize the similarities and the differences between the interacting fields in the
Heisenberg and the interaction pictures. In both pictures one has identically looking expansions

e (#:1) = / 0L (0 0+ ()

(2n)° /25
w1 (&1) = / (;Zﬂ})jg \/;Tﬁ (aﬁ,l ) +at;, (t)> e

However, the explicit time dependence of the creation and annihilation operators in the Heisen-

berg picture is unknown, while in the interaction picture it is known explicitly as ag ;)= a;)f elwrt

and ag s (t) = aye ™" (see section??). Using the free field results, one can therefore write im-

mediately
d3 1 , ,
er(x) = / b (aﬁe*”” + a}ew)

(2n)" /205

where a;}f and az are the creation and annihilation operators at t = 0 (in any picture, they all

coincide at this moment). The explicit knowledge and the space-time structure (scalar products
of 4-vectors) of the ¢ -fields are going to play an extremely important role later on.

The time evolution of states in the interaction picture is given by
i0; 1) = Hr (t) [r)  Hr(t) ="' (H — Ho) e "o*

where H and Hj are understood in the Schrodinger picture. The operator Hy (t) is the interaction
Hamiltonian in the interaction picture.

Needless to say, solving the evolution equation for states in the interaction picture is the
difficult point. Nevertheless, we will be able to give the solution as a perturbative series in terms
of ¢ (z). To achieve this, however, we will need to express all quantities, starting with H; (t),
in terms of ¢y ().

3Relations between the Schrodinger, Heisenberg and interaction pictures:

Ap (t) = et AgetH1 lm) = Pt ys (1))
Ap (t) = etHot Age—iHot [ (1)) = eHot [y (¢))
The operators H and Hg are understood in the Schrodinger picture. Their subscripts are omitted for mainly

esthetic reasons (to avoid too much make-up in the formulae). Anyway, directly from the definitions one has
Hpy = Hg and Hy 1 = Hy, g, therefore the discussed subscripts would be usually redundant.
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The canonical quantization provides the Hamiltonian as a function of fields in the Heisenberg
picture. What we will need is Hy (t) expressed in terms of ¢y (z). Fortunately, this is straightfor-
ward: one just replaces ¢y and 7y operators in the Heisenberg picture by these very operators
in the interaction picture, i.e. by ¢; and 7;. Proof: one takes ¢t = 0 in the Heisenberg picture,
and in thus obtained Schrédinger picture one simply inserts e~ HoteiHot hetween any fields or
conjugate momenta?.

Example: ¢*-theory Lp] = 20,000 — 2m?p? — Lgpt

1 1 , 1 1
H= /de(iﬂ% + 3 Voul” + §m280%r + 19804111)

and taking t = 0 one gets Hipy, = fd3x %ggpé, leading to

1
Hy = /d3x 9%

In what follows, the key role is going to be played by the operator U (¢,t’), which describes
the time evolution of states in the interaction picture

Y1 () = U (t,t) [vr (¢))
Directly from the definition one has
Ut,t")y=Ut,t)U({,t") Ut (t,t)=U({, 1)

where the second relation follows from the first one and the obvious identity U (¢,¢) = 1. Dif-
ferentiating with respect to ¢ one obtains i0,U (t,t') | (¢')) = Hy (¢) U (¢,t') |¢1 (t')) for every
|1 (t')) and therefore

iU (4, 1) = Hr () U (¢, 1)

with the initial condition U (¢,t) = 1.
For t' = 0 the solution of this equation is readily available®

U (t, O) _ eiHotefth

(Ho and H in the Schrédinger picture). This particular solution shows that (in addition to
providing the time evolution in the interaction picture) the U (¢,0) operator enters the relation
between the field operators in the Heisenberg and interaction pictures®

o (x)=U""1 (1:0, O) or (x)U (IO,O)

4Remark: the simple replacement @r — @, Ty — m; works even for gradients of fields, one simply has to
realize that e~ 0tV geiflot = v (e~iHotpgeiflot) = Vi, which holds because Ho does not depend on the
space coordinates.

5Indeed 6t€iH0tefth — eiHot(l‘HO _ ,L‘H)efth — _,L'eiHotHinte*iHoteiHUtefth —

= —iHj(t)e*ote=Ht Note that the very last equality requires ¢’ = 0 and therefore one cannot generalize the
relation to any . In general U(t,t') # etHo(t—t") g—iH(t—t")

6AH — ethefiHotAleiHotefth — []71(757 0)A[U(t7 0)
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3.1.2 Transition amplitudes

The dynamical content of a quantum theory is encoded in transition amplitudes, i.e. the prob-
ability amplitudes for the system to evolve from an initial state [¢;) at t; to a given state [¢s)
at ty. These probability amplitudes are coefficients of the expansion of the final state (evolved
from the given initial state) in the basis defined by vectors |¢y).

In the Schrédinger picture the initial and the final states are [¢;) and Ug (t¢,t;) [¢;) respec-
tively, where Ug (ts,t;) = exp{—iH (t; — t;)} is the time evolution operator in the Schrédinger
picture. So in this picture one has

transition amplitude = (7| Usg (t5, ;) [¢i)

It should be perhaps stressed that, in spite of what the notation might suggest, |¢;) does not
define the final state (which is rather defined by |¢;) and the time evolution). Actually |i)f) just
defines what component of the final state we are interested in.

In the Heisenberg picture, the time evolution of states is absent. Nevertheless, the transition
amplitude can be easily written in this picture as”

transition amplitude = (Y g |; 1)

where [1; ) = €' (ti)) = ™" [y) and [ohy,m) = e [y (tr)) = € [y).
And last, but not least, in the interaction picture, one has®

transition amplitude = (¢ 1| U (t¢,t;) [¢i1)

where [¢; 1) = € (t;)) =€ i) and [y ) = etHols |ihg (tr)) = etHots |yh). Note that
the index I for the time evolution operator U(¢,t’) is omitted. Throughout this text U(¢,t)
always means the time evolution operator of states in the interaction picture.

In what follows we are going to encounter slightly generalized objects, namely transition
amplitudes with the time evolution interupted by action of particular operators at particular
times. Let us consider two such operators A; and As acting at times t; and t respectively
(generalization to arbitrary number of operators is straightforward). In the Schrodinger picture
the corrasponding transition amplitude is

transition amplitude = (Y s|Us (t7,t1) A1,5Us (t1,t2) Az sUs (t2,t;) [¢i,s)
In the Heisenberg and interaction pictures one obtains®
transition amplitude = (Y m| A1,1 (t1) A2 g (t2) [¥i m)

while in the interaction picture'®

transition amplitude = <wf,l‘ U (tf, f,l) Al,[ (tl) U (tl, f,g) A2,I (tl) (tz, ) |1ﬁl [>

7<¢f\ Us (tfvti) [s) = (pp| e HEs etHbi |yp;) = (v, H|7/Jz H>

<¢f‘ Us tf, ) [14) = ¢f 1} e what can be written as
(g1 U( tf,O)U (ts,0) |1bs,1) followed by U(tf,O)U (tl,O) (tf,O)U(o ti) =Ul(ty,t;)
e—z tfethlAl SesztlethzAQ se —iHtg <HfH}A1 H tl)Ag H (tz)
10<¢f| e lHtfelHtlAl,S — wf,]| e otfeletfethle—zHoflAl I(tl)ezHofl . —

<’L/)f7[| U(tf,O)Uil(tl,O)AL](tl)eiHotl — <’L/)f7[| U(tf,tl)AL](tl)
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in and out states

There is a caveat hidden in the transition amplitude written in the Heisenberg picture. The
point is that for a given initial state in the Schrédinger picture |¢g(t;)) = |¢;), the corresponding
|¥i mr) is usually not known explicitly (and the same holds also for |¢¢ x)). Let us consider, e.g.
[Y¢) = |p1,p2) and [¢;) = |p3,pa). Then one may be tempted to write |1; g) = |ps,pa), but
this would be very misleading. The vector |ps, ps) in the Heisenberg picture describes the state
which in the Schrodinger picture fulfils |1)5(0)) = |ps, p4) rather than [¢s(t;)) = |ps,pa). So to
avoid a notational mismatch, let us emphasize that

transition amplitude = (p1, p2| Us (t¢,t:) |p3, pa) # (P12 |P3,Pa) gy
transition amplitude = (p1,p2| Us (tf,t1) A1 5Us (t1,t2) A2,sUs (t2,t;) |3, pa)
# (p1,02|y Avm (t) As,m (t2) [p3,pa) gy
In order to have a simple way to rewrite a transition amplitude from the Schrédinger picture
to the Heisenberg one, so-called in and out states are introduced. They are both defined in the

Schrodinger picture as states at ¢ = 0, which at the time ¢; or t; are equal to |¢;) and |¢f)
respectively

[Yiin) = [¢s(0))  where  |ihs(t:)) = [¢bs)
|wf,out> = W}S(O» where |¢S(tf)> = ij>

It is obvious (using the Schrédinger picture) that

|wi,in> _ efiH(Ofti) wz> _ ethi 1/%)
[¥1,0us) = €O |9h) = U1 [gp)

and since these states are defined as states in the Schrodinger picture at ¢ = 0, they are equal to
the corresponding states in both Heisenberg and interaction pictures!'! [Yin,out) g = [Yinout) g =
|¥in.out) I As to the above example, the correct formulae in the Hesisenberg and interaction
pictures are

transition amplitude = (p1, 2|, |P3,P4)in

= <p15p2|out U (tf7t7,) ‘pSap4>in
transition amplitude = (p1, pa|,,, A1,1 (t1) A2,1 (t2) |P3, pa);,
= (p1. 2o U (tr,t1) A1 1U (t1,t2) Az 1U (t2,t:) |p3, pa)iy

Why to bother with the sophisticated notation in the Heisenberg and interaction pictures,
if it anyway refers to the Schrédinger picture? The reason is, of course, that in the relativistic
QFT it is preferable to use a covariant formalism, in which field operators depend on time and
space-position on the same footing. It is simply preferable to deal with operators ¢ (z) rather
than ¢ (&), which makes the Heisenberg picture more appropriate for relativistic QFT. The
Schrédinger picture is most convenient for intuitive grasp of transition amlitudes, the Heisenberg
picture is most convenient for formulation of relativistive field theory and the interaction picture
is most convenient for calculations.

HNote that the times ¢; and ty refer only to the Schrodinger picture states. Indeed, in spite of what the
notation may suggest, the Heisenberg picture in- and out-states do not change in time. The in- and out- prefixes
have nothing to do with the evolution of states in this picture (there is no such thing in the Heisenberg picture),
they are simply labelling conventions (which have everything to do with the time evolution of the corresponding
states in the Schrédinger picture).
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green functions

For multiparticle systems, a particularly useful set of initial and final states is given by the states
of particles simultaneously created at various positions, i.e. by the localized states. But as we
have seen already, in the relativistic QFT the more appropriate states are the quasilocalized
ones created by the field operators. The corresponding amplitude is apparently something like
Ol pu(Z1,t)eu (@2, ty) ... ou(Zn,t;) |0). The vacuum state in this amplitude, however, is not
exactly what it should be.

The time-independent state |0) in the Heisenberg picture corresponds to a particular time-
evolving state |t (t)) in the Schrodinger picture, namely to the one for which |¢g (0)) = |0).
This state contains no particles at the time ¢ = 0. But the fields ¢y (Z, ¢;) should rather act on a
different state, namely the one which contains no particles at the time ¢;. Such a state is nothing
else than the previouslz defined |0)

in

|0>in = ethi

0)
In a complete analogy one has to replace the bra-vector (0| by

<O|out = <0‘ eithf
The quantity of interest is therefore given by the product of fields sandwiched not between (0]
and |0), but rather

(Olout pr (Z1,t ) or (T2, tp) - - prr (T, 1) [0);

Because of relativity of simultaneity, however, this quantity looks differently for other ob-
servers, namely the time coordinates z{ are not obliged to coincide. These time coordinates, on
the other hand, are not completely arbitrary. To any observer the times corresponding to the
simultaneous final state in one particular frame, must be all greater than the times corresponding
to the simultaneous initial state in this frame. The more appropriate quantity would be a slightly
more general one, namely the time-ordered T-product of fields'? sandwiched between (0|, , and
|0>in

(Olgue T{pm (z1)n (22) - .. om(2n)} |0);,

The dependence on t; and ty is still present in |0),, and (0] .
of this dependence by taking ¢; = =7 and ¢ty =T with T" — oo

It is a common habit to get rid

g (1’1, . ,xn) = TII_{HOO <0| e*iHTT {@H(xl) . @H(xn)}e*iHT |0>

The exact reason for this rather arbitrary step remains unclear until the more serious treatment
of the whole machinery becomes available in the next section).

The above matrix element is almost, but not quite, the Green function — one of the most
prominent quantities in QFT. We shall call these functions the green functions (this notion is not
common in literature, but this applies for the whole naive approach presented here). The genuine
Green functions G are to be discussed later within the standard approach to the interacting fields
(we will distinguish between analogous quantities in the naive and the standard approaches by
using lowercase letters in the former and uppercase letter in the latter case).

Actual calculations of the green functions are performed, not surprisingly, in the interaction
picture. The transition from the Heisenberg picture to the interaction one is provided by the

12For fields commuting at space-like intervals ([pg (), pr(y)] = 0 for (z — y)2 < 0) the time ordering is
immaterial for times which coincide in a particular reference frame. For time-like intervals, on the other hand,
the T-product gives the same ordering in all reference frames.
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relations from the page 85. It is useful to start with
0),, = e T |0) = e HTHoT 0y = U~ (=T,0)]0) = U (0, -T) |0)
(0], = (O] 7T = (0] oL =T — (0| U (T, 0)

which holds for Hg [0) = 0. The next step is to use oy (z) = U~(2?,0)p; (z) U(2?,0) for every
field in the green function, then to write U(T,0)om (21) pou (z2) ... as

U(T,0)U (a1, 0)r (1) U(a},0)U " (23,0) 01 (22) U(a3,0)...

U(T,0)U(0,29) U(29,0)U(0,29)

and finally one utilizes U(T,0)U(0,29) = U(T,zY), etc. This means that for 29 > ... > 20 the
green function g (z1,...,x,) is equal to

Sim (O] U(T, 21 (0) UG, 28 (2) .- o1 () Ul ~T) [0)
and analogously for other orderings of times.
Let us now define a slightly generalized time ordered product as

T{U(t,t")A(t1)B(ta) ... C(tn)} = U(t,t1)A(t1)U (t1,t2) B(ta) . .. C(tn)U (tn, t')

for t > t; > to > ... > t, >t and for other time orderings the order of operators is changed
appropriately. With this definition we can finally write

g(@1,. . ) OIT{U(T, =T)pr (1) - - o1 (xn)} |0)

= lim
T—o0
This form of the green function is what we were after. It has the form of the vacuum
expectation value of the products of the field operators in the interaction picture and it is
relatively straightforward to develop the technique for calculation of these objects. This technique
will lead us directly to the Feynman rules. The rules were introduced in the introductory chapter,
but they were not derived there. Now we are going to really derive them.

Remark: The Feynman rules discussed in the Introductions/Conclusions concerned the scatter-
ing amplitude My;, while here we are dealing with the green functions. This, however, represents
no contradiction. The green functions, as well as the genuine Green functions, are auxiliary quan-
tities which are, as we will see briefly, closely related to the scattering amplitudes. It is therefore
quite reasonable first to formulate the Feynman diagrams for the green or Green functions and
only afterwards for the scattering amplitudes.
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perturbation theory

The practically useful, even if only approximate, solution for U (¢,t') is obtained by rewriting
the differential equation to the integral one

t
Ut,t)=1- z/ dt"Hy ("YU (t",t)
tl

which is then solved iteratively

0" iteration U (t,t') =1
15% iteration Utt)=1—1 ftt, dt Hip (t1)
2°d iteration U (4,#') = 1—i [} dty Hy (t1) + % [} dti Hy (t) [5) dt2H (t2)

etc.

Using a little artificial trick, the whole scheme can be written in a more compact form. The
trick is to simplify the integration region in the multiple integrals I,, = ftt, dty tt,l dts . .. ftt,”’l dt, Hy(t1) Hy (t2) ...
Let us consider the n-dimensional hypercube t' < t; < t and for every permutation of the vari-
ables t; take a region for which the first variable varies from ¢’ up to t, the second variable varies
from ¢’ up to the first one, etc. There are n! such regions (n! permutations) and any point of
the hypercube lies either inside exactly one of these regions, or at a common border of several
regions. Indeed, for any point the ordering of the coordinates (¢1,...,t,), from the highest to
the lowest one, reveals unambiguously the region (or a border) within which it lies. The integral
of the product of Hamiltonians over the whole hypercube is equal to the sum of integrals over
the considered regions. In every region one integrates the same product of Hamiltonians, but
with different ordering of the times. The trick now is to force the time ordering to be the same
in all regions. This is achieved in a rather artificial way, namely by introducing the so-called
time-ordered product T {A (¢1) B (t2) ...}, which is the product with the terms organized from
the left to the right with respect to decreasing time (the latest on the very left etc.). Integrals
of this T-product over different regions are equal to each other, so we can replace the original
integrals by the integrals over hypercubes I, = % ftt, ftt, dty...dt, T{H(t1)...Hy(t,)} and
consequently

Uty =% H')n /t.../tdtl...dtnT{HI (t1)... Hy (t2)}
n=0 : t’ t

n

which is usually written in a compact form as
U (t,t') = Te " i dt" Hi(t")

where the definition of the RHS is the RHS of the previous equation.

Note that if the interaction Hamiltonian is proportional to some constant (e.g.a coupling
constant) then this iterative solution represents the power expansion (perturbation series'?) in
this constant.

13The usual time-dependent perturbation theory is obtained by inserting the expansion |47 (t)) = an (t) |¢n),
where |¢n) are eigenvectors of the free Hamiltonian Hy, into the original equation i0; [¢1) = Hj (t) |¢1). From
here one finds a differential equation for a, (t), rewrites it as an integral equation and solves it iteratively.
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Wick’s theorem

The perturbative expansion of U(T,—T) is a series in Hj(t), which in turn is a functional of
@1 (x), so our final expression for the green function gives them as a series of VEVs (vacuum
expectation values) of products of ¢;-fields.

As we already know from the Introductions, the most convenient way of calculating the
VEVs of products of creation and annihilation operators is to rush the creation and annihilation
operators to the left and to the right respectively. We are now going to accommodate this
technique to the VEVs of time-ordered products of ¢;-fields.

The keyword is the normal product of fields. First one writes ¢; = cp}" + ¢, where <p}'
and ¢ are parts of the standard expansion of () containing only the annihilation and the
creation operators respectively'?. The normal product of fields, denoted as N{p; (z) ¢r (y) ...}
or :pr (z)¢r (y)...:, is defined as the product in which all ¢ -fields are reshuffled by hand to
the left of all o7 -fields, e.g. N{or (z) o1 (v)} = ¢7 (2) o1 (W) + o7 (@) ¢7 (v) + 97 W) ¢f (2) +
©F (z) ¢ (y). Everybody likes normal products, because their VEVs vanish.

The trick, i.e. the celebrated Wick’s theorem, concerns the relation between the time-ordered
and normal products. For two fields one has ¢; (z) @7 (y) = N {¢1 (x) o1 ()} + [¢] (), 07 (v)].
It is straightforward to show (do it) that [¢] (2),¢] (y)] = D (z — y) where

3
D(z—y)= / @ 1 ipey

The relation between T {¢rpr} and N {¢rpr} is now straightforward
T{or(x)er(y)} = N{er (z) o1 (y)} +dr (x —y)

where
dp (§) =0 (€°) D (&) +0 (—€°) D (=€)
The function dp is almost equal to the so-called Feynman propagator Dp (see p.97). Everybody
likes dp (z — y), Dr (z —y) and similar functions, because they are not operators and can be
withdrawn out of VEVs.
For three fields one obtains in a similar way!®

o1 (@) er (y) pr (2) = N{er (z) o1 (y) 1 (2)}
+D(z—y)pr(2) +D(x—2)pr(y)+D(y—z2)er(z)
T{er (@) er (y)er(2)} = N{er () er(y)er(2)}
+dr (. —y) 1 (2) +dr (x — 2) o1 (y) +dr (y — 2) o1 (2)

Now we can formulate and prove the Wick’s theorem for n fields

T{or(z1)...or(zn)} = N{pr (1) ... 01 (zn)}
+dp (.131 —.Tg)N{(pI(Z‘g,)...(pI(Z‘n)}+...
+dp (r1 —22)dp (x5 —24) N{@s (x5) ... 01 ()} + ...
+...

3 ) 3 )
MStrange, but indeed go'; (z)=[ éﬁﬁaﬁeﬂpm and @7 (z) = [ (;iT?s \/gwi_a;)fe’p‘c. The superscript =+ is
p p

not in honour of the creation and annihilation operators, but rather in honour of the sign of energy £ = fwp.

50ne starts with o7 () or (¥) w1 (2) =  or(@ery) el (2) + ¢r(@)er(y)er (2), followed by
er@erWer (2) = er@ler),er (2)] + ler@),ep (er(y) + o7 (2)er(@)er(y), so that
er@erWer(z) =  er@er@el (2) + e1@DW—2) + D—2)91(y) + ¢ (2)e1(@)er.

At this point one utilizes the previous result for two fields, and finally one has to realize that
N{er (@) or W)}ef (2) + o7 (2) N{or (2) o1 ()} = N{er (2) o1 (y) o1 (2)}-
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In each line the ellipsis stands for terms equivalent to the first term, but with the variables x;
permutated in all possible ways. The number of the Feynman propagators is increased by one
when passing to the next line. The proof is done by induction, the method is the same as a we
have used for three fields.

The most important thing is that except for the very last line, the RHS of the Wick’s theorem
has vanishing VEV (because of normal products). For n odd even the last line has vanishing
VEV, for n even the VEV of the last line is an explicitly known number. This gives us the
quintessence of the Wick’s theorem: for n odd (0| T {¢s (x1) ... 1 (z,)}]0) = 0, while for n even

O|T{er (x1) ... 01 (xn)}|0) =dp (x1 — x2)...dp (xn_1 — zy) + permutations
Remark: It is a common habit to economize a notation in the following way. Instead of writing

down the products dp (x1 — 3)...dp (Tn—1 — x,) one writes the product of fields and connects
by a clip the fields giving the particular dr. In this notation

dp (w1 — ) dp (w3 — 1) = 1 (21) o1 (02) o1 (3) @1 ()

dp (z1 — x3) dp (v2 — 24) = 1 (21) 01 (T2) 01 (73) 1 (T4)

S —

r 1

dr (x1 — x4) dp (22 — 23) = 1 (21) @1 (22) @1 (3) 1 (T4)

-

At this point we are practically done. We have expressed the green functions as a particular
series of VEVs of time-ordered products of ¢j-operators and we have learned how to calculate
any such VEV by means of the Wick’s theorem. All one has to do now is to expand U (T, —T)
in the green function up-to a given order and then to calculate the corresponding VEVs.

Example: g (x1,22,23,74) in the *-theory
notation: @; = o1 (x;), ¢z = @1 (z), dij == dp(z; — ), diy = dp(x; — )

g = Jim (O] T{U(T, ~T)p1p203¢4} 0) = g + g + ...
99 = (0| T {p1p200304} |0) = dradss + di3das + diadas

ig
gV = -2 o|T {/d% <p‘;<p1<p2903904} |0)

= —:Tg' d4l’ {24 X dlzd2$d3zd4£ +12 x dlgdrzd31d4z —+ .. }
where we have used U(co, —o0) =1—i [* dt H;(t)+...=1-4 [diz i+ ...

Feynman rules

The previous example was perhaps convincing enough in two respects: first that in principle the
calculations are quite easy (apart from integrations, which may turn out to be difficult), and
second that practically they become almost unmanageable rather soon (in spite of our effort to
simplify the notation). Conclusion: further notational simplifications and tricks are called for
urgently.
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The most wide-spread trick uses a graphical representation of various terms in green function
expansion. Each variable x is represented by a point labeled by x. So in the previous example
we would have 4 points labeled by x; i = 1,2, 3,4 and furthermore a new point z, z’, ... for each
power of H;. Note that the Hamiltonian density H; contains several fields, but all at the same
point — this is the characteristic feature of local theories. For each dr(y — z) the points labeled
by y and z are connected by a line. If there are several different fields, there are several different
Feynman propagators, and one has to use several different types of lines.

In this way one assigns a diagram to every term supplied by the team-work of the perturbative
expansion of U(T,—T) and the Wick’s theorem. Such diagrams are nothing else but the famous
Feynman diagrams. Their structure is evident from the construction. Every diagram has external
points, given by the considered g-function, and internal points (vertices), given by H;. The
number of internal points is given by the order in the perturbative expansion. The structure of
the vertices (the number and types of lines entering the vertex) is given by the structure of Hy,
each product of fields represent a vertex, each field in the product represent a line entering this
vertex.

A diagram, by construction, represents a number. This number is a product of factors
corresponding to lines and vertices. The factor corresponding to a line (internal or external)
connecting x,y is dp (x —y). The factor corresponding to a vertex in the above example is
—4 [d%z , while in the full generality it is

—1i X what remains of H after the fields are ”stripped off” x /d4x

Further simplification concerns combinatorics. Our procedure, as described so-far, gives a
separate diagram for each of the 24 terms 71—5{ f d*z dyydaydsyday in g(l) in the above example.
As should be clear from the example, this factor is purely combinatorial and since it is typical
rather than exceptional, it is reasonable to include this 24 into the vertex factor (and to draw
one diagram instead of 24 identical diagrams). This is achieved by doing the appropriate com-
binatorics already in the process of ”stripping the fields off”, and it amounts to nothing more
than to the multiplication by n! for any field appearing in H; in the n-th power. An economic
way of formalizing this ”stripping off” procedure, with the appropriate combinatorics factors, is
to use the derivatives of H; with respect to the fields.

Having included the typical combinatorial factor into the vertex, we have to pay a spe-
cial attention to those (exceptional) diagrams which do not get this factor. The 12 terms
—% f d*z diadypdsyds, in g(l) in the example can serve as an illustration. Twelve identical
diagrams are represented by one diagram according to our new viewpoint, but this diagram is
multiplied by 24, hidden in the vertex factor, rather then by 12. To correct this, we have to
divide by 2 — one example of the infamous explicit combinatorial factors of Feynman rules.
The rules can be summarized briefly as

the Feynman rules for the green functions in the x-representation

line (internal or external) dp (r —y)
vertex (n legs) —i G [d*z
?I lpr=0

These are not the Feynman rules from the Introductions yet, but we are on the right track.
The first step towards the rules from the Introductions concerns the relation between H; and

Ling. For interaction Lagrangians with no derivative terms (like the ¢*-theory), the definition

H = fd3x (¢m — L) implies immediately Hint = —Lint. And since Hin in the Heisenberg
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picture is the same function of pg-fields, as H; is of ¢;-fields (as we have convinced ourselves),
one can replace —0"H /0T by 0" Lin,/0¢™. Finally, for vertices one can replace Liy, by £ in
the last expression, because the difference is the quadratic part of the Lagrangian, and vertices
under consideration contain at least three legs. For interactions with derivative terms (say
Ling ~ ©0,p0"p) the reasoning is more complicated, but the result is the same. We will come
back to this issue shortly (see p.94). For now let us proceed, as directly as possible, with the
easier case.

Another step is the use of the Fourier expansion!'®

4
dp (z —y) = / (;j;dF (p) e~ ipl=v)

This enables us to perform the vertex z-integrations explicitly, using the identity [ dze”
(2m) 6% (p+ p' + ...), what results in

the Feynman rules for the green functions in the p-representation
. . 4
internal line [ (;IT’)ZdF (p)
external line [ %d}? (p) etirzi

- 9" L
o

et étp+p +..)

vertex
@=0

Let us remark that some authors prefer to make this table simpler-looking, by omitting the
factors of (271')4 as well as the momentum integrations, and shifting them to the additional rule
requiring an extra (27r)4 for each vertex and (27r)_4 | d*p for each line (internal or external). We
have adopted such a convention in the Introductions.

derivative couplings

Now to the interaction Lagrangians with derivative terms. The prescription from the Introduc-
tions was quite simple: any d, in the interaction Lagrangian furnishes the —ip# factor for the
corresponding vertex in the p-representation Feynman rules (p* being the momentum assigned
to the corresponding leg, oriented toward the vertex). To understand the origin of this factor, it
is (seemingly) sufficient to differentiate the Wick’s theorem, e.g. for two fields

T {¢1(x) 0,1 ()} = 0, (N {1 (z) @1 (2)} + dp (z — 2))

When calculating the green function, the derivative can be withdrawn from VEV, and once
dp(x — 2') is Fourier expanded, it produces the desired factor (the reader is encouraged to make
him /her-self clear about momentum orientations).

160ne may be tempted to use i(p? — m2)~ ! or i(p? — m2 +ie)~ ! as dp (p) (see p. 97), but neither would be
Yy

correct. Both choices lead to results differing from dr (z — y) by some functions of €, which tend to disappear when
e — 0. Nevertheless the e-differences are the important ones, they determine even the seemingly e-independent
part of the result.

Anyway, apart from the ie subtleties, dp (p) comes out equal to what we have calculated in the Introductions
(from quite different definition of propagator). This may seem like a coincidence, and one may suspect if one gets
equal results even beyond the real scalar field example. The answer is affirmative, but we are not going to prove
it here in the full generality. The reason is that the general statement is more transparent in another formulation
of QFT, namely in the path integral formalism. So we prefer to discuss this issue within this formalism.

iz(p+p'+...)
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There is, however, a subtlety involved. The above identity is not straightforward, even if it
follows from the relation ¢;(2)0;,p1(2") = 0, (¢1(x)pr(2") = 0, (N{p1(z)pr(2')} + D(z — 2)).
The point is that when combining two such identities to get the T-product at the LHS, one
obtains 9(£2);, D(§) + 9(—£°)8, D(—¢) instead of d,dp(€) on the RHS (with £ = x — 2’). The
extra term, i.e. the difference between what is desired and what is obtained, is D(£)p9(£°) +
D(—=£)009(—€°) = (D(€) — D(—€))5(£%) and this indeed vanishes, as can be shown easily from
the explicit form of D(£) (see page 91).

Unfortunately, this is not the whole story. Some extra terms (in the above sense) are simply
die-hard. They do not vanish as such, and one gets rid of them only via sophisticated cancellations
with yet another extras entering the game in case of derivative couplings'”. Attempting not to
oppress the reader, we aim to outline the problem, without penetrating deeply into it.

The troublemaker is the T-product of several differentiated fields. An illustrative example is
provided already by two fields, where one obtains

T{0upr1 (2) 0,01 (2)} = 0,0, (N {1 () 1 (¢)} + dp (x — ")) + 40, (x — 2')

with!® A (¢) = —ié* (€). The same happens in products of more fields and the Wick’s theorem is
to be modified by the non-vanishing extra term —i525354 (€), on top of the doubly differentiated
standard propagator. In the ”clip notation”

standard extra
—

upr (x) 0,1 (2) = 0,01 () w1 () + w1 (x) @1 (")

standard extra
where @7 (z) p; (') =dp (x — 2') and ¢ (x) @5 (2) = —i526854 (x —2')

The rather unpleasant feature of this extra term is its non-covariance, which seems to ruin
the highly appreciated relativistic covariance of the perturbation theory as developed so-far.

Because of the §-function, the extra term in the propagator can be traded for an extra vertex.
To illustrate this, let us consider as an example £ [p] = 19,00"p — im2¢? + 200,00 p. A
typical term in the perturbative expansion of a green function contains Hing [ (2)] Hing [¢ (2)]
and clipping the fields together via the extra term gives!'?

; extra ; 9
e @) 0" (@) o1 () 1 () 20 (2) 0 (2f) = %62 (2) & (x)

effectively contracting two original vertices into the new extra one. In this way one can get
rid of the extra non-covariant term in the propagator, at the price of introduction of the non-
covariant effective vertex. In our example this effective vertex corresponds to an extra term in
the Lagrangian: Leyxtra = %gchng2.

The factor % follows from a bit of combinatorics. There are four possibilities for the extra
clipping between the two Hiy, endowing the new effective vertex with the factor of 4. Less

obvious is another factor of %, coming from the fact that interchange of the two contracted

17Similar problems (and similar solutions) haunt also theories of quantum fields with higher spins, i.e. they are
not entirely related to derivative couplings.

18First one gets, along the same lines as above, A(€) = (D(&)—D(—£))905(£9)+25(¢%)00 (D (&) — D(—¢£)). Due to
the identity f(x)8’(z) = —f’(z)d(x) this can be brought to the form A(€) = §(£°)8o (D (&) —D(—¢)) and plugging in

the explicit form of D(€) one obtains A(¢) = 6(£°) [ % ﬁﬁ@o (e7PE—etP8) = §(£9) [ (‘217353 _23;0 (e~ P8 4eiPl) =
—i8(€%) [ kel = —ig (¢).

9Here we pretend that Hi,; = —Lint, which is not the whole truth in the case at hand. We will correct this in
the moment.




96 CHAPTER 3. INTERACTING QUANTUM FIELDS

original vertices does not change the diagram. According to the rules for combinatoric factors
(see section??) this requires the factor of 3. Once the vertices are contracted, there is no
(combinatoric) way to reconstruct this factor, so it has to be included explicitly.

The story is not over yet. There is another source of non-covariant vertices. The point is
that once derivative couplings are present, the canonical momentum is not equal to the time
derivative of the field any more. As an illustration let us consider our example again. Here one
gets m = o+ gpp, ie. o= (1+ ggp)_l 7. The corresponding Hamiltonian density can be written
as H = Ho + Hint where??

1

_1 2, 1 5 9
Ho—27r +2|V50\ +gmiy

Hing = gw Vel* - gso(l +gp) '

‘Ho corresponds to the Hamiltonian density of the free field, expressed in terms of conjugate quan-
tities, obeying (after quantization) the standard commutation relation [ (z), 7 (y)] = 0% (¥ — ¥).
Using this Hy one can develop the perturbation theory in the standard way. Doing so it is con-
venient, as we have seen, to re-express the canonical momentum in terms of the field variables,
leading to

1 1 .
Hin = —5900,00" ¢ — 59%2@2

As announced, this interaction Hamiltonian density contains, on top of the expected covariant
term —Lin¢, a non-covariant one. But now, the fanfares breaks out, and the non-covariant vertices
originating from two different sources, cancel each other.?! This miracle is not an exceptional
feature of the example at hand, it is rather a general virtue of the canonical quantization: at the
end of the day all non-covariant terms in vertices and propagators tend to disappear.

M = gm— L= ¢m — 39 + 5|Vl + 3mP0? — §00,p0" o
=5 (L+gp) ' 7% + 3 [Vel” + §m?¢? + Lo |Vl
= 37° + 5 [Vol? + 3m?0* + §0 | Vol — S (1+g0) "' 72
210ne may worry about what happens to the non-covariant part of Hi,; contracted (with whatever) via the
non-covariant part of the propagator. Indeed, we have not consider such contractions, but as should be clear from
what was said so-far, for any such contraction there is a twin contraction with opposite sign, so all such terms
cancels out.
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propagator

In the Introductions/Conclusions we have learned that the propagator of the scalar field is equal
to i/(p®> — m?). Let us check now, whether this ansatz for dp (p) really leads to the correct

expression for dp (£), i.e. if
4 .
dr (€) = / (d I))4 2 e

where dp (£) = 9 (€°) D (€) + 9 (—£°) D (=€) and D (¢) = [ (gfj)’s e,

It is very useful to treat the pg-variable in this integral as a complex variable. Writing
p? —m? = (po — wp)(po +wp) (recall that wy = \/p? + m?) one finds that the integrand has two
simple poles in the p’-variable, namely at p = +w; with the residua +(2wy) ~leT@rtoe?-¢. The
integrand is, on the other hand, sufficiently small at the lower (upper) semicircle in the p°-plane
for €9 > 0 (¢° < 0), so that it does not contribute to the integral for the radius of the semicircle

going to infinity. So it almost looks like if

L B Y N e
(271_)4 p2 _ m2 - (27T)3 pO + Wﬁ pozwﬁ pO _ Wﬁ poz—wﬁ

(the sign reflects the orientation of the contour) which would almost give the desired result after
one inserts appropriate ¥-functions and uses p'— —p substitution in the last term.

Now, was that not for the fact that the poles lay on the real axis, one could perhaps erase
the questionmarks safely. But since they do lay there, one can rather erase the equality sign.

It is quite interesting, however, that one can do much better if one shifts the poles off the
real axis. Let us consider slightly modified ansatz for the propagator, namely i/(p? — m? + ic)
with positive e (see the footnote on the page ??). The pole in the variable p3 lies at w127 — i€, l.e.
the poles in the variable pg lie at wy — i and —wy + ie and so the trick with the complex plane
now works perfectly well, leading to (convince yourself that it really does)

d'p i ; dp 1 A A
—ip§ _ 9 0y ,—ip§—eéo 9(— 0 ipé+ego
[ e ™ = | Gy (€T ey

At this point one may be tempted to send ¢ to zero and then to claim the proof of the identity
dr (p) = i/(p*> —m?) being finished. This, however, would be very misleading. The limit ¢ — 0
is quite non-trivial and one cannot simply replace ¢ by zero (that is why we were not able to
take the integral in the case of € = 0).

Within the naive approach one cannot move any further. Nevertheless, the result is perhaps
sufficient to suspect the close relation between the result for the propagator as found in the In-
troductions/Conclusions and in the present chapter. Later on we will see that the ie prescription
is precisely what is needed when passing from the naive approach to the standard one.
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s-matrix

The green functions, discussed so-far, describe the time evolution between the initial and final
states of particles created at certain positions. Most experimental setups in the relativistic
particle physics correspond to different settings, namely to the initial and final states of particles
created with certain momenta in the remote past and the remote future respectively. We will
therefore investigate now the so-called s-matrix (almost, but not quite the famous S-matrix)

Sfi = Thj};o <ﬁ1aaﬁm| U(T7 _T) |ﬁm+17~-~7ﬁn>

where f and i are abbreviations for p1, ..., Py, and P41, - - ., Py, respectively. We have presented
the definition directly in the interaction picture, which is most suitable for calculations. Of
course, it can be rewritten in any other picture, as discussed on p.?77.

The difference between the s-matrix and the genuine S-matrix (which is to be discussed
within the standard approach) is in the states between which U (T, —T') is sandwiched. Within
our naive approach we adopt a natural and straightforward choice, based on the relation??

D) = /2wy g |0), leading to
spp = lim (0] \/2wp, ap, 1 ( U(T,-T).. \/2wﬁna§m1 (=T7)10)

T—o0
Intuitively this looks quite acceptable, almost inevitable: the multi-particle state is created, by
the corresponding creation operators, from the state with no particles at all. There is, however
a loophole in this reasoning.

The main motivation for the s-matrix was how do the real experiments look like. The states
entering the definition should therefore correspond to some typical states prepared by accelerators
and detected by detectors. The first objection which may come to one’s mind is that perhaps we
should not use the states with sharp momenta (plane waves) but rather states with ”well-defined,
even if not sharp” momenta and positions (wave-packets). This, however, is not the problem.
One can readily switch from plane-waves to wave-packets and vice versa, so the difference between
them is mainly the difference in the language used, rather than a matter of principle.

The much more serious objection is this one: Let us suppose that we have at our disposal
apparatuses for measurement of momenta. Then we can prepare states more or less close to the
states with sharp energy and 3-momentum. The above considered states |p) = /2wy ; |0) are
such states, but only for the theory with the free Hamiltonian. Once the interaction is switched
on, the said |p) states may differ significantly from what is prepared by the available experimental
devices. Once more and aloud: typical experimentally accessible states in the worlds with and
without interaction may differ considerably. And, as a rule, they really do.

One may, of course, ignore this difference completely. And it is precisely this ignorance, what
constitutes the essence of our naive approach. Indeed, the core of this approach is the work
with the s-matrix. defined in terms of explicitly known simple states, instead of dealing with
the S-matrix, defined in terms of the states experimentally accessible in the real world (with
interactions). The latter are usually not explicitly known, so the naivity simplifies life a lot.

What excuse do we have for such a simplification? Well, if the interaction may be viewed as
only a small perturbation of the free theory — and we have adopted this assumption already,

22The relation is given in a bit sloppy way. In the Schrédinger picture, it is to be understood as |p, -T)g =
\ /Qwﬁags |0), where |0) is just a particular state in the Fock space (no time dependence of |0) is involved in
this relation). In the interaction picture the relation reads |p, —T); = | /2w5a;;’1 (=T)|0) (this is equivalent to
the Schrédinger picture due to the fact that Hg |0) = 0). In the Heisenberg picture, however, one has |p); =
A /2w~a;H (=T) e *HT |0) # | /2wp 5 17 (=T 10) (due to the fact that |0) is usually not an eigenstate of H).
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namely in the perturbative treatment of U (T, —T') operator — then one may hope that the
difference between the two sets of states is negligible. To take this hope too seriously would be
indeed naive. To ignore it completely would be a bit unwise. If nothing else, the s-matrix is the
zeroth order approximation to the S-matrix, since the unperturbed states are the zeroth order
approximation of the corresponding states in the full theory. Moreover, the developments based
upon the naive assumption tend to be very useful, one can get pretty far using this assumption
and almost everything will survive the more rigorous treatment of the standard approach.

As to the calculation of the s-matrix elements, it follows the calculation of the green functions
very closely. One just uses the perturbative expansion U (T, —T) = T exp{—i [ TT, dt Hy (t)} (see
p-90) and the Wick’s theorem, which is to be supplemented by?

1

2wy

a1 (T) 1 (x) = N{ag (T) r (1)} + —o—e'Pe T

Wi

o1 (x)ag (=T) = N{gr (x) af; (=T)} + e~ e miwpT

¥

or in the ”clipping notation”

o1 (2) a; (-T) = \/;ieip:veiwﬁT
, o
ag.1 (1) ¢, (x) = \/;; P iy T
wy

Consequently, the s-matrix elements are obtained in almost the same way as are the green
functions, i.e. by means of the Feynman rules. The only difference is the treatment of the
external lines: instead of the factor dp (x —y), which was present in the case of the green
functions, the external legs provide the factors eT?e~sT for the s-matrix elements, where
the upper and lower sign in the exponent corresponds to the ingoing and outgoing particle
respectively. (Note that the /2wy in the denominator is canceled by the /2wy in the definition
of s¢;.) In the Feynman rules the factor e~ ™sT is usually omitted, since it leads to the pure phase
factor exp{—iT >_""_, wp, }, which is redundant for probability densities, which we are interested
in?4.

23Indeed, first of all one has o7 (z) a;IJ ") = N{gal(m)a;f,l )} + [pr (), a;I (t")] and then [p;(z), a;_r,l )] =
3. ip T

| G Gl 1 (0, (] = [ ke
tional substitution p’ — —p’ in the integral) is performed for [ag 1 ('), 1 (x)].

24Omission of the phase factor is truly welcome, otherwise we should bother about the ill-defined limit 7" — co.
Of course, avoiding problems by omitting the trouble-making pieces is at least nasty, but what we are doing here
is not that bad. Our sin is just a sloppiness. We should consider, from the very beginning, the limit 7" — oo for
the probability and not for the amplitude.

i(f B—wttwst’) oo . . .
P 7" /§(p — p') and the same gymnastics (with an addi-
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In this way one obtains

the Feynman rules for the s-matriz elements in the x-representation

internal line dp (z —y)
ingoing external line eFip

"L "
vertex (n legs) i Tk ¢:Ofd -

The next step is the use of the Fourier expansion of dp (z —y) allowing for explicit a-
integrations (see p.94), resulting in

the Feynman rules for the s-matrix elements in the p-representation

internal line i % dr (p)

external line 1

vertex i g:ﬁ 0t (p+p +..)
©=0

Omitting the factors of (27r)4 as well as the momentum integrations, and shifting them to the
additional rule requiring an extra (27)* for each vertex and (2m) * J d*p for each internal line,
one obtains

another form of the Feynman rules

for the s-matrixz elements in the p-representation

internal line dr (p)

external line 1

vertex i 32,5 S (p+p +...)
=0

which is now really very close to our presentation of the Feynman rules in the Introductions/Conclusions?®.

25Tn the Introductions/Conclusions the Feynman rules were used to calculate the scattering amplitude Myg;
rather than the S-matrix. These two quantities are, however, closely related: Sy; = 1+iMy; (27r)4 5 (Pf — Pi)
or sp=141imyy (27r)4 54 (Pf - Pi).



3.1. NAIVE APPROACH 101

connected diagrams

IIThe My;, or rather my; within our naive approach, is more appropriate for the discussion of
the cross-sections and decay rates, which is our next task.At this point, there are only three
differences left:

e presence of dp (p) instead of the genuine Feynman propagator D (p)
e no V/Z factors corresponding to external legs

e presence of disconnected diagrams like

X 8

in the perturbative expansions of the green function and the s-matrix?, while in the
Introductions/Conclusions only connected Feynman diagrams were accounted for.

The differences are due to the fact that we are dealing with the s-matrix rather than the
S-matrix. In the next section we will learn how the so-far missed ingredients (replacement of dg
by D, appearance of v/Z and fadeaway of disconnected diagrams) will enter the game in the
standard approach.

As to the comparison of the rules presented in the Introductions/Conclusions to the ones
derived here, let us remark that in the Introductions/Conclusions we did not introduce the
notion of the S-matrix explicitly. Neverthweless, it was present implicitly via the quantity My;,
since S and M are very closely related

Spi=1+iMy; (27)*6W (P; — P)

The My;, or rather my; within our naive approach, is more appropriate for the discussion of the
cross-sections and decay rates, which is our next task.

Remark: As we have seen, the green functions g and the s-matriz elements s¢; are very clos