1. Vlny v jednom rozmere (opakovanie)

Elektromagnetické viny s trojrozmerné v dvoch zmysloch. Jednak s to viny
v trojrozmernom priestore a jednak veli¢iny ”ktoré sa vlnia” (polia E, B resp.
vektorovy potencial /_1') su vektorové veliciny. Napriek tejto dvojakej trojrozmer-
nosti maji elmag vlny vela vlastnosti spolo¢nych so svojimi jednorozmernymi ses-
trami. Na druhej strane, napriek tejto pribuznosti prindsa dvojakd trojrozmernost
vela $pecifickych noviniek. Aby sme si jasne uvedomili, ¢o st vieobecné vlastnosti
vSetkych typov vin a ¢o nové so sebou prinasaju tri rozmery, zopakujeme si strucne
zname veci z jednorozmerného pripadu t.j. z kmitov struny. Potom prejdeme ku
skalarnym vindm v trojrozmernom pripade a nakoniec k vektorovym vlnam v troj-
rozmernom pripade.

Toto opakovanie jednorozmerného pripadu mozno samozrejme preskoécit. Jed-
noduchym testom ¢i je takéto preskocenie vhodné alebo nie, je nasledovnd otézka:
Aké viny sa "vinia” na gitarovej strune — postupné alebo stojaté? Kym budete &itaf
dalej, naozaj sa zamyslite na touto otdzkou a sformulujte (stac{ sdm pre seba) jasni
a jednoznaént odpoved.

Nie, nie, nie — neméte &tat dalej, kym neméate sformulovant jasnt odpoved
(¢i uz s rozmyslanim alebo bez neho). Takze ak4 je vasa odpoved?

No dobre, tak podme éitat d'alej. Beind odpoved ”stojaté!” nie je sice ne-
spravna, ale rozhodne to nie je t4 najlepsia odpoved. Ovela spravnejsiou odpo-
vedou je mierny smiech, asi taky, aky by v nds vyvolala otdzka &i plati 4 = 2 + 2
alebo 4 = 3 + 17 Samozrejme, ze platia obe tieto rovnosti, rovnako ako plati, Ze na
gitarovej strune sa ”vlnia” stojaté aj postupné viny.

Stojaté a postupné viny nie st dve rdzne veci, ale skér dva rézne jazyky
pouzivané na opis tych istych veci. Kazdd stojatd vinu mozno napisat ako su-
perpoziciu postupnych vin a naopak. Ak vadm toto nie je celkom jasné, radsej nic
nepreskakujte.

TakZe podme na tie viny v jednom rozmere, ¢o st napriklad viny na strune.
Kmity (pozdfine aj priecne) struny, na ktord neposobia nijaké vonkajsie sily, si
opisané vlnovou rovnicou (pripomenme, ze tato rovnica je dosledkom Newtonovej
pohybovej rovnice a Hookovho zdkona)
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kde u predstavuje vychylku struny (¢ uz pozdfinu alebo prie¢nu) v mieste = a
v Case t. Na rieSenie tejto rovnice sa pouzivaju dva zdkladné pristupy, ktorym
budeme hovorit d’Alambertov a Fourierov. Prvy z nich vedie prirodzene k pojmu
postupnych an, druhy k pojmu stojatych vin. v pripade elmag vin sa ukéze byt
omnoho vhodnejsim Fourierov pristup, takze opakovanie d’Alambertovho pristupu
je tu len kvoli istej tiplnosti a moze sa preskoéit.

u(z,t) =0



d’Alambertov pristup je zalozeny na zisteni, ze funkcie typu u(x + v - t) si
rieSeniami vlnovej rovnice na priamke t.j. neohranicenej strune. Tieto rieSenia sa
nazyvaji postupné vlny (pozri pozndmku na str. ??). Avsak nie kazdé riesenie vlno-
vej rovnice na priamke je postupnou vlnou. Napriklad sticet dvoch postupnych vin
postupujicich opaénym smerom je rieSenim vlnovej rovnice (princip superpozicie),
ale nie je postupnou vlnou. Vyznam postupnych vin nespociva v tom, ze by to
boli jediné rieSenia vlnovej rovnice, ale v tom, ze vSetky rieSenia vlnovej rovnice sa
daju pisat ako superpozicie postupnych vin. Vyjadrenie rieSenia vlnovej rovnice s
danymi pociatoénymi podmienkami cez superpoziciu postupnych vin sa dd pomerne
lahko uhadnuf. (Uhddnutie a jeho jednoduché preverenie je zdkladnou technikou
d’Alambertovho pristupu.)

Ak je pociatoénd vychylka zadand lubovolnou funkciou f(z) a po€iatoénd rychlost

zmeny vychylky o = % je nulova, t.j. ak
u(,0) = f(z).
(x,0) =0

potom

uwt) =5 (flatv )+ flz—v-1))

pociatocéna vychylka sa rozdeli napoly a kazdé polovica sa rozbehne svojim smerom.
Z principu superpozicie je jasné, ze u(x,t) je rieSenim vlnovej rovnice a priamym
dosadenim sa d4 okamzite presvedéit, Ze spliia uvedené po¢iatoéné podmienky.
Ak je pociatoénd vychylka nulovd a pociatotnd rychlost zmeny vychylky je
zadand Iubovolnou funkciou h(z), t.j. ak
u(z,0) =0
(x,0) = h(z)

potom
u(x,t):%(H(ervot)fH(mfvot)) kde H(m):l/h(x)dx

(“primitivna funkcia k rychlosti zmeny pociatoénej vychylky sa rozdeli napoly, a
kazdéd polovica sa rozbehne so svojim znamienkom svojim smerom”). Znova je z
principu superpozicie jasné, ze u(x,t) je rieSenim vlnovej rovnice a znova sa pria-
mym dosadenim dé okamZite presvedéit, Ze spiﬁa uvedené pociatotné podmienky.

Princip superpozicie a priame dosadenie ndm d& rieSenie aj vo vSeobecnom

pripade pociatoénych podmienok
u(z,0) = f(x)
U(z,0) = h(x)

a sice

1
u(z,t) = 3 (fz+v-t)+ flz—v-t)+ Hx+v-t)—Hx—v-t))
A tym je tdloha na priamke raz a navzdy uplne vyrieSend v tvare superpozicie

Styroch postupnych vin. (Co ale neznamens, Ze neexistuje aj iny uzitoény zapis
toho riesenia, ktory m4 podstatne iny tvar.)
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Z rieSenia vlnovej rovnice na priamke sa d4 jednoduchymi trikmi najst (uhddnut)
rieSenie rovnice na polpriamke s pevnym alebo volnym koncom. Pevnému koncu v
bode z = 0 zodpovedd okrajovd podmienka u(0,%) = 0, volnému koncu podmienka

uw'(0,t) = 8"6(,2 ) — 0 (volny koniec totiz zodpoved4 nulovej pruznej sile a t4 je dand
podla Hookovho zdkona derivéciou vychylky podla x). Trik spoé¢iva vo vhodnom
roz§ireni problému z polpriamky na celt priamku. Nech st napriklad na polpriamke

x > 0 zadané pociatotné podmienky

u(@,0) = f(=)
4(z,0) =0

Dopliime tieto pociatoéné podmienky na celi priamku tak, aby vyslednd funkcia
bola nepdrna pre pevny a parna pre volny koniec t.j. definujme funkciu f(z) takto

fo) = f@) prex>0

—  _f(=2) preaz<0 pevny koniec

f@) = f(@) pre w = 0 volny koniec
=  f(-z) prez<O0

Riesenie vlnovej rovnice na priamke s poc¢iatoénymi podmienkami danymi funkciou
f(x) a nulovou po¢iatoénou rychlostou uz pozndme a toto riesenie je riesenim rov-
nice aj na polprlamke pricom na nej splna poc1atocne podmienky. Ostava teda len
zistit, ¢i splna aj okrajovi podmienku a to Splna ako sa znovu lahko presvedéime
priamym dosadenim. Ind moznost je nerobit mechanické dosadenie, ale predstavit
si, ¢o daju v bode x = 0 dve oproti sebe beziace polovice parnej resp. neparnej
pociatoénej podmienky. Takéto predstavenie si riesenia umozni uvidiet, Ze dolava
beziaca polovica, ktord v bode z = 0 “opusta” polpriamku, sa v tomto bode streté s
doprava beziacou polovicou, ktord na polpriamku “prichddza”. Obe polovice maju
pritom v tomto bode presne rovnaki alebo presne opa¢ni hodnotu, takZe z hladiska
polpriamky to vyzerd tak, ako keby sa dolava idiica vlna odrazala od pevného resp.
volného konca s opaénou resp. rovnakou fazou.

Nech st teraz na polpriamke z > 0 zadané pociatoéné podmienky
u(x,0) =0
w(z,0) = h(z)
Znovu doplnime tieto pociatotné podmienky na celd priamku tak, aby vyslednda
funkcia bola nepérna pre pevny a parna pre volny koniec.

hiz) = h(z) prex >0

—  _R(-2) prea<0 pevny koniec

hz) = hz)  prex>0 volny koniec
= h(-z) prex<0
RieSenie vlnovej rovnice na priamke je znova rieSenim rovnice aj na polpriamke a
znovu sa mozno lahko presvedéit, Ze na nej spifla pociato¢né podmienky aj okrajovi
podmienku. Riesenie rovnice s vSeobecnymi pociatoénymi podmienkami u(z,0) =
f(z), 4(x,0) = h(x) je dané sictom rieseni dvoch predchadzajiicich pripadov.



Analogickymi trikmi sa d4 z postupnych vin poskladaf riesenie vlnovej rovnice
na tsecke s pevnymi alebo volnymi koncami. Tentoraz treba rozsirit pociatoéné
podmienky z dsecky na vhodnu periodicku funkciu na priamke. Ak si na usecke
0 < z <l zadané pociatoéné podmienky

u(z,0) = f()
a(x,0) = h(z)

definujeme funkcie f(z), h(z) periodické s periédou 2 nasledovne

fl@) = fl@) pre 0<z<I
= —f(-x) pre —1<x<0 )

hz) = _71(33) pre 0<z <1 pevné konce
= —h(-z) pre —1<x<0

flz) = f(z) pre 0 <z <l
=  f(=z) pre —1<z<0 »

hz) = Zb(l‘) pre 0<z <1 volné konce

h(—z) pre —1<z<0

Znova sa priamym dosadenim alebo spravnym predstavenim si rieSenia presvedc¢ime,
Ze rieSenia na priamke s pociatoénymi podmienkami f(z), h(z) st rieSeniami na
usecke s danymi pociatotnymi a okrajovymi podmienkami a znova ich mozeme
interpretovat ako odraz s opa¢nou fazou na pevnom a rovnakou na volnom konci.

Vyhodou d’Alambertovho pristupu je jednoduché vyjadrenie rieSenia pomo-
cou pociatoénych podmienok a jasné nahliadnutie niektorych vseobecne znamych
vlastnost{ vin (napriklad odrazu vin na pevnych a volnych koncoch alebo toho,
ze postupné vlny tvoria vhodny jazyk na opis vSetkych vin, t.j. vSetkych rieseni
vlnovej rovnice). Nevyhodou je, Ze tento postup sa neda dobre zovseobecnit na
viacrozmerné pripady. Vo viacerych rozmeroch s v podstate dva problémy: jednak
pociatoéni podmienku by tu bolo treba rozdelif na nekoneéne vela ¢asti a poslat ich
nekoneéne vela smermi (ale ked’ rozdelime koneénii poéiatoénti podmienku na ne-
koneéne vela ¢asti, budi tieto ¢asti nulové) a jednak vobec nie je jasné, ako dopl,ﬁat7
(v duchu triku s useckou v jednom rozmere) poc¢iatoéni podmienku v nejakej ne-
pravidelnej ohranic¢enej oblasti na cely priestor. To neznamend, ze d’Alambertov
pristup nehré vo viacerych rozmeroch nijaki tlohu (d’Alambertovo riesenie na pol-
priamke sa d4 vyuzif pre riadidlnu premenni v sférickych siradniciach), ale v po-
rovnani s Fourierovym pristupom hra d’Alambertov pristup vo viacerych rozmeroch
v podstate zanedbatelni tlohu.
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Fourierov pristup nie je ni¢ iné ako metdda separdcie premennych znama z
druhej kapitoly (East 2.2) a spociva v hladani rieSenia v Specidlnom tvare a to v
tvare suc¢inu dvoch funkcii, z ktorych jedna zavisi len od x a druhé len od t. Nie
kazdé riesenie vlnovej rovnice sa vsak d4 napisat v takomto tvare a preto to, ¢o
takto ndjdeme budu len urcité Specialne rieSenia. Tieto Specidlne rieSenia su ovSem
vyznamné tym, Ze sa z nich d4 poskladat (v tvare superpozicie) vieobecné riesenie.

Dosadenim funkcie u(x,t) = X (z) - T(t) do vlnovej rovnice dostaneme

1" 1

X (@) T(t) - — - X(2) “T(t)=0

a predelenim tejto rovnice funkciou © = X - T' dostaneme

X'(x) 1 T@) 0

X(z) v T(t)

l'av4 strana je sti¢tom dvoch €lenov, z ktorych kazdy zavis{ len od jednej premenne;j.
Ak teraz fixujeme jednu z nich t.j. ak polozime napr. t = gy, stane sa ¢len zavisly
len od tejto premennej konstantou (nazvime ju «) a z celej rovnice potom vyplyva,
7e tejto konstante musi byt rovny aj druhy élen a to pre lubovolni hodnotu druhej
premennej t.j. ze

1 T(tax)
X(x) v2 T(tax)
Ak naopak fixujeme premennt x, dostaneme analogicky

1"

1 T@) X' (zax)

2T X))

Pre funkcie X (z) a T'(t) tak dostdvame rovnice

"

X =a-X
T=a 02T

Pévodna parcidlna diferencidlna rovnica sa ndm takto rozdelila (separovala) na dve
obyc¢ajné diferencidlne rovnice, ktorych riesenie je uz pomerne jednoduché.

Ak uvaZujeme rieenie vlnovej rovnice na tisecke s pevnymi resp. volnymi kon-
cami, potom sa okrajové podmienky u(0,t) = wu(l,t) = 0 (pevné konce) resp.
u'(0,t) = u/(I,t) = 0 (volné konce) prejavia na funkcii X (z). Ak totiz funkcia
T'(t) nie je identicky rovnd nule, potom z okrajovych podmienok vyplyva

X0)=X({)=0 pevné konce
X'(0)=X'(l)=0  volné konce

Ak je funkcia T(t) identicky rovnd nule, potom je identicky rovné nule celé riesenie
u(x, t). Toto je skutocne rieSenim nasej dlohy pre trividlny pripad nulovych pociatoc-
nych podmienok a len pre tento pripad. Aby sme sa nemuseli k tomuto trividlnemu
pripadu stale vracaf (v pozndmkach podobnych tejto), explicitne ho vyli¢ime z
nagich d'alsich ivah, vedomi si toho, Ze toto trividlne riesenie existuje.

V pripade rieSenia vlnovej rovnice na priamke sa nepozaduje splnenie nijakych
okrajovych podmienok t.j. nijakych podmienok pre wu(z,¢) v limite x — oo,
pozaduje sa zatial len ohrani¢enost rieSenia na celej priamke. Ohranicenost riegenia
je velmi prirodzens poziadavka, pretoze neohrani¢enost znamend nekoneéne velké



6

vychylky a tie nemaji dobry fyzikalny zmysel, kedZe samotné vinovéa rovnica je
odvodend z predpokladu malych vychyliek (len pre ne totiz plati Hookov zdkon).
Neohrani¢ené riesenia teda povazujeme za nefyzikédlne a vzdy (nielen na priamke)
hladdme len ohrani¢ené rieSenia vlnovej rovnice. Ohrani¢enost funkcie u(z,t) sa pre-
javi na funkcidch X (x) a T'(t). Z ohranic¢enosti u(x,t) vyplyva pre T(t) nie vsade
rovné nule ohrani¢enost X (x) a pre X (x) nie viade rovné nule ohrani¢enost T'(¢).

Rieseniami rovnice pre funkciu X (z) si funkcie eVar e=Var nre o > (), funkcie
siny/—a - x, cosv/—a - x pre a < 0 a funkcia a-z+b pre @ = 0. Okrajové podmienky
v pripade tsecky a podmienka ohranicenosti v pripade priamky vylucuji spomedzi
rieSen{ exponenty a nekonstantni linedrnu funkciu (pre volné konce a pre priamku
prezije okrajové podmienky linedrna funkcia v podobe konstantnej funkcie X = b).
Uloha mé teda rieSenie len pre o < 0. Pre tisecku navyse okrajovd podmienka v
bode x = 0 vyluc¢uje spomedzi rieSeni cosinus v pripade pevného a sinus v pripade
volného konca. Okrajovd podmienka v bode = [ okrem toho uréuje, pre aké o
m4 vobec tiloha rieSenie. Aby mohla byt této tloha splnend, musi byt /—a rovna
celociselnému ndsobku 7. Celkove teda mame

nm

X(z)=sin (k-z) kde k= T pevné konce

X(z) =cos (k-z) kde k= T volné konce

X(z)=sin (k- x)
X(z) =cos (k-x) kde k je lubovolné Ziadne konce (priamka)

a v pripade volnych koncov je riesenim tlohy este aj konstantna funkcia X (z) = b

Rieseniami rovnice pre funkciu T'(¢) si pre a < 0 funkcie

T(t) =sin (w-t) a T(t) = cos (w-t) kde w=vV—-a-v2=%k-v
Pre a = 0 je rieSenim linedrna funkcia, ktora ak nie je konstantna, tak vedie na s
¢asom neohranicene rasttiice resp. klesajuce, t.j. nefyzikdlne riesenie u(x, t). Jedinym

.....

u(z,t) = c.

Rieseniami vlnovej rovnice v hladanom tvare si teda funkcie
u(z,t) =sin (k- z) sin (w-t) u(z,t) =sin (k- z) cos (w-1)
u(z,t) = cos (k- x) sin (w-1t) u(x,t) = cos (k-x) cos (w-t)
ktorym sa hovori stojaté vlny, ndzov pochadza z toho, ze celkovy profil viny sa

nehybe, len sa s ¢asom periodicky zviiuje a zmensuje. (V pripade volnych koncov
je rieSenim ulohy eSte aj konstantnd funkcia u(z,t) = c.)

Nie kazdé riesenie vlnovej rovnice je ovSem stojatou vlnou. Superpozicia sto-
jatych vin je rieSenim vlnovej rovnice (princip superpozicie), ale nie je stojatou
vlnou. Vyznam stojatych vin nespociva v tom, ze by to boli jediné rieSenia vlnovej
rovnice, ale v tom, Ze vietky rieSenia vlnovej rovnice sa dajui pisat ako superpozicie
stojatych vin. Ukézeme, ze je tomu naozaj tak.
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Superpozicia vsetkych moznych stojatych vin ndm déva

pevné konce:

u(z,t) = Z cn sin (ky, - x) cos (wy -t) + ¢, sin (k, -x) sin (w, - t)
n=1
volné konce:
u(z,t) = ¢ + Z cn cos (ky -x) cos (wy -t) + ¢, cos (ky-x) sin (w, -t)
n=1

ziadne konce (priamka):
u(z,t) = /000 c(k) sin (k-z) cos (w-t) + (k) sin (k-x) sin (w-t) +
+ ¢(k) cos (k-x) cos (w-t) + ¢ (k) cos (k-z) sin (w-t) dk

kde k, =", w, =" a w(k)==Fk-v (pricom argument k sa v w(k)

casto kvoli viicsej prehladnosti zdpisov vynechdva).

Po dosadeni pociatocnych podmienok do tychto superpozicii dostaneme

pevné konce:

:L'):Z cn sin (ky, - x) Z ¢ wy sin (ky - x)
n=1

n=1

volné konce:
flx) = ¢ + i cn cos (ky, - x) h(z) = i e, wy cos (ky - x)
n=1 n=1
ziadne konce (priamka):
flx) = /000 c(k) sin (k-z) + ¢(k) cos (k-x) dk

hiz) = /000 (k) w(k) sin (k-x) + & (k) w(k) cos (k-z) dk

Uvedené rady a integraly vSak nie sd ni¢ iné ako Fourierove rady resp. Fourie-
rove integraly pre funkcie f(z) a h(x). A kedze kazd4 slugnd funkcia sa d4 rozvinit
do Fourierovho radu resp. integralu, znamené to, ze superpoziciou stojatych vin
sme schopni splnit Tubovolné slusné pociatoéné podmienky (slusnost funkcie je tu
dand predpokladmi vety o Fourierovom rade resp. integréle).

Koeficienty v nasich superpoziciach stojatych vin st pritom dané znamymi vztahmi

pevné konce:

!
/ f(x) sin(k, - z) dx c,=— = / h(x) sin(ky, - z) dx
0

volné konce (pri oznaceni ¢ = ¢):

—
~| N

—_
~| N

Cn = % /0 f(x) cos(ky, - z) dx = — /Ol h(z) cos(ky - ) dx



ziadne konce (priamka):

c(k):%/ z) sin(k - z) dzx
E(l{:):%‘/oO f(z) cos(k-x) dx
(k) = 1 in(k -z
c(k)_w(”/ h(z) sin(k - ) dz
dh) = — 1 x) cos(k - ) dx
C"@—w(k)ﬂ/_w"” (k) d

V pripade rieSenia na priamke je ovela prehladnejs{ zapis pomocou komplexnej
exponenty. Ak zapiSeme Fourierov integral vo vyjadreni pociatoénych podmienok
v komplexnom tvare, dostaneme

u(x,t) / C(k) e cos(wt) 4+ C'(k) e™** sin(wt) dk
¢o v dosledku cos(wt) = §(e™! + e a sin(wt) = —%(e™! — ") prejde na
’U,(I,t) _ a(k) i(kz—wt) + B( ) i(kx4wt) dk

kde (k) = $(C(k) +1iC’'(k)), B(k) = 3(C(k) —iC'(k)). Explicitné vyjadrenie
koeficientov (k) a (k) je (pozri nasledovnii matematicki pozndmku)

ak) = %% /_O; (f(x) + w(ik)h(x)> e g
609 =550 [ (10~ Sh@) e ao

Superpozicie stojatych vin® s uvedenymi koeficientami si rieSeniami vlnovej
rovnice s danymi pociatoénymi podmienkami. Fourierov postup nés teda doviedol k
rieSeniu vlnovej rovnice s danymi okrajovymi podmienkami pre Iubovolné (slugné)
pociatoéné podmienky. Nevyhodou Fourierovho riesenia je, Ze rieSenie je v tvare
nekone¢ného radu, ktory nevieme vzdy explicitne séitat (takze sme ¢asto odkdzani
na to, ze séitame len niekolko prvych ¢Elenov tohto radu a dostaneme tak urcité
priblizné riesenie). Dalsou nevyhodou je, Ze koeficienty tohto nekoneéného radu si
dané v tvare integrdlov, ktoré mozu byt zna¢ne komplikované. Vyhodou (z hladiska
elektrodynamiky rozhodujiicou) je moznost pomerne jednoduchého a prirodzeného
zovSeobecnenia na viacrozmerné pripady.

1Stojaté viny maji podobne ako postupné vlny ti vlastnost, Ze sa z nich d4 poskladat
lubovolné riesenie vlnovej rovnice. Mozno nebude na skodu v tejto stvislosti explicitne zdéraznit,
ze stojaté a postupné vlny nie st dve rézne veci, ale dva rozne jazyky vhodné na opis tych
istych veci. Prekladovy slovnik medzi tymito dvomi jazykmi, t.j. vyjadrenie stojatych vin cez
postupné a naopak poskytuji sictové vzorce pre sinus a cosinus, Cize jednym smerom napriklad
sin(kz) sin(wt) = 3 L (cos(kx — w t) — cos(kx + wt)) a druhym smerom napriklad cos(kz — wt) =
cos(kz) cos(wt) 4 sin(kx) sin(wt) V pripade zépisu cez komplexné exponenty je prekladovy slovnik
medzi stojatymi a postupnymi vinami este jednoduchsi: e?(kz+wt) — gikegiwt Preto m4 vyjadrenie
ziskané ako superpozicia stojatych vin zjavne tvar superpozicie postupnych vin.
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Matematicka poznamka — koeficienty Fourierovho radu a integralu

Fourierov pristup redukuje riesenie vinovej rovnice na vypocet koeficientov Fou-
rierovho radu resp. integralu. Pre tplnost si pripomeiime, ako sa tieto koeficienty
pocitajui.

Fourierov rad pre funkciu f(x) definovanii na intervale (0, 1) dostaneme doplnenim
na periodicku funkciu s periédou {

fl@) = u +Z ayp, Sin (277“3) + by, cos <27rlnm>

n=1

1 1
_ %/0 f(z) sin (277”) dx by, = %/0 f(x) cos (27rlnx> dz

doplnenim na neparnu periodickd funkciu s periédou 2! Fourierov rad cez sinusy

o0

™ ! . (TNT
f(z) = zjl ap, sin (T) an = %/0 f(z)sin (T) dx

n=

a doplnenim na parnu periodickd funkciu s periédou 2! Fourierov rad cez cosinusy

bo > ﬂ'na: 2 [ ™
f(a:)—f +Z by, cos( i bnzj/of(x)cos(T> dx
Fourierov integral dostaneme z Fourierovho radu pre funkciu definovand na (—1,1)

+Z ansm( )—i—b cos (mlw:)
ap, = %/_lf(ac)sin (Zﬂ) bn, l/ f(z cos ) dz

v limite I — oo. Najjasnejsie to vidno ak jednotlivé ¢leny radu vynasobl'me sikovne
zapisanou jednotkou v tvare 1 =n— (n—1) = dn = % 0™ a oznacime ¢, = % o,

_ <2
Cn = 7 by, ¢im dostaneme

flx) = % +n§::1 Cn sin(?xmnl7T + ¢y cos(ﬂl )(5T
= % + c(kn) sin(k,x) 0k, + c(ky) cos(knx) ok,
n=1
kde sme dalej oznatili k, = T, cn = c(kn), ¢y = ¢(ky,). Ak by uvedend suma

nesla do nekonecna, ale len do nejakého konecného N, bol by to N-ty integrilny
sucet funkcie c(k) cos(k-x) 4 ¢(k) sin(k - z). Ak suma ide do nekonecéna a ak stcasne
ide 0k, do nuly (¢o pre I — oo ide) potom je tdto suma (pokial existuje) rovna
ur¢itému integralu z danej funkcie t.j.

flz) = % + /000 c(k) sin(kzx) + ¢(k) cos(kz) dk
kde
l l
c(k) = Tim L2 [ @)sinka)de (k) = Jim 11 [ (@) cos(he) do
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Uvedené limity nemusia existovat pre lubovolnd funkciu f(x), ale pokial je tato
funkcia absoltitne integrovatelns, t.j. pokial existuje koneény integrél [* | f(z)| dz,
potom tieto limity existujd. Fourierov integral sa preto definuje len pre absolitne
integrovatelné funkcie. Pre také funkcie je ag = lliglo 1 fi , f(z) dz = 0, takze celkove

flx) = /OO c(k) sin(kz) + ¢(k) cos(kz) dk
0
kde | |
c(k) = ;[ f(z) sin(kx) dx c(k) = ;[ f(x) cos(kz) dx

Fourierov integral vyjadreny cez imaginarne exponenty ziskame, ak vo vyjadreni

it 7 533 _ 1( ik —ikx : _ __ i tkx —ikx
cez sinusy a kosinusy pouzijeme cos kx = 5 (e +e7'") asinkr = —5 (e —e™"")

f(l‘) — /OO —C(k) %(eikx _e—ik:c) 4 E(k) %(eilm +e—ikx) dk

0
= / C(k) e™** dk

kde C(k) = 3 (¢(k) —ic(k)) pre k > 0 a C(k) = % (¢(—k) +ic(—k)) pre k < 0.
Vsimnime si, ze C(—k) = C*(k). T4dto podmienka sivisi s redlnostou funkcie f(z)
(ktort sme doteraz nezdoéraznovali, ale cely ¢as sme ju implicitne predpokladali).
Vyjadrenie C'(k) cez imagindrnu exponentu ziskame dosadenim vyjadreni c(k) a
¢(k) cez sinusy a cosinusy:

Ck) = %% /_00 f(z) cos(kx) — i f(x) sin(kz) dz

_ 1 > —ikx
= %/700 fl@)e dx

Fourierova transformécia je uzitoéné (ako este uvidime) zobrazenie, ktoré priradf
funkecii f(x) funkciu C(k), ktori v tejto sivislosti oznacujeme symbolom f(k) a
voldme ju Fourierovym obrazom funkcie f(z). Inverzné zobrazenie, ktoré priradf

funkeii f(k) funkciu f(x) voldme spétnou Fourierovou transformdciou. Fourierova
transformdcia (tam a spiit) je teda definovand ako

f(@) + f(k)

kde?
fm:[‘MwMM

O

1
27

[ e I T B
f(z)—m[wf<k> dk f(k)—m/wf() d

Niekedy sui v definicii vymenené znamienka v exponentdch. Okrem toho sa pomerne ¢asto nepiSe
vlnovka nad f(k) a medzi funkciou a jej Fourier obrazom sa rozlisuje na zdklade toho, ¢i je
premennou x alebo k.

2Casto sa pouziva definicia, v ktorej sa faktor rozdeli medzi funkciou a jej Fourier obraz
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Priklady

1. d’Alambertovo riesSenie

(Elementarny priklad, nevyzadujici ni¢ viac nez bezduché dosadenie do vzorca.)

a) Pociatocné podmienky pre kmity nekonecnej struny su u (z,0) = exp (—x2 / a2),
u(z,0) =2 (1+ z2/a2)71. Néjdite u (a, 3a/v)

b) Pociatotné podmienky pre kmity polpriamky « > 0 st wu (z,0) = 1—exp (fxz/a2),
u(z,0) = 2 [1 — (1 + x2/a2)_1] Néjdite u (a,3a/v) (a to ako v pripade pevného,
tak aj volného konca).

¢) Pociatotné podmienky pre kmity konecnej struny 0 < z < 2a st u(z,0) =
1 —exp(—2?/a?), u(z,0) =2 [% -(1 +x2/a2)71}. Néjdite u (a,3a/v) ak je

koniec z = 0 pevny a koniec z = 2a volny.

2. Fourierovo riesenie

(Elementarny priklad, vyzadujici poéitanie jednoduchych integrélov.)

a) Néjdite Fourierovo rieSenie vinovej rovnice na tsecke 0 < x < L s pociatoénou
podmienkou u (z,0) = x(z — L) /L?, wu(x,0) = v/Lsinwx/L. (Konce bud oba
pevné, alebo oba volné).

b) N4jdite Fourierovo riesenie vlnovej rovnice na priamke s pociatoénou podmien-

kou u (z,0) = exp —22/a?, u(z,0) = 0.

3. Casovo premenné okrajové podmienky

(Délezité rozsirenie prikladov uvddzanych v texte.)

a) Separdciou premennych rieste vlnovi rovnicu na tsecke 0 < z < L, s nulovymi
pociatoénymi podmienkami a s okrajovymi podmienkami w (0,¢t) =0, wu(L,t) =
sin Qt. Ukazte, ze pre Q — w, = nmv/L dostdvame rieSenie s neobmedzene rasticim
koeficientom (rezonancia). (Navod: rieSenie = superpozicia danej okrajovej tilohy
s lubovolnymi poé. podm. a tilohy s pevnymi koncami a vhodnymi po¢. podm.)
b) To isté pre u(0,t) =0, wu(L,t)=g(¢)

¢) Toisté pre o (0,t) =~ (), u(L,t)=g(t)

4. Dve spojené struny

(Délezité rozsirenie prikladov uvddzanych v texte.)

a) Uvazujme dve spojené struny s roéznou rychlostou vin v kazdej z nich, t.j.
uvazujme rovnicu v? u” (x,t) —u(z,t) =0 pre 0 <z <1, a v3 u"(x,t)—u(z,t) =0
pre | <z < L. N4jdite rieSenie tejto tlohy pre pevné konce w (0,t) =u(L,t) = 0.
(Ndvod: hladké zogitie rieSeni v jednotlivych strundch, pricom hladkost znamena
spojitost funkcie aj derivécie.)

b) Ukézte, ze v limitnom pripade v; = vy dostaneme rieSenie pre strunu dfzky L.
c) Ukézte, ze v limitnom pripade v; > vy su frekvencie kmitov systému zhodné s
frekvenciami kmitov prvej struny (nédvod: rovnicu pre w riesit iterdciami, nahliadnut
7e nulta je casto dobrd, vd'aka tomu ze tangens je velky len v tizkych intervaloch)?

37 tohto prikladu plynd dve poucenia, po prvé frekvencie systému pozostavajiceho z dvoch
podsystémov nemusia mat vobec nié spolo¢né s frekvenciami tychto podsystémov, a po druhé za
istych $pecialnych okolnosti mézu mat predsa len vela spolo¢ného. Typickym prikladom takychto
§pecidlnych okolnosti st strunové hudobné néstroje, kde frekvencie nédstroja st v podstate dané
frekvenciami kmitov struny.



