
1. Vlny v jednom rozmere (opakovanie)

Elektromagnetické vlny sú trojrozmerné v dvoch zmysloch. Jednak sú to vlny

v trojrozmernom priestore a jednak veličiny ”ktoré sa vlnia” (polia ~E, ~B resp.

vektorový potenciál ~A) sú vektorové veličiny. Napriek tejto dvojakej trojrozmer-
nosti majú elmag vlny vel’a vlastnost́ı spoločných so svojimi jednorozmernými ses-
trami. Na druhej strane, napriek tejto pŕıbuznosti prináša dvojaká trojrozmernost’

vel’a špecifických noviniek. Aby sme si jasne uvedomili, čo sú všeobecné vlastnosti

všetkých typov v́ln a čo nové so sebou prinášajú tri rozmery, zopakujeme si stručne
známe veci z jednorozmerného pŕıpadu t.j. z kmitov struny. Potom prejdeme ku
skalárnym vlnám v trojrozmernom pŕıpade a nakoniec k vektorovým vlnám v troj-
rozmernom pŕıpade.

Toto opakovanie jednorozmerného pŕıpadu možno samozrejme preskočit’. Jed-
noduchým testom či je takéto preskočenie vhodné alebo nie, je nasledovná otázka:
Aké vlny sa ”vlnia” na gitarovej strune – postupné alebo stojaté? Kým budete č́ıtat’

d’alej, naozaj sa zamyslite na touto otázkou a sformulujte (stač́ı sám pre seba) jasnú
a jednoznačnú odpoved’.

Nie, nie, nie – nemáte č́ıtat’ d’alej, kým nemáte sformulovanú jasnú odpoved’

(či už s rozmýšl’ańım alebo bez neho). Takže aká je vaša odpoved’?

No dobre, tak pod’me č́ıtat’ d’alej. Bežná odpoved’ ”stojaté!” nie je śıce ne-
správna, ale rozhodne to nie je tá najlepšia odpoved’. Ovel’a správneǰsiou odpo-
ved’ou je mierny smiech, asi taký, aký by v nás vyvolala otázka či plat́ı 4 = 2 + 2
alebo 4 = 3 + 1? Samozrejme, že platia obe tieto rovnosti, rovnako ako plat́ı, že na
gitarovej strune sa ”vlnia” stojaté aj postupné vlny.

Stojaté a postupné vlny nie sú dve rôzne veci, ale skôr dva rôzne jazyky
použ́ıvané na opis tých istých većı. Každú stojatú vlnu možno naṕısat’ ako su-

perpoźıciu postupných v́ln a naopak. Ak vám toto nie je celkom jasné, radšej nič
nepreskakujte.

Takže pod’me na tie vlny v jednom rozmere, čo sú napŕıklad vlny na strune.

Kmity (pozd́lžne aj priečne) struny, na ktorú nepôsobia nijaké vonkaǰsie sily, sú
oṕısané vlnovou rovnicou (pripomeňme, že táto rovnica je dôsledkom Newtonovej
pohybovej rovnice a Hookovho zákona)

∂2

∂x2
u(x, t)− 1

v2
· ∂

2

∂t2
u(x, t) = 0

kde u predstavuje výchylku struny (či už pozd́lžnu alebo priečnu) v mieste x a
v čase t. Na riešenie tejto rovnice sa použ́ıvajú dva základné pŕıstupy, ktorým
budeme hovorit’ d’Alambertov a Fourierov. Prvý z nich vedie prirodzene k pojmu

postupných v́ln, druhý k pojmu stojatých v́ln. V pŕıpade elmag v́ln sa ukáže byt’

omnoho vhodneǰśım Fourierov pŕıstup, takže opakovanie d’Alambertovho pŕıstupu
je tu len kvôli istej úplnosti a môže sa preskočit’.
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d’Alambertov pŕıstup je založený na zisteńı, že funkcie typu u(x± v · t) sú
riešeniami vlnovej rovnice na priamke t.j. neohraničenej strune. Tieto riešenia sa
nazývajú postupné vlny (pozri poznámku na str. ??). Avšak nie každé riešenie vlno-

vej rovnice na priamke je postupnou vlnou. Napŕıklad súčet dvoch postupných v́ln
postupujúcich opačným smerom je riešeńım vlnovej rovnice (prinćıp superpoźıcie),

ale nie je postupnou vlnou. Význam postupných v́ln nespoč́ıva v tom, že by to
boli jediné riešenia vlnovej rovnice, ale v tom, že všetky riešenia vlnovej rovnice sa

dajú ṕısat’ ako superpoźıcie postupných v́ln. Vyjadrenie riešenia vlnovej rovnice s

danými počiatočnými podmienkami cez superpoźıciu postupných v́ln sa dá pomerne
l’ahko uhádnut’. (Uhádnutie a jeho jednoduché preverenie je základnou technikou
d’Alambertovho pŕıstupu.)

Ak je počiatočná výchylka zadaná l’ubovol’nou funkciou f(x) a počiatočná rýchlost’

zmeny výchylky u̇ ≡ ∂u
∂t je nulová, t.j. ak

u(x, 0) = f(x).

u̇(x, 0) = 0

potom

u(x, t) =
1

2
( f(x+ v · t) + f(x− v · t) )

počiatočná výchylka sa rozdeĺı napoly a každá polovica sa rozbehne svojim smerom.
Z prinćıpu superpoźıcie je jasné, že u(x, t) je riešeńım vlnovej rovnice a priamym

dosadeńım sa dá okamžite presvedčit’, že sṕlňa uvedené počiatočné podmienky.

Ak je počiatočná výchylka nulová a počiatočná rýchlost’ zmeny výchylky je
zadaná l’ubovol’nou funkciou h(x), t.j. ak

u(x, 0) = 0

u̇(x, 0) = h(x)

potom

u(x, t) =
1

2
( H(x+ v · t)−H(x− v · t) ) kde H(x) =

1

v

∫
h(x) dx

(“primit́ıvna funkcia k rýchlosti zmeny počiatočnej výchylky sa rozdeĺı napoly, a
každá polovica sa rozbehne so svojim znamienkom svojim smerom”). Znova je z
prinćıpu superpoźıcie jasné, že u(x, t) je riešeńım vlnovej rovnice a znova sa pria-

mym dosadeńım dá okamžite presvedčit’, že sṕlňa uvedené počiatočné podmienky.

Prinćıp superpoźıcie a priame dosadenie nám dá riešenie aj vo všeobecnom
pŕıpade počiatočných podmienok

u(x, 0) = f(x)

u̇(x, 0) = h(x)

a śıce

u(x, t) =
1

2
( f(x+ v · t) + f(x− v · t) +H(x+ v · t)−H(x− v · t) )

A tým je úloha na priamke raz a navždy úplne vyriešená v tvare superpoźıcie

štyroch postupných v́ln. (Čo ale neznamená, že neexistuje aj iný užitočný zápis
toho riešenia, ktorý má podstatne iný tvar.)
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Z riešenia vlnovej rovnice na priamke sa dá jednoduchými trikmi nájst’ (uhádnut’)
riešenie rovnice na polpriamke s pevným alebo vol’ným koncom. Pevnému koncu v
bode x = 0 zodpovedá okrajová podmienka u(0, t) = 0, vol’nému koncu podmienka

u′(0, t) ≡ ∂u(0,t)
∂x = 0 (vol’ný koniec totiž zodpovedá nulovej pružnej sile a tá je daná

podl’a Hookovho zákona deriváciou výchylky podl’a x). Trik spoč́ıva vo vhodnom
rozš́ıreńı problému z polpriamky na celú priamku. Nech sú napŕıklad na polpriamke
x ≥ 0 zadané počiatočné podmienky

u(x, 0) = f̄(x)

u̇(x, 0) = 0

Doplňme tieto počiatočné podmienky na celú priamku tak, aby výsledná funkcia
bola nepárna pre pevný a párna pre vol’ný koniec t.j. definujme funkciu f(x) takto

f(x) = f̄(x) pre x ≥ 0
= −f̄(−x) pre x < 0

pevný koniec

f(x) = f̄(x) pre x ≥ 0
= f̄(−x) pre x < 0

vol’ný koniec

Riešenie vlnovej rovnice na priamke s počiatočnými podmienkami danými funkciou
f(x) a nulovou počiatočnou rýchlost’ou už poznáme a toto riešenie je riešeńım rov-

nice aj na polpriamke pričom na nej sṕlňa počiatočné podmienky. Ostáva teda len

zistit’, či sṕlňa aj okrajovú podmienku a to sṕlňa, ako sa znovu l’ahko presvedč́ıme
priamym dosadeńım. Iná možnost’ je nerobit’ mechanické dosadenie, ale predstavit’

si, čo dajú v bode x = 0 dve oproti sebe bežiace polovice párnej resp. nepárnej
počiatočnej podmienky. Takéto predstavenie si riešenia umožńı uvidiet’, že dol’ava
bežiaca polovica, ktorá v bode x = 0 “opúšt’a” polpriamku, sa v tomto bode stretá s
doprava bežiacou polovicou, ktorá na polpriamku “prichádza”. Obe polovice majú
pritom v tomto bode presne rovnakú alebo presne opačnú hodnotu, takže z hl’adiska
polpriamky to vyzerá tak, ako keby sa dol’ava idúca vlna odrážala od pevného resp.
vol’ného konca s opačnou resp. rovnakou fázou.

Nech sú teraz na polpriamke x ≥ 0 zadané počiatočné podmienky

u(x, 0) = 0

u̇(x, 0) = h̄(x)

Znovu doplńıme tieto počiatočné podmienky na celú priamku tak, aby výsledná
funkcia bola nepárna pre pevný a párna pre vol’ný koniec.

h(x) = h̄(x) pre x ≥ 0
= −h̄(−x) pre x < 0

pevný koniec

h(x) = h̄(x) pre x ≥ 0
= h̄(−x) pre x < 0

vol’ný koniec

Riešenie vlnovej rovnice na priamke je znova riešeńım rovnice aj na polpriamke a

znovu sa možno l’ahko presvedčit’, že na nej sṕlňa počiatočné podmienky aj okrajovú
podmienku. Riešenie rovnice s všeobecnými počiatočnými podmienkami u(x, 0) =
f̄(x), u̇(x, 0) = h̄(x) je dané súčtom riešeńı dvoch predchádzajúcich pŕıpadov.
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Analogickými trikmi sa dá z postupných v́ln poskladat’ riešenie vlnovej rovnice
na úsečke s pevnými alebo vol’nými koncami. Tentoraz treba rozš́ırit’ počiatočné
podmienky z úsečky na vhodnú periodickú funkciu na priamke. Ak sú na úsečke
0 ≤ x ≤ l zadané počiatočné podmienky

u(x, 0) = f̄(x)

u̇(x, 0) = h̄(x)

definujeme funkcie f(x), h(x) periodické s periódou 2l nasledovne

f(x) = f̄(x) pre 0 ≤ x ≤ l
= −f̄(−x) pre − l ≤ x < 0

h(x) = h̄(x) pre 0 ≤ x ≤ l
= −h̄(−x) pre − l ≤ x < 0

pevné konce

f(x) = f̄(x) pre 0 ≤ x ≤ l
= f̄(−x) pre − l ≤ x < 0

h(x) = h̄(x) pre 0 ≤ x ≤ l
h̄(−x) pre − l ≤ x < 0

vol’né konce

Znova sa priamym dosadeńım alebo správnym predstaveńım si riešenia presvedč́ıme,
že riešenia na priamke s počiatočnými podmienkami f(x), h(x) sú riešeniami na
úsečke s danými počiatočnými a okrajovými podmienkami a znova ich môžeme
interpretovat’ ako odraz s opačnou fázou na pevnom a rovnakou na vol’nom konci.

Výhodou d’Alambertovho pŕıstupu je jednoduché vyjadrenie riešenia pomo-
cou počiatočných podmienok a jasné nahliadnutie niektorých všeobecne známych

vlastnost́ı v́ln (napŕıklad odrazu v́ln na pevných a vol’ných koncoch alebo toho,

že postupné vlny tvoria vhodný jazyk na opis všetkých v́ln, t.j. všetkých riešeńı
vlnovej rovnice). Nevýhodou je, že tento postup sa nedá dobre zovšeobecnit’ na
viacrozmerné pŕıpady. Vo viacerých rozmeroch sú v podstate dva problémy: jednak
počiatočnú podmienku by tu bolo treba rozdelit’ na nekonečne vel’a čast́ı a poslat’ ich
nekonečne vel’a smermi (ale ked’ rozdeĺıme konečnú počiatočnú podmienku na ne-

konečne vel’a čast́ı, budú tieto časti nulové) a jednak vôbec nie je jasné, ako doṕlňat’

(v duchu triku s úsečkou v jednom rozmere) počiatočnú podmienku v nejakej ne-
pravidelnej ohraničenej oblasti na celý priestor. To neznamená, že d’Alambertov
pŕıstup nehrá vo viacerých rozmeroch nijakú úlohu (d’Alambertovo riešenie na pol-
priamke sa dá využit’ pre riadiálnu premennú v sférických súradniciach), ale v po-
rovnańı s Fourierovým pŕıstupom hrá d’Alambertov pŕıstup vo viacerých rozmeroch
v podstate zanedbatel’nú úlohu.



1. VLNY V JEDNOM ROZMERE (OPAKOVANIE) 5

Fourierov pŕıstup nie je nič iné ako metóda separácie premenných známa z
druhej kapitoly (čast’ 2.2) a spoč́ıva v hl’adańı riešenia v špeciálnom tvare a to v
tvare súčinu dvoch funkcíı, z ktorých jedna záviśı len od x a druhá len od t. Nie
každé riešenie vlnovej rovnice sa však dá naṕısat’ v takomto tvare a preto to, čo
takto nájdeme budú len určité špeciálne riešenia. Tieto špeciálne riešenia sú ovšem
významné tým, že sa z nich dá poskladat’ (v tvare superpoźıcie) všeobecné riešenie.

Dosadeńım funkcie u(x, t) = X(x) · T (t) do vlnovej rovnice dostaneme

X
′′
(x) · T (t)− 1

v2
·X(x) · T̈ (t) = 0

a predeleńım tejto rovnice funkciou u = X · T dostaneme

X
′′
(x)

X(x)
− 1

v2
· T̈ (t)

T (t)
= 0

l’avá strana je súčtom dvoch členov, z ktorých každý záviśı len od jednej premennej.
Ak teraz fixujeme jednu z nich t.j. ak polož́ıme napr. t = tfix, stane sa člen závislý
len od tejto premennej konštantou (nazvime ju α) a z celej rovnice potom vyplýva,
že tejto konštante muśı byt’ rovný aj druhý člen a to pre l’ubovol’nú hodnotu druhej
premennej t.j. že

X
′′
(x)

X(x)
= α ≡ 1

v2
· T̈ (tfix)

T (tfix)

Ak naopak fixujeme premennú x, dostaneme analogicky

1

v2
· T̈ (t)

T (t)
=
X

′′
(xfix)

X(xfix)
= α

Pre funkcie X(x) a T (t) tak dostávame rovnice

X
′′

= α ·X

T̈ = α · v2 · T
Pôvodná parciálna diferenciálna rovnica sa nám takto rozdelila (separovala) na dve
obyčajné diferenciálne rovnice, ktorých riešenie je už pomerne jednoduché.

Ak uvažujeme riešenie vlnovej rovnice na úsečke s pevnými resp. vol’nými kon-
cami, potom sa okrajové podmienky u(0, t) = u(l, t) = 0 (pevné konce) resp.
u′(0, t) = u′(l, t) = 0 (vol’né konce) prejavia na funkcii X(x). Ak totiž funkcia
T (t) nie je identicky rovná nule, potom z okrajových podmienok vyplýva

X(0) = X(l) = 0 pevné konce

X ′(0) = X ′(l) = 0 vol’né konce

Ak je funkcia T(t) identicky rovná nule, potom je identicky rovné nule celé riešenie
u(x, t). Toto je skutočne riešeńım našej úlohy pre triviálny pŕıpad nulových počiatoč-
ných podmienok a len pre tento pŕıpad. Aby sme sa nemuseli k tomuto triviálnemu
pŕıpadu stále vracat’ (v poznámkach podobných tejto), explicitne ho vylúčime z
našich d’aľśıch úvah, vedomı́ si toho, že toto triviálne riešenie existuje.

V pŕıpade riešenia vlnovej rovnice na priamke sa nepožaduje splnenie nijakých
okrajových podmienok t.j. nijakých podmienok pre u(x, t) v limite x → ±∞,
požaduje sa zatial’ len ohraničenost’ riešenia na celej priamke. Ohraničenost’ riešenia
je vel’mi prirodzená požiadavka, pretože neohraničenost’ znamená nekonečne vel’ké
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výchylky a tie nemajú dobrý fyzikálny zmysel, ked’že samotná vlnová rovnica je
odvodená z predpokladu malých výchyliek (len pre ne totiž plat́ı Hookov zákon).
Neohraničené riešenia teda považujeme za nefyzikálne a vždy (nielen na priamke)
hl’adáme len ohraničené riešenia vlnovej rovnice. Ohraničenost’ funkcie u(x, t) sa pre-
jav́ı na funkciách X(x) a T (t). Z ohraničenosti u(x, t) vyplýva pre T (t) nie všade
rovné nule ohraničenost’ X(x) a pre X(x) nie všade rovné nule ohraničenost’ T (t).

Riešeniami rovnice pre funkciu X(x) sú funkcie e
√
α·x, e−

√
α·x pre α > 0, funkcie

sin
√
−α · x, cos

√
−α · x pre α < 0 a funkcia a·x+b pre α = 0. Okrajové podmienky

v pŕıpade úsečky a podmienka ohraničenosti v pŕıpade priamky vylučujú spomedzi
riešeńı exponenty a nekonštantnú lineárnu funkciu (pre vol’né konce a pre priamku
prežije okrajové podmienky lineárna funkcia v podobe konštantnej funkcie X = b).

Úloha má teda riešenie len pre α ≤ 0. Pre úsečku navyše okrajová podmienka v
bode x = 0 vylučuje spomedzi riešeńı cośınus v pŕıpade pevného a śınus v pŕıpade
vol’ného konca. Okrajová podmienka v bode x = l okrem toho určuje, pre aké α
má vôbec úloha riešenie. Aby mohla byt’ táto úloha splnená, muśı byt’

√
−α rovná

celoč́ıselnému násobku π
l . Celkove teda máme

X(x) = sin (k · x) kde k =
nπ

l
pevné konce

X(x) = cos (k · x) kde k =
nπ

l
vol’né konce

X(x) = sin (k · x)

X(x) = cos (k · x) kde k je l’ubovol’né žiadne konce (priamka)

a v pŕıpade vol’ných koncov je riešeńım úlohy ešte aj konštantná funkcia X(x) = b

Riešeniami rovnice pre funkciu T (t) sú pre α < 0 funkcie

T (t) = sin (ω · t) a T (t) = cos (ω · t) kde ω =
√
−α · v2 = k · v

Pre α = 0 je riešeńım lineárna funkcia, ktorá ak nie je konštantná, tak vedie na s
časom neohraničene rastúce resp. klesajúce, t.j. nefyzikálne riešenie u(x, t). Jediným
fyzikálnym riešeńım pre α = 0 je teda súčin dvoch konštantných funkcíı, čiže funkcia
u(x, t) = c.

Riešeniami vlnovej rovnice v hl’adanom tvare sú teda funkcie

u(x, t) = sin (k · x) sin (ω · t) u(x, t) = sin (k · x) cos (ω · t)
u(x, t) = cos (k · x) sin (ω · t) u(x, t) = cos (k · x) cos (ω · t)

ktorým sa hovoŕı stojaté vlny, názov pochádza z toho, že celkový profil vlny sa
nehýbe, len sa s časom periodicky zväšuje a zmenšuje. (V pŕıpade vol’ných koncov
je riešeńım úlohy ešte aj konštantná funkcia u(x, t) = c.)

Nie každé riešenie vlnovej rovnice je ovšem stojatou vlnou. Superpoźıcia sto-

jatých v́ln je riešeńım vlnovej rovnice (prinćıp superpoźıcie), ale nie je stojatou

vlnou. Význam stojatých v́ln nespoč́ıva v tom, že by to boli jediné riešenia vlnovej
rovnice, ale v tom, že všetky riešenia vlnovej rovnice sa dajú ṕısat’ ako superpoźıcie

stojatých v́ln. Ukážeme, že je tomu naozaj tak.
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Superpoźıcia všetkých možných stojatých v́ln nám dáva

pevné konce:

u(x, t) =

∞∑
n=1

cn sin (kn · x) cos (ωn · t) + c′n sin (kn · x) sin (ωn · t)

vol’né konce:

u(x, t) = c +

∞∑
n=1

cn cos (kn · x) cos (ωn · t) + c′n cos (kn · x) sin (ωn · t)

žiadne konce (priamka):

u(x, t) =

∫ ∞
0

c(k) sin (k · x) cos (ω · t) + c′(k) sin (k · x) sin (ω · t) +

+ c̄(k) cos (k · x) cos (ω · t) + c̄′(k) cos (k · x) sin (ω · t) dk

kde kn = nπ
l , ωn = nπv

l a ω(k) = k · v (pričom argument k sa v ω(k)
často kvôli väčšej prehl’adnosti zápisov vynecháva).

Po dosadeńı počiatočných podmienok do týchto superpoźıcíı dostaneme

pevné konce:

f(x) =

∞∑
n=1

cn sin (kn · x) h(x) =

∞∑
n=1

c′n ωn sin (kn · x)

vol’né konce:

f(x) = c +

∞∑
n=1

cn cos (kn · x) h(x) =

∞∑
n=1

c′n ωn cos (kn · x)

žiadne konce (priamka):

f(x) =

∫ ∞
0

c(k) sin (k · x) + c̄(k) cos (k · x) dk

h(x) =

∫ ∞
0

c′(k) ω(k) sin (k · x) + c̄′(k) ω(k) cos (k · x) dk

Uvedené rady a integrály však nie sú nič iné ako Fourierove rady resp. Fourie-
rove integrály pre funkcie f(x) a h(x). A ked’že každá slušná funkcia sa dá rozvinút’

do Fourierovho radu resp. integrálu, znamená to, že superpoźıciou stojatých v́ln
sme schopńı splnit’ l’ubovol’né slušné počiatočné podmienky (slušnost’ funkcie je tu
daná predpokladmi vety o Fourierovom rade resp. integrále).

Koeficienty v našich superpoźıciách stojatých v́ln sú pritom dané známymi vzt’ahmi

pevné konce:

cn =
2

l

∫ l

0

f(x) sin(kn · x) dx c′n =
1

ωn

2

l

∫ l

0

h(x) sin(kn · x) dx

vol’né konce (pri označeńı c = c0
2 ):

cn =
2

l

∫ l

0

f(x) cos(kn · x) dx c′n =
1

ωn

2

l

∫ l

0

h(x) cos(kn · x) dx
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žiadne konce (priamka):

c(k) =
1

π

∫ ∞
−∞

f(x) sin(k · x) dx

c̄(k) =
1

π

∫ ∞
−∞

f(x) cos(k · x) dx

c′(k) =
1

ω(k)

1

π

∫ ∞
−∞

h(x) sin(k · x) dx

c̄′(k) =
1

ω(k)

1

π

∫ ∞
−∞

h(x) cos(k · x) dx

V pŕıpade riešenia na priamke je ovel’a prehl’adneǰśı zápis pomocou komplexnej
exponenty. Ak zaṕı̌seme Fourierov integrál vo vyjadreńı počiatočných podmienok
v komplexnom tvare, dostaneme

u(x, t) =

∫ ∞
−∞

C(k) eikx cos(ωt) + C ′(k) eikx sin(ωt) dk

čo v dôsledku cos(ωt) = 1
2 (eiωt + e−iωt) a sin(ωt) = − i

2 (eiωt − e−iωt) prejde na

u(x, t) =

∫ ∞
−∞

α(k) ei(kx−ωt) + β(k) ei(kx+ωt) dk

kde α(k) = 1
2 (C(k) + iC ′(k)), β(k) = 1

2 (C(k)− iC ′(k)). Explicitné vyjadrenie
koeficientov α(k) a β(k) je (pozri nasledovnú matematickú poznámku)

α(k) =
1

2

1

2π

∫ ∞
−∞

(
f(x) +

i

ω(k)
h(x)

)
e−ikx dx

β(k) =
1

2

1

2π

∫ ∞
−∞

(
f(x)− i

ω(k)
h(x)

)
e−ikx dx

Superpoźıcie stojatých v́ln1 s uvedenými koeficientami sú riešeniami vlnovej
rovnice s danými počiatočnými podmienkami. Fourierov postup nás teda doviedol k
riešeniu vlnovej rovnice s danými okrajovými podmienkami pre l’ubovol’né (slušné)
počiatočné podmienky. Nevýhodou Fourierovho riešenia je, že riešenie je v tvare
nekonečného radu, ktorý nevieme vždy explicitne sč́ıtat’ (takže sme často odkázańı
na to, že sč́ıtame len niekol’ko prvých členov tohto radu a dostaneme tak určité
približné riešenie). Ďaľsou nevýhodou je, že koeficienty tohto nekonečného radu sú
dané v tvare integrálov, ktoré môžu byt’ značne komplikované. Výhodou (z hl’adiska
elektrodynamiky rozhodujúcou) je možnost’ pomerne jednoduchého a prirodzeného
zovšeobecnenia na viacrozmerné pŕıpady.

1Stojaté vlny majú podobne ako postupné vlny tú vlastnost’, že sa z nich dá poskladat’

l’ubovol’né riešenie vlnovej rovnice. Možno nebude na škodu v tejto súvislosti explicitne zdôraznit’,
že stojaté a postupné vlny nie sú dve rôzne veci, ale dva rôzne jazyky vhodné na opis tých

istých većı. Prekladový slovńık medzi týmito dvomi jazykmi, t.j. vyjadrenie stojatých v́ln cez

postupné a naopak, poskytujú súčtové vzorce pre śınus a cośınus, čiže jedným smerom napŕıklad
sin(kx) sin(ωt) = 1

2
(cos(kx − ω t) − cos(kx + ωt)) a druhým smerom napŕıklad cos(kx − ωt) =

cos(kx) cos(ωt) + sin(kx) sin(ωt) V pŕıpade zápisu cez komplexné exponenty je prekladový slovńık

medzi stojatými a postupnými vlnami ešte jednoduchš́ı: ei(kx+ωt) = eikxeiωt. Preto má vyjadrenie

źıskané ako superpoźıcia stojatých v́ln zjavne tvar superpoźıcie postupných v́ln.
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Matematická poznámka – koeficienty Fourierovho radu a integrálu

Fourierov pŕıstup redukuje riešenie vlnovej rovnice na výpočet koeficientov Fou-
rierovho radu resp. integrálu. Pre úplnost’ si pripomeňme, ako sa tieto koeficienty
poč́ıtajú.

Fourierov rad pre funkciu f(x) definovanú na intervale 〈0, l〉 dostaneme doplneńım
na periodickú funkciu s periódou l

f(x) =
b0
2

+

∞∑
n=1

an sin

(
2πnx

l

)
+ bn cos

(
2πnx

l

)

an =
2

l

∫ l

0

f(x) sin

(
2πnx

l

)
dx bn =

2

l

∫ l

0

f(x) cos

(
2πnx

l

)
dx

doplneńım na nepárnu periodickú funkciu s periódou 2l Fourierov rad cez śınusy

f(x) =

∞∑
n=1

an sin
(πnx

l

)
an =

2

l

∫ l

0

f(x) sin
(πnx

l

)
dx

a doplneńım na párnu periodickú funkciu s periódou 2l Fourierov rad cez cośınusy

f(x) =
b0
2

+

∞∑
n=1

bn cos
(πnx

l

)
bn =

2

l

∫ l

0

f(x) cos
(πnx

l

)
dx

Fourierov integrál dostaneme z Fourierovho radu pre funkciu definovanú na 〈−l, l〉

f(x) =
a0

2
+

∞∑
n=1

an sin
(πnx

l

)
+ bn cos

(πnx
l

)
an =

1

l

∫ l

−l
f(x) sin

(πnx
l

)
dx bn =

1

l

∫ l

−l
f(x) cos

(πnx
l

)
dx

v limite l→∞. Najjasneǰsie to vidno ak jednotlivé členy radu vynásob́ıme šikovne
zaṕısanou jednotkou v tvare 1 = n− (n− 1) = δn = l

π δ
nπ
l a označ́ıme cn = l

π an,

c̄n = l
π bn, č́ım dostaneme

f(x) =
a0

2
+

∞∑
n=1

cn sin(
πn

l
x) δ

nπ

l
+ c̄n cos(

πn

l
x) δ

nπ

l

=
a0

2
+

∞∑
n=1

c(kn) sin(knx) δkn + c̄(kn) cos(knx) δkn

kde sme d’alej označili kn = πn
l , cn = c(kn), c̄n = c̄(kn). Ak by uvedená suma

nešla do nekonečna, ale len do nejakého konečného N , bol by to N -tý integrálny
súčet funkcie c(k) cos(k ·x)+ c̄(k) sin(k ·x). Ak suma ide do nekonečna a ak súčasne
ide δkn do nuly (čo pre l → ∞ ide) potom je táto suma (pokial’ existuje) rovná
určitému integrálu z danej funkcie t.j.

f(x) =
a0

2
+

∫ ∞
0

c(k) sin(kx) + c̄(k) cos(kx) dk

kde

c(k) = lim
l→∞

l

π

1

l

∫ l

−l
f(x) sin(kx) dx c̄(k) = lim

l→∞

l

π

1

l

∫ l

−l
f(x) cos(kx) dx



10

Uvedené limity nemusia existovat’ pre l’ubovol’nú funkciu f(x), ale pokial’ je táto
funkcia absolútne integrovatel’ná, t.j. pokial’ existuje konečný integrál

∫∞
−∞ |f(x)| dx,

potom tieto limity existujú. Fourierov integrál sa preto definuje len pre absolútne

integrovatel’né funkcie. Pre také funkcie je a0 = lim
l→∞

1
l

∫ l
−l f(x) dx = 0, takže celkove

f(x) =

∫ ∞
0

c(k) sin(kx) + c̄(k) cos(kx) dk

kde

c(k) =
1

π

∫ ∞
−∞

f(x) sin(kx) dx c̄(k) =
1

π

∫ ∞
−∞

f(x) cos(kx) dx

Fourierov integrál vyjadrený cez imaginárne exponenty źıskame, ak vo vyjadreńı

cez śınusy a kośınusy použijeme cos kx = 1
2 (eikx+e−ikx) a sin kx = − i

2 (eikx−e−ikx)

f(x) =

∫ ∞
0

−c(k)
i

2
(eikx − e−ikx) + c̄(k)

1

2
(eikx + e−ikx) dk

=

∫ ∞
−∞

C(k) eikx dk

kde C(k) = 1
2 (c̄(k)− ic(k)) pre k ≥ 0 a C(k) = 1

2 (c̄(−k) + ic(−k)) pre k < 0.
Všimnime si, že C(−k) = C∗(k). Táto podmienka súviśı s reálnost’ou funkcie f(x)
(ktorú sme doteraz nezdôrazňovali, ale celý čas sme ju implicitne predpokladali).
Vyjadrenie C(k) cez imaginárnu exponentu źıskame dosadeńım vyjadreńı c(k) a
c̄(k) cez śınusy a cośınusy:

C(k) =
1

2

1

π

∫ ∞
−∞

f(x) cos(kx)− i f(x) sin(kx) dx

=
1

2π

∫ ∞
−∞

f(x) e−ikx dx

Fourierova transformácia je užitočné (ako ešte uvid́ıme) zobrazenie, ktoré prirad́ı

funkcii f(x) funkciu C(k), ktorú v tejto súvislosti označujeme symbolom f̃(k) a
voláme ju Fourierovým obrazom funkcie f(x). Inverzné zobrazenie, ktoré prirad́ı

funkcii f̃(k) funkciu f(x) voláme spätnou Fourierovou transformáciou. Fourierova
transformácia (tam a spät’) je teda definovaná ako

f(x)↔ f̃(k)

kde2

f(x) =

∫ ∞
−∞

f̃(k) eikx dk

f̃(k) =
1

2π

∫ ∞
−∞

f(x) e−ikx dx

2Často sa použ́ıva defińıcia, v ktorej sa faktor 1
2π

rozdeĺı medzi funkciou a jej Fourier obraz

f(x) =
1
√

2π

∫ ∞
−∞

f̃(k) eikx dk f̃(k) =
1
√

2π

∫ ∞
−∞

f(x) e−ikx dx

Niekedy sú v defińıcii vymenené znamienka v exponentách. Okrem toho sa pomerne často neṕı̌se
vlnovka nad f(k) a medzi funkciou a jej Fourier obrazom sa rozlǐsuje na základe toho, či je

premennou x alebo k.
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Pŕıklady

1. d’Alambertovo riešenie
(Elementárny pŕıklad, nevyžadujúci nič viac než bezduché dosadenie do vzorca.)
a) Počiatočné podmienky pre kmity nekonečnej struny sú u (x, 0) = exp

(
−x2/a2

)
,

·
u (x, 0) = v

a

(
1 + x2/a2

)−1
. Nájdite u (a, 3a/v)

b) Počiatočné podmienky pre kmity polpriamky x ≥ 0 sú u (x, 0) = 1−exp
(
−x2/a2

)
,

·
u (x, 0) = v

a

[
1−

(
1 + x2/a2

)−1
]
. Nájdite u (a, 3a/v) (a to ako v pŕıpade pevného,

tak aj vol’ného konca).
c) Počiatočné podmienky pre kmity konečnej struny 0 ≤ x ≤ 2a sú u (x, 0) =

1 − exp
(
−x2/a2

)
,

·
u (x, 0) = v

a

[
1
5 −

(
1 + x2/a2

)−1
]
. Nájdite u (a, 3a/v) ak je

koniec x = 0 pevný a koniec x = 2a vol’ný.

2. Fourierovo riešenie
(Elementárny pŕıklad, vyžadujúci poč́ıtanie jednoduchých integrálov.)
a) Nájdite Fourierovo riešenie vlnovej rovnice na úsečke 0 ≤ x ≤ L s počiatočnou

podmienkou u (x, 0) = x (x− L) /L2,
·
u (x, 0) = v/L sinπx/L. (Konce bud’ oba

pevné, alebo oba vol’né).
b) Nájdite Fourierovo riešenie vlnovej rovnice na priamke s počiatočnou podmien-

kou u (x, 0) = exp−x2/a2,
·
u (x, 0) = 0.

3. Časovo premenné okrajové podmienky
(Dôležité rozš́ırenie pŕıkladov uvádzaných v texte.)
a) Separáciou premenných riešte vlnovú rovnicu na úsečke 0 ≤ x ≤ L, s nulovými
počiatočnými podmienkami a s okrajovými podmienkami u (0, t) = 0, u (L, t) =
sin Ωt. Ukážte, že pre Ω→ ωn = nπv/L dostávame riešenie s neobmedzene rastúcim
koeficientom (rezonancia). (Návod: riešenie = superpoźıcia danej okrajovej úlohy
s l’ubovol’nými poč. podm. a úlohy s pevnými koncami a vhodnými poč. podm.)
b) To isté pre u (0, t) = 0, u (L, t) = g (t)
c) To isté pre u′ (0, t) = γ (t), u (L, t) = g (t)

4. Dve spojené struny
(Dôležité rozš́ırenie pŕıkladov uvádzaných v texte.)

a) Uvažujme dve spojené struny s rôznou rýchlost’ou v́ln v každej z nich, t.j.

uvažujme rovnicu v2
1 u
′′(x, t)− ··u(x, t) = 0 pre 0 ≤ x ≤ l, a v2

2 u
′′(x, t)− ··u(x, t) = 0

pre l ≤ x ≤ L. Nájdite riešenie tejto úlohy pre pevné konce u (0, t) = u (L, t) = 0.
(Návod: hladké zošitie riešeńı v jednotlivých strunách, pričom hladkost’ znamená
spojitost’ funkcie aj derivácie.)

b) Ukážte, že v limitnom pŕıpade v1 = v2 dostaneme riešenie pre strunu d́lžky L.
c) Ukážte, že v limitnom pŕıpade v1 � v2 sú frekvencie kmitov systému zhodné s
frekvenciami kmitov prvej struny (návod: rovnicu pre ω riešit’ iteráciami, nahliadnut’

že nultá je často dobrá, vd’aka tomu že tangens je vel’ký len v úzkych intervaloch)3

3Z tohto pŕıkladu plynú dve poučenia, po prvé frekvencie systému pozostávajúceho z dvoch

podsystémov nemusia mat’ vôbec nič spoločné s frekvenciami týchto podsystémov, a po druhé za

istých špeciálnych okolnost́ı môžu mat’ predsa len vel’a spoločného. Typickým pŕıkladom takýchto
špeciálnych okolnost́ı sú strunové hudobné nástroje, kde frekvencie nástroja sú v podstate dané

frekvenciami kmitov struny.


