
Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Sparse neural network training from

scratch

Master Thesis

2023

Marcel Palaj, Bc.

Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Sparse neural network training from

scratch

Master Thesis

Study Programme: Applied Computer Science

Field of Study: Computer Science

Department: Department of Applied Informatics

Supervisor: Mgr. Vladimír Boºa, PhD.

Bratislava, 2023

Marcel Palaj, Bc.

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Bc. Marcel Palaj
Študijný program: aplikovaná informatika (Jednoodborové štúdium,

magisterský II. st., denná forma)
Študijný odbor: informatika
Typ záverečnej práce: diplomová
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Sparse neural network training from scratch
Trénovanie riedkych neurónových sietí z ničoho

Anotácia: Neurónové siete majú typicky oveľa viac parametrov ako je potrebné a je ich
možné orezať pomocou viacerých techník. Výsledná neurónová sieť potom
pozostáva z riedkych váhových matíc.
Našim cieľom je trénovať riedke siete od začiatku trénovania bez nutnosti
používať operácie na hustých maticiach.
Očakávame, že počas trénovania sa štruktúra matíc bude meniť (niektoré váhy
sa odstránia a niektoré sa pridajú). Predošlé práce buď váhy pridávali náhodne
([1]) alebo používali husté gradienty ([2,4]).
Našim cieľom je vyrobiť novú metódu, ktorá prídava nové váhy rozumných
spôsobom a zároveň nepotrebuje husté gradienty.
Voliteľné môžeme tiež vyskúšať rôzne spôsoby inicializácie siete a rôzne
spôsoby parametrizácie riedkych matíc.

Literatúra: [1] Mocanu, Decebal Constantin, et al. "Scalable training of artificial neural
networks with adaptive sparse connectivity inspired by network science."
Nature communications 9.1 (2018): 1-12.
[2] Evci, Utku, et al. "Rigging the lottery: Making all tickets winners."
International Conference on Machine Learning. PMLR, 2020.
[3] Liu, Shiwei, et al. "Do we actually need dense over-parameterization? in-
time over-parameterization in sparse training." International Conference on
Machine Learning. PMLR, 2021.
[4] Liu, Junjie, et al. "Dynamic sparse training: Find efficient sparse network
from scratch with trainable masked layers." arXiv preprint arXiv:2005.06870
(2020).

Vedúci: Mgr. Vladimír Boža, PhD.
Katedra: FMFI.KAI - Katedra aplikovanej informatiky
Vedúci katedry: doc. RNDr. Tatiana Jajcayová, PhD.

Dátum zadania: 30.11.2022

Dátum schválenia: 07.12.2022 prof. RNDr. Roman Ďurikovič, PhD.
garant študijného programu

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

študent vedúci práce

Comenius University Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Bc. Marcel Palaj
Study programme: Applied Computer Science (Single degree study, master II.

deg., full time form)
Field of Study: Computer Science
Type of Thesis: Diploma Thesis
Language of Thesis: English
Secondary language: Slovak

Title: Sparse neural network training from scratch

Annotation: Neural networks are typically overparametrized and can be pruned using various
techniques, resulting in networks with sparse weight matrices.
Our goal is to achieve training of sparse neural networks from scratch without
need for dense operations in any stage of training.
During training, we expect that sparsity pattern will change (some weight will
be dropped and some weight will be added in).
Previous works, either add new weights randomly ([1]) or use dense gradients
([2,4]).
One of our goals is to develop a new method, which adds new weights in a
clever way without using full gradients.
Optionally, we can also experiment with various ways of sparse network
initialization and different ways of reparametrizing the network using sparse
metrics.

Literature: [1] Mocanu, Decebal Constantin, et al. "Scalable training of artificial neural
networks with adaptive sparse connectivity inspired by network science."
Nature communications 9.1 (2018): 1-12.
[2] Evci, Utku, et al. "Rigging the lottery: Making all tickets winners."
International Conference on Machine Learning. PMLR, 2020.
[3] Liu, Shiwei, et al. "Do we actually need dense over-parameterization? in-
time over-parameterization in sparse training." International Conference on
Machine Learning. PMLR, 2021.
[4] Liu, Junjie, et al. "Dynamic sparse training: Find efficient sparse network
from scratch with trainable masked layers." arXiv preprint arXiv:2005.06870
(2020).

Supervisor: Mgr. Vladimír Boža, PhD.
Department: FMFI.KAI - Department of Applied Informatics
Head of
department:

doc. RNDr. Tatiana Jajcayová, PhD.

Assigned: 30.11.2022

Approved: 07.12.2022 prof. RNDr. Roman Ďurikovič, PhD.
Guarantor of Study Programme

Comenius University Bratislava
Faculty of Mathematics, Physics and Informatics

Student Supervisor

Acknowledgments: Tu bude po¤akovanie.

vi

Abstrakt

Slovenský abstrakt v rozsahu 100-500 slov, jeden odstavec. Abstrakt stru£ne suma-

rizuje výsledky práce. Mal by by´ pochopite©ný pre beºného informatika. Nemal by

teda vyuºíva´ skratky, termíny alebo ozna£enie zavedené v práci, okrem tých, ktoré sú

v²eobecne známe.

K©ú£ové slová: jedno, druhé, tretie (prípadne ²tvrté, piate)

vii

Abstract

Abstract in the English language (translation of the abstract in the Slovak language).

Keywords:

viii

Contents

Introduction 1

1 Overview 3

2 Related work 7

3 Research 13

Conclusion 19

Príloha A 23

Príloha B 25

ix

x

List of Figures

3.1 Di�erence between searching for most similar vectors using brute-force

search and searching using faiss . 15

xi

xii

List of Tables

3.1 Results from training model with abs(IP) connection updates after each

minibatch . 16

3.2 Results from training model with L2 connection updates after each mini-

batch . 16

3.3 Results from training model with IP connection updates each epoch. . 17

3.4 Results from training model with LSH connection updates after each

minibatch . 18

3.5 Results from training model with LSH connection updates after each

minibatch . 18

xiii

xiv

Introduction

Cie©om tejto práce je poskytnú´ ²tudentom posledného ro£níka bakalárskeho ²túdia

informatiky kostru práce v systéme LaTeX a ukáºku uºito£ných príkazov, ktoré pri

písaní práce môºu potrebova´. Za£neme stru£nou charakteristikou úvodu práce pod©a

smernice o závere£ných prácach [?], ktorú uvádzame ako doslovný citát.

Úvod je prvou komplexnou informáciou o práci, jej cieli, obsahu a ²truk-

túre. Úvod sa vz´ahuje na spracovanú tému konkrétne, obsahuje stru£ný

a výstiºný opis problematiky, charakterizuje stav poznania alebo praxe v

oblasti, ktorá je predmetom ²kolského diela a oboznamuje s významom,

cie©mi a zámermi ²kolského diela. Autor v úvode zdôraz¬uje, pre£o je práca

dôleºitá a pre£o sa rozhodol spracova´ danú tému. Úvod ako názov kapitoly

sa ne£ísluje a jeho rozsah je spravidla 1 aº 2 strany.

V nasledujúcej kapitole nájdete ukáºku £lenenia kapitoly na men²ie £asti a v kapi-

tole ?? nájdete príkazy na prácu s tabu©kami, obrázkami a matematickými výrazmi.

V kapitole ?? uvádzame klasický text Lorem Ipsum a na koniec sa budeme venova´

záleºitostiam záveru bakalárskej práce.

1

2 Introduction

Chapter 1

Overview

In this chapter, we will focus on basic concepts for understanding this work. We will

brie�y describe feedforward neural networks, their learning methods, and layers which

are important for this thesis.

Deep feedforward network

A deep feedforward Network or multilayer perceptron (MLP) is a machine learning

model, which goal is to approximate some function f ∗ [6]. This model can be used for

various tasks (classi�cation, regression, ...), but in this work, we only use this model

to classi�cate input vector x to category y. An MLP de�nes mapping y = f(x; θ), and

during learning, it learns parameters θ [6].

Usually, MLP consists of multiple composed di�erent functions. For example, if the

network is composed of two functions g(x) and h(x) chained together, it means that

f(x) = h(g(x)). Each function can be called layer. Rather than thinking about the

layer as a function on a vector, we usually think about the layer as many processing

units called neurons. Each neuron is connected to some other neurons, and it computes

its activation value (which is used for other neurons as input).

The overall length of this chain of functions/layers is called depth. The last layer

of the model is called output layer.

Let's just brie�y review the two most important layers of this work: the linear layer

and convolutional layers.

Linear layer

The linear layer is the most basic layer in MLP. It models a�ne transformation. Given

input vector x, this layer produces result vector y = W Tx+b, where W and b are learn-

able parameters. Because stacking these layers doesn't increase the model's amount of

functions, which can approximate, this layer is followed by some activation function.

It means, that result of this layer is y = f(W Tx + b), where f is activation function.

3

4 CHAPTER 1. OVERVIEW

Linear layer followed by activation function is called dense layer or fully connected

layer.

Convolutional layer

The convolutional layers are special kinds of layers for processing data with known

grid-like topology [6]. A usual example is processing images because each image is a

grid of pixels. This type of layer doesn't use matrix multiplication by full-sized matrix,

but instead, it uses a small matrix called kernel (which similarly to the linear layer has

learnable parameters). This kernel slides over the input data and computes the dot

product of the kernel and input data.

//TODO obrazok konvolucie

Learning of MLP

The term �learning� (or �training�) in machine learning means process, where learnable

parameters are set. There are multiple paradigms, to be followed:

� supervised learning

� unsupervised learning

� semisupervised learning

� reinforcement learning

� . . .

These paradigms di�er in one biggest thing: whether we have �correct answers� and

the model is trying to learn to answer these answers.

Because in this thesis we are dealing only with supervised learning, we will not

discuss other paradigms.

In most cases, all learnable parameters (weights) of MLP are learned using gradient

descent. In this approach, we have some loss or loss function, which we are minimizing.

Because this function is nonconvex, MLPs are usually trained using iterative methods.

Let's now a little more precisely describe iterative methods of MLP training. For

this training, we have a dataset of inputs. For each input, we have the correct �answer�.

Training consists of multiple rounds of giving model samples from the dataset. For each

input, we compare the desired (correct) output with the correct output. Based on the

di�erence between these outputs, we can calculate the gradient and adjust weights.

The gradient for the MLPs is calculated using back-propagation algorithm.

We will write back-propagation equations for one linear layer in a multi-layer per-

ceptron. Let x be input for this layer and W matrix of learnable parameters for this

5

layer. Denote z as the output of this layer. It means, that z = Wx. From the next

layer, the backpropagation algorithm brings us a gradient of our output z (∂L
∂z
).

If we want to compute the gradient of each weight in this layer, it is computed as

∂L

∂W
=

∂L

∂z
· xT

However, we are only exceptionally training models by giving them training data

one by one. Instead, we are giving multiple data at one time (we are calling these

groups �minibatches�). The resulting gradient is the sum of gradients for each data in

the minibatch. This method is called �minibatch training�.

So, if we are training the model using the minibatch method, the gradient for each

weight can be calculated as

∂L

∂W
=

∑
x∈batch

∂L

∂z
· xT

If we write down this equation for one particular weight Wij, we get:

∂L

∂Wij

=
∑

x∈batch

∂L

∂zj
· xi

Also, we need to pass the gradient of our input x to the previous layer (if such

exists). We can calculate this gradient as

∂L

∂X
= W T · ∂L

∂z

// regularizácia

Sparse neural networks

Nowadays, deep neural networks are achieving state-of-the-art models in machine learn-

ing. However, the results scale with model and dataset size [9]. Current state-of-the-art

models have multiple millions of parameters, which require huge computational power

even for model training, and much more for hyperparameter tuning.

By the term �sparsity�, we mean that the subset of the model's (or layer's) learnable

parameters is set to zero [5]. If we have somewhere in the model zero-valued weights

results of any multiplications (which dominate calculations in neural network training

and testing) are zero, and thus can be skipped. Of course, we also don't need to store

these zero-valued parameters, so model storing requires fewer parameters. An opposite

of �sparse model� is usually used �dense model�, term which means, that none of the

model's weights are zero-valued on purpose. Of course, if the result of the training is

that some weights are zero-valued (and it isn't our intention), we usually don't refer

to this model as a �sparse model�.

6 CHAPTER 1. OVERVIEW

The term �sparsity� also refers to the fraction of weights in the model, which are set

to zero. So if some model has �higher sparsity�, it means, that it has more zero-valued

weight [5]. And, the last term that we are going to use is �pruning�. By �pruning� we

mean removing connections (weights) from the network, i.e. processes that make the

network more sparse.

Chapter 2

Related work

In this chapter, we will discuss methods, which is related to sparse neural networks.

We can divide these methods into two parts: methods, that use dense training, and

methods that use sparse training. We will now describe both of them in more detail.

Dense training, sparse inference

Research on sparse networks isn't a new topic. Firstly, there were introduced methods,

which started on dense networks, and throughout the training process, weights were

removed to achieve the desired sparsity.

All methods which will be mentioned in this section will have one thing in common:

they are using dense networks in some stages of training (usually in the beginning).

But, even with dense training, models produced by these methods are sparse, therefore

in the inference phase they have fewer weights, so they require fewer operations. Also,

they require less space to store or transfer. Both these improvements can result in

wider usage of these networks in �elds like mobile apps, where large storage overhead

can prevent deep neural networks from being used in these situations.

It's worth noting, that the motivation of the earliest research on this topic wasn't

driven only by reducing model size or by reducing operations needed for model training,

but as another regularization method for improve model generalization ability [15].

There is a large amount of methods and techniques, that use dense training, perhaps

it is because these methods are somehow easier to develop. If at the beginning of the

training, the model is dense (it contains all weights), it means, that weights which are

in our best sparse model (that we want to �nd), are for sure a subset of weights of the

dense model. So, in simple terms, we just want to �nd which weights we want to prune

to achieve the desired sparsity.

There were works ([15], [8], [2]) that prove the possibility of pruning small magni-

tude weight with none or very minimal accuracy loss. The idea behind these methods

is shared across multiple methods and is somehow intuitive: the magnitude of each

7

8 CHAPTER 2. RELATED WORK

weight is proportional to weight importance. Removing weight with the smallest mag-

nitude doesn't change the result of the model so much (or at least for the result of

this layer). So, all these methods remove the least important weights during training

according to some sparsi�cation schedule.

The sparsi�cation schedule in these methods can be some iterative pruning, when

they were removing a small amount of weight regularly during training, or they were

doing some �train-prune-retrain� scheme.

Examples of some �train-prune-retrain� methods can be found in [7] and [14]. While

the �rst method was pruning model only once, the second method was doing multiple

rounds of alternating sparse and dense phases during the training process.

Another interesting example of the �train-prune-retrain� method is [8], which is a

method, that trains dense networks, and when training is (already) �nished, weights

with the smallest magnitude are removed. This �rst training can be viewed as �learning

which weights are important�. However, this step would have a signi�cant impact

on network accuracy, so it is followed by a retraining network, but now with sparse

topology.

There also had been techniques, that used second-order approximation of the loss

function, and based on this approximation were removing unimportant weights [11].

However, calculating second-order loss approximation is less computationally e�cient

(compared to calculating �rst-order loss), and modern techniques achieved comparable

results with only �rst-order loss.

One of the methods, that brings valuable insight into the topic of sparse networks

is Lottery ticket hypothesis[4]. To quote this work:

The Lottery Ticket Hypothesis. A randomly-initialized, dense neural

network contains a subnetwork that is initialized such that�when trained

in isolation�it can match the test accuracy of the original network after

training for at most the same number of iterations.

These networks, that can match the test accuracy were called �winning tickets�

(in the lottery). To identify these �winning tickets�, they perform the usual network

training (starting with the usual random initialization). After some iterations, they

prune the lowest magnitude weights, to reach desired network sparsity. After this

pruning, they train the network again from scratch, but using only nonpruned weights.

They also explore iterative pruning, when they apply that �train-prune-reset-train�

more times. This iterative pruning was able to �nd smaller networks that with their

accuracy match their dense counterparts.

But, there is also another interesting thing, in this paper: it turns out, that it

doesn't only matter on model sparsity layout (i.e. which weight has to be nonzero-

valued), but also on weight initialization. When �winning tickets� are randomly reini-

9

tialized, they learn slowly and achieve lower test accuracy as if they are initialized

exactly as they were at the beginning of the previous training.

The �rst possible explanation - these values are close to their �nal values - turns

out to be wrong. The explanation provided by the authors is, that �winning ticket�

initialization is connected to the optimization algorithm, dataset, and model. For

example, this initialization can be in some good regions of the loss landscape, where

the optimization algorithm quickly �nds some good local minima.

Sparse training, sparse inference

Now, let's describe methods that are training sparse neural networks from the begin-

ning.

The problem with sparse training is that we simply don't know which weights are

important for the network (for their results). It means that is not possible to decide,

which weights will be zero-valued, and which will have a nonzero value at the beginning

of the training, and leave that unchanged during the whole training process.

This means, that all methods, which are using sparse training are not only remov-

ing/deleting weights to networks, they are also adding/growing new weights.

We can divide them into two groups: either they use dense gradient information,

or they use randomization to �nd the best connection distributions.

Sparse Evolutionary Training (SET)

Sparse Evolutionary Training (SET)[13] is an example of the second method, which

uses randomization.

This method starts with a random sparse network. More precisely, the weight

matrix is Erd®s-Rényi random graph. In this graph, the probability of a connection

between neuron hk
i and hk−1

j (there is nk neurons in layer k and nk−1 neurons in layer

k − 1) is given by:

P (W k
ij) =

ϵ(nk + nk−1)

nknk−1
(2.1)

where ϵ ∈ R+ is a parameter controlling sparsity level. Of course, this initial

randomly generated topology cannot be well-suited for all datasets and all models. So,

during training this topology changes. After each training epoch new weight grows

and some weights are removed (to preserve sparsity level). Weights are removed based

on the smallest magnitude, which was discussed in methods with dense training. New

connections are grown randomly (new connections are chosen randomly from zero-

valued weight, with exceptions to weight which we removed right now).

//TODO update schedule

10 CHAPTER 2. RELATED WORK

This approach is (as can be guessed from the name) an example of some evolu-

tionary algorithm, where removing the smallest magnitude weight can be viewed as

the �selection� phase in evolution. Also, growing new weights can be viewed as the

�mutation� phase in evolution.

The interesting thing, that this work discovers is that even if the sparsity layout

is not updated (it is �xed from the beginning), the results of the network are not as

bad as one would guess. Of course, they are worse than dense models and also worse

than models trained using SET, but not that bad. It con�rms that the networks can

overcome removed weights and learn despite being heavily sparsi�ed.

Rigging the lottery

Paper [3] is also removing connections with the smallest magnitude weight. However,

this method grows new connections based on their highest magnitude gradients. The

idea behind this method is that if the magnitude gradient is really large for some (not

existing) connections, it means that these connections are important for network results

and that we should add this connection to our network. Newly added connections are

initialized to zero, so they don't a�ect the output of the network.

This method also doesn't update sparsity layout after each training step, instead

only each ∆T step. There also was the decay of the amount of weight updated applied.

The method that slightly outperforms the other methods considered is cosine annealing.

fdecay(t;α, Tend) =
α

2

(
1 + cos

(
tπ

Tend

))
where α, Tend are hyperparameters.

This work also explored sparsity distribution between layers. They consider 3

strategies: uniform (where the sparsity of each layer is equal to the total sparsity

of the network), Erd®s-Rényi (where sparsities were distributed the same way as in the

previous method, using Erd®s-Rényi random graph created using equation 2.1), and

Erd®s-Rényi-Kernel (ERK), which modi�ed equation 2.1 to include also kernel dimen-

sions. The reasoning behind the second and third options is that they enable lower

sparsities in the smaller layers (layers with fewer parameters), and higher sparsities for

larger layers. Using these distributions, it is unlikely that some �bottleneck� happens,

where we prune nearly all weights from some small layer, and we nearly stop informa-

tion �ow through the model. Experimental results also con�rm this hypothesis. The

di�erence between these options became larger with a bigger sparsity of models.

However, this method requires a dense gradient in each weight update step, of

course, this method doesn't require storing this gradient, it can be immediately dis-

carded. If the gradient is too large to �t into memory, it can even be calculated in an

online manner, because we only need to store top-k values of the gradient vector.

11

Dynamic sparse training

Lastly, work [12] has been using a di�erent approach. In this method, they make

sparsity an integral part of the training process. After each weight matrix in the

network, they add a �mask layer�. This layer was just returning input (i.e. weight) if

the magnitude of input was greater than some threshold th, or else it was returning 0,

according to the equations:

Qij = F (Wij, ti) = |Wij| − ti

Mij = S(Qij)

S(x) =

1, if x ≥ 1,

0, otherwise.

And weight value Wij will be masked by value Mij, so result weight will be Wij ·Mij

In this work, they tried three options for thresholds (for one layer): have only one

scalar threshold (i.e. one threshold for each layer), have a vector of thresholds (i.e. one

threshold for each neuron), and have a matrix of thresholds (i.e. one threshold for each

weight). Matrix and vector thresholds have similar results, but the scalar threshold

was less robust. Finally, they decided to have vector thresholds, because of the smaller

amount of additional parameters.

However, these thresholds (due to the usage in step function S(x)) are not trainable

using back-propagation, because we require the derivative of step function S(x). This

derivative is an impulse function, which looks like this:

δ(x) =

∞, if x = 0,

0, otherwise.

Which is not usable for back-propagation. So, they decided to use only an approx-

imation of this derivation of this function, long-tailed estimator.

d

dx
S(x) ≈ H(x) =

2− 4|x|, −0.4 ≤ |x| ≤ 0.4,

0.4, 0.4 < |x| ≤ 1,

0, otherwise.

With this estimator, the thresholds can be trained via back-propagation. Each

network parameter is during training receiving two types of gradients. One is the

performance gradient for better model performance (for higher model accuracy), and

the second is the structure gradient for better sparse structure.

Even if the network thresholds are trainable, there is nothing, that is pruning

weights to make the network more sparse. So, this method introduced a penalty called

12 CHAPTER 2. RELATED WORK

�sparsity regularization term�, which was added to the loss function. For each trainable

masked layer, the regularization term is

R =
∑

exp(−ti)

and sparse regularization term for the whole network is the sum of these regular-

ization terms:

LS =
∑

Ri

This brings us to the desired result: the more sparse the network, the smaller the

penalty. Of course, this sparse regularization term is added to the overall loss multiplied

by some hyperparameter α.

This approach allows the network to somehow �decide on their own way� how to

make sparsity distribution, and which parameters will be pruned, depending on how

important they seem to be.

Chapter 3

Research

In our work, we are developing a new method to update connections in sparse neural

networks. This method (like other methods) consists of two parts:

1. drop old connections

2. grow new connections

Part, when we are dropping old connections is shared across multiple sources (e.g.

[3], [13]). We are dropping connections with the smallest absolute value of weights,

because these connections are somehow least important for network output and overall

performance, because their in�uence on network results is probably minimal.

The second part is growing new connections. We are growing new connections

based on the magnitude gradient.

If we have one layer in a multi-layer perceptron. Where output z of this layer is z =

Wx. The gradient for some weight in the layer is calculated as ∂L
∂Wij

=
∑

x∈batch
∂L
∂zj

·xi.

If we want to �nd connections with the largest magnitude gradients, we basicaly

want to �nd some i, j for which is value |
∑

x∈batch
dL
dzj

· xi| maximal.

But, we can also look at this problem as �nding the most similar vectors between

two groups of vectors, where all vectors have the same size as batch size. Each vector

in the �rst group of vectors consists of values dL
dzj

for each value x ∈ batch. Each vector

in the second group consists of values xi for each value x ∈ batch.

In each update step, we are updating some fraction of connections. We denote

this hyperparameter as K, where K ∈ ⟨0, 1⟩. This number means, that if denote the

number of all connections in this layer as c, we are updating c ·K connections.

Because �nding most similar vectors, is quite a common task, there exists a couple of

projects and libraries, that perform this task quite fast. In this thesis, we consider two

of them: faiss[10] and nmslib[1]. These libraries create an object called index, where

are all vectors from one group inserted. After this step, index can perform operation

search(v, k) of �nding k most similar vectors from index to vector v. Both these

13

14 CHAPTER 3. RESEARCH

libraries support batch queries, which means, that if we have some array of vectors V,

operation search(V, k) will quickly �nd k most similar vectors to each vector in array

V.

Also, using a similarity search between two groups of vectors brings us another

hyperparameter to explore: k, which is the number of most similar vectors for index

to �nd. Because the sizes of groups of vectors will vary between layers in the model,

we introduced di�erent hyperparameter ksimilar. Similar to hyperparameter K, this

hyperparameter denotes a fraction of vectors, which we are �nding. It means, that

ksimilar ∈ ⟨0, 1⟩. More precisely, let us consider that we have two groups of vectors.

Let's say that in the �rst group is a vectors and in the second in b vectors. We add

create index from the �rst group of vectors (a vectors) and perform a search on group

b, we will set k = a · ksimilar.

If we set ksimilar = 1, the result of this query will be identical to a brute force

search, where we will have distances to all vectors from another group. We have to

also note, that in this case, this approach would be slower because index creation is

also an operation that costs some time. But, we believe, that it will be su�cient to set

ksimilar to some small value (e.g. something like 0.2), which can bring us to speed up

in comparison to the brute-force search.

The di�erence between searching for most similar vectors using brute force search

and searching with faiss is shown in �gure 3.1. Both methods start with a similarity

matrix (in the �gure on the left top). Searching using faiss �nds for each vector some

number (this number is determined by hyperparameter k_similar) of the most similar

vector (in the �gure it �nds 2 most similar vectors for each row). These vectors are

�attened together, and sorted, and we choose K most similar vectors as new connec-

tions. Contrary, brute-force search �attens these similarities as the �rst step, sorting

them and directly choosing the K most similar vectors. Thus, searching using faiss

(with these similarities and these hyperparameters) wasn't able to �nd the most similar

vectors (in this example searching using faiss doesn't �nd vector with similarity 33.1)

So, to sum up our algorithm: we start with a random sparse network. After some

training steps (determined by hyperparameter ∆T) we update connections using the

methods described above. We are removing connections with the smallest absolute

value of weights. Connections are added based on the largest vector similarity (largest

magnitude of gradient). We need to decide how are we going to initialize newly added

connections. The pseudocode for our method can be seen at algorithm 3.

15

Figure 3.1: Di�erence between searching for most similar vectors using brute-force

search and searching using faiss.

Algorithm 1 Training model with one layer
Input network fW , dataset D

connection update hyperparameters: K, dT

1: randomly sparsify W

2: for each training step t do

3: xi, yi = input and output of minibatch from D

4: Lt = L(fW (xi), yi)

5: W = W − α∇WLt

6: if t (mod dT) == 0 then

7: remove K weights with lowest |W |
8: add K weights with largest similarity between ∇W and xi

9: end if

10: end for

We ran several experiments with various hyperparameters to compare training time

for �nding connections for updates using brute-force search and using vector similarity

search.

All experiments have been running on server with 12 CPUs Intel Xeon CPU E5-

1650 v3 @ 3.50GHz, 32 GB RAM and two GPUs: Nvidia RTX 3090 and Nvidia GTX

1080.

All experiments were run on WideResNet28x5 model on CIFAR 100 dataset. In

this model, all convolution and linear layers were replaced by random sparse layers.

During training, we updated connections in all convolution layers.

The �rst experiment was a training model with connections updated each minibatch

(∆T = 1). Results from training can be seen in tables 3.1 and 3.3.

From these results, we can clearly see, that connection updates based on inner

16 CHAPTER 3. RESEARCH

Model Sparsity K ksimilar

Training time

(70 epochs)
Val. acc Note

basic 0% � � 0.61h 74.83%

pruned 80% � � 0.65h 69.94%

pruned + bruteforce 80% 0.01 � 3.59h 72.68% GPU 0

pruned + bruteforce 80% 0.05 � 3.65h 72.01% GPU 0

pruned + bruteforce 80% 0.1 � 3.81h 71.17% GPU 0

pruned + faiss 80% 0.01 0.15 3.72h 73.65% GPU 1

pruned + faiss 80% 0.05 0.15 3.74h 72.13% GPU 1

pruned + faiss 80% 0.1 0.15 4.02h 70.59% GPU 1

pruned + faiss 80% 0.01 0.125 2.32h 72.53% GPU 0

pruned + faiss 80% 0.05 0.125 2.43h 73.28% GPU 0

pruned + faiss 80% 0.1 0.125 2.55h 68.21% GPU 0

Table 3.1: Results from training model with abs(IP) connection updates after each

minibatch

Model Sparsity K ksimilar

Training time

(70 epochs)
Val. acc Note

basic 0% � � 0.61h 74.83%

pruned 80% � � 0.65h 69.94%

pruned + bruteforce 80% 0.01 � 1.94h 67.53% GPU 0

pruned + bruteforce 80% 0.05 � 2.21h 66.70% GPU 0

pruned + bruteforce 80% 0.1 � 2.34h 55.63% GPU 0

pruned + faiss 80% 0.01 0.15 2.36h 68.73% GPU 1

pruned + faiss 80% 0.05 0.15 2.53h 69.68% GPU 1

pruned + faiss 80% 0.1 0.15 2.63h 65.35% GPU 1

pruned + faiss 80% 0.01 0.2 3.84h 68.95% GPU 1

pruned + faiss 80% 0.05 0.2 3.99h 67.59% GPU 1

pruned + faiss 80% 0.1 0.2 4.07h 64.17% GPU 1

Table 3.2: Results from training model with L2 connection updates after each mini-

batch

17

Model Sparsity K ksimilar

Training time

(70 epochs)
Val. acc ∆ acc Note

basic 0% � � 0.61h 74.83% �

pruned 80% � � 0.65h 69.94% �

pruned + bruteforce 80% 0.01 � 0.84h 71.92% −0.69% GPU 0

pruned + faiss 80% 0.01 0.15 0.78h 71.99% −1.66% GPU 0

pruned + faiss 80% 0.05 0.15 0.83h 73.04% +0.91% GPU 0

pruned + faiss 80% 0.1 0.15 0.84h 71.08% +0.49% GPU 0

pruned + faiss 80% 0.01 0.125 0.77h 71.91% −0.62% GPU 0

pruned + faiss 80% 0.05 0.125 0.81h 72.01% −1.27% GPU 0

pruned + faiss 80% 0.1 0.125 0.76h 69.90% +1.69% GPU 0

Table 3.3: Results from training model with IP connection updates each epoch.

product similarity provides much better results than connection updates based on

L2 distance. Even the best model using L2 metrics is worse than a model with the

�xed sparsity mask. With this knowledge, we perform other experiments using solely

abs(IP) metrics as a similarity measure.

Also, if we compare training time (on the same GPU) for the model using bruteforce

similarity search and the model using faiss similarity search, we can see, that similarity

search using faiss is faster for up to approximately k_similar = 0.3. It is worth noting,

that in these experiments we use only the CPU version of faiss. We tried using GPU

version of faiss in the latter part of this thesis.

We decided to take a closer look at the connection update schedule.

As a �rst experiment, we update weights only after each epoch (which is 196× less

than the update after each minibatch, mentioned in 3.1 and 3.3).

From these results, we can formulate behavior, which is somewhat intuitive: the

more often we are doing connection updates, the fewer connections we need to update

(to achieve the same accuracy). Of course, this statement doesn't hold for extreme

cases, such as if we want to do only one connection update during training, when we

replace all connections.

An interesting thing, that also seems intuitive is, that doing connections update not

after each training step, but after a few steps can raise model accuracy. It is because,

similar to the usage of momentum in the training process in neural networks if we are

doing connection updates based on the average of more training steps, we can better

overcome some local patterns in the training set.

18 CHAPTER 3. RESEARCH

Model Sparsity K ksimilar bits
Training time

(70 epochs)
Val. acc

basic 0% � � � 0.61h 74.83%

pruned 80% � � � 0.61h 69.94%

pruned + faiss 80% 0.05 0.15 0.5 2.41h 72.46%

pruned + faiss 80% 0.05 0.15 1 2.49h 72.8%

pruned + faiss 80% 0.05 0.15 1.5 2.68h 72%

pruned + faiss 80% 0.05 0.15 2 3.01h 72.21%

pruned + faiss 80% 0.05 0.15 4 6.08h 72.1%

pruned + faiss 80% 0.05 0.15 8 17.17h 71.48%

Table 3.4: Results from training model with LSH connection updates after each mini-

batch

Model Sparsity K ksimilar bits
Training time

(70 epochs)
Val. acc

basic 0% � � � 0.61h 74.83%

pruned 90% � � � 0.61h 65.92%

pruned + faiss 90% 0.01 0.15 0.5 2.23h 67.65%

pruned + faiss 90% 0.01 0.15 1 2.31h 69.5%

pruned + faiss 90% 0.01 0.15 1.5 2.48h 70.02%

pruned + faiss 90% 0.01 0.15 2 2.79h 69.73%

pruned + faiss 90% 0.025 0.15 0.5 2.29h 68.39%

pruned + faiss 90% 0.025 0.15 1 2.36h 68.12%

pruned + faiss 90% 0.025 0.15 1.5 2.53h 68.85%

pruned + faiss 90% 0.025 0.15 2 2.85h 68.44%

Table 3.5: Results from training model with LSH connection updates after each mini-

batch

Conclusion

Tu budú výsledky práce.

19

20 Conclusion

Bibliography

[1] Leonid Boytsov and Bilegsaikhan Naidan. Engineering e�cient and e�ective non-

metric space library. In Nieves R. Brisaboa, Oscar Pedreira, and Pavel Zezula,

editors, Similarity Search and Applications - 6th International Conference, SISAP

2013, A Coruña, Spain, October 2-4, 2013, Proceedings, volume 8199 of Lecture

Notes in Computer Science, pages 280�293. Springer, 2013.

[2] Maxwell D. Collins and Pushmeet Kohli. Memory bounded deep convolutional

networks, 2014.

[3] Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen.

Rigging the lottery: Making all tickets winners. In International Conference on

Machine Learning. PMLR, 2020.

[4] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding

sparse, trainable neural networks, 2019.

[5] Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural

networks, 2019.

[6] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,

2016. http://www.deeplearningbook.org.

[7] Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep

neural networks with pruning, trained quantization and hu�man coding, 2016.

[8] Song Han, Je� Pool, John Tran, and William Dally. Learning both weights and

connections for e�cient neural network. In C. Cortes, N. Lawrence, D. Lee,

M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing

Systems, volume 28. Curran Associates, Inc., 2015.

[9] Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun,

Hassan Kianinejad, Md. Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep

learning scaling is predictable, empirically, 2017.

21

http://www.deeplearningbook.org

22 BIBLIOGRAPHY

[10] Je� Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search

with GPUs. IEEE Transactions on Big Data, 7(3):535�547, 2019.

[11] Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in

neural information processing systems, 2, 1989.

[12] Junjie Liu, Zhe Xu, Runbin Shi, Ray C. C. Cheung, and Hayden K. H. So. Dy-

namic sparse training: Find e�cient sparse network from scratch with trainable

masked layers, 2020.

[13] Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H. Nguyen,

Madeleine Gibescu, and Antonio Liotta. Scalable training of arti�cial neural net-

works with adaptive sparse connectivity inspired by network science. Nature Com-

munications, 9(1), jun 2018.

[14] Alexandra Peste, Eugenia Io�nova, Adrian Vladu, and Dan Alistarh. Ac/dc: Al-

ternating compressed/decompressed training of deep neural networks. In M. Ran-

zato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors,

Advances in Neural Information Processing Systems, volume 34, pages 8557�8570.

Curran Associates, Inc., 2021.

[15] Georg Thimm and Emile Fiesler. Evaluating pruning methods. In Proceedings of

the International Symposium on Arti�cial neural networks, pages 20�25, 1995.

Príloha A: obsah elektronickej prílohy

V elektronickej prílohe priloºenej k práci sa nachádza zdrojový kód programu a súbory s

výsledkami experimentov. Zdrojový kód je zverejnený aj na stránke http://mojadresa.

com/.

Ak uznáte za vhodné, môºete tu aj podrobnej²ie rozpísa´ obsah tejto prílohy,

prípadne poskytnú´ návod na in²taláciu programu. Alternatívou je tieto informácie

zahrnú´ do samotnej prílohy, alebo ich uvies´ na obidvoch miestach.

23

http://mojadresa.com/
http://mojadresa.com/

24 BIBLIOGRAPHY

Príloha B: Pouºívate©ská príru£ka

V tejto prílohe uvádzame pouºívate©skú príru£ku k ná²mu softvéru. Tu by ¤alej

pokra£oval text príru£ky. V práci nie je potrebné uvádza´ pouºívate©skú príru£ku,

pokia© je pouºívanie softvéru intuitívne alebo ak výsledkom práce nie je ucelený soft-

vér ur£ený pre pouºívate©ov.

V prílohách môºete uvies´ aj ¤al²ie materiály, ktoré by mohli pôsobi´ ru²ivo v

hlavnom texte, ako napríklad rozsiahle tabu©ky a podobne. Materiály, ktoré sú príli²

dlhé na ich tla£, odovzdajte len v electronickej prílohe.

25

	Introduction
	Overview
	Related work
	Research
	Conclusion
	Príloha A
	Príloha B

