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teda vyuzivat skratky, terminy alebo oznacenie zavedené v praci, okrem tych, ktoré sa

vSeobecne zname.

Krlacové slova: jedno, druhé, tretie (pripadne Stvrté, piate)

vii



Abstract

Abstract in the English language (translation of the abstract in the Slovak language).

Keywords:

viil



Contents

Introduction

1 Overview

2 Related work
3 Research
Conclusion
Priloha A

Priloha B

ix

13

19

23

25






List of Figures

3.1 Difference between searching for most similar vectors using brute-force

search and searching using faiss . . . . . .. .. ... ... ... ....

xi



xii



List of Tables

3.1

3.2

3.3
3.4

3.5

Results from training model with abs(/ P) connection updates after each
minibatch . . . ... oo

Results from training model with L2 connection updates after each mini-

Results from training model with I P connection updates each epoch.

Results from training model with LSH connection updates after each
minibatch . . . .. ..
Results from training model with LSH connection updates after each

minibatch . . . .. L

xiil



xiv



Introduction

Cielom tejto préace je poskytnut Studentom posledného ro¢nika bakalarskeho Studia
informatiky kostru prace v systéme LaTeX a ukézku uzitoc¢nych prikazov, ktoré pri
pisani prace mozu potrebovat. Za¢neme stru¢nou charakteristikou ivodu prace podla

smernice o zaveretnych pracach |?], ktora uviddzame ako doslovny citét.

Uvod je prvou komplexnou informéciou o praci, jej cieli, obsahu a $truk-
tare. Uvod sa vzfahuje na spracovani tému konkrétne, obsahuje strucny
a vystizny opis problematiky, charakterizuje stav poznania alebo praxe v
oblasti, ktord je predmetom Skolského diela a oboznamuje s vyznamom,
cielmi a zamermi Skolského diela. Autor v ivode zdoraziuje, preco je praca
doélezita a preco sa rozhodol spracovat dant tému. Uvod ako nazov kapitoly

sa necisluje a jeho rozsah je spravidla 1 az 2 strany.

V nasledujtcej kapitole najdete ukazku ¢lenenia kapitoly na mensie casti a v kapi-
tole 77 najdete prikazy na pracu s tabulkami, obrazkami a matematickymi vyrazmi.
V kapitole 7?7 uvadzame klasicky text Lorem Ipsum a na koniec sa budeme venovat

zalezitostiam zaveru bakalarskej prace.
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Chapter 1
Overview

In this chapter, we will focus on basic concepts for understanding this work. We will
briefly describe feedforward neural networks, their learning methods, and layers which

are important for this thesis.

Deep feedforward network

A deep feedforward Network or multilayer perceptron (MLP) is a machine learning
model, which goal is to approximate some function f* [6]. This model can be used for
various tasks (classification, regression, ...), but in this work, we only use this model
to classificate input vector = to category y. An MLP defines mapping y = f(z;6), and
during learning, it learns parameters 6 [6].

Usually, MLP consists of multiple composed different functions. For example, if the
network is composed of two functions g(x) and h(x) chained together, it means that
f(z) = h(g(x)). Each function can be called layer. Rather than thinking about the
layer as a function on a vector, we usually think about the layer as many processing
units called neurons. Each neuron is connected to some other neurons, and it computes
its activation value (which is used for other neurons as input).

The overall length of this chain of functions/layers is called depth. The last layer
of the model is called output layer.

Let’s just briefly review the two most important layers of this work: the linear layer

and convolutional layers.

Linear layer

The linear layer is the most basic layer in MLP. It models affine transformation. Given
input vector x, this layer produces result vector y = W7z +4b, where W and b are learn-
able parameters. Because stacking these layers doesn’t increase the model’s amount of
functions, which can approximate, this layer is followed by some activation function.

It means, that result of this layer is y = f(W7Tx + b), where f is activation function.

3



4 CHAPTER 1. OVERVIEW

Linear layer followed by activation function is called dense layer or fully connected

layer.

Convolutional layer

The convolutional layers are special kinds of layers for processing data with known
grid-like topology [6]. A usual example is processing images because each image is a
grid of pixels. This type of layer doesn’t use matrix multiplication by full-sized matrix,
but instead, it uses a small matrix called kernel (which similarly to the linear layer has
learnable parameters). This kernel slides over the input data and computes the dot
product of the kernel and input data.

//TODO obrazok konvolucie

Learning of MLP

The term “learning” (or “training”) in machine learning means process, where learnable
parameters are set. There are multiple paradigms, to be followed:

e supervised learning

e unsupervised learning

e semisupervised learning

reinforcement learning

These paradigms differ in one biggest thing: whether we have “correct answers” and
the model is trying to learn to answer these answers.

Because in this thesis we are dealing only with supervised learning, we will not
discuss other paradigms.

In most cases, all learnable parameters (weights) of MLP are learned using gradient
descent. In this approach, we have some [oss or loss function, which we are minimizing.
Because this function is nonconvex, MLPs are usually trained using iterative methods.

Let’s now a little more precisely describe iterative methods of MLP training. For
this training, we have a dataset of inputs. For each input, we have the correct “answer”.
Training consists of multiple rounds of giving model samples from the dataset. For each
input, we compare the desired (correct) output with the correct output. Based on the
difference between these outputs, we can calculate the gradient and adjust weights.

The gradient for the MLPs is calculated using back-propagation algorithm.

We will write back-propagation equations for one linear layer in a multi-layer per-

ceptron. Let z be input for this layer and W matrix of learnable parameters for this



layer. Denote z as the output of this layer. It means, that z = Wxz. From the next

layer, the backpropagation algorithm brings us a gradient of our output z (‘3—2).

If we want to compute the gradient of each weight in this layer, it is computed as

oL 0L
ow 9z "

However, we are only exceptionally training models by giving them training data
one by one. Instead, we are giving multiple data at one time (we are calling these
groups “minibatches”). The resulting gradient is the sum of gradients for each data in
the minibatch. This method is called “minibatch training”.

So, if we are training the model using the minibatch method, the gradient for each

weight can be calculated as

9L _ oL 1
ow oz "

xE€batch
If we write down this equation for one particular weight W;;, we get:

oL oL
aWi]‘ N 8zj i

x€batch
Also, we need to pass the gradient of our input = to the previous layer (if such

exists). We can calculate this gradient as

oL 0L
ox 0z
// regularizéacia

Sparse neural networks

Nowadays, deep neural networks are achieving state-of-the-art models in machine learn-
ing. However, the results scale with model and dataset size [9]. Current state-of-the-art
models have multiple millions of parameters, which require huge computational power
even for model training, and much more for hyperparameter tuning.

By the term “sparsity”, we mean that the subset of the model’s (or layer’s) learnable
parameters is set to zero [5]. If we have somewhere in the model zero-valued weights
results of any multiplications (which dominate calculations in neural network training
and testing) are zero, and thus can be skipped. Of course, we also don’t need to store
these zero-valued parameters, so model storing requires fewer parameters. An opposite
of “sparse model” is usually used “dense model”, term which means, that none of the
model’s weights are zero-valued on purpose. Of course, if the result of the training is
that some weights are zero-valued (and it isn’t our intention), we usually don’t refer

to this model as a “sparse model”.
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The term “sparsity” also refers to the fraction of weights in the model, which are set
to zero. So if some model has “higher sparsity”, it means, that it has more zero-valued
weight [5]. And, the last term that we are going to use is “pruning”. By “pruning” we
mean removing connections (weights) from the network, i.e. processes that make the

network more sparse.



Chapter 2

Related work

In this chapter, we will discuss methods, which is related to sparse neural networks.
We can divide these methods into two parts: methods, that use dense training, and

methods that use sparse training. We will now describe both of them in more detail.

Dense training, sparse inference

Research on sparse networks isn’t a new topic. Firstly, there were introduced methods,
which started on dense networks, and throughout the training process, weights were
removed to achieve the desired sparsity.

All methods which will be mentioned in this section will have one thing in common:
they are using dense networks in some stages of training (usually in the beginning).
But, even with dense training, models produced by these methods are sparse, therefore
in the inference phase they have fewer weights, so they require fewer operations. Also,
they require less space to store or transfer. Both these improvements can result in
wider usage of these networks in fields like mobile apps, where large storage overhead
can prevent deep neural networks from being used in these situations.

It’s worth noting, that the motivation of the earliest research on this topic wasn’t
driven only by reducing model size or by reducing operations needed for model training,
but as another regularization method for improve model generalization ability [15].

There is a large amount of methods and techniques, that use dense training, perhaps
it is because these methods are somehow easier to develop. If at the beginning of the
training, the model is dense (it contains all weights), it means, that weights which are
in our best sparse model (that we want to find), are for sure a subset of weights of the
dense model. So, in simple terms, we just want to find which weights we want to prune
to achieve the desired sparsity.

There were works ([15], [8], |2]) that prove the possibility of pruning small magni-
tude weight with none or very minimal accuracy loss. The idea behind these methods

is shared across multiple methods and is somehow intuitive: the magnitude of each

7
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weight is proportional to weight importance. Removing weight with the smallest mag-
nitude doesn’t change the result of the model so much (or at least for the result of
this layer). So, all these methods remove the least important weights during training
according to some sparsification schedule.

The sparsification schedule in these methods can be some iterative pruning, when
they were removing a small amount of weight regularly during training, or they were
doing some “train-prune-retrain” scheme.

Examples of some “train-prune-retrain” methods can be found in [7] and [14]. While
the first method was pruning model only once, the second method was doing multiple
rounds of alternating sparse and dense phases during the training process.

Another interesting example of the “train-prune-retrain” method is [8], which is a
method, that trains dense networks, and when training is (already) finished, weights
with the smallest magnitude are removed. This first training can be viewed as “learning
which weights are important”. However, this step would have a significant impact
on network accuracy, so it is followed by a retraining network, but now with sparse
topology.

There also had been techniques, that used second-order approximation of the loss
function, and based on this approximation were removing unimportant weights [11].
However, calculating second-order loss approximation is less computationally efficient
(compared to calculating first-order loss), and modern techniques achieved comparable
results with only first-order loss.

One of the methods, that brings valuable insight into the topic of sparse networks

is Lottery ticket hypothesis|4]. To quote this work:

The Lottery Ticket Hypothesis. A randomly-initialized, dense neural
network contains a subnetwork that is initialized such that—when trained
in isolation—it can match the test accuracy of the original network after

training for at most the same number of iterations.

These networks, that can match the test accuracy were called “winning tickets”
(in the lottery). To identify these “winning tickets”, they perform the usual network
training (starting with the usual random initialization). After some iterations, they
prune the lowest magnitude weights, to reach desired network sparsity. After this
pruning, they train the network again from scratch, but using only nonpruned weights.
They also explore iterative pruning, when they apply that “train-prune-reset-train”
more times. This iterative pruning was able to find smaller networks that with their
accuracy match their dense counterparts.

But, there is also another interesting thing, in this paper: it turns out, that it
doesn’t only matter on model sparsity layout (i.e. which weight has to be nonzero-

valued), but also on weight initialization. When “winning tickets” are randomly reini-



tialized, they learn slowly and achieve lower test accuracy as if they are initialized
exactly as they were at the beginning of the previous training.

The first possible explanation - these values are close to their final values - turns
out to be wrong. The explanation provided by the authors is, that “winning ticket”
initialization is connected to the optimization algorithm, dataset, and model. For
example, this initialization can be in some good regions of the loss landscape, where

the optimization algorithm quickly finds some good local minima.

Sparse training, sparse inference

Now, let’s describe methods that are training sparse neural networks from the begin-
ning.

The problem with sparse training is that we simply don’t know which weights are
important for the network (for their results). It means that is not possible to decide,
which weights will be zero-valued, and which will have a nonzero value at the beginning
of the training, and leave that unchanged during the whole training process.

This means, that all methods, which are using sparse training are not only remov-
ing/deleting weights to networks, they are also adding/growing new weights.

We can divide them into two groups: either they use dense gradient information,

or they use randomization to find the best connection distributions.

Sparse Evolutionary Training (SET)

Sparse Evolutionary Training (SET)[13] is an example of the second method, which
uses randomization.

This method starts with a random sparse network. More precisely, the weight
matrix is Erdds-Rényi random graph. In this graph, the probability of a connection
between neuron h¥ and h?’l (there is ng neurons in layer k and nj_; neurons in layer

k —1) is given by:

e(nk +nt1)

nknk-1

P(Wz,;) = (2-1)

where ¢ € R' is a parameter controlling sparsity level. Of course, this initial
randomly generated topology cannot be well-suited for all datasets and all models. So,
during training this topology changes. After each training epoch new weight grows
and some weights are removed (to preserve sparsity level). Weights are removed based
on the smallest magnitude, which was discussed in methods with dense training. New
connections are grown randomly (new connections are chosen randomly from zero-
valued weight, with exceptions to weight which we removed right now).

//TODO update schedule
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This approach is (as can be guessed from the name) an example of some evolu-
tionary algorithm, where removing the smallest magnitude weight can be viewed as
the “selection” phase in evolution. Also, growing new weights can be viewed as the
“mutation” phase in evolution.

The interesting thing, that this work discovers is that even if the sparsity layout
is not updated (it is fixed from the beginning), the results of the network are not as
bad as one would guess. Of course, they are worse than dense models and also worse
than models trained using SET, but not that bad. It confirms that the networks can

overcome removed weights and learn despite being heavily sparsified.

Rigging the lottery

Paper 3] is also removing connections with the smallest magnitude weight. However,
this method grows new connections based on their highest magnitude gradients. The
idea behind this method is that if the magnitude gradient is really large for some (not
existing) connections, it means that these connections are important for network results
and that we should add this connection to our network. Newly added connections are
initialized to zero, so they don’t affect the output of the network.

This method also doesn’t update sparsity layout after each training step, instead
only each AT step. There also was the decay of the amount of weight updated applied.

The method that slightly outperforms the other methods considered is cosine annealing.

t
fdecay(t; &7Tend) == % (1 + cos <T€:d>)

where «, T,,4 are hyperparameters.

This work also explored sparsity distribution between layers. They consider 3
strategies: wuniform (where the sparsity of each layer is equal to the total sparsity
of the network), Erdds-Rényi (where sparsities were distributed the same way as in the
previous method, using Erdds-Rényi random graph created using equation 2.1), and
FErdds-Rényi-Kernel (ERK), which modified equation 2.1 to include also kernel dimen-
sions. The reasoning behind the second and third options is that they enable lower
sparsities in the smaller layers (layers with fewer parameters), and higher sparsities for
larger layers. Using these distributions, it is unlikely that some “bottleneck” happens,
where we prune nearly all weights from some small layer, and we nearly stop informa-
tion flow through the model. Experimental results also confirm this hypothesis. The
difference between these options became larger with a bigger sparsity of models.

However, this method requires a dense gradient in each weight update step, of
course, this method doesn’t require storing this gradient, it can be immediately dis-
carded. If the gradient is too large to fit into memory, it can even be calculated in an

online manner, because we only need to store top-k values of the gradient vector.
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Dynamic sparse training

Lastly, work [12| has been using a different approach. In this method, they make
sparsity an integral part of the training process. After each weight matrix in the
network, they add a “mask layer”. This layer was just returning input (i.e. weight) if
the magnitude of input was greater than some threshold t,, or else it was returning 0,

according to the equations:

Qij = F(Wij, ;) = [Wy| —t;

Mi; = 5(Qi5)
1, if x> 1,
S(z) =
0, otherwise.

And weight value W;; will be masked by value M;;, so result weight will be W;; - M;;

In this work, they tried three options for thresholds (for one layer): have only one
scalar threshold (i.e. one threshold for each layer), have a vector of thresholds (i.e. one
threshold for each neuron), and have a matrix of thresholds (i.e. one threshold for each
weight). Matrix and vector thresholds have similar results, but the scalar threshold
was less robust. Finally, they decided to have vector thresholds, because of the smaller
amount of additional parameters.

However, these thresholds (due to the usage in step function S(z)) are not trainable
using back-propagation, because we require the derivative of step function S(x). This

derivative is an impulse function, which looks like this:

0, if v =0,
i(z) =
0, otherwise.
Which is not usable for back-propagation. So, they decided to use only an approx-

imation of this derivation of this function, long-tailed estimator.

2 — 4z, —04 < |z| <04,
d
%S(x) ~ H(r) =4 0.4, 0.4 < |z] <1,

0, otherwise.

With this estimator, the thresholds can be trained via back-propagation. FEach
network parameter is during training receiving two types of gradients. One is the
performance gradient for better model performance (for higher model accuracy), and
the second is the structure gradient for better sparse structure.

Even if the network thresholds are trainable, there is nothing, that is pruning

weights to make the network more sparse. So, this method introduced a penalty called
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“sparsity regularization term”, which was added to the loss function. For each trainable

masked layer, the regularization term is

R=Y eap(—t)
and sparse regularization term for the whole network is the sum of these regular-

ization terms:

Ls=) R

This brings us to the desired result: the more sparse the network, the smaller the
penalty. Of course, this sparse regularization term is added to the overall loss multiplied
by some hyperparameter a.

This approach allows the network to somehow “decide on their own way” how to
make sparsity distribution, and which parameters will be pruned, depending on how

important they seem to be.



Chapter 3
Research

In our work, we are developing a new method to update connections in sparse neural

networks. This method (like other methods) consists of two parts:

1. drop old connections

2. grow new connections

Part, when we are dropping old connections is shared across multiple sources (e.g.
[3], [13]). We are dropping connections with the smallest absolute value of weights,
because these connections are somehow least important for network output and overall
performance, because their influence on network results is probably minimal.

The second part is growing new connections. We are growing new connections
based on the magnitude gradient.

If we have one layer in a multi-layer perceptron. Where output z of this layer is z =
Wx. The gradient for some weight in the layer is calculated as % = cbatch g_zL,- - X

If we want to find connections with the largest magnitude gradients, we basicaly

dL
x€batch dz;

But, we can also look at this problem as finding the most similar vectors between

want to find some 4, j for which is value | > - ;| maximal.

two groups of vectors, where all vectors have the same size as batch size. Each vector
in the first group of vectors consists of values g—ZLj for each value x € batch. Each vector
in the second group consists of values x; for each value x € batch.

In each update step, we are updating some fraction of connections. We denote
this hyperparameter as K, where K € (0,1). This number means, that if denote the
number of all connections in this layer as ¢, we are updating ¢ - K connections.

Because finding most similar vectors, is quite a common task, there exists a couple of
projects and libraries, that perform this task quite fast. In this thesis, we consider two
of them: faiss|[10] and nmslib|1]. These libraries create an object called indezr, where
are all vectors from one group inserted. After this step, index can perform operation

search(v, k) of finding k& most similar vectors from indez to vector v. Both these

13



14 CHAPTER 3. RESEARCH

libraries support batch queries, which means, that if we have some array of vectors V,
operation search(V, k) will quickly find & most similar vectors to each vector in array
V.

Also, using a similarity search between two groups of vectors brings us another
hyperparameter to explore: k, which is the number of most similar vectors for index
to find. Because the sizes of groups of vectors will vary between layers in the model,
we introduced different hyperparameter kg, Similar to hyperparameter K, this
hyperparameter denotes a fraction of vectors, which we are finding. It means, that
Esimiar € (0,1). More precisely, let us consider that we have two groups of vectors.
Let’s say that in the first group is a vectors and in the second in b vectors. We add
create index from the first group of vectors (a vectors) and perform a search on group

b, we will set k = a - kgimitar-

If we set Kgmiier = 1, the result of this query will be identical to a brute force
search, where we will have distances to all vectors from another group. We have to
also note, that in this case, this approach would be slower because index creation is
also an operation that costs some time. But, we believe, that it will be sufficient to set
Esimitar to some small value (e.g. something like 0.2), which can bring us to speed up

in comparison to the brute-force search.

The difference between searching for most similar vectors using brute force search
and searching with faiss is shown in figure 3.1. Both methods start with a similarity
matrix (in the figure on the left top). Searching using faiss finds for each vector some
number (this number is determined by hyperparameter k_similar) of the most similar
vector (in the figure it finds 2 most similar vectors for each row). These vectors are
flattened together, and sorted, and we choose K most similar vectors as new connec-
tions. Contrary, brute-force search flattens these similarities as the first step, sorting
them and directly choosing the K most similar vectors. Thus, searching using faiss
(with these similarities and these hyperparameters) wasn’t able to find the most similar

vectors (in this example searching using faiss doesn’t find vector with similarity 33.1)

So, to sum up our algorithm: we start with a random sparse network. After some
training steps (determined by hyperparameter AT) we update connections using the
methods described above. We are removing connections with the smallest absolute
value of weights. Connections are added based on the largest vector similarity (largest
magnitude of gradient). We need to decide how are we going to initialize newly added

connections. The pseudocode for our method can be seen at algorithm 3.
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Matrix of similarities Connection chosen by faiss

Connection added

—’ 188 187
ORI > SRR — [
Flattened matrix of similarities Sorted flattened matrix of similarities Connection chosen by bruteforce search

Figure 3.1: Difference between searching for most similar vectors using brute-force

search and searching using faiss.

Algorithm 1 Training model with one layer
Input network fy, dataset D

connection update hyperparameters: K,dT

1: randomly sparsify W

2: for each training step t do

3:  x;,y; = input and output of minibatch from D

4 Ly = L(fw(x:), vi)

5. W=W-—-aVylL,

6: if ¢t (mod dT') == 0 then

7 remove K weights with lowest |W|

8 add K weights with largest similarity between Vy, and x;
9: end if

10: end for

We ran several experiments with various hyperparameters to compare training time
for finding connections for updates using brute-force search and using vector similarity
search.

All experiments have been running on server with 12 CPUs Intel Xeon CPU E5-
1650 v8 @ 3.50GHz, 32 GB RAM and two GPUs: Nwidia RTX 3090 and Nuvidia GTX
1080.

All experiments were run on WideResNet28x5 model on CIFAR 100 dataset. In
this model, all convolution and linear layers were replaced by random sparse layers.
During training, we updated connections in all convolution layers.

The first experiment was a training model with connections updated each minibatch
(AT =1). Results from training can be seen in tables 3.1 and 3.3.

From these results, we can clearly see, that connection updates based on inner
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Training time
Model Sparsity | K | kgmitar Val. acc | Note
(70 epochs)

basic 0% — — 0.61h 74.83%

pruned 80% — — 0.65h 69.94%
pruned + bruteforce 80% 0.01 — 3.59h 72.68% | GPU 0
pruned + bruteforce 80% 0.05 — 3.65h 72.01% | GPU 0
pruned + bruteforce 80% 0.1 — 3.81h 71.17% | GPU 0
pruned -+ faiss 80% 0.01 0.15 3.72h 73.65% | GPU 1
pruned -+ faiss 80% 0.05 | 0.15 3.74h 72.13% | GPU 1
pruned + faiss 80% 0.1 0.15 4.02h 70.59% | GPU 1
pruned + faiss 80% 0.01 | 0.125 2.32h 72.53% | GPU 0
pruned + faiss 80% 0.05 | 0.125 2.43h 73.28% | GPU 0
pruned + faiss 80% 0.1 0.125 2.55h 68.21% GPU 0

Table 3.1: Results from training model with abs(/P) connection updates after each

minibatch
. Training time
Model Sparsity | K | kgmitar Val. acc | Note
(70 epochs)

basic 0% — — 0.61h 74.83%

pruned 80% — — 0.65h 69.94%
pruned + bruteforce 80% 0.01 — 1.94h 67.53% | GPU 0
pruned + bruteforce 80% 0.05 — 2.21h 66.70% | GPU 0
pruned + bruteforce 80% 0.1 — 2.34h 55.63% | GPU 0
pruned -+ faiss 80% 0.01 0.15 2.36h 68.73% | GPU 1
pruned -+ faiss 80% 0.05| 0.15 2.53h 69.68% | GPU 1
pruned -+ faiss 80% 0.1 0.15 2.63h 65.35% | GPU 1
pruned + faiss 80% 0.01 0.2 3.84h 68.95% | GPU 1
pruned + faiss 80% 0.05 0.2 3.99h 67.59% | GPU 1
pruned + faiss 80% 0.1 0.2 4.07h 64.17% GPU 1

Table 3.2: Results from training model with L2 connection updates after each mini-
batch
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Model Sparsity | K | Esimitar Training time Val. acc | A acc | Note
(70 epochs)

basic 0% — — 0.61h 74.83% —

pruned 80% — — 0.65h 69.94% —
pruned + bruteforce 80% 0.01 0.84h 71.92% | —0.69% | GPU 0
pruned + faiss 80% 0.01 ] 0.15 0.78h 71.99% | —1.66% | GPU 0
pruned + faiss 80% 0.05 0.15 0.83h 73.04% | +0.91% | GPU 0
pruned + faiss 80% 0.1 0.15 0.84h 71.08% | +0.49% | GPU 0
pruned + faiss 80% 0.01 | 0.125 0.77h 71.91% | —0.62% | GPU 0
pruned + faiss 80% 0.05 | 0.125 0.81h 72.01% | —1.27% | GPU 0
pruned + faiss 80% 0.1 | 0.125 0.76h 69.90% | +1.69% | GPU 0

Table 3.3: Results from training model with P connection updates each epoch.

product similarity provides much better results than connection updates based on
L2 distance. Even the best model using L2 metrics is worse than a model with the
fixed sparsity mask. With this knowledge, we perform other experiments using solely
abs(I P) metrics as a similarity measure.

Also, if we compare training time (on the same GPU) for the model using bruteforce
similarity search and the model using faiss similarity search, we can see, that similarity
search using faiss is faster for up to approximately k& similar = 0.3. It is worth noting,
that in these experiments we use only the CPU version of faiss. We tried using GPU
version of faiss in the latter part of this thesis.

We decided to take a closer look at the connection update schedule.

As a first experiment, we update weights only after each epoch (which is 196x less
than the update after each minibatch, mentioned in 3.1 and 3.3).

From these results, we can formulate behavior, which is somewhat intuitive: the
more often we are doing connection updates, the fewer connections we need to update
(to achieve the same accuracy). Of course, this statement doesn’t hold for extreme
cases, such as if we want to do only one connection update during training, when we
replace all connections.

An interesting thing, that also seems intuitive is, that doing connections update not
after each training step, but after a few steps can raise model accuracy. It is because,
similar to the usage of momentum in the training process in neural networks if we are
doing connection updates based on the average of more training steps, we can better

overcome some local patterns in the training set.
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Model | Sparsity | K | ko | bits | TLo08 HOC G ace
(70 epochs)
basic 0% — — — 0.61h 74.83%
pruned 80% — — — 0.61h 69.94%
pruned + faiss 80% 0.05| 0.15 | 0.5 2.41h 72.46%
pruned + faiss 80% 0.05 | 0.15 1 2.49h 72.8%
pruned + faiss 80% 0.05 0.15 1.5 2.68h 72%
pruned + faiss 80% 0.05| 0.15 2 3.01h 72.21%
pruned + faiss 80% 0.05 0.15 4 6.08h 72.1%
pruned + faiss 80% 0.05| 0.15 8 17.17h 71.48%

Table 3.4: Results from training model with LSH connection updates after each mini-
batch

Model Sparsity | K | ksimitar | bits Training time Val. acc
(70 epochs)

basic 0% — — — 0.61h 74.83%
pruned 90% — — — 0.61A 65.92%
pruned -+ faiss 90% 0.01 0.15 | 0.5 2.23h 67.65%
pruned + faiss 90% 0.01 | 0.15 1 2.31h 69.5%
pruned -+ faiss 90% 0.01 0.15 | 1.5 2.48h 70.02%
pruned + faiss 90% 0.01 | 0.15 2 2.79h 69.73%
pruned + faiss 90% 0.025 0.15 0.5 2.29h 68.39%
pruned -+ faiss 90% 0.025 | 0.15 1 2.36h 68.12%
pruned + faiss 90% 0.025 0.15 1.5 2.53h 68.85%
pruned -+ faiss 90% 0.025 | 0.15 2 2.85h 68.44%

Table 3.5: Results from training model with LSH connection updates after each mini-
batch



Conclusion

Tu budu vysledky prace.
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Priloha A: obsah elektronickej prilohy

V elektronickej prilohe prilozenej k praci sa nachadza zdrojovy kéd programu a stibory s
vysledkami experimentov. Zdrojovy kod je zverejneny aj na stranke http://mojadresa.
com/.

Ak uznate za vhodné, mozete tu aj podrobnejSie rozpisat obsah tejto prilohy,
pripadne poskytniat navod na instalaciu programu. Alternativou je tieto informacie

zahrnit do samotnej prilohy, alebo ich uviest na obidvoch miestach.
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Priloha B: Pouzivatel'ska prirucka

V tejto prilohe uvadzame pouzivatelska prirucku k nasmu softvéru. Tu by dalej
pokracoval text prirucky. V préci nie je potrebné uvadzat pouzivatelsku prirucku,
pokial je pouzivanie softvéru intuitivne alebo ak vysledkom préce nie je uceleny soft-
vér urCeny pre pouzivatelov.

V prilohach mozete uviest aj dalSie materialy, ktoré by mohli posobit rusivo v
hlavnom texte, ako napriklad rozsiahle tabulky a podobne. Materialy, ktoré sa prilis

dlhé na ich tla¢, odovzdajte len v electronickej prilohe.
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