UNIVERZITA KOMENSKEHO V BRATISLAVE
FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

PROCESSING OF IMAGE METEOROLOGICAL
DATA BY DEEP LEARNING

Diplomova préca

2021 Be. Filip Pavlove

UNIVERZITA KOMENSKEHO V BRATISLAVE
FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

PROCESSING OF IMAGE METEOROLOGICAL
DATA BY DEEP LEARNING

Studijny program:
Studijny odbor:

Skoliace pracovisko:

Skolitel*:

Bratislava, 2021

Diplomova praca

Aplikovand informatika
Aplikovand informatika

Katedra aplikovanej informatiky
RnDr. Andrej Liény, PhD.

Be. Filip Pavlove

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZAVERECNEJ PRACE

Meno a priezvisko Studenta: Bc. Filip Pavlove

Studijny program: aplikovana informatika (Jednoodborové stadium,
magistersky II. st., denna forma)

Studijny odbor: informatika

Typ zaverecnej prace: diplomova

Jazyk zaverecnej prace: anglicky

Sekundarny jazyk: slovensky

Nazov: Processing of Image Meteorological Data by Deep Learning

Anotacia:

Ciel’:

Literatura:

Poznamka:
KPucové
slova:

Veduci:
Katedra:

Spracovanie obrazovych meteorologickych dat pomocou hlbokého ucenia

Praca ma vyskumny charakter. Vstupom st merané a z Casti anotované obrazové
meteorologické data, predovSetkym kamerové snimky z automatickych
meteorologickych stanic. Tieto treba spracovat: normalizovat’ ich, ocistit’
a doplnit k nim anotacie podla kodov meteorologického pozorovania,
geografickych udajov a ru¢ne zadanych hodnot. S nimi potom treba navrhnut’
a vyskusat’ rozne metddy spracovania obrazu na hl'adan¢ fyzikalne veliiny,
predovsetkym horizontalnu a prevladajiucu dohl'adnost’. Tazisko tychto metod
bude spocivat’ v pouziti hlbokého ucenia. S touto, relativne modernou technikou
sa treba dokladne obozndmit, rovnako ako s podobnymi pracami v danej
aplikac¢nej oblasti.

Cielom prace je navrhnut viacero metdd urCovania fyzikdlnych velicin
z obrazovych meteorologickych dat, vyhodnotit’ ich uspesnost’ a porovnat’ ich.

Chollet, F.: Deep learning v jazyku Python, Grada, 2019
Learning OpenCV 3, Computer Vision in C++ with the OpenCV Library By
Gary Bradski

Platforma: OpenCV, Keras alebo Pytorch, Python
hlboké ucenie, pocitatové videnie, meteorologia, spracovanie obrazu

RNDr. Andrej Lucny, PhD.
FMFIL.KALI - Katedra aplikovanej informatiky

Veduci katedry: prof. Ing. Igor Farkas, Dr.
Datum zadania: 07.02.2020

Datum schvalenia: 13.02.2020 prof. RNDr. Roman Durikovi¢, PhD.

garant Studijného programu

veduci prace

Pod’akovanie:

Abstrakt

Praca mé vyskumny charakter. Vstupom su merané a z ¢asti anotované obrazové
meteorologické data, predovsetkym kamerové snimky z automatickych meteoro-
logickych stanic. Tieto treba spracovat: normalizovaf ich, ocistit a doplnit k
nim anotécie podla kédov meteorologického pozorovania, geografickych idajov a
rucne zadanych hodnoét. S nimi potom treba navrhnit a vyskusat rozne metédy
spracovania obrazu na hladané fyzikdlne velic¢iny, predovSetkym horizontélnu a
prevlddajicu dohladnost. Tazisko tychto metéd bude spocivat v pouziti hibokého
ucenia. S touto, relativne modernou technikou sa treba dokladne oboznamit, rov-

nako ako s podobnymi pracami v danej aplika¢nej oblasti.

Klticové slova: hlboké ucenie, pocitacové videnie, meteorologia, spracovanie

obrazu

Abstract

The work has a research character. The input is measured and partially anno-
tated image meteorological data, especially camera images from automatic mete-
orological stations. These have to be processed: normalize, cleanse and annotate
according to meteorological observation codes, geographic data and manually en-
tered values. With them then it is necessary to design and test different methods
of image processing into the desired physical quantities, especially horizontal and
predominant visibility. The focus of these methods will be on the use of deep
learning. This relatively modern technique needs to be thoroughly familiar with,

as well as similar work in the application area.

Keywords: deep learning, computer vision, meteorology, image processing

Contents

1 Introduction
2 Related work

3 Theoretical background

3.1 Machine learning oo
3.1.1 Supervised learningo
3.2 Neural networks
3.3 Multilayer Perceptron.
3.4 Trainingo
3.4.1 Loss Functions
3.4.2 Gradient descent
3.4.3 Regularization L oo
3.4.4 Batch normalization
3.5 Convolutional Neural network
3.5.1 Convolution,

4 Proposed methods

5 Software design

6 Research
6.1 Methods
6.1.1 Approach 1 - Classifier
6.1.2 Approach 2 - Regressor

10

11

12
12
13
14
15
16
17
18
22
23
24
24

28

29

CONTENTS

6.2 Evaluation

7 Results

8 Conclusion

List of Figures

3.1

3.2
3.3
3.4

3.5

3.6

6.1

” As capacity (complexity) increases (x-axis), bias (dotted) tends to
decrease and variance (dashed) tends to increase, yielding another
U-shaped curve for generalization error (bold curve).” [5]. One
of the most formal ways to measure models capacity is by VC
dimensions [15].o
Figures taken from [16].
Figure of losses.
As the algorithm starts, the loss is pretty high at the point z.
Through the iteration of 4 updates, we almost converged to the
local minimum x4. The illustration of GD is taken from [2].

Effects of momentum and Nesterov momentum to the training
step. Source [1]o

Interaction of convolutional filter with the input. Source [3].

The architecture of networks trained on dataset scaled to the height
of 100px.

List of Tables

6.1 Settings of hyper-parameters per scaling.
6.2 APA - Accuracy per arrow. APS - Accuracy per situation. MAE

- Mean absolute error in metres.

31

1.

Introduction

10

2. Related work

11

3. Theoretical background

3.1 Machine learning

Machine learning as a branch of artificial intelligence is a study focused on de-
velopment of algorithms capable of performing tasks without being explicitly
programmed. Over the past decades machine learning based algorithms showed
great deal of success in the domains such as medicine, computer vision, computer
graphics, bioinformatics, finance, and many more.

Generally, machine learning methods are either supervised, unsupervised or
reinforcement. The goal of supervised learning methods is to predict desired
output based on input given to the trained model. Some of the widely used
supervised algorithms are K-Nearest Neighbours, Support Vector Machines, De-
cision Trees or some of the Neural Networks. The unsupervised methods such
as Principal Component Analysis, and many more, unlike supervised, lack the
desired output, and are mainly used for finding the patterns in the given data
set. Reinforcement learning aims on achievement of goal performed by the agent
in its environment. To obtain desired behaviour, agent performs series of actions
with respect to reward function.

Due to the increasing trend of computational power, mainly of GPU, TPU
(Tensor Processing Unit), and the availability of large data sets, field of the deep
learning is nowadays more relevant then ever. Deep Learning models refers to

the set of neural networks with many hidden layers, hence the name ”deep”.

12

CHAPTER 3. THEORETICAL BACKGROUND 13

3.1.1 Supervised learning

Supervised learning models are learned by the example. Examples make up the
data set, and every example (z(¥ y@) is the pair of input (z), and desired
output (y®), sometimes referred to as label or target. Superscript (i), refers to
the index of sample in the data set. Input may be either vector of features, matrix
(eg. grey image) or tensor (eg. RGB image). Depending on the learning problem,
target dimensions may also differ. We will denote set of possible inputs as X,
and set possible targets as). To solve supervised task, learning algorithm trains
model, often denoted in the literature as function h(x), h: X — Y (hypothesis),
which attempts to approximate real problem as closely as possible.

Two of the most common tasks in the domain of supervised learning are re-
gression, and classification tasks. The objective of the classification tasks is to
specify in which category some input belongs to. The output of a machine learn-
ing system tackling classification problem is usually a function f : R" — {1, ..., k},
where k£ denotes the number of encoded categories. An example of the classifica-
tion task is the prediction of the visibility into categories like good, moderate or
bad, based on the input images. The output of the regression task is a function
f :R* — R. An example of the regression task is the prediction of visibility
represented by continuous number in same units like metres or kilometers.

The goal of the training process is not only to perform with good results
on the data presented to the learning algorithm, but also to generalize. By
generalization, we refer to the model’s ability to react to new data. Theory
behind the Bias-variance tradeoff aims for formalization of such concept, but we
will not get into these details (for more see Figure 3.1). Instead, we will explain
some of the basic terminology, and practices of the training process.

When the trained model is not generalizing properly, the problem is usually
due to overfitting or underfitting. Overfitting happens when the picked learning
algorithm is too complex, and the training examples are being 'memorized’. On
the other hand, underfitting occurs when the model is too simple. Both of these
problems results in poor performance on the testing set. One of the ways to

address these issues is by regularization or splitting the dataset into training,

CHAPTER 3. THEORETICAL BACKGROUND 14

testing, and validation set. The ratio between training, and testing, set is usually
80/20. The remaining 80% of the training set is then split between training
and validataion set with the same ratio. It is important to note, that such a
split is just a rule of thumb. The validation set serves us for estimation of the
performance during or after the training. If the error on the validation set is way
too high, we may be overfitting or underfitting the model. We can react either
by choosing less or more complex model, or by tuning of the hyperparameters.
In machine learning, a hyperparameter is a setting of the model chosen before
the training. On the other hand parameters of the model are learned during the

training.

Overfitting zone

Underfitting zone

Generalization

| 22ats — - Variance
-l g o—
—_—— ? - - - - - -
Optimal Capacity
capacity

Figure 3.1: ”As capacity (complexity) increases (x-axis), bias (dotted) tends
to decrease and variance (dashed) tends to increase, yielding another U-shaped
curve for generalization error (bold curve).” [5]. One of the most formal ways to

measure models capacity is by VC dimensions [15].

3.2 Neural networks

The birth of neural networks might be contributed to the year 1943, when Mc-
Culloch and Pitts [9], described neurons with threshold logic. With no learning
required these networks assembled in two layers are capable of simulating any

function f : {0,1}" — {0,1}, with n inputs. Since then many advances have

CHAPTER 3. THEORETICAL BACKGROUND 15

been made, but we will not cover those, since history is not of our concern in this

thesis.

3.3 Multilayer Perceptron

Multilayer perceptron (MLP), often referred to as deep feedforward neural net-
work is type of artificial neural network, quintessential to the field of deep learn-
ing. It can be shown, that 2-layer MLPs posses an universal approximation
property, making MLP capable of approximating any continuous nonlinear func-
tion with arbitrary accuracy [(Horniket al., 1989; Cybenko, 1989)]. To unravel
the jargon of neural networks, we might start with building blocks of MLPs.
Typical MLP consists of input layer, at least one hidden layer, and output layer.
Hidden layers are build up of arbitrary number of units which are interconnected
between sub-sequential layers. The number of units refers to the dimensionality
of the layer, or width. The number of layers on the other hand, refers to the
depth of the network. The name ”deep” arose from this terminology. In the fully
connected layers, value of each unit, (sometimes called neuron) is calculated as
weighted sum of the input connections from previous layer. Computed weighted
sum is afterwards fed into activation function. Figure 3.2 shows simple architec-
ture of neural network with tweo hidden layers (Figure 3.2b), and illustrates of

computation of the single unit (Figure 3.2a).

Input 15t hidden 2nd hidden Output
layer layer layer layer

| ==

y[=f(2xjw,-] yk:f[ijw,] y,=f[2x,w.J
(a) (b)

Figure 3.2: Figures taken from [16].

CHAPTER 3. THEORETICAL BACKGROUND 16

As an activation function might serve any differential function. With excep-
tion of identity, activation functions are essential part of the MLP, and contribute
to its capacity of modeling nonlinear functions. There is not a single rule, stating
which function should serve as an activation in the hidden layers. It is highly
experimental, and one might choose between functions such as sigmoid, hyper-
bolic tangent, or rectified linear unit (ReLLU) given in equation 3.1, 3.2, and, 3.3,
respectively. Despite that, most of the modern neural networks use ReLU [0]
activation at the hidden layers. The mathematical equations of the stated acti-

vation functions are given as follows:

B 1
1 4e®

9(x) (3.1) g(x) = tanh(z) (3.2) 9(z) = max(0, z) (3.3)

After the input is fed forwards through the sub-sequential layers, the computation
approaches final stage at the output layer. Dimensinality as well as activation
function of the output layer is highly constrained to the task of trained network.
Classification tasks such as digit recognition could be modeled by the simple
neural network with 10 outputs with the sigmoid, or softmax (see equation 3.4)
activation function. The advantage of softmax over the sigmoid is that it turns
outputs to probabilities that sum up to one. Regression tasks, concerned with the
predictions of some unbounded continuous variable, could be modeled by network
with single output unit with identity function.

Ty

e

g(x) = S o

where, (3.4)

x; represents i-th input from previous layer, and

J in the sum of denominator goes through the all inputs of previous layer.

3.4 Training

So far, we have talked about the building blocks of the typical feed-forward neural
network. We also mentioned classification, and regression tasks in the relation

to the inference at the output layer. With the understanding of the covered

CHAPTER 3. THEORETICAL BACKGROUND 17

terminology, we will move on to the training stage of the networks. The objective
of the neural networks training, and generally of training any other machine
learning method, is to find the best set of parameters. To be more specific, the
goal of the neural network training, is to minimize some loss function L with
respect to the weights W. The formalized minimizing problem may be written
as

W* =argmin L(f(X;W),Y) (3.5)
W

where f(X;W) is the set of network outputs given the weights W, and Y is the
set of desired outputs. Methods used for estimation of weights W are usually
gradient based. Widely used algorithm in the context of the neural networks is

called backpropagation.

3.4.1 Loss Functions

Loss functions are fundamental part of neural network. The computed value of
Loss function tells us how good our network performs on the given data. We
might be computing either with the whole training set or with the smaller sized
batches (called mini-batches). Consider set {#(, y®}Y = Toss function for the

given set of data is computed as follows

Z Li(f(zD W),y D). (3.6)

,where N is the size of the data set, and f(z, W) is the output of the network
given the input ¥ and the set of parameters WW.

The central part of the presented equation is choice of the loss L£;, for the
single input. The choice is highly constrained to the task of the model, and the
nature of the data. Some loss functions might combine multiple losses, which
are used in the final joint loss function. Usually object detection models such
as YOLOv3 [11] or Faster R-CNN [12] use these joint loss functions, to estimate

correct detection and classification of the objects in the image. We will not cover

CHAPTER 3. THEORETICAL BACKGROUND 18

those in the greater detail, instead of that we will describe and illustrate some of
the most generally known losses used in the majority of applications.

Regression tasks often use loss functions, which capture difference between
predictions and outputs of the network. Well known functions with this property
are L1, and L2 losses defined as

1 & . . 1 X

= N;Hf(x(”aw) -y (37) L2= NZ)=yl (3.8)
1 & . . 1 X ,

S |f(x(2), W) — y(’)‘ _ y(z))Q
NZAZ1 szl

The L1, and L2 losses are often refereed to as mean absolute error (MAE),
and mean squared error (MSE), respectively. In practice, the L2 shown in Figure
0 is usually preferred over the L1.

During the classification tasks, we may represent the output vector as the
probabilities of the C' possible classes. The objective of the loss function would
be to maximize the probability of the correct class. The categorical crossentropy
(CCE) loss function (see Figure 0) with the softmax activation function address

exactly that. CCE is given by the equation

C
CCE ==y log(f(=, W),) (3.9)
J

= —log (f(z",W)y) (3.10)

where, f (2@, W), represents the calculated probability of j-th class given the
input z Smce for all j only one in the desired output yj() is 1 with the rest set
to 0, we could rewrite the equation to the form 3.10. With the value k linked to

the only j set to the 1.

3.4.2 Gradient descent

It is generally known that training a neural network is NP-complete [4] problem

in the sense of finding the set of parameters convergent to the global minimum

CHAPTER 3. THEORETICAL BACKGROUND 19

Range of predicted values: (-10,000 to 10,000) | True value: 100

Cross entropy loss

0.0 02 04 0.6 0.8 10 -10000 7500 5000 -2500 0 2500 5000 7500 10000
Predictions Predictions

(a) (b)

Figure 3.3: Figure of losses.

of the loss function. Thus, the analytical solution of such a complex system as
neural network, gets out of the window.

One of the easiest ways to train the neural networks is to use gradient based
methods. The gradient descent (GD) is one of them. The objective of GD, is to
update the set of parameters in an iterative manner, to minimize a loss function.
The result does not guarantee convergence to the global minimum, however local
minimum is sufficient. At each step of the GD the weights of the network are
updated in the direction of the steepest descent. The direction of the steepest
descent is computed as an opposite direction to the gradient of the loss function
at the current step. Formally, the update of the weights in the simple gradient

descent is computed as follows
| N
W =W — a— E \vay) @ WY, @
- aN — WLT(f(‘r))7y) (311>

Where Vy, L; represents gradient of loss function with respect to the weights W
of the network. Hyper-parameter « is set before the training, and indicates the
step size of the gradient. The update is performed until the loss is sufficiently
low.

Traditionally the gradient in the GD is computed over all training sam-
ples. This approach is in the most cases computationally expensive due to large
datasets. Slightly modified algorithm Stochastic gradient descent (SGD) address

CHAPTER 3. THEORETICAL BACKGROUND 20

this limitation, by computing the gradients of the loss function over the subset of
the training data. These subsets of the training set are called mini-batches. The
figure 3.5 illustrates the iterative approach of gradient descent in the hypothetical

landscape of loss function.

Figure 3.4: As the algorithm starts, the loss is pretty high at the point z.
Through the iteration of 4 updates, we almost converged to the local minimum

x4. The illustration of GD is taken from [2].

Backpropagation

In the previous section concerned with gradient descent, we have not mentioned
the computation of gradient. When we use a neural network, an output is com-
puted by flowing forward the information from input z through the network. As
the value of loss function £ is computed, backpropagation [8] algorithm allows
the information from the loss, to propagate backward through the network in
order to compute the gradient. In the short, the backpropagation treat the feed
forward neural network as a complex composition of many functions. The gradi-
ent is then computed with the chain rule. For example, suppose the real valued
functions y = f(x) and = = ¢(t), then chain rule states that
dy _dyde

=2 12
dt dzdt (312)

CHAPTER 3. THEORETICAL BACKGROUND 21

Of course, neural networks work with higher dimensional functions, and the chain
rule could be rewritten in the terms of partial derivatives.

Most of the modern libraries like PyTorch represents neural networks as a
computational graph, which computes the gradients of the networks with high

efficiency.

Optimizers

Most of the modern neural networks are trained by more efficient variations of
traditional gradient descent, which is not sufficient in certain situations. For
example, stochastic gradient descent computes zero gradient in the saddle points
of the loss function. Consequently, the training gets stuck. To overcome problem
like this with addition of more stable and faster training, methods like momentum

[10] have been developed. Lets simplify SGD equation 3.11 as
Tip1 = oy — oV f(xy) (3.13)
The stochastic gradient descent with momentum is computed as

V1 = pueV f(x4) (3.14)

Tpp1 = Ty — QU4 (3.15)

The effect of momentum may be understood as accumulation of speed from pre-
vious steps. Hyper-parameter p represents friction and is usually set to p = 0.9.

Another variant of momentum is Nesterov momentum which is computed as

Vi1 = pvy — aV f(xy + vp) (3.16)
Tl = T + V41 (317)

The Figure shows effect of both momentum variants to the actual training step
in the loss landscape. Optimization techniques, are still in the process of on-
going research. Nowadays, the state of the art networks usually use even more
complicated variants of optimizers, like AdaGrad, RMSProp [14], or Adam [7].

CHAPTER 3. THEORETICAL BACKGROUND 22

Momentum update Nesterov momentum update

“lookahead” gradient
step (bit different than
original)

momentum
step

momentum
step
actual step

actual step

gradient
step

Figure 3.5: Effects of momentum and Nesterov momentum to the training step.

Source [1]

3.4.3 Regularization

One of the biggest problems of training neural network or any machine learning
algorithm is, how to make it perform with good accuracy not just on the training
data, but also on new data. In other worlds, how to avoid overfitting. The

strategies tackling this problem are called regularization techniques.

L1 and L2 regularization

One of the strategies, is to constrain the weights of the network by adding a
regularization term to the loss function. The regularized loss function may be

then written as follows
| X
_) (@) (2)
£= % DLW £ AR (318)

The R(W) refers to the penalty. The penalty is weighted by hyper-parameter
A. Higher values of A correspond to large penalty, and values approaching 0
correspond to almost no penalty. The L2, and L1 regularization are the most
common types of regularization techniques. L2 regularization is also commonly
known as weight decay. The L1, and L2 regularization equations, are given by

the is given by 3.19, and 3.20, respectively.

RW) =Wl =) |ul (3.19)
RW)=[W[2=) o’ (3.20)

YweW

CHAPTER 3. THEORETICAL BACKGROUND 23

Dropout

Dropout [13] is a computationally effective method of regularization. The key
idea is to randomly drop out units with probability p during the training. Con-
sequently, dropout trains exponential number of different thinned networks. The
effect could be thought of as an ensemble of all the subnetworks. The probability
p is set before training as a hyper-parameter. For each mini-batch, we randomly
sample a binary mask with prob p to apply to the different units. Multiplying
the value of unit by zero has the effect of dropping them out.

Data Augmentation

One of the ways to make an machine learning algorithm generalize better, is
to train it on the bigger dataset. However, limitations in practice may prevent
us from acquiring more data. To get over this limitation data augmentation
techniques have been developed. Augmentation is used to increase the amount
of data by creating fake data from existing data.

Lets take an example of an image classification task. Affine transformations
like translation (moving an image), scaling (increasing or decreasing the size of
an image), and rotation (turning an image by some degree) are used in different
combinations to generate new data. There are no limitations to the ways of
transforming the original image, while it is still recognizable as an original class.

We could also add noise, crop a region, or increase the contrast.

3.4.4 Batch normalization

Batch normalization is a method of adaptive reparametrization introduced by
loffe and Szegefy in 2015 [6]. Training of very deep neural networks is very
difficult task. It is often accompanied by instabilities, like vanishing or exploding
gradient. The resulting neural networks after batch normalization, are generally
more robust, and easier to train. The batch normalization is implemented by
standardization of the prior layer activations. To be more concrete, let be an

input to the next layer. Dimension of x is N x D. Size of mini-batch is N. The

CHAPTER 3. THEORETICAL BACKGROUND 24

normalized output y is computed as

LN
Hi = N Z:Ci,j (321)
i=1
LN
O'? = N Z($i’j - ,uj)2 (322)
i=1
Bij = Tig — Hy (3.23)
O'JZ +e€
Yij = Vidij + B (3.24)

The terms o, and u, represents standard deviation, and mean, respectively. The
variables v and (3 are learn-able parameters that allow the normalized output to
have any mean and standard deviation. At test time, ¢ and p, are replaced by

averages collected during training.

3.5 Convolutional Neural network

The convolutional neural networks (CNN), are in a class of neural networks with
at least one convolutional layer. ConvNets are specialized in the processing of
grid-like structures like images. There are many other application utilizing the
CNNs. Some of them are time-series predictions (1D grid) or processing of 3D
data. In this section, we will describe what convolution is and operations that
are used in combination with it. We will also describe convolutional layers, and

computations accompanied with them.

3.5.1 Convolution

The convolutional operation of functions z(t) and w(t), can be thought of as an
sliding average. Function z(t) being the function we want to average over and

function w(t) being the function we want to average with. This interaction is

CHAPTER 3. THEORETICAL BACKGROUND 25
mathematically defined by integral as,

s(t) = (x *w)(t) (3.25)

= /x(a)w(t — a)da. (3.26)

If we represent function z(t), as an discrete series of measurements (like cells of

image grid), the already presented integral takes form of sum as

s(t) = (zxw)(t) =Y z(a)w(t —a). (3.27)

Now, lets take an example of two dimensional discrete image I and kernel function

K. The convolution of an image I, with kernel K is defined as,

S(i,j) = (I« K)(i,j) =Y > I(m,n)K(i —m,j—n). (3.28)

Convolutional layers

The layers in convolutional neural networks are organized in three dimensions.
Every convolutional layer has at least one filter with its, height, depth, and width.
Similarly, the inputs of the layers are organized in 3D manner. As an exmaple
of an input, we can think of an image with dimensionality (W x H x 3). Last
dimension three, representing channels of RGB model. The typical interaction of

input with convolutional filters is illustrated in the figure 3.6.
_— 32x32x3 image
5x5x3 filter w
32
>O convolve (slide) over all
spatial locations o

Figure 3.6: Interaction of convolutional filter with the input. Source [3].

28

=\

\\J
—_

7

CHAPTER 3. THEORETICAL BACKGROUND 26

The input of volume (32 x 32 x 3) is convolved by filter of (5x 5 x 3). After the
computation the volume of output is (28 x 28 x 1). The outputs of convolutions
are sometimes called activation maps. Kernel consists of 5 -5 - 3 = 75 weights.

Lets take another example of layer with 4 (5 x 5 x 3) filters. The input dimen-
sionality remains. The resulting volume of output computed by convolutional
layer with described configuration will be (28 x 28 x 4).

The stride refers to the hyper-parameter of kernel, that controls the step size of
receptive field over the input. Consider stride of 2, input 3.29 of volume(4 x4 x 1),
and 2 x 2 x 1 kernel 3.30. The resulting output 3.31 will be of volume (2 x 2 x 1).

a b c d
e f g w T
(3.29) (3.30)
17k y z
m n o p

(aw—l—bx+ey—l—fz cw+dx+gy+hz> (3.31)

1w+ jr+my+nz kw4 lr+ oy + pz
Even the strides of size one, are reducing the spatial dimension of input. To
avoid the shrinkage, we may use zero-padding which extends the borders of the
original input with zeros. However, it might be desirable to reduce the spatial
dimension of input. Besides the usage of bigger strides, one might use pooling

layers.

Pooling layers

A typical CNN consists of series of convolutional layers, with non-linear acti-
vations, and pooling layers. The pooling layer operates upon each feature map
separately. The result is a new set of the same number of pooled feature maps.
Hyper-parameters of pooling layers are the size of pooling operation. The sec-
ond hyper-parameter is stride, that functions similarly to stride in convolutional
layers. The most common pooling is Max Pooling and Average Pooling. As an

example, lets have an feature map 3.32. After the Max Pooling of size (2 x 2),

CHAPTER 3. THEORETICAL BACKGROUND

and stride 2, the transformed feature map gets the form of 3.33.

5 3
o ()

N O =~ =
L ~ O ot
_ O W N
o O = =

(3.33)

27

4. Proposed methods

28

5. Software design

29

6. Research

6.1 Methods

6.1.1 Approach 1 - Classifier

The first approach consists of an ensemble of eight convolutional neural networks
(CNNs), each corresponding to a particular direction. For example, Table 77 row
180 gives us information about the size of the outputs layer. In the instance of
the network concerned with direction 180, the size of the output is 15. Overall
there were tested three models for different scales of the input image. Therefore,
3-8 =24 CNNs.

Architecture

Differences between networks with different scales were marginal. Architectures
of networks with the same scale for different directions were the same. Let us
consider one of twenty-four architectures in Figure 6.1. Scaled image is fed into
the network through a series of three sets of Convolution/ Batch-Normalization
/Pooling layers with ReLLU activation function. The output of the latent space
is afterward fed to two fully connected dense layers with sigmoid at the output

layer.

Hyper-parameters

Hyper-parameters of the networks are presented in Table 6.1.

30

CHAPTER 6. RESEARCH

RelLU

—

(3,6,5)

D Convolutional layer

RelLU
—(6,24,43)

(4,4) (6,16,5)

(in_channels, out_channels, kernel_size) (height,width)

RelLU

~(16,10,19)

(22) (16,32,5)

31

sigmoid

—(32,3,7» —FC» —FC» —>

(2,2) (120) (84) (17)

Pooling layer D Batch normalization
(units)

Dense Layer

Figure 6.1: The architecture of networks trained on dataset scaled to the height

of 100px.
Scale | No of epochs | Learning rate | Batch size | Optimizer Loss function
100pz 110 0.0001
250pz 200 0.00005 32 Adam Mean squared error
600pz 250 0.000015

Table 6.1: Settings of hyper-parameters per scaling.

6.1.2 Approach 2 - Regressor

The architecture of CNN-regressor is alike to the one of the CNN-classifier. Just

instead of multiple outputs with sigmoid activation function, single output with

ReLU has been used. Consequently, the most significant advantage of this ar-

chitecture is, that instead of multiple networks for every direction, only one is

needed. However, the output of such a network does not tell much and after a few

initial test with poor performance, this approach has been neglected and would

not be mentioned further in text.

CHAPTER 6. RESEARCH 32

6.2 Evaluation

In the preceding section, we mentioned the importance of dataset split. Another
advantage of the validation set is its importance in the training process. To avoid
overfitting, it is essential to track the learning curves of the network and stop
the training, after accuracy on the validation set is starting to decrease. This
technique is often referred to as early stopping. The learning curves of different
networks are shown in the Appendix.

The predictive abilities of the trained models have been tested against three
metrics of choice. APA, APS, and MAE representing accuracy per arrow, accu-
racy per situation, and mean absolute error, respectively. Accuracy per arrow
shows the percentage accuracy of classification per individual arrows. Likewise,
accuracy per situation. As the name of the metric already suggests, MAE, rep-
resents mean absolute error (difference) of computed prevailing visibility, against
ground truth visibility. MAE is computed in meters. Each one of these metrics

can be computed as follows,

APA = N ; 100,
S dim (y@)
N (5) 4(3)
APS = = eq](\?; !) - 100,
MAE — va |diSt (y(i)) _ dist (t(i))‘

N Y

CHAPTER 6. RESEARCH 33
where

N = length of set

y@ =output ... (prediction of a model)
t® = target ... (ground truth)
sim(z,y) = Z |z; —y;| ... (similarity of vectors)
J

dim(x) = dimensionality of vector

1, if sim(z,y)=0

eq(z,y) = (element-wise equivalence of vectors)

0, otherwise

dist(x) = tabular numeric value representing distance assigned to vector.

Calculated results per different scales are presented in Table 6.2.

Scale % APA | % APS | MAE
100 pz | 94.42 46.81 2999
250 px | 94.56 51.91 2228
600 px | 95.03 54.46 2231

Table 6.2: APA - Accuracy per arrow. APS - Accuracy per situation. MAE -

Mean absolute error in metres.

7.

Results

34

8.

Conclusion

35

Bibliography

[4]

Cs231n convolutional neural networks for visual recognition. https://
cs231n.github.io/neural-networks-3/. (Accessed on 01/15/2021).

Gradient descent - wikipedia. https://en.wikipedia.org/wiki/
Gradient_descent. (Accessed on 01/14/2021).

Neural networks for computer science. http://www.sccg.sk/~ftacnik/
NSPV-2020-21.htm. (Accessed on 01/15/2021).

Avrim L Blum and Ronald L Rivest. Training a 3-node neural network is
np-complete. Neural Networks, 5(1):117-127, 1992.

lan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. CoRR, abs/1502.03167,
2015.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. arXiww preprint arXiv:1412.6980, 2014.

James L McClelland, David E Rumelhart, PDP Research Group, et al. Par-
allel distributed processing. Ezplorations in the Microstructure of Cognition,
2:216-271, 1986.

36

BIBLIOGRAPHY 37

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Warren S McCulloch and Walter Pitts. A logical calculus of the ideas imma-
nent in nervous activity. The bulletin of mathematical biophysics, 5(4):115—
133, 1943.

Boris T Polyak. Some methods of speeding up the convergence of itera-
tion methods. USSR Computational Mathematics and Mathematical Physics,
4(5):1-17, 1964.

Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement.
CoRR, abs/1804.02767, 2018.

Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster R-CNN:
towards real-time object detection with region proposal networks. CoRR,
abs/1506.01497, 2015.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Research, 15(56):1929-1958,
2014.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the
gradient by a running average of its recent magnitude. COURSERA: Neural
networks for machine learning, 4(2):26-31, 2012.

Vladimir N Vapnik and A Ya Chervonenkis. On the uniform convergence of
relative frequencies of events to their probabilities. In Measures of complezity,

pages 11-30. Springer, 2015.

Sandra Vieira, Walter HL Pinaya, and Andrea Mechelli. Using deep learning
to investigate the neuroimaging correlates of psychiatric and neurological
disorders: Methods and applications. Neuroscience € Biobehavioral Reviews,
74:58-75, 2017.

