
UNIVERZITA KOMENSKÉHO V BRATISLAVE

FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

PROCESSING OF IMAGE METEOROLOGICAL

DATA BY DEEP LEARNING

Diplomová práca

2021 Bc. Filip Pavlove

UNIVERZITA KOMENSKÉHO V BRATISLAVE

FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

PROCESSING OF IMAGE METEOROLOGICAL

DATA BY DEEP LEARNING

Diplomová práca

Študijný program: Aplikovaná informatika

Študijný odbor: Aplikovaná informatika

Školiace pracovisko: Katedra aplikovanej informatiky

Školitel’: RnDr. Andrej Lúčny, PhD.

Bratislava, 2021 Bc. Filip Pavlove

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Bc. Filip Pavlove
Študijný program: aplikovaná informatika (Jednoodborové štúdium,

magisterský II. st., denná forma)
Študijný odbor: informatika
Typ záverečnej práce: diplomová
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Processing of Image Meteorological Data by Deep Learning
Spracovanie obrazových meteorologických dát pomocou hlbokého učenia

Anotácia: Práca má výskumný charakter. Vstupom sú merané a z časti anotované obrazové
meteorologické dáta, predovšetkým kamerové snímky z automatických
meteorologických staníc. Tieto treba spracovať: normalizovať ich, očistiť
a doplniť k nim anotácie podľa kódov meteorologického pozorovania,
geografických údajov a ručne zadaných hodnôt. S nimi potom treba navrhnúť
a vyskúšať rôzne metódy spracovania obrazu na hľadané fyzikálne veličiny,
predovšetkým horizontálnu a prevládajúcu dohľadnosť. Ťažisko týchto metód
bude spočívať v použití hlbokého učenia. S touto, relatívne modernou technikou
sa treba dôkladne oboznámiť, rovnako ako s podobnými prácami v danej
aplikačnej oblasti.

Cieľ: Cieľom práce je navrhnúť viacero metód určovania fyzikálnych veličín
z obrazových meteorologických dát, vyhodnotiť ich úspešnosť a porovnať ich.

Literatúra: Chollet, F.: Deep learning v jazyku Python, Grada, 2019
Learning OpenCV 3, Computer Vision in C++ with the OpenCV Library By
Gary Bradski

Poznámka: Platforma: OpenCV, Keras alebo Pytorch, Python

Kľúčové
slová: hlboké učenie, počítačové videnie, meteorologia, spracovanie obrazu

Vedúci: RNDr. Andrej Lúčny, PhD.
Katedra: FMFI.KAI - Katedra aplikovanej informatiky
Vedúci katedry: prof. Ing. Igor Farkaš, Dr.

Dátum zadania: 07.02.2020

Dátum schválenia: 13.02.2020 prof. RNDr. Roman Ďurikovič, PhD.
garant študijného programu

študent vedúci práce

Pod’akovanie:

Abstrakt

Práca má výskumný charakter. Vstupom sú merané a z časti anotované obrazové

meteorologické dáta, predovšetkým kamerové sńımky z automatických meteoro-

logických stańıc. Tieto treba spracovat’: normalizovat’ ich, očistit’ a doplnit’ k

nim anotácie podl’a kódov meteorologického pozorovania, geografických údajov a

ručne zadaných hodnôt. S nimi potom treba navrhnút’ a vyskúšat’ rôzne metódy

spracovania obrazu na hl’adané fyzikálne veličiny, predovšetkým horizontálnu a

prevládajúcu dohl’adnost’. Ťažisko týchto metód bude spoč́ıvat’ v použit́ı hlbokého

učenia. S touto, relat́ıvne modernou technikou sa treba dôkladne oboznámit’, rov-

nako ako s podobnými prácami v danej aplikačnej oblasti.

Kl’́učové slová: hlboké učenie, poč́ıtačové videnie, meteorologia, spracovanie

obrazu

Abstract

The work has a research character. The input is measured and partially anno-

tated image meteorological data, especially camera images from automatic mete-

orological stations. These have to be processed: normalize, cleanse and annotate

according to meteorological observation codes, geographic data and manually en-

tered values. With them then it is necessary to design and test different methods

of image processing into the desired physical quantities, especially horizontal and

predominant visibility. The focus of these methods will be on the use of deep

learning. This relatively modern technique needs to be thoroughly familiar with,

as well as similar work in the application area.

Keywords: deep learning, computer vision, meteorology, image processing

Contents

1 Introduction 10

2 Related work 11

3 Theoretical background 12

3.1 Machine learning . 12

3.1.1 Supervised learning . 13

3.2 Neural networks . 14

3.3 Multilayer Perceptron . 15

3.4 Training . 16

3.4.1 Loss Functions . 17

3.4.2 Gradient descent . 18

3.4.3 Regularization . 22

3.4.4 Batch normalization . 23

3.5 Convolutional Neural network . 24

3.5.1 Convolution . 24

4 Proposed methods 28

5 Software design 29

6 Research 30

6.1 Methods . 30

6.1.1 Approach 1 - Classifier . 30

6.1.2 Approach 2 - Regressor . 31

6

CONTENTS 7

6.2 Evaluation . 32

7 Results 34

8 Conclusion 35

List of Figures

3.1 ”As capacity (complexity) increases (x-axis), bias (dotted) tends to

decrease and variance (dashed) tends to increase, yielding another

U-shaped curve for generalization error (bold curve).” [5]. One

of the most formal ways to measure models capacity is by VC

dimensions [15]. 14

3.2 Figures taken from [16]. 15

3.3 Figure of losses. 19

3.4 As the algorithm starts, the loss is pretty high at the point x0.

Through the iteration of 4 updates, we almost converged to the

local minimum x4. The illustration of GD is taken from [2]. . . . 20

3.5 Effects of momentum and Nesterov momentum to the training

step. Source [1] . 22

3.6 Interaction of convolutional filter with the input. Source [3]. . . . 25

6.1 The architecture of networks trained on dataset scaled to the height

of 100px. 31

8

List of Tables

6.1 Settings of hyper-parameters per scaling. 31

6.2 APA - Accuracy per arrow. APS - Accuracy per situation. MAE

- Mean absolute error in metres. 33

9

1. Introduction

10

2. Related work

11

3. Theoretical background

3.1 Machine learning

Machine learning as a branch of artificial intelligence is a study focused on de-

velopment of algorithms capable of performing tasks without being explicitly

programmed. Over the past decades machine learning based algorithms showed

great deal of success in the domains such as medicine, computer vision, computer

graphics, bioinformatics, finance, and many more.

Generally, machine learning methods are either supervised, unsupervised or

reinforcement. The goal of supervised learning methods is to predict desired

output based on input given to the trained model. Some of the widely used

supervised algorithms are K-Nearest Neighbours, Support Vector Machines, De-

cision Trees or some of the Neural Networks. The unsupervised methods such

as Principal Component Analysis, and many more, unlike supervised, lack the

desired output, and are mainly used for finding the patterns in the given data

set. Reinforcement learning aims on achievement of goal performed by the agent

in its environment. To obtain desired behaviour, agent performs series of actions

with respect to reward function.

Due to the increasing trend of computational power, mainly of GPU, TPU

(Tensor Processing Unit), and the availability of large data sets, field of the deep

learning is nowadays more relevant then ever. Deep Learning models refers to

the set of neural networks with many hidden layers, hence the name ”deep”.

12

CHAPTER 3. THEORETICAL BACKGROUND 13

3.1.1 Supervised learning

Supervised learning models are learned by the example. Examples make up the

data set, and every example (x(i), y(i)) is the pair of input (x(i)), and desired

output (y(i)), sometimes referred to as label or target. Superscript (i), refers to

the index of sample in the data set. Input may be either vector of features, matrix

(eg. grey image) or tensor (eg. RGB image). Depending on the learning problem,

target dimensions may also differ. We will denote set of possible inputs as X ,

and set possible targets as Y . To solve supervised task, learning algorithm trains

model, often denoted in the literature as function h(x), h : X 7→ Y (hypothesis),

which attempts to approximate real problem as closely as possible.

Two of the most common tasks in the domain of supervised learning are re-

gression, and classification tasks. The objective of the classification tasks is to

specify in which category some input belongs to. The output of a machine learn-

ing system tackling classification problem is usually a function f : Rn 7→ {1, ..., k},
where k denotes the number of encoded categories. An example of the classifica-

tion task is the prediction of the visibility into categories like good, moderate or

bad, based on the input images. The output of the regression task is a function

f : Rn 7→ R. An example of the regression task is the prediction of visibility

represented by continuous number in same units like metres or kilometers.

The goal of the training process is not only to perform with good results

on the data presented to the learning algorithm, but also to generalize. By

generalization, we refer to the model’s ability to react to new data. Theory

behind the Bias–variance tradeoff aims for formalization of such concept, but we

will not get into these details (for more see Figure 3.1). Instead, we will explain

some of the basic terminology, and practices of the training process.

When the trained model is not generalizing properly, the problem is usually

due to overfitting or underfitting. Overfitting happens when the picked learning

algorithm is too complex, and the training examples are being ’memorized’. On

the other hand, underfitting occurs when the model is too simple. Both of these

problems results in poor performance on the testing set. One of the ways to

address these issues is by regularization or splitting the dataset into training,

CHAPTER 3. THEORETICAL BACKGROUND 14

testing, and validation set. The ratio between training, and testing, set is usually

80/20. The remaining 80% of the training set is then split between training

and validataion set with the same ratio. It is important to note, that such a

split is just a rule of thumb. The validation set serves us for estimation of the

performance during or after the training. If the error on the validation set is way

too high, we may be overfitting or underfitting the model. We can react either

by choosing less or more complex model, or by tuning of the hyperparameters.

In machine learning, a hyperparameter is a setting of the model chosen before

the training. On the other hand parameters of the model are learned during the

training.

Figure 3.1: ”As capacity (complexity) increases (x-axis), bias (dotted) tends

to decrease and variance (dashed) tends to increase, yielding another U-shaped

curve for generalization error (bold curve).” [5]. One of the most formal ways to

measure models capacity is by VC dimensions [15].

3.2 Neural networks

The birth of neural networks might be contributed to the year 1943, when Mc-

Culloch and Pitts [9], described neurons with threshold logic. With no learning

required these networks assembled in two layers are capable of simulating any

function f : {0, 1}n 7→ {0, 1}, with n inputs. Since then many advances have

CHAPTER 3. THEORETICAL BACKGROUND 15

been made, but we will not cover those, since history is not of our concern in this

thesis.

3.3 Multilayer Perceptron

Multilayer perceptron (MLP), often referred to as deep feedforward neural net-

work is type of artificial neural network, quintessential to the field of deep learn-

ing. It can be shown, that 2-layer MLPs posses an universal approximation

property, making MLP capable of approximating any continuous nonlinear func-

tion with arbitrary accuracy [(Horniket al., 1989; Cybenko, 1989)]. To unravel

the jargon of neural networks, we might start with building blocks of MLPs.

Typical MLP consists of input layer, at least one hidden layer, and output layer.

Hidden layers are build up of arbitrary number of units which are interconnected

between sub-sequential layers. The number of units refers to the dimensionality

of the layer, or width. The number of layers on the other hand, refers to the

depth of the network. The name ”deep” arose from this terminology. In the fully

connected layers, value of each unit, (sometimes called neuron) is calculated as

weighted sum of the input connections from previous layer. Computed weighted

sum is afterwards fed into activation function. Figure 3.2 shows simple architec-

ture of neural network with tweo hidden layers (Figure 3.2b), and illustrates of

computation of the single unit (Figure 3.2a).

(a) (b)

Figure 3.2: Figures taken from [16].

CHAPTER 3. THEORETICAL BACKGROUND 16

As an activation function might serve any differential function. With excep-

tion of identity, activation functions are essential part of the MLP, and contribute

to its capacity of modeling nonlinear functions. There is not a single rule, stating

which function should serve as an activation in the hidden layers. It is highly

experimental, and one might choose between functions such as sigmoid, hyper-

bolic tangent, or rectified linear unit (ReLU) given in equation 3.1, 3.2, and, 3.3,

respectively. Despite that, most of the modern neural networks use ReLU [0]

activation at the hidden layers. The mathematical equations of the stated acti-

vation functions are given as follows:

g(x) =
1

1 + e−x
(3.1) g(x) = tanh(x) (3.2) g(x) = max(0, x) (3.3)

After the input is fed forwards through the sub-sequential layers, the computation

approaches final stage at the output layer. Dimensinality as well as activation

function of the output layer is highly constrained to the task of trained network.

Classification tasks such as digit recognition could be modeled by the simple

neural network with 10 outputs with the sigmoid, or softmax (see equation 3.4)

activation function. The advantage of softmax over the sigmoid is that it turns

outputs to probabilities that sum up to one. Regression tasks, concerned with the

predictions of some unbounded continuous variable, could be modeled by network

with single output unit with identity function.

g(x) =
exi∑
j e

xj
where, (3.4)

xi represents i-th input from previous layer, and

j in the sum of denominator goes through the all inputs of previous layer.

3.4 Training

So far, we have talked about the building blocks of the typical feed-forward neural

network. We also mentioned classification, and regression tasks in the relation

to the inference at the output layer. With the understanding of the covered

CHAPTER 3. THEORETICAL BACKGROUND 17

terminology, we will move on to the training stage of the networks. The objective

of the neural networks training, and generally of training any other machine

learning method, is to find the best set of parameters. To be more specific, the

goal of the neural network training, is to minimize some loss function L with

respect to the weights W . The formalized minimizing problem may be written

as

W ∗ = arg min
W

L(f(X;W), Y) (3.5)

where f(X;W) is the set of network outputs given the weights W , and Y is the

set of desired outputs. Methods used for estimation of weights W are usually

gradient based. Widely used algorithm in the context of the neural networks is

called backpropagation.

3.4.1 Loss Functions

Loss functions are fundamental part of neural network. The computed value of

Loss function tells us how good our network performs on the given data. We

might be computing either with the whole training set or with the smaller sized

batches (called mini-batches). Consider set {x(i), y(i)}Ni=1. Loss function for the

given set of data is computed as follows

L =
1

N

N∑
i=1

Li(f(x(i),W), y(i)). (3.6)

,where N is the size of the data set, and f(x(i),W) is the output of the network

given the input x(i) and the set of parameters W .

The central part of the presented equation is choice of the loss Li, for the

single input. The choice is highly constrained to the task of the model, and the

nature of the data. Some loss functions might combine multiple losses, which

are used in the final joint loss function. Usually object detection models such

as YOLOv3 [11] or Faster R-CNN [12] use these joint loss functions, to estimate

correct detection and classification of the objects in the image. We will not cover

CHAPTER 3. THEORETICAL BACKGROUND 18

those in the greater detail, instead of that we will describe and illustrate some of

the most generally known losses used in the majority of applications.

Regression tasks often use loss functions, which capture difference between

predictions and outputs of the network. Well known functions with this property

are L1, and L2 losses defined as

L1 =
1

N

N∑
i=1

‖f(x(i),W)− y(i)‖1 (3.7)

=
1

N

N∑
i=1

∣∣f(x(i),W)− y(i)
∣∣

L2 =
1

N

N∑
i=1

‖f(x(i),W)− y(i)‖2 (3.8)

=
1

N

N∑
i=1

(f(x(i),W)− y(i))2

The L1, and L2 losses are often refereed to as mean absolute error (MAE),

and mean squared error (MSE), respectively. In practice, the L2 shown in Figure

0 is usually preferred over the L1.

During the classification tasks, we may represent the output vector as the

probabilities of the C possible classes. The objective of the loss function would

be to maximize the probability of the correct class. The categorical crossentropy

(CCE) loss function (see Figure 0) with the softmax activation function address

exactly that. CCE is given by the equation

CCE = −
C∑
j

y
(i)
j log(f(x(i),W)j) (3.9)

= − log
(
f(x(i),W)k

)
(3.10)

where, f(x(i),W)j represents the calculated probability of j-th class given the

input x(i). Since for all j only one in the desired output y
(i)
j is 1 with the rest set

to 0, we could rewrite the equation to the form 3.10. With the value k linked to

the only j set to the 1.

3.4.2 Gradient descent

It is generally known that training a neural network is NP-complete [4] problem

in the sense of finding the set of parameters convergent to the global minimum

CHAPTER 3. THEORETICAL BACKGROUND 19

(a) (b)

Figure 3.3: Figure of losses.

of the loss function. Thus, the analytical solution of such a complex system as

neural network, gets out of the window.

One of the easiest ways to train the neural networks is to use gradient based

methods. The gradient descent (GD) is one of them. The objective of GD, is to

update the set of parameters in an iterative manner, to minimize a loss function.

The result does not guarantee convergence to the global minimum, however local

minimum is sufficient. At each step of the GD the weights of the network are

updated in the direction of the steepest descent. The direction of the steepest

descent is computed as an opposite direction to the gradient of the loss function

at the current step. Formally, the update of the weights in the simple gradient

descent is computed as follows

W = W − α 1

N

N∑
i=1

∇WLi(f(x(i),W), y(i)) (3.11)

Where ∇WLi represents gradient of loss function with respect to the weights W

of the network. Hyper-parameter α is set before the training, and indicates the

step size of the gradient. The update is performed until the loss is sufficiently

low.

Traditionally the gradient in the GD is computed over all training sam-

ples. This approach is in the most cases computationally expensive due to large

datasets. Slightly modified algorithm Stochastic gradient descent (SGD) address

CHAPTER 3. THEORETICAL BACKGROUND 20

this limitation, by computing the gradients of the loss function over the subset of

the training data. These subsets of the training set are called mini-batches. The

figure 3.5 illustrates the iterative approach of gradient descent in the hypothetical

landscape of loss function.

Figure 3.4: As the algorithm starts, the loss is pretty high at the point x0.

Through the iteration of 4 updates, we almost converged to the local minimum

x4. The illustration of GD is taken from [2].

Backpropagation

In the previous section concerned with gradient descent, we have not mentioned

the computation of gradient. When we use a neural network, an output is com-

puted by flowing forward the information from input x through the network. As

the value of loss function L is computed, backpropagation [8] algorithm allows

the information from the loss, to propagate backward through the network in

order to compute the gradient. In the short, the backpropagation treat the feed

forward neural network as a complex composition of many functions. The gradi-

ent is then computed with the chain rule. For example, suppose the real valued

functions y = f(x) and x = g(t), then chain rule states that

dy

dt
=
dy

dx

dx

dt
(3.12)

CHAPTER 3. THEORETICAL BACKGROUND 21

Of course, neural networks work with higher dimensional functions, and the chain

rule could be rewritten in the terms of partial derivatives.

Most of the modern libraries like PyTorch represents neural networks as a

computational graph, which computes the gradients of the networks with high

efficiency.

Optimizers

Most of the modern neural networks are trained by more efficient variations of

traditional gradient descent, which is not sufficient in certain situations. For

example, stochastic gradient descent computes zero gradient in the saddle points

of the loss function. Consequently, the training gets stuck. To overcome problem

like this with addition of more stable and faster training, methods like momentum

[10] have been developed. Lets simplify SGD equation 3.11 as

xt+1 = xt − α∇f(xt) (3.13)

The stochastic gradient descent with momentum is computed as

vt+1 = ρvt∇f(xt) (3.14)

xt+1 = xt − αvt+1 (3.15)

The effect of momentum may be understood as accumulation of speed from pre-

vious steps. Hyper-parameter ρ represents friction and is usually set to ρ = 0.9.

Another variant of momentum is Nesterov momentum which is computed as

vt+1 = ρvt − α∇f(xt + vt) (3.16)

xt+1 = xt + vt+1 (3.17)

The Figure shows effect of both momentum variants to the actual training step

in the loss landscape. Optimization techniques, are still in the process of on-

going research. Nowadays, the state of the art networks usually use even more

complicated variants of optimizers, like AdaGrad, RMSProp [14], or Adam [7].

CHAPTER 3. THEORETICAL BACKGROUND 22

Figure 3.5: Effects of momentum and Nesterov momentum to the training step.

Source [1]

3.4.3 Regularization

One of the biggest problems of training neural network or any machine learning

algorithm is, how to make it perform with good accuracy not just on the training

data, but also on new data. In other worlds, how to avoid overfitting. The

strategies tackling this problem are called regularization techniques.

L1 and L2 regularization

One of the strategies, is to constrain the weights of the network by adding a

regularization term to the loss function. The regularized loss function may be

then written as follows

L =
1

N

N∑
i=1

Li(f(x(i),W), y(i)) + λR(W) (3.18)

The R(W) refers to the penalty. The penalty is weighted by hyper-parameter

λ. Higher values of λ correspond to large penalty, and values approaching 0

correspond to almost no penalty. The L2, and L1 regularization are the most

common types of regularization techniques. L2 regularization is also commonly

known as weight decay. The L1, and L2 regularization equations, are given by

the is given by 3.19, and 3.20, respectively.

R(W) = ‖W‖1 =
∑
∀w∈W

|w| (3.19)

R(W) = ‖W‖2 =
∑
∀w∈W

w2 (3.20)

CHAPTER 3. THEORETICAL BACKGROUND 23

Dropout

Dropout [13] is a computationally effective method of regularization. The key

idea is to randomly drop out units with probability p during the training. Con-

sequently, dropout trains exponential number of different thinned networks. The

effect could be thought of as an ensemble of all the subnetworks. The probability

p is set before training as a hyper-parameter. For each mini-batch, we randomly

sample a binary mask with prob p to apply to the different units. Multiplying

the value of unit by zero has the effect of dropping them out.

Data Augmentation

One of the ways to make an machine learning algorithm generalize better, is

to train it on the bigger dataset. However, limitations in practice may prevent

us from acquiring more data. To get over this limitation data augmentation

techniques have been developed. Augmentation is used to increase the amount

of data by creating fake data from existing data.

Lets take an example of an image classification task. Affine transformations

like translation (moving an image), scaling (increasing or decreasing the size of

an image), and rotation (turning an image by some degree) are used in different

combinations to generate new data. There are no limitations to the ways of

transforming the original image, while it is still recognizable as an original class.

We could also add noise, crop a region, or increase the contrast.

3.4.4 Batch normalization

Batch normalization is a method of adaptive reparametrization introduced by

Ioffe and Szegefy in 2015 [6]. Training of very deep neural networks is very

difficult task. It is often accompanied by instabilities, like vanishing or exploding

gradient. The resulting neural networks after batch normalization, are generally

more robust, and easier to train. The batch normalization is implemented by

standardization of the prior layer activations. To be more concrete, let x be an

input to the next layer. Dimension of x is N ×D. Size of mini-batch is N . The

CHAPTER 3. THEORETICAL BACKGROUND 24

normalized output y is computed as

µj =
1

N

N∑
i=1

xi,j (3.21)

σ2
j =

1

N

N∑
i=1

(xi,j − µj)
2 (3.22)

x̂i,j =
xi,j − µj√
σ2
j + ε

(3.23)

yi,j = γjx̂i,j + βj (3.24)

The terms σ, and µ, represents standard deviation, and mean, respectively. The

variables γ and β are learn-able parameters that allow the normalized output to

have any mean and standard deviation. At test time, σ and µ, are replaced by

averages collected during training.

3.5 Convolutional Neural network

The convolutional neural networks (CNN), are in a class of neural networks with

at least one convolutional layer. ConvNets are specialized in the processing of

grid-like structures like images. There are many other application utilizing the

CNNs. Some of them are time-series predictions (1D grid) or processing of 3D

data. In this section, we will describe what convolution is and operations that

are used in combination with it. We will also describe convolutional layers, and

computations accompanied with them.

3.5.1 Convolution

The convolutional operation of functions x(t) and w(t), can be thought of as an

sliding average. Function x(t) being the function we want to average over and

function w(t) being the function we want to average with. This interaction is

CHAPTER 3. THEORETICAL BACKGROUND 25

mathematically defined by integral as,

s(t) = (x ∗ w)(t) (3.25)

=

∫
x(a)w(t− a)da. (3.26)

If we represent function x(t), as an discrete series of measurements (like cells of

image grid), the already presented integral takes form of sum as

s(t) = (x ∗ w)(t) =
∑

x(a)w(t− a). (3.27)

Now, lets take an example of two dimensional discrete image I and kernel function

K. The convolution of an image I, with kernel K is defined as,

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n). (3.28)

Convolutional layers

The layers in convolutional neural networks are organized in three dimensions.

Every convolutional layer has at least one filter with its, height, depth, and width.

Similarly, the inputs of the layers are organized in 3D manner. As an exmaple

of an input, we can think of an image with dimensionality (W × H × 3). Last

dimension three, representing channels of RGB model. The typical interaction of

input with convolutional filters is illustrated in the figure 3.6.

Figure 3.6: Interaction of convolutional filter with the input. Source [3].

CHAPTER 3. THEORETICAL BACKGROUND 26

The input of volume (32×32×3) is convolved by filter of (5×5×3). After the

computation the volume of output is (28× 28× 1). The outputs of convolutions

are sometimes called activation maps. Kernel consists of 5 · 5 · 3 = 75 weights.

Lets take another example of layer with 4 (5×5×3) filters. The input dimen-

sionality remains. The resulting volume of output computed by convolutional

layer with described configuration will be (28× 28× 4).

The stride refers to the hyper-parameter of kernel, that controls the step size of

receptive field over the input. Consider stride of 2, input 3.29 of volume(4×4×1),

and 2×2×1 kernel 3.30. The resulting output 3.31 will be of volume (2×2×1).

a b c d

e f g h

i j k l

m n o p

 (3.29)

(
w x

y z

)
(3.30)

(
aw + bx+ ey + fz cw + dx+ gy + hz

iw + jx+my + nz kw + lx+ oy + pz

)
(3.31)

Even the strides of size one, are reducing the spatial dimension of input. To

avoid the shrinkage, we may use zero-padding which extends the borders of the

original input with zeros. However, it might be desirable to reduce the spatial

dimension of input. Besides the usage of bigger strides, one might use pooling

layers.

Pooling layers

A typical CNN consists of series of convolutional layers, with non-linear acti-

vations, and pooling layers. The pooling layer operates upon each feature map

separately. The result is a new set of the same number of pooled feature maps.

Hyper-parameters of pooling layers are the size of pooling operation. The sec-

ond hyper-parameter is stride, that functions similarly to stride in convolutional

layers. The most common pooling is Max Pooling and Average Pooling. As an

example, lets have an feature map 3.32. After the Max Pooling of size (2 × 2),

CHAPTER 3. THEORETICAL BACKGROUND 27

and stride 2, the transformed feature map gets the form of 3.33.

1 5 2 1

4 0 3 1

6 1 9 0

2 8 1 0

 (3.32)

(
5 3

8 9

)
(3.33)

4. Proposed methods

28

5. Software design

29

6. Research

6.1 Methods

6.1.1 Approach 1 - Classifier

The first approach consists of an ensemble of eight convolutional neural networks

(CNNs), each corresponding to a particular direction. For example, Table ?? row

180 gives us information about the size of the outputs layer. In the instance of

the network concerned with direction 180, the size of the output is 15. Overall

there were tested three models for different scales of the input image. Therefore,

3 · 8 = 24 CNNs.

Architecture

Differences between networks with different scales were marginal. Architectures

of networks with the same scale for different directions were the same. Let us

consider one of twenty-four architectures in Figure 6.1. Scaled image is fed into

the network through a series of three sets of Convolution/ Batch-Normalization

/Pooling layers with ReLU activation function. The output of the latent space

is afterward fed to two fully connected dense layers with sigmoid at the output

layer.

Hyper-parameters

Hyper-parameters of the networks are presented in Table 6.1.

30

CHAPTER 6. RESEARCH 31

Figure 6.1: The architecture of networks trained on dataset scaled to the height

of 100px.

Scale No of epochs Learning rate Batch size Optimizer Loss function

100px 110 0.0001

250px 200 0.00005

600px 250 0.000015

32 Adam Mean squared error

Table 6.1: Settings of hyper-parameters per scaling.

6.1.2 Approach 2 - Regressor

The architecture of CNN-regressor is alike to the one of the CNN-classifier. Just

instead of multiple outputs with sigmoid activation function, single output with

ReLU has been used. Consequently, the most significant advantage of this ar-

chitecture is, that instead of multiple networks for every direction, only one is

needed. However, the output of such a network does not tell much and after a few

initial test with poor performance, this approach has been neglected and would

not be mentioned further in text.

CHAPTER 6. RESEARCH 32

6.2 Evaluation

In the preceding section, we mentioned the importance of dataset split. Another

advantage of the validation set is its importance in the training process. To avoid

overfitting, it is essential to track the learning curves of the network and stop

the training, after accuracy on the validation set is starting to decrease. This

technique is often referred to as early stopping. The learning curves of different

networks are shown in the Appendix.

The predictive abilities of the trained models have been tested against three

metrics of choice. APA, APS, and MAE representing accuracy per arrow, accu-

racy per situation, and mean absolute error, respectively. Accuracy per arrow

shows the percentage accuracy of classification per individual arrows. Likewise,

accuracy per situation. As the name of the metric already suggests, MAE, rep-

resents mean absolute error (difference) of computed prevailing visibility, against

ground truth visibility. MAE is computed in meters. Each one of these metrics

can be computed as follows,

APA =

∑N
i sim

(
y(i), t(i)

)∑N
i dim (y(i))

· 100,

APS =

∑N
i eq

(
y(i), t(i)

)
N

· 100,

MAE =

∑N
i

∣∣dist
(
y(i)
)
− dist

(
t(i)
)∣∣

N
,

CHAPTER 6. RESEARCH 33

where

N = length of set

y(i) = output . . . (prediction of a model)

t(i) = target . . . (ground truth)

sim(x, y) =
∑
j

|xj − yj| . . . (similarity of vectors)

dim(x) = dimensionality of vector

eq(x, y) =

1, if sim(x, y) = 0

0, otherwise
. . . (element-wise equivalence of vectors)

dist(x) = tabular numeric value representing distance assigned to vector.

Calculated results per different scales are presented in Table 6.2.

Scale % APA % APS MAE

100 px 94.42 46.81 2999

250 px 94.56 51.91 2228

600 px 95.03 54.46 2231

Table 6.2: APA - Accuracy per arrow. APS - Accuracy per situation. MAE -

Mean absolute error in metres.

7. Results

34

8. Conclusion

35

Bibliography

[1] Cs231n convolutional neural networks for visual recognition. https://

cs231n.github.io/neural-networks-3/. (Accessed on 01/15/2021).

[2] Gradient descent - wikipedia. https://en.wikipedia.org/wiki/

Gradient_descent. (Accessed on 01/14/2021).

[3] Neural networks for computer science. http://www.sccg.sk/~ftacnik/

NSPV-2020-21.htm. (Accessed on 01/15/2021).

[4] Avrim L Blum and Ronald L Rivest. Training a 3-node neural network is

np-complete. Neural Networks, 5(1):117–127, 1992.

[5] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT

Press, 2016. http://www.deeplearningbook.org.

[6] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep

network training by reducing internal covariate shift. CoRR, abs/1502.03167,

2015.

[7] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980, 2014.

[8] James L McClelland, David E Rumelhart, PDP Research Group, et al. Par-

allel distributed processing. Explorations in the Microstructure of Cognition,

2:216–271, 1986.

36

BIBLIOGRAPHY 37

[9] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas imma-

nent in nervous activity. The bulletin of mathematical biophysics, 5(4):115–

133, 1943.

[10] Boris T Polyak. Some methods of speeding up the convergence of itera-

tion methods. USSR Computational Mathematics and Mathematical Physics,

4(5):1–17, 1964.

[11] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement.

CoRR, abs/1804.02767, 2018.

[12] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster R-CNN:

towards real-time object detection with region proposal networks. CoRR,

abs/1506.01497, 2015.

[13] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and

Ruslan Salakhutdinov. Dropout: A simple way to prevent neural networks

from overfitting. Journal of Machine Learning Research, 15(56):1929–1958,

2014.

[14] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the

gradient by a running average of its recent magnitude. COURSERA: Neural

networks for machine learning, 4(2):26–31, 2012.

[15] Vladimir N Vapnik and A Ya Chervonenkis. On the uniform convergence of

relative frequencies of events to their probabilities. In Measures of complexity,

pages 11–30. Springer, 2015.

[16] Sandra Vieira, Walter HL Pinaya, and Andrea Mechelli. Using deep learning

to investigate the neuroimaging correlates of psychiatric and neurological

disorders: Methods and applications. Neuroscience & Biobehavioral Reviews,

74:58–75, 2017.

