
Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Synthetic 3D Scan Generation with
Parameterized Models of Bags and

Bundles
Bachelor Thesis

2024
Martin Ropjak

Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Synthetic 3D Scan Generation with
Parameterized Models of Bags and

Bundles
Bachelor Thesis

Study Programme: Computer Science
Field of Study: Computer Science
Department: Department of Computer Science
Supervisor: doc. RNDr. Martin Madaras, PhD.
Consultant: Mgr. Lukáš Gajdošech

Bratislava, 2024
Martin Ropjak

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta:
Študijný program:

Študijný odbor:
Typ záverečnej práce:
Jazyk záverečnej práce:
Sekundárny jazyk:

Názov:

Anotácia:

Vedúci:
Katedra:
Vedúci katedry:

Dátum zadania:

Dátum schválenia:
garant študijného programu

študent vedúci práce

Comenius University Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname:
Study programme:

Field of Study:
Type of Thesis:
Language of Thesis:
Secondary language:

Title:

Annotation:

Supervisor:
Department:
Head of
department:

Assigned:

Approved:
Guarantor of Study Programme

Student Supervisor

Acknowledgments: Tu môžete poďakovať školiteľovi, prípadne ďalším osobám,
ktoré vám s prácou nejako pomohli, poradili, poskytli dáta a podobne.

iv

Abstrakt

Neurónové siete môžu byť efektívne použité na úlohy spracovania obrazu so vstupnými
2D a 3D dátami. Pri spracovaní štruktúrovaných mračien bodov, trénovací dataset
môže byť anotovaný manuálne, alebo synteticky vygenerovaný. Pre úlohy lokalizácie
alebo klasifikácie objektov zabalených v sáčkoch a balíkoch, vieme použiť parametrizo-
vaný a textúrovaný model sáčku, alebo fyzikálnu simuláciu balenia do balíčka na gen-
erovanie syntetických trénovacích dát. Vygenerovaný dataset vieme použit na odhad 6D
pózy, alebo na klasifikáciu sáčkov, prípadne na odhad normál deformovaných balíčkov.

Kľúčové slová: syntetické dáta, parametrizované sáčky, lokalizácia, klasifikácia

v

Abstract

Neural networks can be effectively used for image processing tasks using 2D and 3D
input data. When structured point clouds are processed, the training data can be
annotated manually, or synthetically generated. For the localization or classification
of objects bailed in bags and bundles, a parameterized and textured model of a bag
or a physically-based bundling simulation can be used to generate synthetic training
data. The generated dataset can be used for 6D pose estimation, classification of bags,
or normal estimation of deformed bundles.

Keywords: synthetic data, parametrized bag, localization, classification

vi

Contents

Introduction 1

1 Theoretical overview 3
1.1 Related work . 3
1.2 Software Selection . 4
1.3 Blender enviroment . 5

1.3.1 Blender API modules . 5
1.3.2 Geomtery nodes . 5

1.4 Textures . 6
1.4.1 Procedural textures . 6
1.4.2 Texture mapping . 7
1.4.3 Blender textures . 7

2 Concept 9
2.1 Bags and parameters . 9

2.1.1 Parametric three side seal pack 9
2.1.2 Parametric doy pack . 9
2.1.3 Parametric pillow pack . 10
2.1.4 Parametric four side seal pack 10

3 Implementation 11
3.1 x . 11

Conclusion 13

vii

viii

List of Figures

1.1 Node tree example . 6
1.2 UV mapping example . 8

ix

x

List of Tables

xi

xii

Introduction

The field of 3D computer vision and artificial intelligence has seen significant advance-
ments in recent years driven by the availability of large-scale datasets and powerful
machine learning techniques. One critical aspect of this progress is the availability of
high-quality 3D scans for training and evaluation. However, obtaining real-world 3D
scans can be challenging due to limitations in data acquisition, privacy concerns, and
cost.

In this thesis, we address the problem of synthetic 3D scan generation, focusing
on bags and bundles. Our main goal is to create a framework that generates realistic
3D scans of bags and bundles, which can be used for various applications, such as
object recognition, pose estimation, and scene understanding. Consecutively we will
evaluate the quality of the generated datasets using existing neural network for point
cloud processing, using metrics such as normal estimation, classification, or 6D pose
estimation.

1

2 Introduction

Chapter 1

Theoretical overview

As the use of artificial intelligence continues to grow each year, so does the interest in
automating tasks using neural networks. To tackle these tasks, various techniques are
being used, such as classification and 6D pose estimation from structured point clouds.
However, the availability of large and diverse 3D datasets presents a challenge.

Since the beginning of the deep learning era, the performance on many
computer vision tasks increased drastically. This is closely related to the
availability of large real-world datasets as for image classification, object
detection and segmentation, or autonomous driving.[8]

Creating datasets for such tasks can be complex and time-consuming. Techniques
like manual modeling or manual scanning of objects often lead to limitations in dataset
size and diversity of data. Consequently, training neural networks on real-world data
alone becomes impractical.

To address this limitation, we have developed a pipeline for synthetic 3D data
generation. Our pipeline produces an arbitrary number of 3D data samples, comple-
mented by 2D data annotations. These annotations include point clouds, depth maps,
RGB images, and normal maps. By leveraging synthetic data, we aim to enhance the
training and evaluation of neural networks.

In this chapter, we explore existing research in the field of synthetic data generation
and dive into the theoretical foundations of our approach.

1.1 Related work

Being able to calculate the 6D transformation from an object to the camera is cru-
cial in various applications, including the manipulation of objects using robotic arms.
This procedure is commonly referred to as 6D object pose estimation, which involves
determining the object’s location in 3D space and its orientation[?].

3

4 CHAPTER 1. THEORETICAL OVERVIEW

In this thesis, our primary focus will be on constructing a robust pipeline for gen-
erating synthetic datasets of 3D bags to improve 6D pose estimation for bin-picking
tasks. We draw inspiration from related work that also employs similar techniques to
create synthetic 3D datasets, as seen in [9]. However, our approach differs in that it is
designed for 6D pose estimation of bags instead of boxes.

One of the largest publicly accessible datasets for object 6D pose estimation in
general is the Fraunhofer IPA Bin-Picking dataset[8]. This dataset consists of real-
world and simulated scenes with different objects and is fully annotated with 6D poses.
The dataset is generated using physical simulation, where various objects are generated
within a scene with random positions and orientations above a bin. Subsequently, these
objects are dropped into the bin, generating new random scenes.[7].

Our pipeline draws inspiration from both works mentioned and utilizes physical
simulation to generate random scenes. Pack models of various shapes and sizes are
created above a bin at random positions with random orientations and then dropped
into the bin.

1.2 Software Selection

Our choice of software for creating synthetic 3D models of bags focuses on the use
of Blender as our primary software tool. We’ve chosen to adopt Blender for several
compelling reasons.

Blender, as an open-source project, is driven by a dynamic community of contrib-
utors. A collaborative environment empowers individual creators to make both minor
and substantial code changes, resulting in continuous improvements throughout its de-
velopment. The availability of new features and responsive bug fixes makes Blender an
ideal choice for our 3D modelling.

Blender is designed to support the entire 3D pipeline, offering capabilities in rigging,
animation, simulation, rendering, compositing, motion tracking, video editing, and
even game creation.

Blender provides a robust Python API, allowing us to automate tasks and access
Blender’s functionalities via Python code. By utilizing Python scripting, we can create
custom workflows, automate repetitive processes, and customize Blender to our specific
needs. Furthermore, the Blender API enables the development of specialized plug-ins,
enabling us to customize the application.

1.3. BLENDER ENVIROMENT 5

1.3 Blender enviroment

1.3.1 Blender API modules

The Blender API serves as a powerful gateway for users to manipulate various aspects
of Blender, such as scenes, meshes, particles, etc. Blender also features an embedded
Python interpreter that loads on the launch of the Blender application. One limitation
of the API is that only a single Blender file can be opened at a time. The Blender API
consists of various Python modules, such as bpy, mathutils, and bmesh.

The bpy module functions as the top level module within Blender’s API. It allows
users to perform operations that mirror actions available in the GUI version of Blender.
For instance, operations such as scaling, translation, applying modifiers, etc. Addition-
ally, developers can reveal the Python code behind these GUI operations in preferences
under the interface section. The bpy module also includes submodules such as app,
context, data, msgbus, ops, path, props, types, and utils[4].

The mathutils module[2] equips users with mathematical tools for working with
vectors, matrices, colors, and other essential mathematical constructs.

The bmesh module[1] provides access to Blender’s internal mesh editing API. Its
features grant users access to Blender’s own mesh editing toolset. The user can utilize
operations such as split, separate, collapse, and dissolve and is provided with geometry
connectivity data. The bmesh module was designed to be nearly standalone, minimiz-
ing dependencies.

1.3.2 Geomtery nodes

This Blender tool leverages a node-based system for geometry manipulation, offering
flexibility and efficiency. If a geometry node tree is linked to a modifier, it is referred
to as a node group[3].

Within Blender, node groups are a pivotal feature of geometry nodes. They allow
us to simplify node trees and hide away any reusable or complex subtrees. From a
programmer’s perspective, a node group can be treated similarly to a function. It
encapsulates a set of nodes, allowing us to treat the entire group as a single node.
This abstraction simplifies complex or reusable subtrees, enhancing readability and
maintainability. Just like a function accepts input parameters and produces output,
a node group can define its own input and output parameters. Node groups are not
bound to a single node tree and can be reused across different node trees, promoting
consistency and reducing redundancy.

Blender allows nesting of node groups within other node groups. However, node
group can never contain itself, to prevent infinite recursion.

6 CHAPTER 1. THEORETICAL OVERVIEW

Figure 1.1: An example of a node tree with inputs including object geometry, scale
matrix, rotation matrix, and translation matrix, all linked to a transform node. The
node tree outputs the transformed geometry.

1.4 Textures

In the world of computer graphics, textures are essential and one of the fundamental
techniques for enhancing the visual appeal of 3D objects. Textures serve as a powerful
technique to represent surface properties without delving into material or geometry
details. Instead of explicitly modeling every bump, scratch, or imperfection, we are able
to approximate material properties by simply using an image, which will approximate
a real-world material. By mapping texture onto our 3D model, we achieve a convincing
visual representation.

This technique is effective because, unless we need to look at objects up close or
require highly detailed realism, this approximation is sufficient. When we observe
an object from a distance or in motion (such as in animations), our eyes perceive the
overall impression rather than focusing on every detail. As long as the texture captures
the fundamental nature of an object, our brains fill in the rest.

By leveraging textures, we avoid modeling intricate geometry and complex mate-
rials. When rendering a scene, the geometry of objects can be represented as rough
polygonal models, and the material properties can be approximated using textures.
This approach can significantly speed up rendering, making it possible to create visu-
ally appealing content even in real-time applications.

1.4.1 Procedural textures

There are various methods for generating textured images. Manual creation involves
demanding work, where photorealistic textures can be developed by hand or by using
photographs. However, each approach has its limitations. Handcrafting textures can be
challenging, especially for materials that are difficult to replicate, requiring considerable
artistic skill. On the other hand using a photo as a texture may introduce biases in

1.4. TEXTURES 7

lighting and curvature.
Imagine generating a texture that seamlessly repeats itself, like a pattern. Texture

synthesis offers a solution, by creating textures from sample images to resemble the
input. This method is particularly useful for generating textures with repeating pat-
terns. One approach involves writing procedures to simulate material appearance. In
procedural synthesis, one commonly employed function is known as Perlin noise[10].

Procedural textures are defined mathematically, providing precise control over their
appearance. Leveraging this control, we can manipulate texture appearance using
parameters provided by procedural texture.

1.4.2 Texture mapping

One of the challenges of texturing involves mapping textures to object surfaces. It’s
important to decide how and where we want to apply the texture and then find a way
to map the texture with minimal distortion.

In 1974, Edwin Catmull made a significant contribution to computer graphics by
generating the first textured images, where surfaces were represented as parametric
patches. Each point on the 3D surface corresponds to a specific 2D point in parameter
space, represented by the coordinates (u, v). This 2D-to-3D correspondence allows us
to map a two-dimensional texture image seamlessly onto the 3D surface. By leveraging
the (u, v) parameters associated with any point on the patch, we can compute the
corresponding pixel location in the texture image[6].

However, there is a problem with this simple approach, as it will usually result in
aliasing artifacts. Therefore, it is important to use more complex sampling and filtering
methods.

1.4.3 Blender textures

Blender features a range of built-in procedural texture nodes. These nodes accept
texture coordinates and various parameters as input, producing a color or value as
output. Unlike traditional texture setups, no texture data-blocks are required; instead,
node groups can be employed for reusing texture configurations.
Some useful Blender texture nodes are[5] :

1. Image Texture Node - Applies an image is as a texture.

2. White Noise Texture Node - Returns a random number based on an input
seed. The seed can be a number, a 2D vector, a 3D vector, or a 4D vector.

3. Noise Texture Node - Evaluates a fractal Perlin noise at the input texture
coordinates.

8 CHAPTER 1. THEORETICAL OVERVIEW

Figure 1.2: An example of UV mapping on a 3D cube in Blender. The left cube
displays incorrect checkerboard mapping with distortion, while the right cube demon-
strates correct checkerboard mapping.

4. Voronoi Texture Node - Evaluates a Worley Noise at the input texture coor-
dinates.

Chapter 2

Concept

In this chapter we look at theoretical approach and design of our pipeline. We describe
parameters of our parametric 3D models, textures and our approach of generating new
3D models.

2.1 Bags and parameters

2.1.1 Parametric three side seal pack

Package parameters:

• X Size: Dimension of the package in the X-axis

• Y Size: Dimension of the package in the Y-axis

• Z Size: Dimension of the package in the Z-axis

• Left Margin Size: Width of the left margin

• Right Margin Size: Width of the right margin

• Top Margin Size: Height of the top margin

• Top Corners Angle: Roundness angle of the top corners

2.1.2 Parametric doy pack

Package parameters:

• X Size: Dimension of the package in the X-axis

• Y Size: Dimension of the package in the Y-axis

• Z Size: Dimension of the package in the Z-axis

9

10 CHAPTER 2. CONCEPT

• Left Margin Size: Width of the left margin

• Right Margin Size: Width of the right margin

• Lower Top Margin Size: Height of the lower portion of the top margin

• Seal Strap Size: Height of the seal strap within the top margin

• Seal Strap Protrude Size: Width of the seal strap extending beyond the top
margin

• Tear Strap Size: Height of the tear strap within the top margin

• Tear Strap Protrude Size: Width of the tear strap extending beyond the top
margin

• Tear Strap Indent Size: Width of the indent in the tear strap of the top
margin

2.1.3 Parametric pillow pack

Package parameters:

• X Size: Dimension of the package in the X-axis

• Y Size: Dimension of the package in the Y-axis

• Z Size: Dimension of the package in the Z-axis

• Top Margin Size: Height of the top margin

• Bottom Margin Size: Height of the bottom margin

2.1.4 Parametric four side seal pack

Package parameters:

• X Size: Dimension of the package in the X-axis

• Y Size: Dimension of the package in the Y-axis

• Z Size: Dimension of the package in the Z-axis

• Left Margin Size: Width of the left margin

• Right Margin Size: Width of the right margin

• Top Margin Size: Height of the top margin

• Bottom Margin Size: Height of the bottom margin

Chapter 3

Implementation

3.1 x

11

12 CHAPTER 3. IMPLEMENTATION

Conclusion

13

14 Conclusion

Bibliography

[1] Bmesh module. [Accessed on 27/4/2024] url:https://docs.blender.org/api/
current/bmesh.html.

[2] Mathutils module. [Accessed on 27/4/2024]
https://docs.blender.org/api/current/mathutils.html.

[3] Node groups. [Accessed on 26/4/2024] url:https://docs.blender.org/manual/
en/latest/interface/controls/nodes/groups.html.

[4] Python console. [Accessed on 29/4/2024] url:https://docs.blender.org/
manual/en/latest/editors/python_console.html.

[5] Texture nodes. [Accessed on 28/4/2024] url:https://docs.blender.org/
manual/en/latest/modeling/geometry_nodes/texture/index.html.

[6] Darwyn Peachey Ken Perlin Steven Worley William R. Mark David
S. Ebert, F. Kenton Musgrave and John C. Hart. Texturing & Model-
ing: A Procedural Approach,Third Edition. Morgan Kaufmann Publishers,
2003. ISBN:1–55860–848–6, url:https://flurry.dg.fmph.uniba.sk/webog/
SuboryOG/bohdal/TexturingAndModelingAProceduralApproach.pdf.

[7] Fraunhofer IPA. Fraunhofer ipa bin-picking dataset. [Accessed on 30/4/2024]
url:https://www.bin-picking.ai/en/dataset.html.

[8] Marco F. Huber Kilian Kleeberger, Christian Landgraf. Large-scale 6d object pose
estimation dataset for industrial bin-picking. [Accessed on 29/4/2024] url:https:
//arxiv.org/abs/1912.12125v1.

[9] Peter Kravár and Lukáš Gajdošech. Novel synthetic data tool for data-driven
cardboard box localization. [Accessed on 30/4/2024] url:https://arxiv.org/
abs/2305.05215.

[10] Li-Yi Wei. A crash course on texturing. [Accessed on 29/4/2024] url:https:
//graphics.stanford.edu/~liyiwei/courses/Texturing/paper/paper.pdf.

15

https://docs.blender.org/api/current/bmesh.html
https://docs.blender.org/api/current/bmesh.html
https://docs.blender.org/manual/en/latest/interface/controls/nodes/groups.html
https://docs.blender.org/manual/en/latest/interface/controls/nodes/groups.html
https://docs.blender.org/manual/en/latest/editors/python_console.html
https://docs.blender.org/manual/en/latest/editors/python_console.html
https://docs.blender.org/manual/en/latest/modeling/geometry_nodes/texture/index.html
https://docs.blender.org/manual/en/latest/modeling/geometry_nodes/texture/index.html
https://flurry.dg.fmph.uniba.sk/webog/SuboryOG/bohdal/TexturingAndModelingAProceduralApproach.pdf
https://flurry.dg.fmph.uniba.sk/webog/SuboryOG/bohdal/TexturingAndModelingAProceduralApproach.pdf
https://www.bin-picking.ai/en/dataset.html
https://arxiv.org/abs/1912.12125v1
https://arxiv.org/abs/1912.12125v1
https://arxiv.org/abs/2305.05215
https://arxiv.org/abs/2305.05215
https://graphics.stanford.edu/~liyiwei/courses/Texturing/paper/paper.pdf
https://graphics.stanford.edu/~liyiwei/courses/Texturing/paper/paper.pdf

	Introduction
	Theoretical overview
	Related work
	Software Selection
	Blender enviroment
	Blender API modules
	Geomtery nodes

	Textures
	Procedural textures
	Texture mapping
	Blender textures

	Concept
	Bags and parameters
	Parametric three side seal pack
	Parametric doy pack
	Parametric pillow pack
	Parametric four side seal pack

	Implementation
	x

	Conclusion

