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Tukjakomnoho dalsichmatematiki, ijd jsem poutival tuto velmi populdrni knihw dvakrdt.
Poproé to bylo tehdy, kdy jsem studoval matematickow analyzu. Podruhéto bylo, kdyz jsem sim
podie ni udil finé. Proto jsem velmi rdd, Ze se stdvdm svédhem dalSiho vyddni sbirky prikladit
B. P. Démidouvide, lenfokrdt v Ceském jazyce. S piirozenym pocitem vdéku tak reaguji na toto
vyddni napsdnim jeho predmiivy.

B. P. Démidovié (1906—1977) vystudoval Béloruskou stdtni untverzitu. Nékolik let zde
strdvenych vyucoval matematiku, pak piijal misto vedouctho katedry matematické analyzy na
Moskeuské stdtniuniverzté. Zde predndSel vice nef ctyricet let, ziskal tituly kandiddta a doktora
matematickych véd a stal se profesorem malematiky.

Sbirka 1iloh, kterou nyni dostdvdte do ruky, patii mezi jeho vysoce ocetiovand dila. UZ po
pronim vyddni v roce 1952 si kniha, k niZ awtor shromaidoval materidl patndct let, ziskala
povést zdkladni univerzitni sbirky diloh z matematické analyzy. Strukivra knihy byla zvolena
natolik uspésné, Ze ani v dalSich vyddnich nevyiadovala podstatné zmény. Do dnesniho dne se
piitom dockala tiindeti vyddni v ruském jazyce s vice ne milionem vytiski o byla preloiena do
mnoha dalSich jazyki. :

 Vyvoj matematiky postupmé piindsi novou lerminologis, pojmy, metody a koncepce, které
obuykle sjednocuji dosavadni poznathy. Casto jsou tak ovlionény i zikladni obory, které se ji
ddly byt ucelené. To se dnes v plné mie tyhd diferencidlniho a integrdiniho poiti s moderni
invarianini interpretaci diferencidlu a pravidel dertvovdni, jaxyka diferencidinich forem
a jejich integrace, kieré umoiviufi moderni zipis a chdpdni Newtonova-Leibnizova vzorce.
Piesto tento formalismus i zobecnénd Stokesova véla dodnes chybéji ve sbirkdch prikladi
tupovinnych kurzechmatematické analyzy. Ddle existuji asympiotické metody, které spojujivice
matematickych odvétvi a tvofi velmi ufiteiny apardt, jehol souddsti, jako jsou teorie limitniho
piechodu a Tayloriiv vzorec, by také nemély chybét v Zidné sbirce tiloh z malematické analyzy.

Praktickd zhuSenost ukdzala, Ze sbirka dloh sestavend B. P. Démidovicem wmoZriuje
studentiim ziskat potiebmé znalosti v pouttvini apardtu klasiché matematické analyzy. I dnes
setato kntha 1651 zaslouiené poprularité. Proto mohu jeji nové vyddni, nyniiv Ceském jazyce, jen
privitai jako vyddni jedné z nejlepSich vysokoskolskych sbirek piikladii z klasické matematicke
analyzy.

Profesor V. A. Zorid

Vedouct Oddéleni matematické analyzy
Katedra mechaniky a matematiky
Moskevskd stdtni univerzita
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KAPITOLA I

Uvod do matematické analyzy

§ 1. Realna disla

1. METODA MATEMATICKE INDUKCE. K tomu, abychom dokdzali, Ze né&jaké tvrzent plati pre
kazdé ptirozené {islo #, staci ukazat, 7e: 1) toto tvrzeni plati pron=1 a 2) plati-li toto tvrzeni
pro né&jaké piirozené &islo n, pak plati i pro nasledujici pfirozené &islo n + 1.

9 DEFINICE REZU CISELNE MNOZINY. Dvojici mno¥in racionilnich ¢isel A a B nazveme fezen,
jsou-li splnény ndsledujici podminky: 1) #4dn4 z mno#in A, B neni prazdn4; 2) kazdé racionalni
&slo le¥ pravé v jedné z téchto mnozin a 3) libovolné &islo z mnoziny A {dolni skupina Fezu) je
men¥ ne? libovolné &islo z mnoziny B {(homi skupina fexu). Rez A/B jednoznadné urduje: a) Cislo
racionlni, obsahuje-li jeho dolni skupina A4 nejvétsi éislo nebo obsahuje-li jeho horni skupina B
nejmensi Cislo; b) dslo iraciondlni, jestlie mnoZina A neobsahuje nejvétd{ gislo a mnoZina B
neobsahuje nejmensi slo. Cisla racionalni a iraciondlni budeme dohromady nazjvat redinymi
sty Y

3. ABSOLUTNI HODNOTA REALNEHO CISLA. Absolutni hodnotou redlného &isla ¥ rozumime
nezaporné Cislo, kreré znadime symbolem |x| a které je uréeno nasledujicimi podminkami:

_J-x, je-li x =<0,
x| = x, je-lix20.

1
) _ 1edu'|’cim textu budeme pod poj

1 reaing éislo, nebude-ii explicitnd zminéna néco jinéha.




UvQD DO MATEMATICKE ANALYZY

irig

Pro libovolnou dvojici redinych &isel x a ¥ plati nerovnosti

| = [y < |x+p] < <l +1y1.-

4. HORNIA DOLNT HRANICE (SUPREMUM A INFIMUM) CISELNE MNOZINY. Necht X = {x} je omezens
mno#ina redlnych &sel.

Redlné &slo
m =inf{x}
nazyvame doln{ hranict nebo infimem mnoZinyX pokud:
1) pro kaidé &islo xeX® plati
x2m;

2) ke kazdému e>0 existuje aspoii jedno ¥‘e X, pro které plati
x'<m+e,

Analogicky, redlné &islo '
M =sup {x}
nazgvime horni kranicf nebo supremem mno#inyX pokud:
1) pro kaidé &islo xeX plad )
- : . x<M, ) . o e

2) ke Kazdému e3> 0 existuje aspofl jedno x"c X, pro.které platf

x">M-¢g.
Neni-li mnoZina X omezens zdola, klademe
inf {x} = -w;

neni-li mnoZina X omezend shora, klademe

sup{x} = +eo.

5. ABSOLUTNI & RELATIVNI ODCHYLKA {(CHYBA). Nechf a {2+#0) je piesnd hodnota né&jaké
méiené veli¢iny a x je jeji pFiblizna hodnota. Pak dislo

A=|x-aj
nazfvame absoluini edchylhou nebo absoluini chybou, a &islo
-4
e}

nazjvime relativni odehylkou nebo relationi chybou métené veliiny.
Rikdme, ¥e &islo x md n platnych dslic, neni-li jeho absolutni chyba vétii nei polovina jednotky
Fadu uréeného jeho n-tou &islici.

pdigt it e LT [ e vt

2 Zépis x€ X vyjadfuje, Ze &islo x patfi do {je prvkem) mnoiny X.

§1. REALNA Ci5LA

Metodou matematické indukce dokazte, Ze pro libovolné piirozené &islo n plati
nasledujici rovnosti:
9 _nm+1)(2n+1)

_nn+l) 2. 12492+ +n :
9 6

3. 13+23+...+n3=(1 2+, +n). 4, 1+2+9%+ 42" =",

1. 1+2+...+n

5. Necht a™=a(a-h)...[a-(n-Dh]aa@=1.
= % [n]a[n_m]btm], kde (n) je pocet m-prvkovych
m

m

Dokaite, Ze (a +b)["] =
m=0

podmnoZin n-prvkové mnoZiny. 7 této rovnosti pak odvodite binomickou vétu.
6. DokaZte Bernoulliovu nerovnost

(L+x) (1 +x,). . (L4 )2 L +x, +x 4. 4%,
kde x,,%,,..-,%, jsou bud viechna neziporn4, nebo viechna nekladng sla vE31 nez
-1.
7. Dokaite, Ze pro x> -1 plati nerovnost

(1+x)"21+nx (n>1},

piicem? rovnost nastdva, pravé kdyZ x=0.
8. DokaZte platnost nerovnosti

n!<(——n;1)n,kde n>1.

NAvoD: PouZijte nisledujicf nerovnost

"+ - n+l
[’”2) ‘=[1+ 11] >9, (n=1,2,...).

n+l n+
9. DokaZte platnost nerovnosti
2041 () > [(n+ 1)1, kde n>1.

10. DokaZte platnost nerovnosti
1.3 2o-1_ 1
24 7 el
10.1 DokaZte platnost nasledujicich nerovnosti:

. 1 1 1
Jle—t— 4. +——2>n (n22);
* V2 \/g \/?_l

b)yn™!'>m+1)" n23);

c) sin[ )?_lﬁ xk]
k=1 k=1
dy (2n)! < 22" (n1)2.

N R

< Xsinx, (0<x,<m; £E=1,2,...,n);

KNTHOVNA MAT.FYZ FAKULTY
Matematickeé oddéleni
Sokolovska B3
188 75 Praha 8




UvOD DO MATEMATIGKE ANALYZY

11. Necht ¢ je kladné dislo, které neni ¢tvercem celého &isla, a necht A/B je

&iselny Fez, ktery definuje redlné &islo /i, kde skupina B obsahuje viechna
kladni racionaln{ &sla b takovi, Ze 52>¢, a kde mnoZina A obsahuje viechna
ostatni raciondlni ¢isla. Dokaite, Ze dolni skupina fezu 4 neobsahuje nejvétsf

¢islo a Ze horni skupina fezu B neobsahuje nejmensi ¢islo.

12. Sestrojme Ciselny fez A/B, ktery definuje &slo 3\/5, nasledujicim zpiisobem:
Necht skupina 4 obsahuje viechna raciondlni &sla @, pro ktera plati a®*<2,
a skupina B obsahuje viechna ostatni raciondlni ¢isla. Dokazte, Ze dolni skupina
A neobsahuje nejvéei ¢islo a Ze jeho horni skupina B neobsahuje nejmen3{
dislo. |

13. Pomoci konstrukce vhodnych é&selnych fezh dokaite platnost nisledujicich
rovnosti:

2) y2+y8=y18; b) y2/3=/6.

14. Sestrojte ¢iselny fez, ktery definuje &islo 2v2,

15. Dokaite, Ze kazdd neprazdna a zdola omezend ¢iselnd mnoZina ma infimum
a Ze kaZda neprazdnd a shora omezeni é&iselnd mnoZina ma supremum.

16. DokaZte, Ze mnoZina viech zlomki m/n, kde m a n jsou piirozeni é&isla spl-
fujici 0 <m <n, nemd nejmensi ani nejvétsi prvek. Urdete infimum a supremum
této mnoZiny.

17. Urdete infimum a supremum mnozZiny racionilnich ¢sel r, kterd spliuji ne-
rovnost r2< 2.

18. Necht {~x} je mnoZina viech ¢isel opadnych k &isltim xe{x}.

Dokazte platnost nisledujicich rovnosti:

a) inf{-x} = -sup{x}; b) sup{-x}=-inf{x}.

19. Necht {x +y} je mnoZina viech soulth x +y, kde xe{x} a ye {y}.

Dokaite platnost ndsledujicich rovnosti:

a) inf {x+y} =inf{x} +inf{y}; b) sup{x+y}=sup{x} +sup {5}.

20. Necht {xy} je mnoZina viech soudind xy, kde xe{x}, ye {3}, x>0 ay=0.
Dokazte platnost nisledujicich rovnosti: . '

a) inf {xy} =mf{x}-inf{y}; b) sup{xy} =sup{x} -sup{y}.

21. DokaZte platnost nasledujicich nerovnosti:

a) lx-y[=|lx[ =yl B) |x+x;+vx |2 ] =z, [+, [)-

Reste nasledujici nerovnosti:
22. |x+1]<0,01.
24. |x| > |x+1].

23. [x-2|210.
25. |2x-1| < |x-1].

§1. REALNA Cisia

27. |x+2| - |x}> 1.
29. |x(1-x)] <0,05.

x+[x[ )2, x-x] 2=x2
2 2 ’

31. Pi méfeni délky 10 cm byla zaznamendna absolutni chyba velikosti (,05 mm
a pti méfeni vzddlenosti 500 km byla absolutni chyba rovna 200 m. Které z uve-
denych méfeni bylo pfesnéjsi.
32. Uréete kolik platnych &slic m4 &islo x =2,3752, je-li jeho relativni chyba 1%.
33. Cislo x=12,125 ma 3 platné ¢&islice. Urdete jeho relativni chybu.
34. Byly zméfeny délky stran obdélnika: '

x=2,60cm=0,0lcm, y=4,00cm = 0,02cm.
V jakém rozmez{ se miiZe pohybovat obsah § tohoto obdélnika? Jak velka je
absolutni chyba A a relativn{ chyba 8 uréeni jeho obsahu, jestliZe za délky stran
obdélnika vezmeme stfedni hodnoty z jejich méfeni?
35. Mé&fenim jsme zjistili hmotnost t€lesa m=12,59g+0,01g a jeho objem

26. |x +2| +|x-2| <12,
28. ||x+1|-lx-1}| <.

30. DokaZte identitu

v=3,2cm?+0,2cm?. Uréete hustotu t&lesa a jeji absolutni a relativni chybu,

jestliZe za jeho hmotnost a objem vezmeme stfedn{ hodnoty.

36. Polomér kruhu z vysledkd méfeni je ¥=7,2m=0,lm. S jakou minimalni

relativni chybou lze ur¢it obsah kruhu, jestliZe 1 = 3,147

37. Méfenfm jsme zjistili ndsledujici rozméry kvadru:
x=24,7m*0,2m,y=6,5m=*0,1m, z=1,2m = 0,1 m.

V jakém rozmezf lezi objem ¥ tohoto kvddru? S jakou absolutni a relativni

chybou Ize uréit jeho objem, jestlize za jeho rozmeéry vezmeme stfedni hodnoty

z méfeni?

38. S jakou absolutni chybou musime zméfit délku strany Ctverce x, kde

2m < x < 3m, abychom mohli ur¢it jeho obsah s pfesnosti na 0,001m??

39. S jakymi absolutnimi chybami A staéi zméfit délky stran obdélnika x a y, aby

bylo mo#né uréit jeho obsah s piresnosti na 0,01 m*, kdy# délka Zidné z jeho stran

nepievyiuje odhadem 10m?

40. Necht 8(x) a 8(y) jsou relativni chyby ¢isel x a y a necht d(xy) je relativni

chyba &isla xy. DokaZte, Ze plati nerovnost 8(xy) < 8(x) +6(y) +d(x) d(y).
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§ 2. Limita posloupnosti

Bk

1. DEFINICE LIMITY POSLOUPNOSTI. Rikdme, e posloupnost x,,xg,...,% ..
symbolem x {(n=1,2,..

., kterou znadime

-), md limitu a {nebo konverguje k ¢islu a), co zapisujeme symbolem
limx_=qa,
1 os

pokud ke kafdému £> [ existuje &islo N =N(£) tak, Ze plati
|x, -a| <& pro kaidé n>N.
Posloupnost se nazyvi nekoneiné malou, je-li
limx_=0.

LEE)

Posloupnost, kterd nemd (koneénou nebaoli viastni) limit, nazgvime divergenini posloupnosti.

2. KRITERIA KONVERGENCE POSLOUPNOSTI.
1) Necht plat{

3, $X, SZ
a .
limy =limz =c¢.
n fl
n-m o
Pak .
hmx_=c¢.
n

L=
2) Kazda monoténni a omezend posloupnost md limitu.
3 Bolzanovo-Cauchyovo kritérium konvergence. Posloupnost x_ _]6 konvergentm, pravé kdyz

ke kazdému £> 0 existuje &islo N=N (&) tak, Ze plati

|x, -x . pl <eg,
prokaidé n>N ap>0.
3. ZAKLADNI VETY O LIMITACH POSLOUPNOSTI. Predpoklidejme, Ze existuji limity
Jdimx, a limy_.
A~ LT

Pak plati ndsledujici tvrzeni:
1) jestiZe x, <y,, pak limx_ <limy ;

Ao i~

2) lim(x *y )=limx_ z*limy_;

e n-o n-w
3) im(x y,)= llmx hmy :
llmx’n
4) lim = = =—— jestlize limy _»0.

w-m3, lumy, -

LEE]

4. EULEROVO CISLO e, Posloupnost

§ 2. LIMITA POSLOUPNOSTI

konverguje k &islu

Jim [ 1 +l] "2e=9,7182818284..,
- n
5. NEVLASTN{ LIMITA DIVERGENTN{ POSLOUPNOSTI. Symbolicky zdpis
limx =ee
oznatuje, Fe ke kazdému E> 0 existuje &islo N=N(E) tak, Ze plati
jx {>E pro kaidé n>N.

6. HROMADNY BOD POSLOUPNOSTI. Cislo & (nebo symbol «) nazjvime hromadnym bodem (hro-
madnou hodnotou) posloupnosti x, (n = 1,2, ...}, jestlize existuje jeji podposloupnost (posloupnost

z nf vybrana)

P/ SITRE RIS (Isp, <p,<..}

tak, Ze plati
1152 %, = E.
7 kazdé omezené posloupnosti lze vybrat podposloupnost, kterd m4 koneénou limitu, ¢j. kazdd
omezend posloupnost ma koneény hromadny bod (Bolzanova-Weierstrassova véta). V pEipadé, Ze
m4 tato posloupnost pouze jeden hromadny bod, je tento bod limitou pesloupnosti.
Nejmensi (koneény nebo nevlastni) hromadny bod posloupnosti x, oznacujeme symbolem
limx,
_anazjvame limes inferior posloupnosti. Analogicky, nejvét${ hromadny bod oznatujeme symbolem
limx,
a nazyvime limes superior postoupnosti.
: Rovnost limx =limx

P yrey ==

je nutnou a posta¢ujici podminkou existence (vlastni nebo nevlastni) limity posloupnosti x, .

41.Nechf x = n (n=1,2,.--)-
on+l
Pomoci definice limity posloupnosti dokaite, Ze
' limx =1.

Ukaite, e ke kazdému € >0 existuje N =N (g) takové, Ze
|x_-1|<e prokaidé n>N.

Zaroveh dopliite chybéjici hodnoty do nisledujici tabulky:

2 0,1 0,01 0,001 0,0001




UvOD. DO MATEMATIGKE ANALYZY

42. Pomoci definice limity posloupnosti dokazte, Ze posloupnost x_(n=1,2,...)
je nekoneéné mal4. Ukazte, Ze ke kazdému £> 0 existuje &islo N =N (g) takové,
e |x | <& prokaidé n>N, jestlize '
-1y}
a) x _ b ; b)yx = 2n ;O x =i;
n n n n3_+1 n nl

d) x,_=(-1)*0,999".

Pro kazdy z téchto piipadi dopliite chybéjici hodnoty do tabulky:

€ 0,1 0,001 0,0001

N

. 43. Doka?te, Ze posloupnosti

a)x =(-1)'n, b)x, V" g) x, =log(logn) (n=2)

maji nevlastni limitu pro n- e« (4., ze jsou nekoneiné velké). Ukaite, Ze ke kazdému
E>0 existuje &islo N=N(E) takové, Ze |x | > E pro kaZidé n>N. .

Pro kaZdy z téchto pFipadit dopliite chybé&jici hodnoty do tabulky:

E 10 100
N

1000 10 000

b w - u rd I ! : -
44. Ukaite, Ze posloupnost x_ =2 (n=1,2,...) nenf omezend a pfitom neni
nekonedné velka pro n—o.

45. Pomoci kvantifikator a nerovnosti zapiste ndsledujict tvrzeni:
a) lim x_=«; b)lim x, =-«; ¢)lim x =+e.

n-w H-oa n-c

Za pfedpokladu, Ze n probiha mnoZinu pfirozenych d&isel, urdete hodnoty
nasledujicich vyrazi:
10000

46. lim — " 47, lim (o T -yn).

N n2+l

3
48. lim ynsinn! 49
* e n+1 " . .

im 23

oo (_TQ)n*l +3n'+l -
l+a+a’+...+a ' ‘

50. lim (la| < 1,18 <1).
b?’l

new L+b+bT 4.+

§ 2. LIMITA POSLOUPNOSTI

1 l'm(i+£+ +n_1.
51 nl-w 7?.-2 ﬂ2 n2 .
2 2 132
53. lim |-+ 24 (2 )
f—o ns n?’ 'ns
. 1 3 5 -1
§5. hm | —+—+—+...+
new 2 2% 2F P
4,8 2
57. lim (‘/Eﬁﬁ ﬁ)
DokaZte platnost ndsledujicich vztahti:
58. lim—=0. |
a~m 27

k
60. lim - =0 (a>1).

n
-

62. limng" =0, |¢g|<1.

log n

64. lim %
I

66. limL =0.

new TVH

=0, (a>1).

54. h

56.

59.

61.

63.

65.

{1 2 3
lim |—-—=+—-
e | n n
12 32
Im |— +—
n-« |} 71,3
1 1
lim + +
n-0 12 23
lim = =0.
o N
limL =0.
now T
limya=1, (@>0).
limn\/r_z=1.

67. Ktery z nasledujicich vyrazd je pro dostatedné velké hodnoty n véti:

a) 100n +200, nebo 0,01n%;
68. Dokaite, ze plati

lim(l-
oo 2

69. DokaZte, Ze posloupnost

NAvoD: Viziiloha 10.

Ny P

| xn=(l+i]ﬂ n=1,2,.)
n

je ostie rostouci a omezena shora a Ze posloupnost

n+l
yﬁ=[1+-l—] n=1,2,..)
n

b) 2°, nebo 1 '%%; <) 10007, nebo n!?
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Jje ostfe klesajicf a omezend zdola. Odtud pak odvodte, Ze tyto posloupnosn majf
spole¢nou limitu
n n+l
lim[l +l] =1im[l +l] e
newl B pew\ T

" a poufijle nerovnost z tlohy 7.

n z-l

70. DokaZte, Ze plati

xn*l

NAvOD: Uvaiujte vyrazy

0<e-(1+i)n<§ n=1,2,..).

n n
Ukazte, pro jaké hodnoty n se lifi viraz (1 +l] od ¢isla ¢ 0o méné nez 0,001.
71. Necht p_(n=1,2,...) je libovolnd posloupnost, kterd md nevlasti limitu +eo,

a necht ¢ (n=1,2,...) je libovolni posloupnost, kterd ma nevlastni limitu -
(p,q,€[-1,0]). Dokazte, Ze plati

. 148 1\%
lim|l +—| =lim|l +=| =e.
B P,, R~® q,

72. PouZitim rovnosti lim [l +i] =e¢ dokaite, Ze

n-o n
lim[l+1+—1—+i+...+i]=e.
. 2t 31 n!
Odtud odvodte, Ze 8
e=2+—-+—+...+i+ z, *)
21 3l n! nln

kde 0<8_ <1, a vypoliéte Eulerovo &slo e s chybou mensf nez 107°.

73. Dokaite, Ze Eulerovo ¢islo ¢ je iraciondlni.

74. DokaZte nerovnost
n n n
Pl <nt<e| 2},
e 2

75. DokaiZte platnost nerovnosti:

) < In[ 1 +l] <1 kde n je libovolné pirozené éislo;
n+l n n

b) 1+a<e®, kde ¢ je redlné &islo riizné od nuly.

76. Dokaite, Ze limn(a '™

L

zdkladu ¢ =2,718...

-1)=lna (a>0), kde Ina je logaritmus ¢isla e ph

§ 2. LIMITA POSLOUPNOSTI

DokaZte konvergenci ndsleduyjicich posloupnosti pomoci véty o konvergenci
monoténni a omezené posloupnosti:

P b
et

n=1,2,..),

kde p. (¢=0,1,2,...) jsou celd nezdporni ¢isla, kterd, poinaje &islem $, nejsou
vétdineZ 9.
_10. 11  =n+9

n odmocnin

Pomoci Bolzanova-Cauchyova kritéria dokaite konvergenci nasleduyjicich
posloupnosti: , _ ,
82.x =a,+a g+...+a g¢", kde |a, | <M (£=0,1,2,...) a lg| <1.

sint sin?2 sinn
+ +...+ .

83. x_=
o2 92 2"

84, x =cosl! +cos2!+m+ cosn! -
o112 2-3 nin+1)

85. x -1+i+i+ +i.
22 32 n 2
NAvOD: Poufijte nerovnost
1

2

1
< -
n? n-1

B [m

(n=2,3,...).

86. Posloupnost x (n=1,2,...) ma omezenou variaci, jestlize existuje cislo C

takové, Ze platf , '
|2 =2, + [ ~xp| + ...+ %, -x, || <C (n=2,3,..).

Dokaite, Ze kaidd posloupnost s omezenou variaci je konvergentni.

Najdéte pfiklad konvergentni posloupnosti, kterd nema omezenou variaci.

87. Popiite, co znamend, %e dana posloupnost nesplnuje Bolzanovo-Cauchyovo
krlterlum konvergence
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88. Pomoci Bolzanova-Cauchyova kritéria dokaZte divergenci posloupnosti n(n=-1)
1 1 1 _ el e 2 5 x = -1 2nm
x =1+___+_+ - 1044 xn_l'l'?( 1) +3 ( 1) . 10 .xn-' C
n 9 g o5 : n+l 3
: 89. DokaZte, e jestliZe posioupnost x_ (n=1,2,...) konverguje, konverguje 1jeji 106. x =(-1)"n. 107. x, = -n{2+(-1)"].
*3} ' liboveolnd podposloupnost x, a md stejnou limitu: 108. x_ ep D" 109. x =1 +nsin%’£.’
limx, =limx .
nee I g " 110. x, =— .
- 90. Dokaite, Ze monoténni posloupnost je konvergentni, konverguje-li néktera noaE
il jeji podposloupnost. : o —
w . 91. Dokaite, Ze jestlize limx_=a, pak také ’ Vypoctéte limx , ll_I.Tlxﬂ,‘]eStlIZE:
| lim [x,| = a]. i1l x = 1” cos L 112, x"='[1+-1—] -('~1)"+sinf43.
! : . : - + n
i : 92, Jestlize x_~a, co je pak moZné fici o hodnoté limity : " o
3 . m [ omm n T 2nm
3.x = —. =yf1+9v 0N =cos" ==
\ ‘ limxﬂ+1? 113. x, il Sin 4 114. x_ 1+2 . 115. x -=cos 5
new X , .
! 93. Dokaite, Ze kaida konvergentnf{ ¢{selnd posloupnost je omezena. Najdéte hromadné body nasledujicich posloupnosti:
| 94, Dokaite, e kazd4 konvergentni ¢{selnd posloupnost nabyva svého suprema _ _ "1 ‘
|  nebo svého infima nebo obou. Uvedte pitklady posloupnosti viech tif typd. 116. l"'_l_, l, E’ -1_, %7 - i, 2"~ ,
95. Dokaite, Ze ¢iselnd posloupnostx (n=1,2,...), kterd ma nevlastni limitu +ee, 2224438 2 2
nutné nabyva svého infima. : 117. 1, l, 'l+l, l, 1+-1-, —1—+-l—','-l—, 1+-1—, —1—+l, l+l, —1-,'--, l, 1+l,
! _ 2 2 3 3°2 3 4. 4 2 4 3 4 5  mn n
Najdéte nejvétdi clen posloupnosti x (n=1,2,...}, jestliZe: - 1 +l, . 1, l, 1 .
2 /n 1000" n o n-1 n n+l o ,
‘ n
| e 97. xﬂ=100n+ . 98. x, =——. el 121231234
| " n n: S TSy Ty T T Ty T T Ty T T
'H 2'3° 34 44555 5
‘ Najdéte nejmensi ¢len posloupnosti x (n=1,2,...), jestliZe: " 119. x =3-[1 —i) +2(-1)".
, " n
W 99. xn=n2—9n—100. 100. x =n+ 100. 1
- n _ 120. xn=§[(a+b)+(—1)”(a—b)].
Pro posloupnost x, (n=1,2,...) najdete hodnoty inf x , supx, , limx,, limx_,
jestlize: = oo 121. Najdéte pfiklad diselné posloupnost;i‘, kte;é, ma giané hpdnoty @15y, -5y
1 o qw- 3y jako své hromadné body. '
101. x =1 n 101.1 x, =(~1) (2+;] : 122. Najdéte piiklad Ciselné posloupnosti, pro kterou jsou viechny ¢leny dané
(- 1);1 1 -1y - n &selné posloupnosti @,,a,,...,4a,,... jejimi hromadnymi body. Jaké dalsi
. 102. x, = w g 103. x, =1+ nil g hromadné body ma takto sestrojena posloupnost?
I
|
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123. Najdéte piiklad posloupnosti, ktera:

a) nemd Zadné koneéné hromadné body;

b) mi jediny hromadny bod, ale neni konvergentn;
¢) ma nekoneéné mnoho hromadnych bodd;

d) m4 jako své hromadné body viechna redlnd ¢isla.

124. Dokalte, Ze posloupnosti x, a 3 =x_yn (2=1,2,...) maji stejnou mnoZinu
hromadnych bodd.

125. Dokaite, Ze z omezené posloupnosti x, (n=1,2,...) je moZné vidy vybrat
konvergentn{ podposloupnost X, (n L,2,..).

126. Dokazte, Ze jestliZe posloupnost x, (n=1,2,...) neni omezena, pak existuje

vybrand podposloupnost x, takovd, Ze limx, =e,

127. Necht posloupnbst x, (n=1,2,...) je konvergentni a posloupnost ¥,
(n=1,2,...) je divergentni. Co je mo#né ¥ici o konvergenci posloupnost{
a)x_+y ; b)xy ? Najdéte odpovidajici piiklady.

128. Necht jsou posloupnosti x ay (m=1,2,..) divergentni.:Je moiné Ficl, Ze
Jjsou posloupnosti a) x_+y, ; b) x y také divergentni? Najdéte odpovidajici
priklady. ‘ ' : '

129. Necht limx =0 a y, (n=1,2,...) je libovolni posloupnost. MiZeme pak

tvrdit, Ze limx_y =0? Najdéte odpovidajici piiklady.

n—x

130. Necht limx y =0. Vyplyvd odtud, %e limx =0 nebo limy =07 UvaZujte
pfiklad posloupnosti '
LTG0V
§ 2 " 2
131. DokaiZte, Ze plati nerovnosti

n=1,2,..).

- + . < - + . K
a) limx_+limy, <lim(x +y )<limx +limy_
N =™ - R ft~e

a

b) llmx +11my <11m(x +y )<11mx +11my

TI-‘L'D R R R ]

Najdéte pfiklady, kdy v téchto vztazich plati ostré nerovnosti.

§ 2. LIMITA POSLOUPNOSTI

132. Necht x >0 ay 20 (n=1,2,..). Dokazte, Ze plati nerovnosti

a) limx_ Jimy <hm(x y, )slimx_ hmy

a
b) llmx hmy <lnn(x TV )<limx Timy, .

Najdéte piiklady, kdy v techto vztazich plati ostré nerovnosti.
133. Dokafte, e jestlie limx  existuje, pak pro libovolnou' postoupnost ¥,

Nn—

(n=1,2,...) plati nasledujici vztahy:

a) im (x_+y ) =limx_+limy_

a
b) hm(x )= llrnx llmy (x,20).

134. Dokate, Ze je-li posloupnost x, (n=1, 2,...) takovi, Ze pro libovolnou po-

sloupnost y_ (n=1,2,...) je splnéna alespoii jedna z nasledujlcmh rovnosti:

)hm(x +y )= llmx +11my

nebo |
b) im (x D)= llmx l1my (x,20),

pak je posloupnost x, konvergentni.
135. Dokaite, Ze je-lix, >0 (n=1,2,...) a

llmx hrnl =1,
n~= n-e x

pak je posloup'nost x k’onvergentnf.
136. Dokaite, Ze je-li- posloupnost x (n=1,2,..) omezend a plat-li

lim(x_,, -x })=0, pak jeji hromadné body jsou husté rozloZzené mezi jejimi limes
N
inferior a limes superior: o

[=limx_ a L=limx_,

Py o

4. libovolné &islo z intervalu [/, L] je hromadnym bodem dané posloupnosti.

137. Necht &iselna posloupnost x,x,,....%,, - - splnuje podminky

"7

Osx,,, <%, +x, (mmn=1,2,..).
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x
Dokaite, Ze pak lim - existuje.
-~
138. Dokalte, Ze je-li posloupnost x_ (n=1,2,...) konvergentni, je p-osloupnost
Jjejich aritmetickych primeéri _
; .
En=;(xi ot tx ) (=1,2,..)

také konvergentni a plati

R FX L X
Iim =11mxn.

- n Nn—w
Opacné to viak neplati: sestrojte protipiiklad.
139. DokaZte, Ze je-li limx = +e, je také
n-w=
X Ryt tX
Im— %=,
n—w n

140. Dokadte, Ze je-li posloupnost x, (n=1,2,...) konvergentnia x_> 0, pak

- n k]
lim . x x ...x =limx .
172 n n

n-e Horeo

141. DokaZte, Ze je-li x, >0 (n=1,2,...), je také splnéna rovnost

. n -
Iim Jx, = lim
oo

n-oo xﬂ

pfiemZ predpoklddime, Ze limita na pravé strané rovnosti existuje.
142. Dokaite, Ze

X
n

+1
2

lim"l =p.
= ol
143. DokaiZte Stolzovu vétu: Necht jsou splnény nasledujici tfi podminky:
x . -x
a) y;‘,+1>yﬂ (n'=1’2!---); b) limyn=+oo; C) existuje hm n+l n.‘
" noe Y17
X X
Pak lim —==lim = _
noe yn n-ea J"n+1 —yn

+[ﬁxn

144. Vypoctéie:
) .
Q) im ™~ @>1); b) lim 1287
N~ +0 a" e+ N

§ 2. LIMITA POSLOUPNOSTI

145. Dokaite, Ze je-li p piirozené éislo, plati
P+ + +n? 1

a) ET 0 PoSE

b) iim P+2P+ . 4n? o | 1
neo nP p'PI 2’

¢) lim Pedfe. . r@-1 2 .
o=, ’np+l p+1

146. Dokaite, e posloupnost
x =1+—1—+l+...+—1——lrm mn=1,2,...)
" 2 n
je konvergentni. Plat{ tedy nasledujici vztah
1 s +l+...+—1-=C+ln'n+cn,
n

kde C=0,5677216..., coZ je takzvand Eulerova konstania, a €,~0 pro n-.

. 1 1 1
147. Vypodtéte 1 + ot
P [n+1 n+2 2::]

148. Posloupnost &isel x  (n=1,2,...) je urdena nasledujicimi vztahy:

fieoo

X

xn—l+xn—2 =3 4
1 -8, x2 =b, xn=-—2— (n—3, ,)

Vypoltéte limx .
It - 00

149, Necht ;ﬁﬂ (n=1,2,...) je posloupnost &isel definovand rekurentnim vztahem:

X
n

5,0, % =%[xn+i] n=0,1,2,...).

Dokazte, 7e limx_=1.

7@
150. Doka#te, ¥e posloupnosti x_ a y, (n=1,2,...) definované nasledujicimi
vztahy: x_ +y
n 7l

xl =a,y1 =b’ xn+l=vxnyn’yn+l= 9

maji spole¢nou limitu

p(a,b)=limx_=limy_

oo =

(a?itmeticko—geoﬁzemckj primér isel a a b).
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§ 3. Pojem funkce

i 1. POJEM FUNKCE. Proménnid y se nazjvé jednoznacnou funkei f proménné x na dané mno#iné
X={x}, jestlize kaZdé hodnoté xeX odpovidd pravé jeden prvek y=f(x) z n&aké mnoZiny
Y={y}. .

Mnoiina X se nazyva definicni obor funkce [(x); Y se nazyva obor hodnot této funkee.

V nejjednodusiich piipadech je mnozinou X otevfeny interval (a,b): a <x <b nebo intervaly
(a,b]: a<x=<b, [a,b): a<x<b ncbo uzavieny interval [a,b]:a<x<b, kde 2 a b jsou redlnd &isla
ncbo neviastni symboly ~e a +« (v téchto poslednich piipadech se rovnost neuvaiuje).
Odpovidé-li kaZdé hodnoté x z X jedna nebo vice hodnot y =f (x), pak se y nazyvd mnohoznainou
Sfunkci proménné x.

2. INVERZNI FUNECE. Bud ¥ obor hodnot funkee f{x). Rovnost

flx)y=y,

kde ye¥, definuje na mnoZiné ¥ mnohozmaénou funkci

x=f"(y)={x: flx}=y},
kterd se nazyva inverzni funkdi k funkci f(x). Je-li funkce y=f{x) ryze monoténni, tj. plati-li
flx)>f(x)} (nebo f(x,) <f(x,)) pro x,>x,, pak je inverzni funkee x =f jednbzna(‘_‘nia ryze

monotdnni.

Urcete defini¢ni obory nasledujicich funkei: : o
" . _ RpS
= Y YV e ‘ 1 +x
151. 3 Tie 152. y y3x-x". 153. y=(x-2) T
154. a) ¥ =log(;»c2 -4); b) y=log(x+2) +log(x - 2).

155. y=y/sin ().

158. y = ‘/E

. . 159. y =arcsin 2% .
sinx I+x

160. y =arccos(2sinx). 161. y =log[cos(logx)].

162. y =(x + |x|)yxsin®mx.

164. y =arcsin (1l -x) +log(logx).

156. y =y/cosx?. 157. y =10g[sin-£] .
x]

163. y = cotg mx +arccos (2%).
165. y=2x)! - -

165.2 y =41/10gtgx.

165.1 y =1'og2 log,log,x.

165.3 y =y/sin2x +y/sin3x (0<x<2m).

Urcete defini¢ni obory a obory hodnot nasledujicich funkei:

166. y=y/2 +x -x °. 167. y=log (1l -2cosx).

169. y =arcsin|log—— | .
y=arcsinflog 2

168. y =arccos
1+x?

170. y=(-1).

§ 3. POJEM FUNKCE

171. Do trojuhelnfku ABC (viz obr. 1), ktery ma zdkladnu AC o délce b avyiku BD
o délce k, je vepsan obdélnik KLMN , jeho? vyska NM je x. Vyjadiete obvod P
obdélnika KLMN i jeho obsah § jako funka x. Sestrojte grafy funkei P=P(x)
ad=5@).

172. V trojihelniku ABC je délka strany AB 6cm, délka strany AC 8cm a thel
4BAC = x. Vyjadfete délku a strany BC a obsah § trojihelnika ABC jako funkce
proménné x. Sestrojte grafy funkci a=a(x) a §=5(x). _

173. V rovnoramenném lichobé&iniku ABCD (viz obr. 2), jehoZ zdkladny AD a BC
maji délky @ a & (a>b) a viska HB ma délku h, je sestrojena piimka MN
rovnobéina HB, kterd ma vzdalenost AM od vrcholu A rovnu x. Vyjddiete obsah
S obrazce ABNM jako funkci proménné x. Sestrojte graf funkce §=5(x).

b -
B C
N

3
=
h 4

Obr. 2

174. Na uzavieném intervalu [0, 1] osy x je rovnomérné rozloZena hmotnost 2g
a v bodech této osy x,=2 a x,=3 jsou soustiedény hmotnosti o velikosti 1g.
Najdéte analyticky zdpis funkce m =m(x) (-= <x < +=), kterd'vyjadiuje celkovou
hmotnost, ktera se nachézi v intervalu (-=,x), a sestrojte graf této funkce.
175. Funkce y=sgnx je ddna nisledujicim pfedpisem:
-1 pro x <0,
sgnx =y 0 pro x=0,
1 pro x>0.

Sestrojte graf této funkce. Ukaite, 7e plati |x| =x sgnx.
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176. Funkce y=[x] (celd édst &isla x) je urdena ndsledujicim zpdsobem: je-li
=n+r, kde n je celé ¢isloa 0<r< 1, pak [x] =n. Sestrojte graf této funkce
177 Necht funkce

y=() (x20)

oznaduje pocet prvodisel, kterd nejsou vétsi ne? &islo x. Sestrojte graf této funkce
pro hodnoty argumentu 0<x<20. '

Na jakou mnoZinu E, zobrazuje mnoZinu E, funkce y=f{x), jestlize:

178. y=x?, E_={- 1<x<2} 179. y=logx, E_={10<x<1000}.

1
180. y=—1—t~arctgx, E ={-0<x<+e}, 181. y=cotg£:-, E ={0<|x|<1}.
182. y=|x|, E ={1<x|<2}

Proménna x probihd interval 0<x<1.Jakou mnozinu probihd proménni y , je-li:

4 1 x
183. y=a+(b -a)x. 184. y=——. 185. y=
Y ) 1-x = 2% -1
186. y =y/x -x 2. 187. y =cotg mx. : 1ss.y=x:+[2x].

189. Vypoctéte hodnoty (0}, f(1), f(2), £(3), f(4),je-li flx)=x*-6x3+11x*-6x.
190. Vypoltéte hodnoty f(-1), £(-0,001), £(100), je-li fx)=log(x?).

191. Vypoctéte hodnoty £(0,9), £(0,99), f(0,999), f(1),je-li fix)=1+[x].

192. Vypoctéte hodnoty f(-2), f(-1), f(0), (1), f(2),je-li

f(x)={1 +x pro —e<x X0,

¥ pro 0<x <'#oo,

193. Vypoctéte hodnoty f(0), f(-x), flx+1), flx)+1, f[ ] I ),_]E-ll

flx)= .
1+x
194. Najdéte hodnoty x, pro které 1) f(x)=0; 2) f(x) > 0; 3) fix) <0, je-li:
a) f(x)=x-x3; b)'f(x)=sin£; o) flx)=(x+|x|)(1-x).

195, Vypoétete px) = M, je-li:

b) fix)=x%; ¢ fix)=a®.
196. Necht f(x) =ax* +bx +¢. Uka¥te, %e plati rovnost

flx+3)-3f(x+2)+3f(x+1)-f(x)=0

a) f(x)=ax+b;

§ 3. POJEM FUNKCE

197. Najdéte koeficienty linedrni funkce f(x)=ax+b tak, aby platilo f(0)=-2,
f(8)=5 (linedrni interpolace).

Cemu se rovnaji hodnoty f(1) a f(2)?

198. Najdéte koeficienty polynomu druhého stupné fix)=ax 2+bx +c tak, aby
platlo f(-2)=0, f(0)=1, f(1)=5 (kvadratickd interpolace). Cemu se rovnaif
hodnoty f(-1) a f(0,5)?

199. Najdéte koeficienty polynomu tfettho stupné f{x) =ax 3 +bx? +cx +d tak, aby

platilo f(-1)=0, f(0)=2, f(1)=-3, f(2)=5.
200. Najdéte funkci tvaru f(x)=a+bc* tak, aby platilo f(0)=15, f(2)=30
f(4)=90
201. DokaZte, Ze jestliZe pro linearni funkci
flx)=ax+b
tvoii hodnoty jejﬂio argumentu x =x_ (n=1,2,...) aritmetickou posloupnost, pak

odpovidajic{ funkénf hodnoty y, =f(x,) (r=1,2,...) woff také aritmetickou po-

sloupnost.
202. Dokaite, Ze jestliZe pro exponenciilni funkci

fx)=a* (a>0)

tvofi hodnoty jejtho argumentu x=x_ (n=1,2,..
odpovidajic{ funkéni hodnoty y_=f(x,) (n=1,2,..

nost.
203. Necht je funkce f(u) definovina pro 0<u<1. Najdéte deﬁnlcm obory

nisledujicich funkef:
nﬂmn;Mfwm;afEﬂ-

204. Necht f(x) = %(a *+a ™) (a>0). UkaZte, Ze plati
fle+y) +flx=3)=2f(x)f0) -
205. Necht f(x) +f{y) =f(z}. Urete z, je-l

a) flx)=ax; b)_f(x)=-31?; ) f(x_)=arétgx (|| < 1); d) flx)

.) aritmetickou posloupnost, pak

.) tvoii geometrickou posloup-

=log——.
og1

Vypoététe hodnoty @[@()], ¥[¥®)], e[¥ )] 2 ¥lex)], je-li
206. ¢(x)=x2, Y(x)=2%. 207. @(x) =sgnx, IIJ(?C):%.

208. o (x) = {0 pro x<0,

_} 0 pro x<0,
x pro x>0’ llj(x)_{

-x? pro x>0.
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209. Vypoctéte hodnoty f[ f(x)], fAf1fx)]}, je-li
1
fx) T
1-x
210. Necht f (x)= f(f{. f ...)). Vypottéte f (x), je-li

flx)=

_ 1+x*®
211. Vypodtéte f(x),je-li flx+1)=x2-3c+2.

212. Vypoctéte f(x), je-li f[x +—1-] =.7c2+i2 (|x[=>2).
x X

213. Vypoctéte f(x), je-li f(i) =x+y1+x? (x>0).
x

213.1 Vypoctéte f(x), je-li f(—x—) =x?,
, ' x+1

DokaZte, Ze nisledujici funkce jsou na danych intervalech ostie rostouci:

214. flx)=x? (0<x< +e), 215. f(x) =sinx (—gsxs%)

216. fix)=tgx [-%<x<g]. 217 f(x)=2x+sinx.(—5° <x < +e),

Dokazte, Ze nasledujici funkce jsou na dangych intervalech ostfe klesajici:
218. f(x)=x? (-o<x<0). 219. f(x)=cosx (O<x<m).
220. f(x)=cotgx (0 <x<m). S

221. Vysetfete, na kterych intervalech jsou nisledujici funkce monoténni:

" a) fix)=ax+b; b) f(x)=ax2+bx+c; o) flx)=x?
A f6) =225 ¢) fw)=a* (@>0).

222. MZeme zlogaritmovat nerovnost?
223. Necht ¢(x), ¥{x) a f(x} jsou monoténné rostouci funkce. Dokazte, ze jestliZe

@ *) <flx) <yrix),

pak jsou spinény nerovnosti

Lo </ V0] sy ix)].

Urcete inverzni funkci x=¢(y) a jeji defini¢ni obor, je-li:
224, y=2x+3 (- <x < +e0),

225. y=x?;

a) —~o<x<0; b)Ocx< +oo,

—

§ 3. POJEM FUNKCE

(x=-1).

1-x
226. y= Tox

927. y=y1-27%;

228. vy =sinhx, kde sinhx =—é(e o) (- <x < o).

a) -1l<x<0; b)O<x<1.

é29. y=tghx, kde tghx = ¢ -
e x_+e X

(mo <X < +m),

230. x pro ~e<x<l,

y=1x2 pro lsx<4,
2% pro 4<x<+w,-

231. Funkce f{x), kterd je definovdna v symetrickém intervalu (-4,) se nazyva
sudou, jestlize plati

f=x)=f(x) ;
flex)= ().

a lichou, jestlize plati

Urdete, které z danych funkci f(x) _]sou 'sudé a které liché:

a) f(x =3x-x%; b) f(x)-\/l -x) +1/ 1+x)%; ¢ flx)=a +a"‘ (a>0)
f(x ln—x e) flx)= ln(x +\/l+x )
x .

232. Dokaite, Ze libovolnou funkei f{x), kterd je definovina v symetrickém
intervalu (~/,{), je moiné zapsat ve tvaru souctu funkce lich¢ a funkce sudé.

233. Funkce f(x), kterd je definovina na mnoZiné E, se pazyvé periodickou,
JjestliZe exrstuje ¢islo T >0 (perloda funkce v $irokém smyslu slova‘) takové, ie

platf
f(x + T) =f(x) pro x€E.

Rozhodnéte, které z nisledujicich funkci jsou periodické, a v kladném ptipadé
urcete jejich nejmensi periodu, je-li:

a) f(x)=AcosAx+BsinAx; b) f(x)

=sinx +—1-sin2x +'lsin3rx; .
2 3

e) flx)=sinx?;

sm X,

9 fo)=2eg5-3tgzs A fiw)
b ) =Jtge; g f&) =tgyx; h) f(x)=sinx+sinfxy3).
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234. Dokaite, Ze periodou Dirichletovy funkce
_{ 1 pro x racionilni,

% (x) _{O pro x iracionilni,
je libovolné raciondlni ¢islo.
235. DokaZte, e soufet i soudin dvou periodickych funkci, které majf spole¢ny
defini¢n{ obor a jejichi periody jsou souméfitelné (jejich pomeér je raciondlni
¢islo), jsou také periodické funkce. '
235.1 Funkce f(x) se nazyvd antiperiodickd, jestliZze plati

fee+T)=f(x) (T>0).

Dokazte, Ze f(x) je periodickd s periodou 27T .
236. Dokaite, Ze splfiuje-li funkce f{x)(-= <x < +=) rovnost f(x +7T) =kf(x),kde &

a T jsou kladné konstanty, pak f(x}=a*@(x), kde a je konstanta a ¢@(x) je
periodicka funkce s periodou T. : :

§ 4, Grafické znizornéni funkce

1. P konstrukci grafu funkce y =f{x) postupujeme nasledujicim zpfisobem: 1) uréime defini¢n{

obor X funkce f{x); 2) zvolime dostatené hustou sit hodnot argumentu x|, x,, oo, Z mnoZiny X

a sestavime tabutku odpovidajicich funkénich hodnot ' '
y,=flx} 6=1,2,....n); :

$) pfeneseme systém bodf (x,y) (i=1,2,...,n) do roviny uréené soufadnicemi x ay a spojime

je kiivkou, jejiZ charakter vyjadiuje polchu mezilehlych bodii.

2. Abychom ziskali vistizny graf funkce, musime nejprve vySetfit zikladni viastnosti této funkee.

; Nejprve je tieba udinit nisledujici: 1) Felenim rovnice f{x) =0 urdit body, v nichZ graf funkce pro-
tind osu x {nulové body funkee); 2) zjistit oblasti defini¢niho oboru, kde je funkce kladnd nebo zipor-
nd; 3) je-li to molné, zistit intervaly monoténnosti funkee (ristu nebo klesdni funkee); 4) vySettit
chovini funkee pfi pfiblizovani jejfho argumentu k hrani¢nim bodiim defini¢niho eboru funkce.
V tomto paragrafu pfedpoklidime, ¥¢ dendf znd zdkladni vlastnosti nejjednodusiich elemen-
tarnich funkei, jako jsou funkce mocninn4, exponenciilni nebo funkce trigonometrické.

$ vyuZitim téchto vlastnost je mo#né bez velké vypoletni ndmahy ihned kreslit nd&rtky graft

mnoha funkdl. Dalsi grafy je moZné sestrojit jako kombinaci (soucet nebo soutin) téchto nejjed-
‘nodiftich grafl. '

237. Sestrojte graf linearni homogenni funkce
y=ax
pro a=0; 1/2; 1; 2; -1.
238. Sestrojte graf linedrni funkce
y=x+b
pro b=0; 1; 2; -1.

§ 4. GRAFICKE ZNAZORNENI FUNKCE

239. Sestrojte grafy linedrnich funkcf:

b)y=2-0,1x; ) y=-=-1.

2
240. Teplotni soutinitel délkové roztaznosti Zeleza je a=1,2-10°. Sestrojte
v odpovidajicim méfitku graf funkce

1=f(T) (-40°C<T<100°C),
kde T je teplota ve stupnich a ! je délka Zelezné tyCe pfi teploté T, je-li
{=100cm pii T=0°C.
241. Na éfselné ose se pohybuji dva hmotné body. Prvni bod se nachdzel v dase £ =0
20m vlevo od potdtku soufadnic a pohyboval se rychlosti v, =10m/s; druhy bod
se v ¢ase t=0 nachizel 30m vpravo od poditku soufadnic a mél rychlost
v, = -20m/s. Sestrojte grafy funkcf pohybu téchto bodd a vypoctéte das a misto

a) y=2x+3;

jejich setkdni. _
242. Sestrojte grafy polynomu druhého stupné {(paraboly):

a) y=ax® proa=1, 1/2, 2, -1;
b)y=(x—x-0)2 pro x,=0, 1, 2, -1;
c)y=x2+c pro¢=0, 1, 2, -1.

243, Sestrojte graf kvadratického trojélenu
y=ax®+bx+c
pomoci pfevodu na tvar
y=y,talx --:co)2 .
Vysetfete nisledujici piipady: _
a)y=8x—2x2; b)y=x2—3x+2; c)y=-x2+2x—1; d) y=%x2+x+l.

244. Hmotny bod je vr¥en pod thlem =45 vzhledem k horizontilni roviné
s potite¢ni rychlosti v, =600 m/s. Sestrojte graf trajektorie jeho pohybu a najdéte
nejvétsi viiku, kterou dosdhne, a vzdilenost jeho dopadu (poéitejte s piibliznou
velikosti gravita¢éni konstanty g =10m/s® a zanedbejte odpor vzduchu).

Sestrojte grafy polynomiilnich funkci stupné vy$iiho neZ dva:
245, y=x3+1, 246. y=(1 -x%)(2 +x).
247, y=x?-x*. 248. y=x(a -x)*(a +x)*(a > 0).

‘S‘ést_rrojter :g'rafyr linernich lomenych fﬁnkpi (hyf)efbalj:):
249. y- L. L-x
X

250..y=

1+x
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251. Preved'te linearni lomenou funkci

_8Erh dbes0,c#0),
cx +d
na tvar
9=+ —
]

__x %

+9

5

252. Plyn pfi tlaku p, = 1Pa zaujima objem V,=12m?. Sestrojte graf zmény obje-

mu'V plynu v zévislosti na tlaku p, zhstane-li teplota plynu konstantni (Boyleitv-
-Mariottizv zdkon).
Sestrojte grafy racionalnich lomenych funkci:

253. y=x+ 1 (hyperbola). 254. y=x 2y 1 (Newtonﬁv trojzubec).
X x

255, y=x + L 256. 9= (Agnesnna krivka).
x® 1 +x
257, y= (Newtontay had). 258, y =~ 1
1+x 1-x
' 1 2 1
259, y= ; 260. y= % .
g 1-x2 o Y I+x x 1-x
12,1 | (x+1)(x-2)
261. = ——t - 262. y= —rrrnr———.
P T YT E ) +2)

263. Prevedte funkei

_ ax?+bx +c (a,#0),
a,x+b v -
na tvar :
y=kx+m+
x-x, -

: 2

a sestrojte jeji graf. Vy3eti‘ete piipad y= 1#;3

: X

264. Sestrojte grat zdvislosti absolutni hodnoty pfitailivé sfly F, pisobici na
hmotny bod, ktery se nachizi ve vzdalenosti x od stiedu pFitazlivosti, je-li velikost
piitazlivé sily F=10N ve vzdilenosti x = 1 m (Newtondv gravitacni 2dkom).

§ 4. GRAFICKE ZNAZORNEN] FUNKCE

265. Podle van der Waalsova zdkona spliluji objem V a tlak predlného plynu

vztah o :
[p +—I;5] (V-b)=c.
Sestrojte graf funkce p=p (¥}, je-lia=2, b=0,1 a c=10.

Sestrojte grafy nasledujicich funkdi s odmocninou:
266. y = £/ -x -2 (parabola). 267. y =+ x/x (Neileova parabola).

268. y=* %\/ 100 -x? (elipsa). 269. y=*4/x? -1 (hyperbola).
270. y=%, i"‘. 271. y=xy/100 -x2,
+x
273, y=+(x2-1)(9-x2).

972, y=*x ‘ 10x—x (kisoida).

274. Sestrojté graf mocninné funkce y=x" pro:a) n=1, 3, 5; b)n=2, 4, 6.

275. Sestrojte graf mocninné funkce y=x" pro:a) n=-1, -3; b)n=-2, -4.
276. Sestrojte graf odmocniny y =m,/£ pro:a) m=2, 4; b)m=3, 5.

277. Sestrojte graf odmocniny y =m\/a_c_* , jeis
aym=2,k=1; bym=2,k=3; )m=3,k=1,;
eym=3, k=4; Hm=4,Lk=2; g)m4k3

278. Sestrojte graf exponencidlni funkcey a” pro a=1/2, 1, 2, e, 10

dym=3, k=2;

279. Sestrojte graf sloZené exponenc1alm funkce y e, ', je-i:

y,=x% by =xk 9y d) y,-=i; Oy = By
x x? X 1-x

280. Sestrojte graf logaritmické funkce y log x pro a=1/2, 2, ¢ 10.

281. Sestrojte grafy furkei: a) y=In(-x); b) y=-~Inx

282. Sestrojte graf sloZené logaritmické funkce y =_lnyl ,je-li:

1- 1
x§ d)}' YR

1 +x x

a)y,=1+x% by =(x-1-22x-3% )y, =

e)y =l+e”.
283. Sestrojte graf funkce y =log 2.
284. Sestrojte graf funkce y=Asin x pro A=1, 10, -2.
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285. Sestrojte graf funkce y =sin(x -x;) pro x,=0, /4, 1/2, 37/4, =.

286. Sestrojte graf funkce y=sinnx pron=1, 2, 3, 1/2, 1/3.

287, Pirevedte funka
y=acosx +bsinx,

tvar
natva y=Asin{x -x,)

a sestrojte jeji graf. Vy3etiete pffpad y =6cosx +3sinx.

Sestrojte grafy trigonometrickych funkcf:

288. y=cosx. 289. y=tgx. 290. y =cotgx.
291, y =secx. 292. y =cosecx. 293, y =sin’x.
294, y=sin’x. 295. y = cotg 2x. 296. y =sinx-sin 3x.
297. y = *+y/cosx.
Sestrojte grafy funkci:
298. y =sinx?. 299. v =sinl. : 300. y=cos-T-E-.
X - x

300.1 y =sinx -sin-!—.

301. y=tg—.
X X

301.1y =secl.
X

303. y=+ 1 -x2sin =, 304 y=22F
. x 7

302. y=x[2 +sin—1—] .
X

X
305. y =¢ “cosx. 306. y= =2 /sinmx. 307. y = cosx2-.
R

308. y =In(cosx). 309. y =cos{lnx). 310. y=¢ ™.

Sestrojfe grafy nasleduyjicich cyklometrickych funket:

311. y =arcsinx. 312. y =arccosx. 313. y =arctgx.
315. y=arcsin-1-.
e

1
314. y =arccotgx. 316, y=arccos—.
. x

317. ¥ =arcc0tg—1—. 318. y =arcsin(sinx). 319. y =arcsin{cosx).
x

320. y =arccos{cosx). 321. y=arctg(tgx).

323. Sestrojte graf funkce y=arcsiny , je-li

2 1
a)y1=1_£; b} y,= = )9~ 1+x

d)yl—e

2 1+x2,

322, y=arcsin(2sinx).

§ 4. GRAFICKE ZNAZORNENI FUNKGE

324. Sestrojte graf funkce y =arctgy,, je-li:

2. 1, T _ 1
a)y, =x"; b) 3’1‘;’ ¢}y, =lnx; d) i
" 324.1 Sestrojte grafy nasledujicich funkei:
3 2
a)y=x5-—3x+2; b)y=—-—-———-—x Q) y=— ;

(1-x)(1 +x)2 & %] -

d) y=yx(1 ~x?); e)y=33in[g+~}); f) y=cotg

1+x*
g) y=———; h) y=log(x?-3x +2); i)y=arcsin[%—sinx);

.y -arerg| v L L
»y § x-1 x-2 x-3
325. Za pfedpokladu, e znite graf'funkce y =f(x), sestrojte grafy funkei:

a)y=f&); b)yy=fl=); oy=-(=x
826. Za piedpokladu, Ze znate graf funkce v =f(x), sestrojte grafy funkc1

a)y=flx-x,)0; bYy=y,+flx-x); ©) y=f(2x); d) y=flkx+b) (k=0).
326.1 Necht

) ; k)y=log, sinx; 1}y = (sinx)"°'8*

flx)= { - |x] pro |x] <1,

pro |x|>1.
Sestrojte graf funkce

1
=g /G =t) of (e +2)]
prot=0,¢t=1at=2.
327. Sestrojte grafy nasledujicich funkcf:

a)y=2+/1-x; b)yy=1-¢™; c}y=In(l+x); d)y=-arcsin(l +x);
e} y=3+2cos 3x. :

328. Za piedpokladu, Ze znite graf funkce y =f(x), sestrojte grafy funkcf:
Dy = 1@ ) y= (/@1 9 35 (el ).

329. Za pfedpokladu, Ze zndte graf funkce y =f(x}, sestrojte grafy funkei:

a)y=2(x); byy=yfx}; y=Infx); d)y=f(f&); e)y=sgnfix);
) y=[fx).
329.1 Necht

f@)=(x-a)(b-x) (a<b).

ma b T G0 L
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Sestrojte grafy nasledujicich funkei:

a)y=f(); b)y=f(); o)y 7(17); d)y=yf6): e y=e/®; Hy=logfx);
g) y =arccotg f(x).

329.2 Sestrojte grafy ndsledujicich funkei:

a) y=arcsinfsinf(x)]; b) y=arcsin[cosf(x)]; c) y=arccos[sin f(x)];

d) y =arccos[cosf(x)]; e)y=arccotg[tg f(x)],

jeldiz 1) fxy=x%;2) fxy=x".

330. Za predpokladu, Ze znite grafy funkei y=f(x)} a y=g(x)}, sestrojte grafy
funkef: a) y=f(x)+g(x); b)y=f(x)gx); ©) y=fgk).

Pomoci pravidla o sklddini graf sestrojte grafy nasledujicich funkei:
331 y=1+x+e". 332, y=(x+1) 2+ (x-1)"2,
333. y =x +sinx. 334. y =x +arctgx.

335. y =cosx +-21-cos 2% + %cos 3x. 336. y =sinx - %sin 3x+ —;—sin 5x.
337. y =sinx + cos*x. .
339. y=|1-x|-|1l+x|.

338. y=|1-x| +]1+x|.

340. Sestrojte grafy nasledujicich hyperbolickych funkci:
a) y=coshx, kde coshx = %(e “ve ™Y,

L

b) y =sinhx, kde sinhx =é(e e ™);

sinhx

c) y=tghx, kde tghx = .
coshx

Pomoci pravidla o ndsobeni grafii sestrojte grafy nisledujicich funkei:
341. y =xsinx. 342. y =xcosx.
sinx

5

343. y =xsin’x. 344. y=
1+x
346. y =xsgn(sinx).

348. y =cosx-sgn(sinx).

345. y=e **cos 2.
347, y = [x] [sin x| .

349, Necht

_{L-|x| pro |x[ <1,
f&) 7 {0 pro |x| > 1.

§ 4. GRAFICKE ZNAZORNEN] FUNKCE

Sestrojte graf funkce
y=f)fla-x),

je-li: a) a=0; bla=1; ca=2.
350. Sestrojte graf funkce

y=x +x sgn(sinm).

Sestrojte graf funkce y =)—C(1—), je-li:
x

352. f(x)=x(1 -x)%.
354. f(x)=Inx.

351. f(x)=x2(1 —xQ).
353. f(x)=sin’x.
355. f(x)=e"sinx.

356. Sestrojte graf sloZené funkce y =f (1), kde u =2sinx, je-li:

-1 pro —oo<u<—1,
flx)=y u pro -lzuc<l,

1 pro 1<u<+ee,

357. Necht
: x pro x<0,

9 =5+ lxl) 2 w(x)={xg e a0,
Sestrojte grafy nasledujicich funkci: a) y =ple@]; b)y=e[W);
Q) y=vlew); d)y=wlPE)].

358. Necht

_J1 pro [x] <1,
*) {0 pro |x|>1,

_12-x? pro |x] <2,
Vi) {2 pro |x|>2.

Sestrojte grafy nasledujicich funkci: a) y=@[@&)]; b) y=@¥&)];
Dy=vleE d)y=vFE)]. |

859, Funkci f(x), definovanou v kladné oblasti x>0, prodluzte do ziporné
oblasti x < 0 tak, aby v¥sledna funkce byla 1) suda 2) lichd, je-li: a) f(x)=1-x;
b) fx)=2c-x%; o fx)=yx; d) f(x)=sinx; e) fx}=e; D f(x)=Inx.

Sestrojte odpovidajici grafy funkci.
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360. Urcete svislé osy soumérnosti grafii ndsledujicich funkei:

1 5 Q) ysyatx b -x (0 <a<b);

by y=—+
)y x? (1-x)®

a)y=ax2+bx +C

d) y=a +bcosx.

361. Urlete stfedy soumérnosti grafii ndsledujicich funkef:

b) y ‘::+Z; c) y=ax®+bx?+cx +d; d)y=x}1+x'i2+x13;
&) y=1+yn-2.

362. Sestrojte grafy periodickych funkei:

a) y=|sinx|; b)y=sgn(cosx);

y=f(x), kde f(x) =A%[2—%] Lje-li 0sx<2l, a fx+20)=f(x)

a}y=ax+b;

d) y=[x] '2[%]; ¢) y=(x), kde (x) je vzddlenost &sla x k nejbliziimu celému

ishu.

363. Dokaite, Ze je-li graf funkce y=f(x) (- <x < +w} soumérnj podle dvou

svislych piimek x=a a x=b (b>a), je funkce f(x) periodicka.

364. Dokaite, Ze je-li graf funkce y=f(x) (-~ <x < +w} soumérny podle dvou

bodd A=(a,y,) a B=(b,y,) (b>a), je funkce f(x) souctem linedrni funkce a pe-

riodické funkce. Navic plati, Ze je-li y, =jr1, je funkee f(x) periodicka.

365. DokaZte, 7e je-li graf funkce y=f(x) (- <x < +=) soumérny podle bodu
=(a,y,) a pifmky x =b (b=a), je funkce f(x) periodickd.

366. Sestrojte graf funkce y=f(x) (-o<x < +oo) Jeliflx+ 1) =2f(x)af(x) = x(l -x)

pro O<x<1.

367. Sestrojte graf funkce v =f (x) (- <x < +e), _]e-llf(x +m)=f(x) +sinx af (xy=0

pro O<x<m.

368. Sestrojte graf funkce y =y(x), je-li:

a) x=y—y3; b) x=-1;y;

1+y 2
369. Sestrojte grafy funkci y =y(x) zadanych parametricky, je-li:

c) x=y-Iny; d)x?=siny.

a)x=1-¢, y=1—t2; b) x=t+%, y=t+‘i2; c) x‘=10cost, v =sint (elipsa);
t

e) x=5cos’t, y=3sin’;

)x_ ‘/- y_\ﬁa—_ {t>0).

d) x=cosht, y= sinh¢ (hyperbola);
f) x=2(t -sint), y=2(1 ~cost) (cykloida);

§ 4. GRAFICKE ZNAZQRNENI FUNKCE

370. Sestrojte grafy nasledujicich implicitnich funkci:

a) x2-xy+y?=1 (elipsa); b) x> +y>-3xy=0 (Descartestv list);
c) ‘/E + \/} =1 (parabola); d) x2®+9%3 =4 (astroida);
g xl=y" (x>0,y>0); h)x-|x[=y-|y].
370.1 Sestrojte grafy nasledujicich implicitnich funkcf:

a) min(x,y)=1;

e) sinx =siny;
f) cos(mx %) =cos (my);
d) min(x? y)=1.

b) max(x,y)=1; <) max(|x|, [y})=

371. Sestrojte grafy nasledujicich funkei r=r(g) zadanych v poldrnich soufad-
nicich (r, @), je-li:

a) r =@ (Archimedova spirila); b) r= z (hyperbolicka spirila);
¢

o)r= d) 7 =2%%" (logaritmicka spirila);

T (0s@<);
e) r=2(1 +cosg) (kardioida); f) r=10sin3¢ (trojlistek);

g) r?=36cos2¢ (Bernoulliho lemniskata); h) ¢= !
-

I(1r>1); 1) ¢ =2xsinr,

371.1 Sestrojte v poldrnich soufadnicich r a ¢ grafy ndsledujicich funkeci:

b) @= 12:; &) r2+¢?=100.

1+7r

a) p=4r-r%;

371.2 Sestrojte v polarnich soufadnicich r a ¢ grafy ndsledujicich funkei zada-
nych parametricky (¢20 je parametr):

a) ¢ =fcos¥, r=tsin’; b) ¢=1-2" sm%t r=1- 2 cos?

372. Reite ptiblizné rovnici x>-3x+1=0 pomoci konstrukce grafu funkce
y=x®-%+1.

Reste graficky nasledujici rovnice: -
373. x> -4x-1=0, 374. x*-4x+1=0.
376. logx =0,1x. 377. 10F=x2.

375, x =277,
378. logx =x (0<x<2m).

Reste graficky nésledujici soustavy rovnic:

379. x+y2=l, 16x2+y=4. 380. x2+y* =100, y=10(x2—x—2).
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§ 5, Limita funkce

% 1. OMEZENA FUNKCE. Funkdi f{x) nazjvime amezenou na otevieném intervalu {a,b) , pokud existuji
¢ takovd Cisla m a M, Ze plad
msfix)<M
£ pro kaidé xe(ab).
% Cislo m = inf {fix)} =maxm nazyvime infimem funkce j(x) a c1slo M “SUP{ﬂx)} minM

xe{a,b) xé{ak}
nazgvime supremem funkce flx) na intervalu (a,b). Rozdil M, -m, pak nazyvime oscilaci funkce

na intervalu (4.0).

2. LIMITA FUNKCE V URCITEM BODE. Nechf f{x) je funkce s defimi¢nim oborem X = {x}, ktery mi

hromadny bod a. Zipis
: limflx)=A _ - (1
Xx-a

oznafuje, 7¢ ke kaZdému &slu £> 0 existuje takové sl 8 =8(g) > 0, Je pro vechna x, 5 Pro ktera
mé flx) smysl a kterd spliuji podminku 0 < |x -z| <3§, plati nerovnost

3 [flx) -A]| <z.

K tomu, aby limita funkce (1) ex}smvala je nutné a sta&f, aby pro kazdou posloupnost x_~a,

x #a (x_€X; n=1,2,..), platila rovnost
limflx )=4.

Plaii:
D lim320% -y, 9) lim(1 +x)" =e.
S xew X - -0

BOLZANOVO-CAUCHYOVO KRITERIUM EXISTENCE LIMITY. Funkce f(x) m4 v bodg a konenou
limitu privé tehdy, kdyi ke kaZdému € > 0 existuje takové Gslo 6=8(2)> 0, Ze

fixy-fie D] <
pro kaidé dva body x/, x” 2 defini¢niho oboru funkce fix), pro které 0< ]x -aj<é
al<|x"-al<b.

GG

3. JEDNOSTRANNE LIMITY FUNKCE. Cislo A’ nazyvime fimitou zleva funkce f{x) vbodé a
a zapisujeme

A’ =limfix),

jestlize plat
|4 =flx)| <& pro 0 <a-x<8().
Analogicky ¢islo A" nazfvime lfimitou zprave funkce f{x) v bod&a a zapisujeme
A" =limfx),

Xa

i

Jjestlize
A" -flx)| <& pro 0 <x -a<B(e).
K tomu, aby existovala limita funkce fix) v bodé a, je nuiné a stadi, aby platila rovnost

limf(x) =lim f{x).

%0 X~a

§ 5. LIMITA FUNKCE

4. NEVLASTNI LIMITA: Zipis
limfix) ==

oznadije, Ze pro kafdé E> 0 plati nerovnost |fix)| > E, je-i 0 < |x-a| <&(F).

5. HROMADNY BOD FUNKCE. Jestlife pro néjakou posloupnost x, ~a (x_ *a) plati
limf(x") =B,
nazyvime &islo B (nebo symbol «) (koneénym nebo nevlastnim) hromadnym bodem funkee fix)
v bode a.
Nejmensi, resp. nejvétsi hromadny bod ﬂmkce oznafujeme
mfix) a llmf(x)
x-a
a nazyvame limes inferior, resp. limes superior funkce fix} v bodé a.
Rovnost

Lmfix) = hm f(x)

xX=~a
je nutnou a postaéujici podminkou k tomu, aby cx15tovala (konetnd nebo ncvlastnl) limita funkce
fix) vbodé a.

381. Ukaite, Ze funkce definovani podminkami
fi)=n, je-li x=2,
n

kde m a n jsou cela nesoudélnd &isla (n>0)a

flxy=0, je-li x iraciondlni,
je kone¢nd, ale neni lokdlné omezend v Zidném bodé x (. neni omezend v Zid-
ném okoli Zidného bodu).
382. Funkce fix) je definovana a lokalné omezend v kazdem bod: a) otevieného
intervalu b) uzavieného intervalu. Je tato funkce omezend na celém otevieném

nebo uzavieném intervalu? Najdéte odpovidajici pfiklady.
- 1+x2 . . )
383. Dokaizte, Ze funkce f{x) = ; Je omezend na intervalu -~ <x <+

1+x

. 1 p P p
384. Dokaizte, Ze 1 kdyZ funkce fix) = L cos — nenf omezend na Zidném okolibodu
x X

x =0, neni nekoneéné velka pro x-0.
385. VySetiete, zda funkce : x
flx) =Inx- sin®—

X

Je omezend na intervalu 0 < x <e.

386. Ukaite, Ze funkce flx)=
a supremum M=1.

mi na intervalu 0 < x < +o infimum m =0
+X
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387. Funkce f{x) m4 definiéni obor a je ostie rostouci na uzavieném intervalu
[2,b]. Cemu jsou rovny infimum a supremum funkce na tomto intervalu?

Najdéte infima a suprema nasledujicich funkci:
388. fix) =x” na [-2, 5).

389. f(x) =

1 5 na (-e,+=},
+X

390. fix)= na (0,+),

1+x?

391. flx) =;vc+l na (0,+e).
X

392. f{x)=sinx na (0, +}.

393. f(x)=sinx +cosx na [0, 2x].

394. fix)=2" na (-1, 2).

395. flx)=[x]:a)na (0,2); b)na [0,2].
396. flx)=x-[x] na [0, 1]."

397. Uréete oscilaci funkce flx)=x* na nasledujicich intervalech:
a) (1, 3); by (L9, 2,1); ¢ (1,99, 2,01); d) (1,999, 2,001).

398. Urcete oscilaci funkce fix) = arctgl na nasledujicich intervalech:
S X

a) (-1, 1); b)(-0,1,0,1); ¢ (-0,01,0,01); d) (-0,001, 0,001).
399. Necht m[f] a M[f] jsou infimum, resp. supremum funkce f{x) na intervalu
(a,b) . Dokaite, ¥e pro libovolnou dvojici funke f (x) a fg(x) s defininim oborem (a,b)
plat a

mif +folzm{fJ+mf]

MD’l+ﬁ2]sM[fl;|+M[f2]. .
Najdéte priklady funkci f,(x) a f,(x), pro které plati: a) rovnost; b) ostrd nerovnost.
400. Necht je funkce flx) s defini¢nim oborem [g,+=) omezend na kaZdém
uzavieném intervalu [a,b]c[a,+=). Definujme nasledujici funkce:

mix) = inf &) a M(x) = sup f(f).

a<Esx asfsx
Sestrojte grafy funkd y =m(x) a y =M(x), je-li:
a) flx) =sinx; b) f(x)=cosx.

§ 5. LIMITA FUNKCE

401. Pomoci definice limity funkce dokaZte, Ze

limx2=4.
x-2

Zaroveil dopliite chybéjici hodnoty do néasledujici tabulky:

£ 0,1 0,01 0,001 0,0001
)

402. Pomoci definice limity funkce dokaZte, Ze

lim = 4w,
=1 (1 -x)*?
Ziroven dopliite chybé&jici hodnoty do nasledujici tabulky:
E 10 100 1000 10000
; :

403. Pomoci kvantifikdtor(i a nerovnosti vyjadiete nasledujici tvrzeni:
a) limflx)=b; b) imflx)=b; ) limflx)=b.

Xx-d x-/a x~a

Najdéte odpovidajici piiklady.

Pomoci kvantifikitori a nerovnosti vyjadiete nasledujici tvrzenia najdéte odpovi-
dajict pitklady: .
404. a) limf{x) =b; b) limflx)=b; <) limfx)=b.

x- X~ - X oo

405. a) llmﬂx) =o0; b) llmﬂx) = -, () llmf(x) = +o0;

) Tfi)wws & Toafiemm; D Fonfisy s
g) lxi;:lﬂx) ==; h) fi;ﬂx) =-00; i) ;i;;ﬂx) = +oo,
406. 2) limf{x)==; b) Hmfi) = -5 ) limx) = +e0;
d) E;lf(x) =) e)xfi:nﬂx) = —e0; f)xii;ﬂx) = +o0;
g) J;;r-r;nf(x) =0 h) xlEI:ﬂx) =-oa; 1) xl;r:ﬂx) = 4o,
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407. Necht y=f(x). Pomoci kvantifikitord a-nerovnosti vyjadfete ndsledujicf

symbolické zépisy:-

a)y-b prox-a; b) y-b pro x-a; c)y-b prox~a;
d) y~b pro x-a; e) y+b pro x-a; ) y~b pro x~a;
g) y-b pro x=o; h) y,b pro x~-=; i) y,b pro x— +=;
J) y~b pro x-e; - kK)yy~bprox~-w; . 1) y~b pro x— +w.

Najdéte odpovidajici pii klady

408. Necht

Plx}=ax™ -t—a,lac_"_‘l to.ta,

kde a, (i=0,1,...,n;n21,a,%0) jsou redlna &sla.

DokaZte, Ze lim |P(x)| = +o.
. X=oo . - .
aox-”+alx"'l+...+an ; o
‘ ,kdeaoathbO#O.

409. Necht R(x) = .
me:”‘+£)13€”"l +...+bm

Dokaite, Ze
% pron>m,
ay .o ;

limR (x)=y— pron=m,
X =0 b(} >
0 pron<m.
Plx)

410. Necht R (x)= % , kde P(x) a Q(x) jsou polynomy v x a nechi
Pla)=0(a)=0.
Jakfch hodnot miiZe nabyt vyraz
hmR (x)?

Najdéte hodnoty nasledujicich vyrazi:

2 _ 2 ' 2
411. a) llmL—l—; b) limL; ) hm—x—l.
x-0 Zp¥ex -1 x-1 2% -x-1 xme 2= -1
- 5_
g12, im L =201 +3%) 71 413, lim {28721 #5%)
x-0 x x-0 xZ+x®
414. lim (1 +mx) _2(1 + 1) (m a n jsou pFirozens &isla),
x-0 X

415. lim

§ 5. LIMITA FUNKCE

(x - 1)(x - 2)(x - 3)(x ~4)}x ~-5)
MU (5x - 1)° '

(2x - 3)20(8x +2)*¢

m(x+1)(x2+1)...(x"+1)_

416. lim . 417. ki
x-e (2 +1)%° . nel
[(nx)" +1] 2
2_ -
418, limX_25%*6 419, 1im 22372
-3 x°-8x+15 -1 x*-4x+3
4—- — -—
420, lim ¥ —**2 421, lim ® 225" 45 +8
-1 x%-4x+3 : -2 x*-8x2+16
- ' 2 _,. _9\20
422. lim ﬂ 423 lim—& 272
x-1x°-2x-1 : x-2 (x3-12x +16)1°
n_ 100 _
s24, lim EHE e tET R 4241 im*_— 271
-1 x-1 x-1 x50—2x+'1
425. lim % (m a n jsou prlrozena &isla).
-t x"-1
n_ oy o n-le
426. lim (7 -a”)-ma”_ (x-a) (n je pfirozené {islo).
x-a {x - c:a)2
+] _
s27. lim X O IEEn e pEirozené dislo).
X1 (x _ 1)2 . A
428. llm m (m a n jsou piirozena ¢isla).
1-x™ 1 -x"
429, liml [ E] (x +—-) +(x+£73_—l)?-) }
pow B n n
R g _ 9
430, lim - [( S‘E] +[x+—] e +[x+ (r 1)“]
nee 1 n n
NAvVOD: Viz1iloha 2. : _
2, 92 1y 3. 03 3
431 lim 12 Cy 1) . 432, lim| L2t
new 2% +4%+  +(20)° n? 4
NAvoD: Vizdloha 3. - :
3, 43,m3,. o3
433, lim L4 7 v Br-2)

n-o [L44+7+ . +(3n-2))
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434. Vypodtéie obsah kiivodarého trojuhelnika OAM (viz obr. 3), ktery je vymezen

parabolou y =b(x/a)?, osou x a pfimkou x=a, tak, ¢ jej budete povaZovat za
limitu sou¢tu obsaht obdélniku se stranou a/n pro n- .

¥

Najdéte nésledujici limity:

5

435. lim Y FYX TyX
x— oo ‘fx+ 1

437, lim Y1123

x—-4 \/; -9
139, lim ¥ ¥aryx-a @>0).
—-a 2 2

x

X" —a
3
441, lim ¥*-6+2
x~-2 x3+8

443 lim 2 E5

445. im

. L TR - T %
=0 X+ 23‘/:?

3 4
436. 1imM
438. lim ——Vl":"?’
x--8 2_,_&
440. lim vx+13-2yx+1
x~3 x2—9
4
442, limﬁ.
x~16 fx -4
444. lim Y __1 (n je piirozené cislo).
x-0 '
YBsx-x2-2
446, lim Y2 22X 7% 72
x=0 x+x2
448. lim——M Vl"x-
=0 \Tix-yT-x

i
i
F

§ 5. LIMITA FUNKCE

3
449. lim J"ﬁ:—?—"— Vx+20 450, lim
x=T _ x-0
7 yx+9-2 1-11-
2

o

451. lim

50 T 4B - (1 +x)

m n ‘ . .
452, lim -~ Lroe =yl opx (m a n jsou pfirozeni Cisla).
X

-0

453. lim 2 [+axyl+Px-1 (m a n jsou piirozend isla).
x

x=~0

454. Necht P(x)=ax +a2:c2 +...+a x" am je pfirozené &islo.

" -1 @
DokaZte, e lim Y1+PE) -1 =_t

x=~0 X m
Najdéte nasledyjici limity:

455. lim "‘/E—_l (m a n jsou pfirozeni disla).
x-1 ﬁ_l B ) R
. 5 .
455.1 lim 3 - \&ﬁ . 456. lim (1 _\/‘;) (1 - \/;)(1 - \/«';)
R - (L-xy""

457. lim [\/(x +a)(x +b)—x]. 458. lim (Vx +yx +,/E—\'/E).

x-1

459, lim'x(,/x2+‘2x—2‘/x2+x+x).
460. lim JL IL l_\jl_ .11

oY x \x Nx Yx Yx \«x

mb. 3 \ NN v s 2 e
461. lim \/P+x2+1—\/x3—x2+l). 462. lim \/x +3x —\/x —Qx).
463. limx "[(x + 1)2® - (x - 1)**]. 464. limx¥2(x+2-2/x + 1 + /).

n

\/(x +a,)... (% +a,) —x}.

465. lim

X— +w
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466. Lim (x—\fxz— I)n +(x+\fx2—l)n

n

(n je piirozené ¢islo).

PR X
467. lim (" L +x2+x) H(" L+a” —x) (n je piirozené ¢islo).
x-0 x

468. VySetfete chovini kofent x, a x, kvadratické rovnice ax? +bx +¢=0, v niZ se
koeficient a blii k nule a koeficienty b a ¢ jsou konstantni, pficemi b+0.
469. Urcete konstanty @ a b z podminky
_ 2
lim
xew | X F

470. Urcete konstanty a, a b, (i=1,2) z podminek

lim (\a‘xQ ~x+1l-ax -bl)=0

1 —ax—b} =0).

: lim (‘/m —ax —'bg) =(.

Najdéte nasledujici limity:

. sinbx . sinx
471. lim . 472. lim —.

=0 X 7 Lxmw X

. 1 . o J— . 1-cosx
473. lim 222X (man jsou pfirozena d&isla). 474. lim ¢

x-x  SinmX =0  x?

741 lim 8%, 474.2 lim xcotg3x.

*-0 X x-0
. tgx —si ' . —sin3
475. lim gx 7sinx _ 476. lim. sm5x. sindx
=0 sin’x x-0 sinx
477. lim %—;0_5_‘03. 478. lim 1 +sinx - cosx

x-0 X x=0 1+sinpx—cdspx’
L 479, lim tg2x tg| X -x].
g g 1

480, lim (1 ~x)tg =,
L - xR h x— ( )g 2

T 1

481. DokaZte nasledujici rovnosti:
a) lim sinx=sina; b) lim cosx =cosa; ) lim tgx=tga

x—a - x-a x-a

(aaé?ng_ln; n=0,il,t2,...).

§ 5. LIMITA FUNKCE

Najdéte ndsledujici limity:

482. lim Smnx - sina 483, lim 93X _cosa
e x-a x-a Xx-a
. tgx-tga . cotgx -cotga
484, Im =2— = 485, ltm —=— 57
x—a X-a X—-a X—a
486, lim SECrTseca 487, liy SO8€Cx ~coseca
x-a X -a x-a X-a
488. lim sin(g +2x) - 2sin(a +x) +sina
: =0 :x2
489, lim cos(a +2x) - 2 cos(a +x)} +cosa
x-~0 x2
490, lim tgla +2x) -21g(a +x) +tga
x-0 'x2
491, lim cotg(a + 2x) - 2cotg(a +x) +cotga
x-0 7 ;J{,'2
492, lim sin (@ +x)sin (g + 2x) - sin’a
x-0 . X . ‘
nxisinx-1° = _ |
493. lim 2sin“x +sinx -1 . 7298 lim ] —cosx cos2x cosSx.
VAR 2sin’x -3 sinx + 1 — x=0 1 —cosx.
. )
Sm!x_g! tg x-S tgx
/495, lim . 496. lim 8 * 28X
~— x-x3 1-2cosx R .
I e
497, lim B@*X8E %) g a 498. lim — L _O®¥
x-0 x? 7 - 2 - cotgx - cotg *x
- 2
499, lim yl+tgu -yl +sinx 500. lim a .
T -0 x3 =0 /1 +xsinx -y/cosx
3
_ , - 3
/501, lim YOOIX T~ VCOSX \J 502, lim y1-cosx”
- in2 ' o 1 -cosx
-0 SN X x=0 COs

\/503 lim _1_— yCosx . 504. lim 1-—cosx,/'c052x3,/c053x
+0 1-cos(y&) i

L’ 505. lim (sin x+ 1 —sin,/a?).

X~ +o0
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L i
- 1-/%0(1 -% 1-x ’ (1 -/}l -x)
B gosay lim [LTE] OO b g (L) VR0 gy (LR ; Il + 5 +25)
£-0 X x=1 +X xesm V2 FX ) 536. lim
. ln(l+ﬁ+f)
. x+2 \x? . Sx2-x+1 Tx‘__
] . . X = 2t : . log(x+h)+log{x-h)-2logx
. 507 E?: 2x—1] 508. li [2x2+x+1] 537, lim 128&*h) fi )~2logx 5 gy,
fji h-0
‘: { g2
15 509. lim [sin” 2nn . : 510. lim tg E"l'.‘.’&! . ln[g £+a,x
i nmo |\ dn+l x4 8 . 4 . Incosax
| 538. lim ——————, 539. lim .
A c?-1 x;; e241 x? =0 sinbx «—0 Incosbx
511. lim = 512. lim :
FH - \x%+1 x=m \x%-2 540. lim lnnx+\/1—n2x2 ' 5401 lim ln(nxﬂ/l -n% )
i ytaze-1)" . ,: ol T = lnwl =E
i 513. lim — - 514. lim 1 -2x. .y
s s \ 207 - 3x -2 %0 _ . bl lim £ @>0). 542, lim £ % (a>0).
A x+a)* ax+h, * ’ x-0 X vea X-G
i1 515 lim ] ) 516. lim |— (@,>0, a,>0). , _ g
| xwm \X—Q x= 1w | X +by ' 543. lim (a@>0). 544. lim (x +e *)'*.
i x-z X—Q -
1 517. lim (1 +x2)c°‘gﬂx. 518. lim (1 +sinmx)¢™. o ¢
it £-~0 x~1 o T ' PR R : 3
fitl. : . 1+x2 . 1 +sinxcosox \cotg™x
L Vsinx sin’x 545, 1 ; 545.1 1 _ .
L J 519. lim L+tgw . 519.1 lim 1 +t.gx e o [1 +X 3"] o [1 +sinxcos[3x)
52; | .0 {1 +sinx «-0 \1+sinx) y
; ‘I  (sing) —— :  (losk NE | 545.2 fim S 5453 lim S0 (T2)
1 520. lim |— e 521. lim *. x-1 sin(mx ﬁ) x-1 Infcos(m 2%)]
il v-n \SINE -0 LCOS2x : e
! : ‘ . 1 e
i (g2 S im (sinx)'® | . 546 lim tg"| = +—|. 547, lim ———°
i 522, xlfl:; (tgx)E. 523. Ilff;l? (sinx)'®*. | | _ m g (4 ; n] I nax —sinpr
HEER N
11| . otgx . . x ) x_ x_ .0
. 524 lim tg[ﬁ-x] - 525. lim [sm—l—*rcosl) : © 548 lim 2% (a>0). 549. lim ©=% (@>0).
x-0 4 i X~ x X : . 1-a X —aﬂ' x-b x_b
S . V H n+l|® x+h x-h_ x x+a X +h
526. 111101 cos\/;. 527. Llfl: ( - 1] . 550. lim & "¢ : 2a @>0). 551. lim (x +a) (:;:b)w _
X . Il +x) ‘- | e i | e fard)
528. lim cos"—. _ _ 529. lim ————=. W - ael
nee Jn 50 X : 552. lim n(\/;—l) (x>0). 553. lim nQ("[- \/E) (x>0).
530. lim x[In(x+1})- lnx] 531. lim Inx-Ina (@ >0} Y ' s o \n
X~ oo X-~a X=a i . - .
oty 554. lim [M] @>0,6>0). 555. lim [ﬁ;_\/g] @>0,6>0).
532. lim [sinln(x + 1) -sinlnx]. 533. lim M e @ e
x— 4+ X ¥ ln(x +.‘X1+1) aX+h¥+c* lx
556. lim — (@>0,b>0,c>0).

iR 534. lim th 535. lim M : x=0
1+100x> oo In e ) |
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x+1 x+1
557, lim |4 207 *
a+bh+e

e+l )12
c ] {@a>0,6>0,c>0).

x? P lix
558. lim [P;b] @>0,b>0).

-0\ a*+h*
22 pal .
559. lim = (@>0,b>0). 560. Lim & @>0)
x=0 (ﬂ, bx)2 . NI
561.2) lim L3y pipy 043D

x--= In(l +2%) X ln(l +27)
563. lim (1 -x)log 2.

x-1

562. lim In(1 +2")1n(1 +§] .
X

X— +ca

564. Dokaite, Ze
ﬂ
lim = =0 (a>1,n>0).
x- i a,

565. Dokaite, e

: x
lim = =0 (a>1,e>0).
xeswo X°
Najdéte nasledujici limitﬁr:'
2 x 2 x
566. a) lin M; b) lim _l-r_l_(_x+_e)__
0 In(x*+e®) xese Inx*+e )
567 In(l +xe ™)

= et

568. lim [(x+2)ln(x+2) 2(x+1)ln(x\+1)+xlnx}.

X +oo

' 2
569. lim [In(xlng) In[ 2%} | @>1). 570, lim [In® V2t jp22 ]

x~0

lni X~ dow x + fxﬂ_l
a
571, lim y1+xsinx -1 - 572. lim cos (xe ¥) - cos(xe "‘)_
£=0 et -1 P %3
573. lim (2e5¢ D - 1) i 574, Tim (2 -x)*™2).
z-0 x-1

i

§ 5. LIMITA FUNKCE

—in®P
575. lim Losint7x  (a>0,p>0).
x=f2 \/(1 -sin®x)(1 - sinfx)
576.2) lim S0% . by fim 0SR20
x~0 X x-0 x2 x-0
: 2
5761 lim —"2 % (yiz dloha 340).

«-0 In{cosh 3x)

sinhyx? +x -sinhyx? - x

(v1z uloha 340).

577. lim

e wos coshx
577.1 a) lim sinhx —smha; b) lim coshx -cosha .

x-a x-a x-a X-a
. Incoshx ]
577.2 im ——. 578. lim (x -lncoshx).
= INncosx RS
b1 n?

) sin2x s sinx COSh;
579. lm —— | 580. lim

%0 tghx p~so T

COs —
n

. 1= ' ' . '
581. limarcsin X 582. m arccos(qfngrx —x).

Xwo +X . . X+ )
583. lim arctg . © . 584. limarctg

x-2 (x-2)? ¥ e 1+x?
585. Lim arctg (x +h) -arctgx

h-0 h '

In l+x

586. i 1-x

im .
«-0 arctg(l +x) -arctg (1 ~x)

R~

587. lim [n arctg

-1 . n[ T X
__—__.tg b —
n(x2+])+x 4 2n

588. Iim x E—arctg X )
4 x+1

Yt
589. lim x Ew:ircsin X ) 590. lim |1 + (
X~ too 2 x? £1 nee n

591. lim —L_¢ 1%,

o 592. lim xInx.

x-0 X x-0

_1) lcosec(n\/ 1+n7)
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593. a) lim (\/x2+x—x); b) lim (1/x2+x —x).

594. a) lim (fl rx+x? =1 —x+x2); b) lim (Jl wx+x?-y1 —x+x2).

594.1 Vypoctéte h=1lim flx) - lim f{x), je-li

X - ot X— -t

foy=InE2VE T2 yx?+a”
x+ \fx 2,p°

595. a) lim arctg—l-—; b) lim arctg L .
0l l-x w1 1 -x
596. 2) lim . b lim ——.
N Y 0 1+el#
507, a) lim 220y gy I re)
2= o0 x P x
598, Doka7te, Ze
a) 2% «2 pro x--=; b) 2 »2 pro x-— +o.
1+x - 1+x

599. Dokaite, Ze a) %, 1 pro x-0; b) 2.1 pro x~0.
600. Najdéte f{1), him f(x); lim f(x), je-li flx) =x +[x%].

xrl sl

601. Najdéte fln), lim f(x), lim f(x) (n=0,%1,...}, je-li flx)=sgn(sinmx).

Najdéte nasledujici limity:

602. lim x cosl. 603. lim x[l}

x=0 X x=0 X
604. lim sin(m/n L l). 605. Lim- Sin“?{n—"/n? +n).
7 —sa n-o -
606. lim sin sin ...sinx
foo S— -
n-krat

607. Necht lim @(x)=A a lim {(x)=B. Vyplyva z toho, Ze

x~a x=A

lim Y(o(x)) =87

x—a

§ 5. LIMITA FUNKCE

Uvazujte funkce @(x)=1/g pro x =p/q, kde p a g jsou vzdjemné nesoudélna celd ci-
sla, a @{x)=0 pro x iraciondlni; Wix)=1 pro x#0, P(x)=0 pro x=0; pfidem? x - 0.
608. DokaZte tvrzenf Cauchyho véty: Je-li je funkce f{x) s defini¢nim obhorem
(a,+~) omezend na kaZdém omezeném otevieném intervalu (a,b), pak

a) lim M=lim {flx +1) -f(x)];

b) lim [ o)™ = lim fa+l) (f(x)ZC> 0)
e b0 x-s fX)

za ptedpokladu, Ze limity na pravych stranich rovnosti existuji.
609. DokaZte, %e plati tvrzeni: JestliZe a) funkce f(x) ma definiéni obor x>a;
b) funkce f(x) je omezend na' kaidém omezeném intervalu a<x <b
ac) lim [fix+1)-f{x)] =, pak
S lim [ ..,
gurm X
610. Dokazte, Ze plati tvrzeni: JestliZe a) funkce flx) md defini¢ni obor x>a;
b) funkce f(x) je omezeni na ka’dém omezeném intervalu a <x <& a c) pro
nékteré pfirozené &slo n existuje vlastni nebo nevlastni limita
fim DS
X v x"
pak
fim S L
v x?*1 w1

611. Dokaite, Ze plati

n 7!

n 2 n
a) lim [1 +£) =¢*; b)lim [1+x+2_1+...+x ]:ex.

7 -0 o

612. Doka¥te, e
lim nsin(2nen!) =2m.

11—

NAVOD: Pouzijte vztah (*) zilohy 72.

Sestrojte grafy nasledujicich funkcf:
613.2) y=1-x'9 b) lim (1-x) (-l<x<1).

100 ) %"
(x20); b)y=lm

0o 1+x"

614.a) y=

(x=0).

1+x 100
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615. y=lim =% (x+0). 616. x=lim |x2+-—L.
new X T ' n-e n?
) . " "
617. y=lim 1 +x" (x20). 618. y=lim ,|1+x" +[ xg] (x=0).
n+2 . ’
619. y=lim ——— (x=0). 620. a) y =sin'*?x; b) y =lim sin™"x.
n-w  fon - i R,
) 1 7 n ) ’
621. y=lim # (x=0). 622, y=lim (x - l)arctgx".
n fx
628. y=lim y1+¢™**D . 624. y=lim Xt
- L~ 4o 1+e
_ .. xth“E +yx
625. y=lim ——In— (x>0). 625.1 y =lim (x=0).
-x £-% X _ pmo o T0X ,
: tg " —+1
_ 4
625.2 y =lim xsgn [sin®(nlmx)|.
625.3 Sestrojte kiivku .
lim |x|"+|y["=1.
626. Asympiotou kiivky y =f(x) nazyvime pfimku y =kx +b, pro kterou

Lim [fix) - (kx +5)] =0.

PouZijte tuto rovnost a najdéte nutnou a postaéujici podminku pro existenci

asymptoty.
627. Najdéte asymptoty a sestrojte grafy ndsledujicich kfivek:

3
a)y=2x—; b) y=yx* +x;

d) y=—=

e*- I
e)y=In(l +e¥); f)y=x+arccosl.
X
Najdéte nasledujici limity:

n+l n+2 2n

x P
(n+1)! (n+2)! To@en)|

628, llm

|
[
{

§ 5. LIMITA FUNKCE

629. lim [(1+x) (1 +xB(L+x%...(1+x®], je-li |x| <.

7l

630. lim cos > cos > .. cos~|
e 2 4 2“
631. Necht lim :IP;("; =1, kde Y(x)>0, a necht & =20 (m=1,2,...) pro n—e,
x-0 x

. e, a n>N(g).

Dokaite, ic
lim [, ) +plo, ) +...

n-o

| <& pro kaidé m=1,2,...

+@ee, )1 =lm (e )+ ey ) +... +¥(e, )] 1

za ptedpokladu, Ze limita na pravé strané rovnosti (1) existuje.

PouZijte piedchozi tvrzeni a najdéte nisledujici limity:

n 3 1t
632. lim E[ 1+i2—1] . 633. lim Y [sin%].

e k=1 n n-o k=1 mn

635. lim [] {1 +iz

n

634. lim Z kin?

n-w k=

) (a>0).

n-= k=1

636. lim ﬁ cos ka
n-w k=1 nﬁ

637. Cleny &fselné posloupnosti x jsou definovany rovnostmi

x, =ya, x,=Ja +ya, x —Va+ a+ya

Vypoctete Jjeji limitu Iim x_.

- @>0).

n-o

637.1 Cleny ¢iselné posloupnosti x_ jsou definoviny rekurentnim vztahem:

x =0, x

x ) (n=2,3,..).

1

1
2=1’ xn=§(xn-l+

Vypoctéte jeji limitu lim x_ .

)

637.2 Cleny ¢iselné posloupnosti ¥, jsou definoviny pomoci ¢lent posloupnosti
X, rovnostmi

x, _, (n=12,.),

y[}:xﬂ, yn=xﬂ-a

kde || < 1. Vypoctete limitu lim x_, je-li lim y, =5.

B N

1
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637.3 Cleny &iselné posloupnosti x, jsou definoviny rekurentnim vztahem:

x0=1, x =

n=12,..).
+xn -1
Vypoctéte jejf limitu lim .

n-«

NAVOD: VySetfete rozdil mezi x_ a kofeny rovnice x =

+X )
638. Posloupnost funkci

9,=3,00) (0<x<1)
je definovana rekurentnim vztahem:

2
x Pa-1
J’1=§: yn=f§_ 9 (ﬂ=2,3,---)-

Vypoctéte limitu lim y .

N-roe

639. Posloupnost funkef y_ =y _(x) (0<x<1) je definovana rekurentnim vztahem:

2
yn-l
2

SR SE S Y

Vypoctéte limitu lim y .

n—

639.1Nechtx>0ay =y  (2-xy )} (n=1,2,..). Dokajte, feje-liy, >0 (£=0,1),
pak posloupnost y_ konverguje a
; -1
limy =—.
pae x

NAVOD: Vysetfete rozdil —1- —y;‘.
x

639.2 Hodnota y =y/x, kde x >0, se pocita nasledujicfm zptisobem: necht ¥o>0

je libovolné kladné ¢islo a

yﬂ="[.'yn_.1+ z ] (??.:1,2,)

DokaZte, Ze pak lim y, =‘/a_§: .

NAvVOD: Pouiijte identitu

yﬂ"ﬁ yn-]_\/'; ?
- n=1).
P tVE {0,

§ 5. LIMITA FUNKCE

640. Pro ptiblizné fefeni Keplerovy rovnice
x -esinx=m (0 <g<l) (1)
pouiijeme nésledujici rekurentni vztahy:

X.=m, X =m+351nxa,..., x" =m+851nxﬂ_1,...

0 1
(metodu postupmych aproximact).

Dokaite, Ze existuje &islo £ =lim x_a Ze toto ¢islo je jedinym kofenem rovnice (1).

o

641. Je-li w, [f] oscilace funkee f{x) nauzavieném intervalu |x-&| <k (h >0}, pak
dslo : mom =|1hln; mh[ﬂ

nazyvame oscilaci funkce f(x) v bodé E.

Uréete oscilaci funkce f{x) v bodé x=0, je-li 0)=0 a pro x+0 plati:

a) ﬂx)=51n;; b) f(x)=—x—2cos2;; c) f(x)_—x[? sm;],

d) ﬂx)='?lt-arctg%; €) ﬂx)=E;-}ﬂ; fy fx)= ! s g) fley=(1+ =)™

1+e 1/x
.1
642, Necht f{x)=sin—.
x

Dokazte, ¥e ke kaidému &slu «, pro které -l<ws], existuje posloupnost
% ~0 m=1,2,..) akovd, Ze lim fx)=a.

643. Vypodtéte ' L
[=limf{x) a L=limf{x),
x-0 Cx=0 7
Je-li: '

- 1Y sec¥(1/x)
a) flx) =sin21 + —%arctgl; b) flx)=(2-x ) COSl; c) flx) =( 1 +c052—] ;
X T X X X

644. Vypoctéte -
[=lim fix) a L=lim f{x),
je-lis S
a) fix)=sinx; b) fix)=x’cos’x; ¢ f(x)=25i’”‘2; d) f(x)z——-—{c-T (x=0).
_ - 1 +x%s1n°x
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A .

HEEE

6. Pouzivani symbolu O
1. Zapisem
@(x) =0 (x}} pro xeX

vyjadiujeme, Ze existuje konstanta A takovi, e

|@(x)|<A|Y(x)| pro kaidé xeX. (1)
Anazlogicky pffeme : :
¢(x) =0 (Y (x)) pro x~a, @)
plati-li nerovnost (1) v n&jakém okali U_bodu a (x#a). Navic, je-li Y(x)#0 pro xel, (x*a),
pak vztah (2) plati, existuje-li vlastm limita lim lx )) #0. Takovy piipad oznatujeme zdpisem

x—a x
Px)} =0 "(Y{x)).
Jeli
lim &) k20 >0,

x-0 x ’ -
nazyvime funkci @(x) nekonecné malow stupmé p vzhledem k nekoneéné malé proménné x.

Analogicky, je-li
BIC] lim M-k#O @ >0),
= xl

nazyvame funkci Yix) nekonecné velkou stupmé p vzhledem k nekoneiné velké proménné x.

2. Zapis
Plx} =0 (Y(x)) pro x—~a
vyjadiuje, Ze plati rovnost
OE) =a()Yix) xeU, x#2a), - 4 (3)
kde a(x)~0 pro x~a. Je-li §(x)=0 pro xe U, x #a, je romost (3) ekvivalentni tvrzeni

lim 28} g,
KX Yix)

3. Funkce 9(x} a §(x) se nazyvaji chvivalentni (p(x) - P(x)) pro x~a, jestlize
Px} - W(x) =0 (Y(x)) pro x-a. {4)
Je-li Yix)20 pro xe U, x#a, vypljvi 2 rovnosti (4), fe
lim 2&} g
o Wix)

Pro x -0 plati nédsledujici vztahy ekvivalence:
sinx-x; tgx~x; a*-1-xlna (@>0); In(l +x)~x; "\/1 x-1-X
n

Obecné plati

P(x) +o(w@x) - ofx).
Pfi potitdni limity podilu dvou nekonedné malych (nebo nekonedné velkych) funkei pro x-a
miZeme tyto funkee nahradit ekvivalentnimi.

§ 6. PouZivani sYmeoLU O

645. Povaiujeme-li stfedovy dhel kruhové vyseCe AAOB=x (viz obr. 4) za
nekoneéné malou veli¢inu prvﬁfho stupné, urdete stupné malosti ndsledujicich
velidin: a) délky seény AB; b) viiky CD; c) obsahu trojihelnika AOB; d) obsahu

trojuhelnika ABC; €) obsahu lichob&Znika ABB1 1 f) obsahu kruhovésete ABC
_ A e 5
A D B
X
0
Obr. 4

646. Necht o (fix)) je libovoln4 funkce, kterd ma pro x~a mensi stupes ristu ne?
funkce flx), anecht O(f{x)) je libovolna funkce, kterd m4 pro x-a stejny stupen
ristu jako funkce f{x), kde f{x)>0. Dokaite, Ze plati
a) ol (f) =o(f(x)); b) O () =0(flx)); <) e(O(f(x))}=0(fix});

d) O(O(fix})) -O(ﬂx)) e) O(ﬂx) +0(fix)) = O(f(x '
647 Necht x~0 a n>0. Dokaite, Ze plati

a) cO{x")=0(x") (c#0 je konstanta); b) Ox™)+0x™)=0x" (rn<m);

A'0MNOE™=0G"""). ' S -
648, Nechf x~ +0oa n>0. Doka'ite, Ze plati
)0 (x™=0(x"); b)O"+0x™=0x") (n>m); )0 )0E™)=0"").
649. DokaZte, 7e relace ~ ma vlastnosti ekvivalence: 1) je reflexivni: @(x) -~ ¢(x);
2) je symetricka: je-li @{x)~ Y{x), pak ¥(x) ~ @(x} a 3) je tranzitivni: je-1i @(x) ~ Yrix)
a Yix)~ x{x), pak @(x)~ x(x).
650. Necht x~ 0. DokaZte nasledujici rovnosti:

a) 2x-x?=0(x);. b) xsinyx=0x*?); c) xsm— O(|x]);

d) Inx = o[ ] (e>0); e) \Jx+ x +yx ,/- f)arctg——O(l)

g) (1+x)" =1 +nx +o(x)
651. Necht x— +o, Dokazte nisledujici rovnosti:
a) 2x3-3x2+1= O(x3) b) x+1 O[l]; ) x +x%sinx = 0 (x%);

x+1
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1+x2 x

) Vx-i— x+ \/- h) x% +xIn'%%x ~x?

652. Dokaite, Ze pro dostate¢né velké x > 0 plati nasledujla Nerovnosti:

a) x _+10x+100<0,001x ; b) In'%% < \/_ c)xloe"<e?‘
652.1 DokaZte asymptotickou rovnost

\/xg +hx +g=x +% +O(%]

653. Necht x-0. Najdéte hlavni ¢len tvaru ¢x " (kde ¢ je konstanta) a urcete
stupné malosti nasledujicich funkci vzhledem k proménné x:

a) 2x-8x%+x%; b) yT+a-yT-x; o /T- 2x—,/1 3%,

654. Necht x- 0. Ukazte, 7e nekoneéné malé funkce
a) flx) =L; b) ﬂx)=e'”"
nx

nelze srovnivat podle stupné malosti s nekonecne malou funkei x ™

d)a_mg_x:o[ig]; e) Inx=0(x®) (e>0); f)_xpe"w['l';];
: X

Pro x - +co.

d) tgx -sinx.

(n>0) pro

#4dné n, yj. pro Zadné piirozené &islo n, neplatl e hm Pk ) - =k, kde k jekonecné
dislo rdzné od nuly. _ xr ? x" :
655. Necht x~ 1. Najdéte hlavni den tvaru cx-1)"a uréete stupné malosti nésle-
dujicich funkcf vzhledem k nekoneéné malé funkci x-1: '

. e
a)x?-3x+2; b) yl-yx; o) lnx; d)e*-e; e)x*-
656. Necht -~ +e. Najdéte hlavn{ élen waru ¢x " a urlete stupné velikosti nisle-
dujicich funkci vzhledem k nekoneéné velké proménné x:

1+y1+y/x.

;€ 3\/x2—x+,/§;' d

n
657. Necht x ~ +e. Najdéte hlavni ¢len tvaru ¢ (i] a urcete stupné malosti ndsle-
x

a) x2+100x + 10000; b)
x3-3x+1

dujfcich funkci vzhledem k nekoneéné malé funkci

2 L by AT VR o FrZ-2/5 T e

x+l

658. Necht x~ 1. Najdéte hlavni élen tvaru c(

d) ---sml
x  ox

n Lot
1] a uréete stupné velikost
x- : ,

ndsledujicich funkci vzhledem k nekoneéné velké funkei

x-1

SHECHT S

i
i
i
i
i

§ 7. SPOQJITOST FUNKCE

2

x
. b
a) T ) I —x

b I A @)
W - sin ®x (1-x)?

659. Nechl x~+e~ a f (x})=x" (n=1,2,...). Dokaite, Ze: 1) ka#d4 z funkef £ x)
roste Tychleji neZ pfedchozi funkce f,_(x); 2) funkce e*

jakékoli funkce f (x) (n=1,2,...}.

roste rychleji nez

660. Necht X~ +o a f(x)=n\/§ n=1,2,..
Toste pomale_]l nei pfedchozi funkce f |
nez jakdkoli funkce f (x) (n=1,2,...).
661 Dokaite, 7e ke kaZdé posloupnosti funkci
‘ £ o) o, f(),0 (@ <x < +0)

lze sestrojit funkci flx)

£ =1,2,..).

). Dokaite, Ze: 1) kaZdd z funkef f (x)
{x); 2) funkce flx)=Inx roste pomaleji

), kterd pro x- +« roste rychleji neZ jakdkoli z funkci

§ 7. Spojitost funkce

1. SPOJITOST FUNKCE. Rikdme, Ze funkce fix) je spojitd v bod x,, jestlize
i ) =fx,), \ (1)

. X- xu .

;. funkce ﬂx) _]C definovans v bodé x = %, ake kazdému &> 0 ex1stu_]e takové & =5(e,x,)>0, %€
;pro |x-xz,| <8 a pro viechny hodnoty fix), ktere maji smysl plati nerovnost |flx)-flx)| <e.
Funkei f(x) nazgvdme spofitou na dané mnofiné X = {x} (otevieném, uzavieném intervalu apod.),
je-li tato funkce spojitd v kaidém bodé mnoZiny X.

JestliZe pro néjaky bod x =x, z defini¢niho oboru X ={x} funkce f{x) nebo pro néjaky hromadny

_bod té1e mnoziny neni splnéna rovnost {1} (. bud a) funkce neni definovani v bedé x =x,, neho

b) neex1stUJe lumta lim: f{x} nebo ¢) obé strany rovnosti{1) maji smysl, ale nerovnaji se), pak bod x,
- X=Xy . : :

nazyvame bodem nespo]amstz funkee f(x)

Rozlidujeme:
1) body nespojitosti proniho drubu. %, pro které existuji koneéné jednostranné limity

lim fix) a lim f(x)
xzxn XXy,

‘ 2) body mspo;ﬂosn dmheho druha (ostatm) Rozdil

: lim fix) -lim f{x)

xx xzxu

“hazjvéme skokéf-n’ﬁmkce fley v bodé X,
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Plati-li rovnost

lim f(x) =lim f(x),

Il.l:o .!'\In

nazjvime bod nespojitosti x, bodem odstranitelné nespojitosti. Je-li jedna z limit lim f{x) nebo
xzxo

lim f(x) nevlastni (rovna symbolu =), nazgvime bod x, bodem nekoneéné nespogitosti.

Z\ID

Plati-li rovnost

R

lim f(x) =fix,) (nebo lim f{x) =f(x0) ),

XX, XX,
Fikdme, Ze Jje funkee fix,} spojitd zleva (nebo zprava) v boda x,. K tomu, aby byla funkce fix)
spojita v bodé€ x,, je nutné a stadi, aby platila rovnost nasledu_;icich tif Cisel:

lim f{x)= hm fay=flx).

X-’!o 0

2. SPOJTITOST ELEMENTARNICH FUNKCL Jsou-li funkce f{x) a gfx) spojité v bodé x =x,, jsou také
funkce
) fo) 246 1) oot O £ Gtz 0
spojité v bodé x=x. &
Specidlné: a) polynomidln{ funkce (polynom)
Px)=a,+ax+...+a x"
je spojitd v libovolném bodé x; b) lomen4 raciondlni funkce

a,+ax+..+ax"”
Rix)=-2_L " &
: by+bx+. . +h x™
je spojitd v ka¥dém bodé, v némz jeji jmencvatel neni roven nule.
¢ VSechny elementdrni funkce: x 7, sinx, cosx, tgx, e % log x, arcsmx arccosx, arctgx, ... jsou
spojité v kazdém bodé svého defini¢niho oboru.
Jesté obecnéjii trzenije: Necht fix) je spojitd v bodé x = x, a necht funkce g(y) je spojitd v bodé
¥=flx,}. Pak je funkce g{fix)} spojitd v bod& x=x,

$. ZAKLADNI VETY O SPONITYCH FUNKGICH. Je-li funkce fix) spojitd na uzavieném intervalu
[a,], plati ndsledujici tvrzent: 1) funkce f{x) je na romto intervalu'omezend; 2) nabyvi na ném
svého infima m a suprema M (Weierstrassova véta); 3) na kaZdém intervalu (a, B)c[a,b] nabyva
viech hodnot mezi fle) a fiB) (Cauchyovavéta). Specidlng, je-li fx)f(P)<0, pak cxlstuJe takovd
hodnota y (o <y <), pro kterou f{y)=0.

662. Je ddn graf spojité funkce ¥ =flx). Pro dany bod ¢ a &islo €>0 sestrojte
graficky 6> 0 takové, ie |flx) -fla)| <e, jakmile |x-a]<8.

663. Je potieba vyrobit kovovy &tverec s délkou strany x, = 10cm. V jakém rozsahu
Ize ménit délku strany Ctverce x, aby se jeho obsah y=x* neligil od plénovaného
obsahu y,=100cm” ¢) £0,0lem? nebo
d) xecm??

o vice ne a) £lem?; b) £0,1cm?;

§ 7. SPOJITOST FUNKCE

664. Délka hrany krychle je v rozmezi 2m-aZ 3m. § jakou absolutni chybou A
mizeme zméfit hranu x krychle, abychom mohli ur¢it jeji objem y s relativni
pf-esnostf nepfevysujici gem?, je-li z}) £=0,1m?; b
c) = =0,001m?3?

65 V jakém maximalnim okoli bodu x,=100 bude prvni souradmce bodu
7 grafu funkce y =y, jehoz druh4 SOuradmce se li8f od hodnoty y,=10 o méné
pnez £=107" (n20)? Urdete tato okoli pron=0, 1, 2, 3.

666. Pomoci definice spojitosti funkce dokaite, Ze funkce f{x)
v bodé& x =5. Dopliite chybé&jici hodnoty do nasledujfci tabulky:

£=0,01m?® nebo

=x? je spojitd

e 1 0,1 0,01 0,001

)

667. Necht j’(x)é—l— a £=0,001. Pro hodnoty x,=0,1; 0,01; 0,001; ... najdéte co
X ) .

nejvesi kladn4 &isla & =8(g,x,) takovd, aby z nerovnosti |x-x,|<d vyplyvala
nerovnost |flx) -fix,)| <e. Existuje pro £=0,001 takovd hodnota 8>0, pro
kterou by tyto nerovnosti platily pro viechny hodnoty x, z intervalu (0,1), g.
takové hodnota, pro kterou by z |x -x,| <& vyplyvala nerovnost |f{x) -fx,)| <=
nezdvisle na hodnoté x,e(0,1)? '

668. Pomoci definice spojitosti funkce zformulujte bez pouZiti negaci ndsledujici
wrzeni: Funkce flx) definovand v bod€ x, neni v tomto bodé spojita.

669. Necht pro nékteré hodnoty ¢&isla &> 0 existujf &isla 8 =8(ex;) > 0 takovd, Ze

-fix) | <e,jakmile |x-x, | <&, Mibzeme tvrdit, Ze je funkce fix) spojitd

v bod€ x,, jestlize: a) mnoZina téchto Cisel ¢ je konednd; b) cisla & vywviteji

nekonecnou posloupnost zlomkil €= -1— n=1,2,..07

L

670. Necht f{x) =x + 0,001 {x]. Ukazte, Ze ke kaidému &islu £ > 0,001 lze najit tako-
vé Cislo 8=58(e,x)>0, %e platd |fix")-fix)|<e, jakmile |x’-x|<3, a Ze pro
0 <e<0,001 nelze takové & najit. Ve kterych bodech tato funkce nenf spojita?

671. Necht ke ka’dému dostateéné malému &islu 8>0 existuje takové
e=e(d,x,)>0, Ze je-li |x-x,| <, pak |fix) -fix,) | <e. Vyplyvd z toho, Ze funkce
flx) je spojitd v bodé x=x,? Jakd vlastnost funkci f(x} je popsina @mito

nerovnostmi?
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672. Necht ke kaZdému ¢islu £> 0 existuje takové &islo 8=8(ex ) >0, Ze je-li
| fix) -flxy} | <€, pak |x-x | <&. Vyplyvi z toho, Ze funkce fx) je spojitd v bodé
x =x,? Jakd vlastnost funkce f{x) je popsina témito nerovnostmi?

673. Necht ke kaidému &islu 8> 0 ex1stuje (‘:'islo e=e(d,x,)>0 tak Ze je-li
| fix) -fix,) | <e, pak |x - x0| <d. Vyplyvi z toho, Ze je -ﬁmkce [flx) spojita v bodé
x =x,? Jakd vlastnost funkce flx) je popsdna témito nerovnostmi?

Uvazujte nasledujici pffklad:

A= arctgx pro x racionalnf,
T -arctgx pro x iraciondlni.
674. Pomoci definice spojitosti funkce dokaZte spojitost nasledujicich funkei:

a)ax+b;, b)x?; o «x% d)ﬁ; C)SVJ_C; f) sinx; g) cosx; h) arctgx.

Rozhodnéte, zda jsou nésledujici funkce spojité, a SeStI‘O__]tE jejich grafy
675. flx)=|x|.
2

¥ "2 broxe2
676. f(x)={ x-2 T :
A pro x=2.

677. flx)= ! Je-lix=-1,a f{-1) j-e libovolni hodnota. |
(1+2)? |

sinx

|1 | |
679. f(x) =sin—, je-li x#0,a f{0) je libovolnd hodnota.
X

678.2) f,(x) =" jelix#0,a £,(0)=1;b) fy(x) =X je-li x+0, a £,(0)=1.

680. ﬂx)=xsin—1—,je-li x#0,a f{0)=0.
X

681. fix)=e " je-li x+0,a f(0)=0.
682. fix)= -1——17(;_-1—), jellix=1,a 1) je libovolni hodnota.

+e
683. fx)=xInx?, je-li x+0,a f{0)=a.
684. f(x)=sgnx.
685. f(x)=

686. fix) =y -[y3]

§ 7. SPOJITOST FUNKGE

Najdéte body nespojitosti nasledujicich funkei a urfete charakter téchto nespo-

jitosti: |
+x
7. %= . 688, y= .
1 1
2- 1
x°-1 X x+
689. y=———. 690. y= .
Y x%-3x+2 _ b1
: x-1 x
1 -cosmx
x
=— 692. y= | ——
e sinx 4-x?
LT
693. y =cos2l. 694, y=sgn[sm—] .
x ox
i
cos —
x 1
695. y=——. : 696. y =arctg—.
n : X
COs —
x
697. y=\/§arctgl. 698, y=¢"'".
x _
1 : ‘
699. y=——. 700, Y me————— .
Y Inx - R :y l_ex.’(l—x}

Rozhodnéte, zda jsou nasledujici funkce spojité, a sestrojte jejich grafy:

701. y =sgn(sinx). 702. y=x-[x].
703. y=x[x]. : 704. y =[x]sinnx.
. 11
705. y=x? -{x?]. . | 706.3):[;-].
' 1l | 1
707. y =x[—]. 708. y =sgn[ cos—] :
x S x
1 . T ‘ L
= | —_— . = teg—.
709. y [xfz}sgn[ sin x] . 710. y =cotg »
711.y=sec21. ' 712.y=(—1)["2].
x

713.y=arctg[l+ 1, 1]. 714, y=.
x

x2sinx
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1 2
715, y=— 5o 716.y=1n——x—-—.
sin{x *) (x+1)(x-3)
717, y=e 1%, 718. y=1 gl
2x
719. y=tgh .
1-x2

Rozhodnéte, zda jsou nasledujici funkce spojité, a sestrojte jejich grafy:

720, y=lim —— (x20). 721 y=lim %"
n-x ] +x™® naew prap ™
722, y=lim 1 +x™, 723. y=lim cos™x.
Y x .
724. y—}:g: m 725.y=11f2 {x arctg (n cotgx)].
2, nx
726 y=lim X C gy iy In(teT)

n-w 1 +e™ t-+= In(l +et)-

728. y=lim (1 +x)tghex.

-+
729. Rozhodnéte, zda je nésledujici funkce spojita:
' C 2x  pro O=zxsl,
fer={
-x pro 1 <x<2.
730. Necht | o

g* ro x<0,
.f(x)={ P
a+x pro x 2 0.

Pro jaké hodnoty &isla a je funkce fix) spojita?
731. Rozhodnéte, zda je funkce f(x) spojitd, a urdete charakter bodd nespojitosti,
je-li: -

_1x? pro.VOst“lr,
a) ﬂx)_{Q—x pro 1 <xx<2;

' _lx pro |x|<1,
b) ﬂx)_{l pro [x{>1;

oS — pro |xf<1
9 fir)={ 2 P ’

d) fix) = { cotg?mx pro necelé x,
fx-1] pro |x|>1; ' 0

pro celé x;

&) fix) = sinmx pro raciendlni x,
0 pro iracionalnf x.

§ 7. SPOUITOST FUNKCE

732. Funkce d =d(x) vyjadiuje nejkratsi vzdilenost néjakého bodu osy x od mno-
siny jejich bodd tvotené dvéma intervaly 0<x<1 a 2<x<3. Najdéte analytické
vyjadieni funkce d, sestrojte jeji graf a rozhodnéte, zda je spojitd.

733. Obrazec E se sklid4 z rovnoramenného trojiihelnika s délkou zdkladny 1,
vjtkou 1 a dvou obdé€lnikii o zdkladnich 1 a vy¥kach po fadé 2 a 3 (viz obr. 5).
Fiinkce S=S(y,) (0<y,< +=) definovdna jako obsah Cisti obrazce£ vymezene
fovnob&inymi pifmkami y=0 a y =y,; funkce b=b(y,) (0<y, < +=) jerovnadélce
usecky, kterou piimka y=y, protind obrazec E. Najdéte analytickd vyjidieni

funkci S a b, sestrojte jejich grafy a rozhodnéte, zda jsou spojité.

¥a

Obr. §

734. Dokaite, e Dirichletové funkce x(x) =lim {lim cos” (ﬁm!x)} je néspojitév kai-

dém bodé x.

785. Rozhodnéte, zda je funkce
_ _ - flx) =xy (%),

kde y (x) je Dirichletova funkce, spojitd (viz pfedchdzejici Gloha). Nacrtnéte graf

této funkce.

736. Dokazte, 7e Riemannova funkce, kteri je dina piedpisem

1 : : oy 5 1o 4 PR
fix) — Ppro x=-1—n—, kde m a n jsou vzijemné nesoudé&lna celd &isla, n> 0,
X)=1n n )
0 pro x raciondlni,
je nespojita pro ka¥dé raciondlni x a je spojitd pro kaZdé iraciondlni x. Nacrtnéte
graf této funkce. _ ) _
737. Rozhodnéte, zda je spojitd funkce flx), kterd je déna nasledujicim pfed-

pisem:




UvOD DO MATEMATICKE ANALYZY

- m . . sl Xl
Je-li x raciondlni zlomek — (n: 1) tvofeny nesoudélnymi &isly, a

n
fiey=1x],

Je-lt x raciondlni ¢islo. Nadrtnéte graf této funkee.

738. Funkce fix) = 1 -cosx Jje definovani pro v§e'ch'ny ho'dhoty arguménfu x kro-
x2

mé piipadu x =0. Jakou hodnotou bychom méli dodefinovat funka f(x) v bodé
x=0, aby byla spojitd? ,
739. UkaZte, e pro libovolné zvolenou hodnotu: f(1) bude funkce f{x) = —
spojitd v bod& x =1. X
740. Funkce fix) nenidefinovdna pro x =0. Urcete &islo f{0) tak, aby funkce f{x)
byla v bod¢€ x =0 spojita, je-li:
_yl+x-1 tg2
) f)=—"—; bfw-5Z; o
VTia-1 o

C)jix)=-}§e-lh2; 9 jtx):x:x (x> 0);
X

ne-

d) fix)=(1 +x)'*;

.. 1
) =sinxsin—;
x

g) flx)=xIn’x.

741. Je pravda, Ze v daném bodé x, bude soucet dvou funkei f{x) +g(x) nespojity,
pokud: a) funkce flx) je spojitd a funkce g(x) nespojitd v bod& x =x,; b) obé
funkce fix) a g(x) jsou néspojité v bodé x =x,? Najdé'te ode\%fdajl’cf:pf'ﬂdady

742. Je pravda, Ze v daném bodé x, bude mit soucin dvou funkcf f(x)g(x) ne-

spojitost, pokud: a) je funkce f{x) spojitd a funkce ‘g(x) nespojita v tomto bodg;

b) ob€ funkce f(x) a g(x) jsou nespojité v bode x=x,? Najdcte odpovlda_}lm
piiklady.

743. Je pravda, Ze druha mocnina nespojité funkce je také nespojitd? Najdéte
piiklad v8ude nespojité funkce, jejiz druhd mocnina je spojitou funkei.
744. Rozhodnéte, zda jsou funkce f [g (x)] a g [f(x)] spoyte Je-li:
a) flxy=sgnx a g(x)=1+x2
b) fle) =sgnx a gix)=x(1 -x );
¢) flxy=sgnx a g(x)=1+x-[x].
745. Rozhodnete zda j Je spopta sloZena funkce y =flu), kde u = q)(x), je-li

u pro O<ux],
f(u) {Q—u pro l<u<2

x pro x raciondlni,
Plx) = {2 -X pro x lramonalm (O<x<1).

f

§ 7. SPOJITOST FUNKCE

746. DokaZte, Ze je-li f{x) spojitd funkce, pak je F(x)=|f(x)| také spojitd funkce.
747. Dokaite, Ze je-li funkce f{x) spojitd, pak je funkce
-¢,. je-li fix)<-¢,
[ =1fx), je-li |fix)] <c,
¢, je-li fix)>ec,
kde ¢ je libovolné kladné &islo, také spojitd.
748. Dokaizte, e je-li funkce f{x} sp0J1ta na uzavieném intervalu [a,8], pak jsou
funkce ms) =inf /) a M) =sup )
aLCLX a LG EX
také spopte na intervalu [a,b]. _
749. Dokaite, 7e jsou-li funkce f(x) a g{x) spopte pak j _]S()Ll funkce
@(x) =min[ fix).g(x)] a W(x) =max{ fx),g(x)]
také spojité.
750. Necht je funkce f{x) definovand a omezena na uzavieném intervalu [a,b].
Dokazte, Ze funkce L .. BN
m(x)=inf{f(€)} a M(x)=sup{f(&)}
a<f<x agf<x
_]SOU spoyte zleva na mtervalu [a b] : :
751. Dokaite, Ze je-li funkce . f(x) spojlta na intervalu a<x <+ a existuje-li
koneéns limita lim f(x), pak je tato‘funkce na daném intervalu omezeni.

PR ]

752. Necht je funkce i fix) spojitd a omezend na otevieném intervalu (x,, +).

Dokafte, e k libovoinému &slu T 'ex.istuje takova poslquphost x - +e0, 7e plati
lim [f(x +7T)-fix )

753. Nechf _]SOU cp(x) a w(x) spo‘pte.perlodlcke funkce deﬁnovane pro —ea Ly oo

a necht
lim [tP(x) U(x)] =0

X e

Dokate, 7e @{x)=Y(x). ' ‘ '
754. Dokaite, Ze viechny body nespojitosti omezené monoténni funkce jsou body
nespojitosti prvniho druhu.

755. DokaZte, e mé-li funkce f{x) nasledujici vlastnosti: 1) je definovani a mono-
ténni na uzavieném intervalu [a,b]; 2) v'jejim oboru hodnot jsou viechna ¢&isla
mezi fla) a f(b), pak je tato funkce spojitﬁ-na intervalu [a,b].

756. Ukaite, e funkce f{x) smL pro x#a a fla)=0 nabyvd na libovolném
x-a

uzavieném intervalu [a, b] viech hodnot mezi fla) a f(b), a pfesto neni na inter-
valu [a,b] spojitd.
WD
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757. Dokaite, Ze je-li funkce f(x) spojitd na otevieném intervalu (a,b)
a x|, Xy...,%, jsou libovolnd &sla z tohoto intervalu, pak mezi hodnotami
min{x,, ..., xﬂ} a

max{xl, vees xn} existuje takové ¢islo £, Ze plati

ﬂE)-"[f %)) +fleg) + ..+ flx )]

758. Necht je funkce f(x) spojitd na otevieném mterva!u (a b) a
[=lim fix) a L=Tim flx).

x-=a ~a

DokaZte, Ze k libovolnému d&islu A, pro které je [<A<L, existuje takova
posloupnost x_-a (2=1,2,...), Ze plati '

lim flx,)=A.

§ 8. Inverzni funkce. Funkce zadané parametricky

definovand a spojitd na otevieném intervalu (g, 6}; 2) jena tomto intervala ostfe monoténni, pak

existiije jednoznaénd inverzni funkce x =f~'(y}, kter4 je definovana, spojité a stejnym zpisobem

é 1. EXISTENCE A SPOJITOST INVERZNI FUNKCE. M4-li funkce y=fix) ndsledujici vlastnosti: 1) je
g
£ ostfe monoténni na otevieném intervalu (A4, B), kde A =limf{x) a B=limf{x).

xa xsb
Pojmem jednoznaénd spofitd vétev mnohoznatné inverzni funkce dané spojité funkce y =f{x) se
rozumi libovolnd jednoznaénd spojitd funkce x =g(y), ktera Je deﬁnovana na maximalnim
definiénim oboru a na ném vyhovuje rovnosti [ g (9] =5.

2. SPOJITOST FUNECE ZADANE PARAMETRICKY. Jsou-li funkce @{t) a {i{t) definované a spgjité na
otevieném intervalu (&, P} a funkce @(f) je ostfe monoténni na tomto intervalu, je systémem

rovnic x=9(), y =yl

na otevieném intervalu {(a,5). kde e =limg{) a b=lime(), definovand y jako _]ednoznacna
[y t-p

a spojitd funkce proménné x predpisem
y=¥{p7)).

759. Najdéte inverzni funka k linedrni lomené funkci

_ax+b = (ad ~bc 7 0).

€x +
V jakém piipadé je tato inverzni funkce rovna pivodni funkci?
760. Najdéte inverzni funkci x =x(y), je-li

y=x+[x] )

§ 8. INVERZNI FUNKGE, FUNKCE ZADANE PARAMETRICKY

761. UkaZte, e existuje jednozna¢né urcend spojitd funkce y =y(x) (~o<x < +00),
ktera vyhovuje Keplerové rovnic

y-esiny=x (0<e<l}.
762. Ukaite, Ze rovnice cotgx =kx md pro kazdé redlné &islo £ (-« <k < +«) na
intervalu 0 <x <7 jediny kofen x =x(k), ktery je spojitou funkcf proménné 4.
763. Je pravda, Ze funkce y =f{x) (- <x < +w), kterd nen{ monoténni, mile mit
jednoznac¢nou inverzni funka? UvaZujte pfipad:

_ { x pro x racionalni,

I=] -x pro x iracionilni.

764. V jakém piipadé predstavujf funkce ¥ =f(x) a jejf inverzni funkce x =f"'(3)
jednu a ttéZ funkci?
765. UkaZte, ¥e inverzni funkce k nespojité funkci y =(1 +x *)sgnx je funkce spojita.
766. Ukaite, Ze je-li funkce f{x) definovand a ostfe monoténni na uzavieném
intervalu [a,b] a plati-hi _

Lifg flx ) =fla) (a<x <b),
pak lim x_ =a.

n- oo

Uréete jednoznadné spojité vétve inverznich funkcf k nasledujicim funkcim:

767. y=x°. 768. y=2x -x 2. 769. y =—2%
' 1 +x?
770. y =sinx. 771. ¥ =cosx. 772. y=tgx.

773. Ukaite, Ze obor hodnot spojité funkce y=1 +sinx pro -argur.nenl: z intervalu
(0<x <2m) je uzavieny interval.

774. DokaZte rovnost -
ArcsHIX +arccosx = E '

775. Dokaite rovnost _ 1 = .
arctgx +arctg — = Esgnx (x=0).
x -
776. DokaZte vétu o sklddani funkee arctg:

- x+y
arctgx +arctgy = arctg T

+ET,

kde € =£(x,y) je funkce, kterd nabyva jedné z hodnot 0, 1, -1. Pro jaké hodnoty y
pii pevném x je funkce £ nespojitd? Najdéte v roviné xy mnoziny bod{i spojitosti
funkce £a urcete hodnotu teto funkce na mch
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777. DokaZte vé o skladdni funkce arcsin:

arcsinx +arcsiny =(-1)*arcsin(xy1 -y +yy1 -2 +en (|x] <1, |y|<1),
kde
_ 0, je-li xy<0 nebo x?+y%<1,
sgnx, je-li xy>0 a x2+y2>1.
778. DokaZte vétu o sklidini funkce arccos:

arccosx +arccosy =(-1)°arccos(xy -1 -x2y1-y% +2ne (|x|<1, {yj<]),
kde

e 0 pro x+y20,
11 pro x+y<0.

779. Sestrojte grafy nasledujicich funkci: :
a) y =arcsinx - arcsinm ; b) y=arcsin (QxW) -2arcsinx.
780. Najdéte funkei y =y(x) zadanou parametrickymi rovnicemi
x=arctgf, y=arccotgl (-= << +o).

Jaky je defini¢ni obor této funkce?
781. Necht x =cosht, y=sinh¢ (-= <t < +=). Pro jaké hodnoty parametru ¢ je
proménnid y jednoznanou funkcf proménné x? Najdéte vyjidieni funkce y na
téchto riznych mnozinich.
782. Jaké jsou nutné a postacujici podminky pro to, aby systém parametrickych
rovnic x = @(t), y=1() (& << P) urcoval y jako jednoznaénou funkci x ? UvaZujte
pifpad x =sin®, y=cos’. '
783. Za jakych podminek urcuji ndsledujici dva systémy parametrickych rovnic

- x=Qt), y=W(t) (@<t<b) |

a

x=@(x(1), y=w(x(t) (a<t<P)
tutéz funkci y =y(x)?

784. Necht jsou funkce ¢(x) a Y(x) definované a spojité na otevieném intervalu

(@,0), A=inf @(x) a B= SUPb‘P(x). V jakém piipadé existuje jednoznaéné funkce

a<x<h a<x

fix), definovana na intervalu (4, B), pro kterou plati
Px) =flp(x)) pro a<x< b?

§ 9. STEJNOMERNA SPOJITOST FUNKGE

§9. Stejnomérna spojitost funkce

1. DEFINICE STEJNOMERNE SPOJITOSTI. Funkce f(x) se nazyvd stefnomérné spojitou na dané
mnoZiné (otevieném nebo uzavieném intervalu apoed.) X={x}, je-li definovand na X a ke
kazdému £>0 existuje takové 8=8(¢)>0, Ze pro libovolné dva prvky x’, x"eX vyplyvd

z nerovnosti
|x'-x"|<b

[flx’) -flx™) | <e.

nerovnost

2. CANTOROVA VETA. Funkce flx), kterd je definovand a spojitd na omezeném uzavieném
intervalu [a,b], je stejnomérné spojitd na tomto intervalu.

785. Podnik vyribi ¢tvercové desticky, jejichz strany x mohou mit velikost od 1
do 10 cm. 8 jakou maximalni toleranci & je moiné opracovévat strany téchto
desticek, aby se nezivisle na jejich délce (v danych mezich velikosti) ligil jejich
obsah y od pldnovaného obsahu o méné nei e? Vyislete tuto toleranci pro
hodnoty: a) e=1em?2; by e=0,0lcm?; <) £=0,0001cm?.

786. Pl43¢t vilce, jehoZ primér je £ a vy$ka 0, je nasazen na kiivku y = 5;/5 a klouze
po ni tak, Ze osa vilce zdistavd rovnob&na s osou . Jaka musf byt velikost 8, aby
pladt vélce volné progel usek kiivky, ktery je uréen nerovnosti -10sx < 10, je-li:
a)e=1; b)e=0,1; <) £=0,01; d) e libovolné malé?
787. Zformulujte pomoci definice stejnomérné spojitosti bez pouZiti negaci nasle-
dujici tvrzeni: Funkce f{x) je spojitd na néjaké mnozZiné (otevieném nebo
uzavieném intervalu apod.), ale neni na této mnoZiné stejnomérné spojita.
788. Ukaite, Ze funkce f{x)=1/x je spojitd na otevieném intervalu (0, 1), ale nenf
na tomto intervalu stejnomé&rné spojita.
789. Ukazte, Ze funkce flx) =sin(i/x) je spojitd a omezend na otevieném intervalu
(0, 1), ale nenf na tomto intervalu stejnomérné spojita.
790. Ukaite, Ze funkce f{x)=sinx ? je spojitd a omezend na neomezeném intervalu
- <x < +, ale nenf na tomto intervalu stejnomérné spojitd. .
791. Dokazte, Ze je-li funkce f{x) definovand a spojitd na intervalu g <x< +e
a existuje-li koneénd limita lim fx),

. ‘ xto
Je funkee f{x) na této oblasti‘i stejnomérné spojitd.
792. Ukaite, Ze neomezend funkce

_ Jx)=x +sinx
Je stejnomérné spojita na celé ose - <x < +oo.
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793. Rozhodnéte, zda plati, Ze funkce fix)=x* je stejnomérné spojitd na

intervalu: a) (-,l), kde [ je libovoln& velké kladné &slo; b) na intervalu
(—oo,+oo)?

Rozhodnéte, zda jsou ndsledujici funkce stejnomérné spojité na uvedenych
intervalech:

794, f(x)=—> - (-lsxs<l). 795. f(x)=Inx (0<x<1l).
-X
796. f(x)= ST" (0 <x<m). 797. fix)=¢*cos~ (0<x<1).
X

798. f(x) =arctgx (-oo <x < +o0),
800. f(x) =xsinx (Q<x < +oa),

799. fx)=\x (1sx < +o0).

801. Ukaite, Ze funkce f(x)=-l-53-m—x| je stejnomérné spojitd na intervalech
X

J,=(-L,0) a J,=(0,1), ale neni stejnomérné spojitd na jejich sjednoceni
jl U]2 =(_1! l)\ {0} .

801.1 Dokazte, Ze je-li funkce fix) st_ejnomérné spojitd na uzavfenych intervalech [a, ¢]
a [¢,b], je tato funkce stejnomérné spojitd i na sjednocent téchto intervald [a,b].
802. Najdete ke kazdému £> 0 (n&jaké!) & =d(¢), které vyhovuje definici stejno-
mérné spojitosti pro funkei fix) v daném intervalu, je-li: '

a) f(x)=5x-3 (_-oo<x < +w);

b) fx)=x%-2x-1 (~2<x<5);

<) f(x)=% (0,1<x<1);
d) flx) =y/x (0<x < +e);

€) f(x)=25inx—cosx (oo <x < +o0);
1y f(x)=xsin%(x¢0) a f{0)=0 (O<x<m).

803. Na kolik stejnych ¢dstf staci rozd€lit uzavieny interval [1, 10], aby byla osci-
lace funkénich hodnot funkce f{x) =x* na kadé z téchto &isti men3i nez 0,0001?
804. Dokaite, Ze soucet a soucin konecného poctu funkei stejnomérné spojitjch
na otevieném intervalu (a,b) jsou také stejnomérné spojité. funkce na tomto
intervalu. '

805. DokaZte, Ze je-li omezend a monoténni funkce f{x) spojitd na omezeném

nebo neomezeném intervalu {(a,b), je tato funkce na (a,b) stejnomérné spojitd.

§ 10. FUNKCIONALNI ROVNICE

806. DokaZte, Ze je-li funkce f(x) stejnomérné spojitd na omezeném intervalu
(@,b), existujf limity .
A=lim fix} a B=lim f(x).

xa xsb
Plati tato véta také pro neomezeny interval (a,b)?
§06.1 DokaZte, Z¢ funkci f{(x), kterd je definovani a spojiti na omezeném
otevieném intervahu (z,b), je moiné spojité prodlouZit na uzavireny interval [a, b]
pravé tehdy, kdyZ je f(x) stejnomérné spojitd na intervalu (a,b).
807. Modulem spojitosti funkce f(x) na otevieném intervalu (a,b) se nazyva funkce

©,(8) =sup| fx ) fcy)|

kde x, ax, probihd prvky z (a,b), pro které plati |x, -x,|<8. Dokaite, Ze aby
funkce flx) byla vintervalu (a,b) stejnomérné spojita, je nutné a stadi, aby platilo
laifg mf(é) =0.
808. Odhédnéte velikost modulu spojitosti wf(ﬁ) (viz pfedchozi tiloha) ve tvaru

® f(B) <Co°,
kde C a a jsou konstanty, je-li:
a) fix)=x® (0<x<1); b) f(x)=yx (0<x<a ancbo a<x < +w);

c) f(x) =sinx +cosx (0<x<2m).

§ 10. Funkcionélni rovnice

809. Dokazte, Ze jedind spojitd funkce flx) (-~ <x < +x), ktera splituje pro
viechna redlnd &isla x a.y rovnost

fle+3) =ftx) +fy), 1)
Je linearni homogenni funkce f{x) =ax, kde a.=f{1) je libovolna konstanta.
810. Dokazte, Ze monoténni funkce f{x), ktera vyhovuje rovnosti (1), je linedrni
homogenni funkce.
811. Dokaite, 7e funkce fix), kterd vyhovuje rovnosti (1) a ktera je omezend na
libovolné malém otevieném intervalu (-g,¢), je linedrni homogenni funkce.
812. Dokaite, Ze jedini funkce f{x) (-~<x<+x), kterd neni identicky rovna
nule a kterd vyhovuje pro viechna x a y rovnosti

flx +y)y =fl)fy), (2)

Je exponenciilni funkce fix)=a ¥, kde a=f(1) je kladni konstanta.




UVOD DO MATEMATICKE ANALYZY

813. DokaZte, Ze funkce f{x), kterd neni identicky rovna nule a kterd je omezend
na otevieném intervalu (0,2} a vyhovuje rovnosti (2), je funkce exponencialni.
814. Dokaite, Ze jedin4 funkce fix) (0 <x < +o), kterd nenf identicky rovna nule
a kterd vyhovuje pro viechna kladni &isla x a y rovnosti
e =f) +£(y),

je logarltmlcka funkce fix}=log x, kde a je kladnd konstanta (z#1).
815. DokaZte, Ze jedind funkce f{x) (0 <x < +<), kterd neni identicky rovna nule
a ktera vyhowvuje pro viechna kladna &sla x a y rovnosti

Sixy) =fx) i), (3)
Je mocninnd funkce f{x)=x“, kde a je konstanta.
816. Najdéte viechny spojité funkce flx) (- <x < +%), které vyhovuji pro
viechna redlna &sla x a y rovnosti (3). - '
817. UkaZte, Ze nespojitd funkce fix) =sgnx vyhovuje rovnosti (3)
818. Najdéte viechny spojité funkce flx) (~w<x<+wx), ktere vyhovu_]l provsechna
reilna ¢isla x a y rovnosti

fee+3) +fie -3y =2fx)fy).
819. Najdéte viechny spojité a omezené funkce fix) a g(x) (-=<x < +), které
vyhovujf pro viechna redlnd &isla x a y nasledujicimu systému rovnic:

Jee+3) =fo0)f) -g(=)g0),

gl +y) =flx)g(y) «fiy)g(x)
a pocitecnim podminkim:

f0)=1a g(0)=0.

NAvOD: UvaZujte funkci

Fixy=fx) +g"(x}. c
820. Necht Af =flx+Ax) -fix) a A’(x)=A{Aflx)} jsou konetné diference
prvniho a druhého fadu funkce fix). DokaZte, ¥e je-li funkce f{x) (- <x < +o0)

spojita a-plati-li A%f(x)=0 JC tato funkce linedrni, tj. f(x) =ax+b,kde a a b jsou
konstanty. : :

KAPITOLA Il

Diferencialni pocet funkci jedné reilné

proménné

§ 1. Derivace funkce

1. DEFINICE DERIVACE. Nechf x a x, =x +Ax jsou dvé hodnoty nezivisle proménné, Pak se rozdil

Ay =flx + Ax) -f(x)
nazjva pHristhem funkce y =f{x) na uzavieném intervalu [x,x,]. Vyraz

¥~ =tim 22, ()
Ax-{

ma-li smysl, se nazjvé derivaci a samotnd funkce fix) se v tomto piipadé nazjva diferencovatelnou
funkci.

Geometricky piedstavuje hodnota f/(x) tangens tihiu, ktery svird te¢na grafu funkce y =f{x) v bo-
dé x s osou x (tga =f(x})) (viz obr. 6).

Obr. 6

2. ZAXLADNI PRAVIDLA PRO DERIVOVANI FUNKCI. Je-li ¢ konstanta a funkce u=u(x), v=1v(x),
w =w(x} jsou diferencovatelné, platf ndsledujici vztahy:

Del=0;

9) (eu) =cu’;

3 @+e-wY=u'+o -w';

) (uv) =u'v +v'u;

5)(1(]’ wy-un’ 0+ 0);
v

v?
6} (™ =nu""u’ (nj Jje ikonstanta),

7) jsou-li funkce y =f(u) a u =@(x) diferencovatelné, plati y; =y: u;
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3. ZAKLADNI VZTAHY. Je-li x nezdvisle proménnd, plati
L

(x"Y=nx""! (n je konstanta).

(sinx)’ =cosx.

{cosx)'=-sinx.

(tgx)'=
cos’x
(cotgx) = - .
: sin?x
{(arcsinx)’ = .
1-x2
{arccosx)’ = - 1 .
I-x?
(arctgx) = !
1+x
{arccotgx)’ = - .
§ 1+x?
(@' =a*Ina, (¢ =¢*.

(log x)'= 1
“ xna

@>0,a%1;x>0); (Imc)’=l (x> 0).
x

(sinhx)’ =coshx.

(coshx)’ =sinhx.

(tghx) =

(cotghx)'=-

1

cosh®x

sinh®x

4. JEDNOSTRANNE DERIVACE. Vyrazy

Flxy=lim ﬂ__x+Ax) _ﬂx}” ’

Ax -

Fflioy=lim ,EEM

Ax~0

se nazyvaji derivaci zleva, vespektive zprava funkce f(x) v bodé x.
Pro existenci derivace f7(x) je nutné a stadi, aby platilo

Flo0 =l

5. NEVLASTNI DERIVACE. Je-li funkee fx) spojitd v bod& x a plati-li

lim
Axi0 .
tikime, Ze funkce f{x) md v bod& x nevlastni derivaci. V tomto ptipadé je tedna grafu funkce
y=f(x) v bodé x kolmi k vodorovné ose.

flx+Ax)-flx) _
- Ax

§ 1. DERIVACE FUNKCE

g21. Urlete piirustek Ax argumentu x a odpovidajicf p¥irGstek Ay funkce
y:logx, méni-li se x od 1 do 1000.

g22, Urfete piirlstek Ax argumentu x a odpovidajici pfiriistek Ay funkce
y=1/x?, m&nilise x od 0,01 do 0,001.

823. Proménnd x se zménj o pfirlstek Ax. Urdete pifristek Ay, je-li:

a) y=ax +b; b) y=ax?+bx+c; <) y=a*. ' :

824. Dokaite, Ze plati:

a) A[flx) +g(x)] = Afx) + Aglx);  b) A[flx)glx)] =g(x + Ax)Af(x) +flx)Aglx).

825. Body A=(2,4) a A’=(2+Ax,4+Ay) kiivky y=x? je vedena se¢na A4’
Najdéte tangens tihlu této secny, je-li: a) Ax=1;b) Ax=0,1; ¢) Ax=0,01; d) Ax
libovolné maly. Cemu je roven tangens thlu te¢ny k dané kfivee v bodé A4?

826. Uzavieny interval 1 <x<1+4 osy x je pomoci funkce y =x* zobrazen na osu
y. Urdete priimérné nataZen{ obrazu tohoto intervalu a vypoététe jeho hodnotu,
je-liza) £=0,1;b) A=0,01; ¢) £=0,001. Cemu je roven koeficient natazeni pro
toto zobrazeni v bodé x=17?

827. Zikon pohybu hmotného bodu po ose » je ddn vzorcem

x =10t +5¢2,
kde ¢t je &asvsekunddch a x je vzdilenostv metrech. Urcete prumeérnou rychlost

pohybu v &asovém intervalu 20<t<20+Af a vypoltéte ji, je-li: a) Ai=1;
b) At=0,1; c¢) At=0,01. Jaki je rychlost pohybu bodu v ¢ase £=20?
828. Pomoci definice derivace najdéte derivace téchto zdkladnich funkcf:
Ax% b)a% =i d)yk; o) YR Dige; ® coigx; h) arcsing
1) arccosx; j) arctgx. ' '
829. Vypoctéte f(1), f'(2) a f(3), je-li

fix) =G~ Diee - 2)°(x - 3)°.
830. Vypoctéte f/(2), je-li flx) =xsin(x -2).
831 Vypoctéte f/(1), je-li fix) =x +(x - 1)arcsin Ll

X+

832. Najdéte hmﬂ ®) ~fe) , je-li funkce flx) diferencovatelna v bodé a.

x-a x-a

833. Dokaite, Ze je-li funkce f{x) diferencovatelni a n je pfirozené dislo, pak
plati: 1 ,
lim nf[x +—) =f(x)|=f"{x). (1)
n—w n :

Naopak, existuje-li pro funkei fix) limita (1), vyplyvd z toho, Ze je tato funkce
diferencovatelna:’ Uvazu_]te prlpad Dmchletovy funkce (v1z kapltola 1 uloha 7 34)




DIFERENCIALNT POCET FUNKCI JEDNE REALNE PROMENNE

Pomoci tabulek derivaci najdéte derivace nasledujicich funkci:
834. y=2+x-x7,
Cemu jsou rovny y“(0); y"[%] 3 yD); v(-10)2

3 .2

835.y=%+%—2x.

Pro jaké hodnoty x plati: a) y(x)=0; b) y'(x)=-2;¢) y(x)=10?
836. y=a’+5a%x*-x5,

838. v=(x -~a)x-b).

839. 3 =(x + 1)(x +2)°(x +3)*.

840. y = (xsin o + cosa)(x cosa - sina).
841. y=(1 +nx ™)(1 +mx ™).

842. y =(1 -x)(1 -x2)*(1 -2 *?.

842.1 y=(5+2x)'%(3 -4x)*°,

843. y=l+£+_3..._
x x? 53 ab
/
844. Dokaite vztah [ax+b) _lcd .
ex +d (cx +d)2

Najdéte dertvace nasledujicich funkcf:

o,
845, y=— 2> 846, y= X%
1-x2 1-x+x%
' 2 3
847y © | gag.y-2x)E@-x)
(1-2)%(1 +x)? (%)
- Pl -
819, y= L7 850, y =X L =)'
{1+x)? I+x
3
851. y=x +yx + yx. . 852. y=l+;l-+-l-—.

5 |
853.y=\/?—%. 854. y =xy/1 +x 7.
X

855. y =(1 +x)y/2 +x? 3,/3 sx3,

856. y= (1 -x)"(1 +x)".

§ 1. DERIVACE FUNKCE

857, § = ——
fa’?_xﬂ
1
859. 3 =

V1 +x2(x +1 +x2)‘

3 3
861. 5= 1+V1+3\/§.

863. y=(2 -x ")cosx + 2xsinx.

865. y=sin’x cosnx.
2

sin“x
867. y=——-

sinx
869. y =

cos"x

X X
871. v =tg-§ —cotg;.

873. y= 43:/c0tg2x + 2:,/cotg 8.

875. y =sin(cos’ (tg *x)).

877, y=2'8 %,

879. y= 1_Txgsimc —L_;Ecosx}e .

_In3 sinx +cosx

881. y
3!

X
ee

883. y=¢*+e® +e

885. v =x%"+a*" 42" (@>0).

887. y=In(In(Inx)).

889. y=%ln(l +x)-%ln(l +x?) - S1en)

890. y =lln

858. 3=
860. y=yx +yx hﬁ.

862. y =cos2x - 2sinx.
864. y =sin (cos®x) cos(sin®x).

866. y =sin(sin(sinx)).

868. y - cosx
2sin“x
§70. 3= siNX —X COSX

COSX +XSInX

5

| 1
872, y=tgx ——tg’x+—tg’x.
y=tg 3 24 5 8

874. y=sec?Z +cosec?Z.
a a
876. y=e =

878. y=¢ *(x® -2x +2).

880. y =¢ "[1 +cotg%] .

_ axasinbx -bcosbx

882. y=e
f'a’2+b2

884. 5= (%] (E) [ET @>0,6>0).

886. y=log’x %
888. y=In (In®(In’x)).
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892.

893.

B94.
896.
897.

§98.

§99.

900. y

9501.

903.

905.

306. y =

907.

909.

911.

913.

g
-9 =arctg%. 916. ¥ =iarcctg V2
2

. lnx‘[g_‘/§
2/6  xy3+/2
yo L trx, VR T g oy,
1-k 1-x 1-k 1-xk
y=yx+1-In(l+yx+1).
y=xln(x+\fl+x2)—\/1+x2.

y =xln2(x+\/1 +x2)—2\/1 +x21n(x+\fl +x2)+2x.
2

3 =%1/x2 +a’ +%—ln(x +\/x2 +a2).

y= 1 ln‘/aﬂc’/g (@>0,b>0),
2yab  a-xyb

2 f 2

=2+3x 1/1~x2+3}nm_.

x?t X

895. y =ln(x +\/x2 l).

=Intg>. 902. y=Intg| =+ 2} .
¥ g2 J ng[2 1
y=—;—cotg2x+lnsinx.

904. y=In l L-sinx
1 +sinx
COSX 1 +cosx
y=- +In - .
2sin’x sinx

2__ 9.
lnb+acosx+\/b a“sinx O<|a|<[b]).

a +bcosx
L 2 1 1 1
=—(In"x+3In"x +61lnx +6). 908. y=——In—- .
x 4x*  x 16x*
3, 3 3 3 3 1 1 1
y=-é-l—\f1+x +3In\l =yl +x%).  910. y=In|—+In| —+In—||.
x x X

y =x[sin(Inx) - cos{lnx)].

912. y =1n{tg§] -cosx In(tgx).

. X
J=arcsin E 914. y =arccos .

2

X

§ 1. DERIVAGE FUNKGE

917. y =y -arctgyx.

. ¥y =X arcsin
919. ¥ T ox

921. y =arcsin (sinx).

923. y =arcsin(sinx - cosx).

¥ carctgx-yx.

918. y=x+y1 -x % arccosx.

920. y= arn:c:osi .
x

922, y =arccos (cos’x).

924. y=arccosyl -x 2.

1+x SINX +COSX
= . 926. y = tg | —— | .
925, y =arctg 1 x y =arccotg (smx —cosx)
927. y= 2 arctg[ Ei"—il:gil (@a>b20).
(12 b2 a+bh 72
- 929 !
928. y =arcsin 29. y= .
¢ 1+x> arccos® (x %)
1 3
930. y =arctgx + 3 arctg(x”).
931. y=In(1 +sin®x) - 2sinx arctg (sinx).
932. y=In arccos-—l— . 933. y=In ¥ra +Earctg-:- (b=0).
vx xZ+b?
2
934, y=-g\/az2—x2+Fi‘2—arcsin-"E (a>0).
a
2 -
935. y=-1-lnﬂ)——— +—1—arctg 2 .
6 x*-x+1 /3 J3
2
936. y= L InX ** 2+l arctg xgﬁ'
42 x?-xf2+1 22 x°-1
937. y =x (arcsinx)’ +2y/1 -x 2arcsinx - 2x.
938. y= arccosx +lln 1-y/1-x°
X 2 1+ l_xﬂ
939. y =arctgyx?-1- Inx : 940. y = arcsm: +%ln i ;‘;.
2 f
\ x°-1 l-x
4_,.2
941. y=ilnx x 1 arctg V3 .
12 @2+1? 23 2% -1
xﬁ 6
942. y= — Tarccotgx .

1+x
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3 3
.Lﬁ_+ﬁarc[g£ﬁ_

943. y=In
3
1+EVE+\/F \/g
944. y =arctg i . 945, y=arccotga;2x- (@a>0).
1+\a'1—x2 9 fux —x2
946. y= 3-x 1-2x-x2+2arcsin L+

2

4 ~ 4 .

947. y= —i—ln 4—-"1+Mc —%arctg——-”lﬂc.
y1+x*-x x

949, y=y/1-x%In ll JC+—1 Loyl +\I -x* +arcsinx.

l+1‘/1 -x?

948. y =arctg (tg *x).

950. y =x arctgx =—;-1n(1 +x 2) - % (arctgx)g.

951. y =In (e"ﬂ/l +e2").

sina sinx ]

952. y =arccotg (x + .\/1 +x 27).

1 -cosa cosx

954. ¥ ! n¥* "+2- x\/— arctg——"+2. :
4\/_ yx? +2+x\/_ x . .
xy/2 -,f1+x —x‘/— . i

953. y =arcsin [

955. ¥ arctg

2‘/_ m 4‘/_ m +xJ_ | 1‘

956. y = f—ylx iarccotg—ﬂ.
l+x* /3 2

2

1-x

957. y =arccos (sinx * - cosx %) . 958. vy =arcsin (sinx %) +'ar_ccos {cosx?).

959, y =¢ " """ [cos (m arcsinx) +sin (m arcsinx)] .

2x 7 3 : § )
82‘; . 960.1y=\11+y1+4\/1+x4.

+1

960. y =arctge * -In

960.2 y =arccotg

§ 1. DERIVACE FUNKCE

961, y=x +x*+x* (x>0).

963. y=yx (x>0).
965. y =(Inx)*/x =

. 3
960.3 ¥ =ln2(sec2‘/5).
962. y=x* +x* +a* (a>0,x>0).

964. y = (sinx)™ + (cosx)™™*,

arctg X .
065.1 y =| 2resinsin ) [ 966. y =log .
arccos(cos’x)
1 coshx x
967. y =In{coshx) + ————. 968. y= -In (cotgh—] .
) 2 cosh’x sinh®x 2

969. y =arctg(tgx). 970. y =arccos {

coshx] '

971. y~—x+2” arctg[,\a—zt h—] {0<|b| <a).
a+

972. Zavedte pomocnou proménnou % =cos’x a derivujte funkci

¥ =ln(cosgx_ +y1 +cos4x).

Postupem uvedenym v tloze 972 derivujte ndsledujici funkce:

973. y =(arccosx)’|In? (arccosx) - In(arccosx) + %l .

4
4 f 1
974. J’=%3rdg(\/1 1‘:!:“)+-:111n———~—4 Lrx +1

1+x%-1
975. e arcsm(e +—21-1n1(1 - _2x2)
1-¢™>
x a2
976. y= a,' . arccotg(a ™)
1+a®™ 1+a '

977. Najdéte derivace a sestrojte grafy funkci a jejich derivaci, je-li
Ay=lsl; b)y=x|x|; oy-nlxl.
978. Najdéte derivace nasledujicich funkef:

a)y=1x-12%x+1®]; b)y=|sin’x|; c)y=arccos d) y =[x]sin® mx.

1 -
x|’
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Najdéte derivace nasledujicich funkci,
derivaci:

sestrojte grafy téchto funkdi i jejich

l-x pro -—e<x<l,
979. y=9 (1 -x}(2-x) pro lsx<2,

-(2-x) pro 2<x<+e,
980, y=4 * ~a)*(x-b)* pro asx<h,
- 0 vné uzavieného intervalu [a,b).

081, 5 - pro x<{,
P Vin(l+x) pro x20.

arctgx pro |x| <1,
982.y=\{ X -
78 pro |x|>1.

x%™ pro |x|<1,

983. y =9
S pro |x|>1.
e

\

984. Derivace logaritmu dané funkce y =f{x) se nazyva logaritmickou dertvact této
funkce:

_f&)
In|f(x)] )

Najdéte logaritmickou derivaci funkce ¥y, je-li:

l—x x2 [ 3%
+x Gy
d)y= x+1/1+x ) .

985. Necht ¢(x) a Y(x) jsou diferencovatelné funkce proménné xl. Najdéte deri-
vaci funkce y, je-li:

a) y =y’ (x) +¥’(x);

d) y=log ., ¥Ex) (@()>0; ¥(x)>0).
986. Najdéte v/, je-li:
a) y=fx%; b) y=f(sin’x)+f{cosx);
kde f{u) je diferencovatelna funkce.
986.1 Vypoltéte f/(0), je-li

fx)=x(x -1} (x

a) y=x

y=G-a) w-a)™.. x-a,)";

b) y =arctg%g-))—; )y =@(x)\/1|J(x) (@p(x) = 0; Y(x)>0);

O y=fle™)e™;  dy y~fUfIfN},

-2)...(x-1000).

F
13
H
i
i
i

§ 1. DERIVACE FUNKCE

987. Dokate nasledujici pravidlo pro derivovini determinantu #n-tého fadu:

i) fio0) o f)|7 @ fis&) o fl6)

n

L®) fo@ . £ )] = kE fi) fit) . fl@)].
=1

fa®) fo®) o £, S ) o £,

988. Najdéte F'(x), je-li

x-1 1 2
Flxy=| -3 «x 3. 1.
-2 -3 x+1
989. Najdéte F'(x), je-li
x x? x3
Fx)=[1 2x 3x2
02 6x

990. Je-li ddn graf funkce, sestrojte pfiblizné graf jejf dervace.
991. Ukazte, Ze funkce

1
xzsm— pro x#0,

fix)=
0 pro x=0

m4 nespojitou derivaci.
992. Za jakych podminek funkce
flx) =x"sin-l— (x20) a f{0)=0
x
a) je spojitd v bodé x=0; b) je diferencovatelnd v bod€ x=0; ¢) ma spojitou

derivaci v bod& x=07?
993. Za jakych podminek ma funkce

fix)=|x|"sin !
| %

(x#0)a f(0)=0 (m>0)

a) omezenou derivaci v okoli po¢itku soustavy soufadnic; b) neomezenou derivaci
v tomto okoli?
994. Najdéte f(a}, je-li _
fir) = (x ~a) @),
kde @(x) je funkce spojitd v bodé x =a.
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995. Ukaite, ze funkce

fx)=|x-a|¢(x),
kde @(x) je spojitd funkce takov4, e ¢(a) # 0, nema v bodé a derivaci. Cemu jsou
rovny jednostranné derivace f_f(a) a ff(a)?
996. Najdéte pfiklad spojité funkce, kterd nemi derivaci v danych bodech
GpsQgs s

997, Ukaite, Ze funkce
flay=x*

mid v libovolném okoli bodu x =0 body, v nichZ nenf diferencovatelnd, a presto

je v tomto bodé diferencovatelni. Nadrtnéte graf této funkee.
998. Ukaite, Ze funkce

(x+0) a f{0)=0

ﬂ
COS —
X

0  pro x iracionilni,

Jje diferencovatelnd pouze v bodé x =0.

999, Vy3etfete, zda jsou nisledujici funkce diferencovatelné:
a)y=|(x-1)x-2Px-3%|; b)y=|cosx|;
d) y =arcsin (cosx);

2 PSP
fix) = {x pro x racionalni,

) y=|n?-x?|sin’x;

e) y- x;l(x+1)2 pro |x|<1;

[x]-1 pro |x|>1.

Pro funkci fix) urete jeji derivaci zleva f(x) a derivaci zprava fl(x), je-li:

1000. flx)=|x|. 1001. fix)={x]sinmx.
1602. f(x)=x cos-;i‘ {(x#0), fi0)=0. 1003. flx) =y/sinx?.
1004. f{x)= — (x=0), 0)=0. 1005. f{x)=y1 e |
1006. fix)=|In|x|] (x=0). 1007. flx) =arcsin 2 .

1+x?
1008.' f(x)=(x—2)arctgﬁ (x#2), fi2)=0.

1009. Ukaite, Ze pfestoZe je funkce f{x) =x sinl prox=0a f{0)=0 spojitdvbodé
X

x =0, nema v tomto bodé derivaci zleva ani zprava.

§ 1. DERIVAGE FUNKCE

1009.1 Necht x, je bod nespojitosti prvniho druhu funkce f{x). Pak vyrazy
flx,+h) - lim f(x)

x f-xo

h

fle)=lim
hoO

flx,+h)-lim f(x)

X\xo

flixy) =lim -
k0

pazyvime zobecnénymi jednostrannymi dertvacemi (zleva nebo zprava) funkce f(x)
v bod€ x,,. '

Najdéte f_!(xo) a ff(xo) v bodech nespojitosti x, funkce f{x), je-li:

o) fix) = 1 ix

x2+x3

a) fix) = ; b) ﬂx)=arctg—i-i—z;

1010. Necht

f )- x2 pro x<x,
x =
ax+b pro x>x,.

Najdéte koeficienty @ a b tak, aby byla funkce f{x) spojitd a méla derivaci

v bodé x =X,

1011. Necht

PI'O X£X
ax+b pro x>x;

Fix) ={ 1 v

kde funkce f(x) ma derivaci zleva v bodé x =x,,. Najdéte koeficienty a a b tak, aby
byla funkce F(x} spojiti a méla derivaci v bodé x,. -
1012. Na uzavieném' intervalu a<x<b sestrojte spojité a hladké napojeni dvou

polopfimek y=k,(x-a) (-=<x<a),

y=ky(x-b) (b<x<+)
pomoc{ kubické paraboly .
y=A(x-a)x-b)(x-c)
a vyjadrete zdvisiost parametrt 4 a ¢ na ostatnich parametrech 1lohy.

2
1013. Doplnite ¢ast kitvky y =_|m_ (|x]>¢) pomoci paraboly
x

y=a+bx? (|x]|<c)
tak, aby vysledna kfivka byla grafem hladké funkce (¢ a b jsou nezndmé
parametry).
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1014. MiiZeme tvrdit, Ze soucet funkci F(x) =f{x) + g(x) nem4 derivaci vbodé x =x,,
jestlize: a) funkce f{x) ma derivaci v bodé x, a funkce g(x) v tomto bodé derivaci
nemd; b) ani jedna z funkci flx) a g(x) v tomto bodé derivaci nema?
1015. MiZeme ovrdit, ¥e soudin funkci

F(x) =fl)ge)
nemad derivaci vbodg x=x, jestlize: a) funkce flx) ma derivaci vbodé x, a funkce
g(x) v tomto bodé& derivaci nemi; b) ani jedna z funkci f{x} a g(x) v tomto bodé
derivaci nema?
Uvaiujte pifpady nisledyjicich funkci v bodé x,=0:2) flx)=x, gle)=|x|;
b) fix)=1x|, gx)=]x|.
1016. Co mbZeme fici o derivaci funkce

F(x) =flg(®) o
vdanémbodé x =x,,jestliZe: a) funkce f{x) ma derivacivbodéx = g(x,) afunkce g(x)
nemd derivaci v bodé x=x,; b) funkce f{x) nemd derivaci v bodé x =g(x,)
a funkce g(x) md derivaci v bodé x=x,; c) funkce fix) nem4 derivaci v bodg&
x=g(x,) a funkce g(x) nemd derivaci v bodé x =x?

UvaZujte pfipady nasledujicich funkci v bodé& x0=0: a) fley=x?, glx)=|x|;
by flx)=|x|, g =x*; ¢ fix)=2x+|x|, g

2

(x)=2x-—|x|.

)= 2x- 3 |3l
1017. Ve kterych bodech md graf funkce y=x +3\-/sinx svislé tedny?
Sestrojte tento graf. '

1018. MiiZe mit funkce flx) ve svém bod& nespOthostl a) konecnou derivaci;
b) nevlastni derivaci? UvaZujte piipad funkce f{x)=sgnx.-

1018. Je-li fix) funkce diferencovatelni na omezeném intervalu (a, b)
a lim fix) =, je pak nutn&

1) lim f/(x) )y lim |fi(x)| =+e?

X-a x-z

UvaZzujte piipad funkce f{x) = 1 +cos.i pro x-0.
X X

1020. Je-li flx) funkce diferencovatelni na omezeném intervalu (a,b)
a lim f'(x) =, je pak nutng

x-a

lim flx)=ec?

E il /3

UvaZujte piipad funkce f{x) =3\/§ pro x-0.

§ 1. DERIVACE FUNKCE

1021. Necht funkce flx) je diferencovatelnd na mtervalu (x,, +«) a necht existuje
lim fix). Vyplyvd z toho, e existuje lim f'(x)? Uvaiujte pifpad funkce

PR X~ 4w

ﬂx) _ sin (x 2)

1022. Nechf Jje omezend funkce fix) diferencovatelna na intervalu (x, +«) a necht

existuje limf”(x). Vypl§va z toho, %e existuje kone¢nd nebo nevlastni lim f{x)?
X—rm ) X

Uvazujte piipad funkce f{x) =cos(Ilnx).
1023. Zachovavi se derivaci nerovnost mezi funkcemi?
1024. Najdéte hodnoty nasledujicich soudti:
. P o=1+2c+3x%+ . +nx""!
.

Qﬂ= 12422 +3% 2+ +n%" !,
NAvoD: UvaZujte derivaci (x+x2+...+x 7).
1025. Najdéte hodnoty nasledu_pcmh soucti:

8§, =sinx +sin2x + ... +sinnx

a

T =cosx+2cos2x +...+ncosnx.
1025.1-Najdéte hodnotu soudtu

§, =coshx +2cosh2x +... +n coshnx.

NAvoD: § =(sinhx +sinh2x +... +sinhnx)’.

1026. VyuZitim rovnosti

X X
COS—CO§— ... CO§ ==

najdéte hodnotu souctu
S =—tg=+—t -x-+...+itgi.

2 4714 g%~ on

1027. Dokajte, ¥e derivace diferencovatelné sudé funkce je funkce licha a Ze

derivace diferencovatelné liché funkce je funkce sudd. Interpretujte vysledek

geometricky.

1028. Dokaite, Ze derivace diferencovatelné periodické funkce je periodicka

funkce se stejnou periodou, jakou ma funkce pavodni.

1029. Vypoctéte, jakou rychlosti roste obsah kruhu v okamiZiku, kdy je jeho polo-

mér R =10cm, jestliZe polomér kruhu roste rovnomérné rychlosti 2cmy/s.

1030. Vypodtéte, jakou rychlosti se ménf obsah a délka uhlopiicky obdélnika

v okamziku, kdy jsou délky jeho stran x =20m a y = 15m, jestliZe se délka prvni

strany zmensuje rychlosn 1m/s a délka druhé strany se zvctsuje rychlostl 2m/s.
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1031. Parnik A vyplul z pffstavu na sever a parnik B na vychod. Jakou rychlosti
roste jejich vzajemna vzddlenost, jestliZe rychlost parniku A je 30km/h a rychlost
parniku B je 40km/h.
1032. Necht
X ro sxs<?2,

fe) ={Qx -2 gro 2<x <+
a necht S(x) je obsah oblasti vymezené kiivkou y =f{x), osou x a pifmkou, kters
je kolmd na osu x v bodé x (x> 0). Najdéte analytické vyjadfeni funkce S(x), vy-
podtéte jeji derivaci §'(x) a sestrojte graf funkce y=S/(x).
1033. Necht je S(x) obsah oblasti vymezené kiivkou y=ya?-x?, osou x a dvéma
pfimkami, které jsou kolmé na osu x vbodech 0 a x (|x| <a). Najdéte analytické
vyjadfeni funkce S(x), vypoctéte derivaci S (x) a sestrojte jeji graf.

§ 2. Derivace inverzni funkce. Derivace funkce zadané parametricky.

Derivace implicitni funkce

1. DERIVACE INVERZNI FUNKCE. Diferencovatelna funkce y=f{x) (a <x <b) sderivaci f(x}+0 m4
Jjednozna¢né uréenou spojitou inverzni funkci x =f (), kterd je rovnés diferencovatelna, a plati

1
xy —'—I.

Y

2. DERIVACE FUNKCE ZADANE PARAMETRICKY. Soustava rovnic

x=9(!)
J’=¢’(4)} (a<t<f),

kde () a (1) jsou diferencovatelné funkce a ¢'(f) # 0, definuje na néjaké mnozing y jako dife-
rencovatelnou funkci proménné x:
y=u (e (),
;
1 X

=
%

pficemz derivace této funkce je rovna

3. DERIVACE IMPLICITN{ FUNKCE. Je-li ¥ =y(x) diferencovatelnd funkee, kterd vyhovuje rovnic
Fie,p) =0,
pak derivaci y'=3 '(x) této implicitn{ funkee lze vyjadiit = rovnice

%[F(x.yn -0,

kde na funkci Fix,y) pohliZzime jako na sloZenou funkei nezivisle prbniéhne x.
(Vice podrobnosti o derivovani lmpllmtmch funkci na:]dete v &&su Il kapltola VI, §3).

S S

§ 2. DERIVACE INVEAZNI FUNKCE. DERIVAGE FUNKCE ZADANE PARAMETRICKY, DERIVACE IMPLICITNI FUNKCE

1034 Dokazte e existuje jednoznalné urcena funkce y=y(x), ktera vyhovuje
rovnici 3 +3y=x, 2 vypoctéte jeji derivaci y, -

1035. DokaZte, Ze existuje jednoznaéné urdend funkce y=y(x), kterd vyhovuje
rovnici y —€siny =x (0 <& <1), a vypodtéte jeji derivaci 5,

1036. Urdete defini¢ni obor inverzni funkce x=x(y) a vypoltéte jeji derivaci,
jeli: a) y=x +Inx (x>0); d) y =tghx.

1037. Najdéte jednoznaéné uréené spojité vétve inverzni funkce x =x(y), vypoctéte
jejich derivace a sestrojte ‘lqich grafy, je-li:

b) 5= +x2,
1038. Nacrtnéte graf funkce y =y(x) a vypoltéte jeji derivaci y,» je-li:

b) y=x+e*; <) y=sinhx;

a)y= =9x?-x*; c)y=2e Ry

x=-1+2-12,y=2 -8t +¢?. Cemu se rovna derivace y;(x) vbodechx=0ax=-1?
Pio ktery bod (x,y) je 3,(x) =07

Najdéte derivaci y;_ funkcey(x) zadané parametricky (s kladnymi hodnotami
parametru) je-li:.

1039, x= {11, 3= \(

1041. x =acost, y= bsmt.

1040. x =sin’¢, y =cos’t.
1042. x =acosht, y=bsinht.
1043. x =acos’t, y =asin’t. 1044. x =a(t-sint), y=a(l -cos!).
1045. x =¢ *cos’t, y =e ¥sin’t.

1046. x =arcsin

, ¥ =arccos
1047. Ukaite, e funkce y =y(x) uréend soustavou rovnic

x=2+|t], y=5t2+4t|t| .
Je diferencovatelnd v bodé =0, pfestoie nelze jeji dervaci v tomto bodé uréit
standardnim zphGsobem.

Najdéte derivace y: nésledujl’cich implicitnich funk:
1048. x +2xy y ‘
Cemu je rovna y’ prox=2ay= 4aprox Qay 0?

2 .2
1049. y* =2px (parabola). 1050. x_2 +%-2- =1 (elipsa).

173

1051. /x +y/y =\/a (parabola). 1052. x? +y?* = %? (astroida).

1053, arctgl =Inyx?+y? (logaritmicka spirila).
X
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1054. Najdéte y: ,je-li: a) r=a@ (Archimedova spirila);
b) r=a(l +cosp) (kardiocida); ¢} r=ae™® (logaritmicka spirila),

kde r=yx*+y% a @ :arctg—Jl jsou polarni soufadnice.
x

§ 3. Geometricky vyznam derivace

I. ROVNICE TECNY A NORMALY. Rovnice leiny MT a normdly MN ke grafu diferencovatelng
funkce y=f{(x) v bodé M =(x,y) tohoto grafu (viz obr. 7), majf tvar:

Y-y=9/(X-x)

1
Y-y=-—(X-x),
b]

kde X a Y jsou proménné soufadnice bodu teény, resp. normaly, a kde y’=f"(x} je hodnota de-
rivace funkce v bodé dotyku.

9. USEEKY VYMEZENE TECNOU NEBO NORMALOU. Pro tisetky, které jsou vymezeny teinou
a normdlou a které nazgvime: PT - subtangenta, PN - subnormadla, MT - tsek tecny, MN -
tsek normdly (viz obr. 7), dostivime uZitim vztahu tgo = 3’ nésledujici vztahy:

3. UHEL MEZI TECNOU A VEKTOREM PRUVODICE EODU DOTYKU. JestliZe v =f{g) je rovnice kiivky
v polarnich soufadnicich a § jedhel mezi teénou MT a vektorem priivodife OM bodu dotyku M
(viz obr. 8}, pak plat{

_yn
% 3 T/' T —
g Obr. 7
: _
: 12 el - 1
§ ¥ ' )
g
!
Ei
2
3
§

-
tgf=—.
g Y

§ 3. GEOMETRICKY VYZNAM DERIVAGE

3
" 1055. Najdéte rovnice tetny a normaly ke kiivee y=(x+1) {3 -x v bodech:

a) (-1,0); b) (2,3); ¢ (3,0).

1056. Ve kterych bodech je tedna kiivky y=2+x -x? a) rovnob&ini s osou x;
b) rovnobéZni s osou soumérnosti prvniho kvadrantw?

1057. Dokaite, Ze parabola :

y=a@-x)x-x,) (@#0,x <x,)

protind osu x pod stejnymi vhly « a B (0<¢x<%, 0<Pp<—=

1058. Na kiivce y=2sinx (-m<x<m) najdéte ty ¢dsti, kde je strmost kiivky (4.
|y/}) v&tsi nez 1.
1059. Funkce y=x a'y, =x +0,01sin(10001tx) se neli¥i jedna od druhé o vice nez
0,01. Co mé¥eme Fici o maximilni hodnoté rozdilu derivaci téchto funkci?
Sestrojte odpovidajict grafy.
1060. Pod jakym dhlem protind kfivka y =Inx osu x?
1061 Pod jakym vihlem se protinaji knvky

Cooy= =x?ax y
1062. Pod jakym thlem se protinajf kiivky

y=sinx a y=cosx?

- 1063. Pro jakou hodnotu parametru # protind kiivka

: y=arctgnx (n>0)
osu x pod thlem vétsim nez 89°?
1063.1 UkaZte, 7e se kiivka y =|x |"
a)pro 0 <a <1 dotykd osy y;  b) pro 1 <a< += dotyki osy x.
1063.2 Ukaite, Ze limitni poloha se¢ny grafu funkce
_Jx|® pro x#0, kdea =0,
P71 pro x=0,
kterd prochézi bodem (0,1), je osa y.
1064. Vypociéte thel mezi teCnami zleva a zprava ke kiivce

ayy=yl-e %" § bodé x =0; b} y=arcsin vbodé x=1.

1065. Ukate, e te¢na logaritmické spirdly r =ae™” (@ a m jsou konstanty) svird
s vektorem privodice jejiho bodu dotyku konstantnf Ghel.
1066. Pomoci vypoctu delky subtangenty navrhnéte zplisob sestrojeni tetny ke

1+x?

kiivce y=ax™

1067. Dokazte, e pro parabolu y2=2px
a) Je delka subtangenty rovna dvognasobku delky prvnf souradmce bodu dotyku
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b) je délka subnormaély konstantni.
Navrhnéte zpiisob sestrojenf te¢ny k této parabole.
1068. Dokaizte, Ze kilvka exponencialni funkce

y=a* (@a>0)
mai konstantni subtangentu. Navrhnéte zplisob sestrojeni te¢ny k této kiivee.
1069. Vypoctéte délku tiseku normaily fetézovky

y =acosh 2
v jejim libovolném bodé (x,y,).
1070. DokaZte, ze délka tiseku te¢ny astroidy
x2yP_ W (550),
ktery je vymezeny osami soufadnic, je konstantni veli¢ina.
1071. V jakém vztahu musi byt koeficienty @, b a ¢, aby se parabola y =ax® +bx +¢
dotykala osy x?
1072. Za jaké podminky se kubick4 parabola y=x° +pax +¢ dotjkd osy x?
1073. Pro jakou hodnotu parametru a se parabola y =ax? dotykd kfivky y =Inx?
1074. Dokaite, Ze se kiivky
3y =fx) {flx)>0) a y=f{x)sinax,

kde fix) je diferencovatelni funkce, dotykaji ve svich spole¢nych bodech.
1075. Ukaite, Ze tfidy hyperbol x2-y2=a a xy =b vytvéieji orfogondlni sit, 4j. tyto
ktivky se protinaji vidy pod pravym thlem. ‘ '
1076. Dokaizte, e tf{dy parabol

y2=4a(a-x) (a>0)ay?=4b(b+x)
vytvaieji ortogonalnf sit.
1077. Najdéte rovnice teny a normaly ke kiivce

x=2-t%, y=8t-¢°

(6>0)

vbodech a) t=0;b) £=1.
1078. Najdéte rovnice teny a normaly ke kiivce
| C9+t? 9 -4?
x = , ¥ =
1+t3 1+¢3

vbodecha)t=0;b)t=1;¢) t=co,
1079. Najdéte rovnici te¢ny k cykloid¢

x=a(l-sint), y=a(l -cost)

v libovolném bodé ¢ =t . Popiste zplisob sestrojeni te¢ny k cykloidé.

o e g g 1 e

§ 4. DIFERENCIAL FUNKCE

1080. DokaZte, Ze kiivka traktrix
x =a(lntg-;— +cost), y=asint (a>0, 0 <t< )

m4 tsek teény o konstantni délce.

Sestavte rovnice te¢ny a normdly v zadanych bodech k ndsledujicim kitvkdm:
2

+%Z=1 v bodé (6, 6,4). 1082. xy +Ilny=1 vbodé (1, 1}.

81.
1058 T00

§ 4. Diferencial funkce

1. DIFERENCIAL FUNKCE. MhiZeme-li pFirGstek funkce y =f{x) nezdvislé proménné x napsat ve
Ay=A(x)dx +o(dx),

kde dx=Ax, pak linedrn{ &st tohoto pfirlistku nazveme diferencidlem funkce y a oznalujeme
symbolem dy =A(x)dx.

Pro existenci diferencidlu funkce y=f{x} je nutné a stafi, aby existovala konefnd derivace

varu

'=f/(x), ptitem? plati
y'=f"{x), pfidemZ plati dy =y'dx. "

Vztah (1) plati i v pi{padé, fe proménnd x je funkdi daldi nezdvisle proménné (invarianini
vlastnast proniho diferencidlu).

/2. ODHAD (NEKONECNE) MALEHO PRIRUSTKU FUNKCE. Pro odhad velikosti malého piirstku
diferencovatelné funkce fix} lze poufit vztah

S+ Ax) - flx) = () Ax,
jeho? relativni chyba je zanedbatelné mald pro dostatetné malé hodnoty |Ax |, jestlize f x)=0.
Navic, jestlize je nezidvisle proménnd x urfena s fimitni absolutni chybou Ax, pak limitni

absolutni, resp. relativni chyby Ay a 61 funkce y =f{x} spliiuji pfiblizné rovnosti

A=ly'|4,
a
y /
& ==—|A .
3yl '
1083. Pro funkci
flxy=x3-2x+1
vypottéte: 1) Af(1); 2) df(1) a porovnejte jejich hodnoty, je-li: a) Ax=1;
b) Ax=0,1; c¢)Ax=0,01.
1084. Rovnice pohybu md tvar
x=5(2,
kde ¢ me&ifme v sekundach a x v metrech. Vypoctéte pro Casovy okamZik ¢ =25
N R S A . T TR B e g s T T e e e e
101
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piirtistek Ax a diferencidl vzddlenosti dx a porovnejte jejich hodnoty, je-li:
a) At=1s; b) Ai=0,1s; c¢) At=0,001s.

Najdéte diferencidl funkce ¥, je-li:

1085.31'=l 1081:1.73'3=--1—;3lrctgi (@=0). -
x a a
1087.y=—1~—1nx_a . 1088. y=In|x+yx?+a|.
2a |x+a

1089. y =arcsin hd (a=0).
a

1090. Vypoctéte:

a)d (xe®); b)d (sinx-xcosx); <)d [—%] ; d)d [lnTx] oe)d (\}a - )
. % e
(

) d|- x ;8 d(In(l -x%); hyd (arccosL) :
1-x2 |x|
i) d sinx +llntg[£+£) .
_2c052x 2 2 4

Necht #, v a w jsou diferencovatelné funkce proménné x. Najdéte diferencial
funkce ¥, je-li: - ' '

1091. y =uvw. 1092, y=—2.
DAY
k7
1093, y= : 1094. y=arctg—.
u?+p? v

1095. y=Inyu®+v?.

1096. Vypoctéte: a) (x3-2¢6-x9; D) d [ sinx) : d(sinx) ;
d(x®) dxH\ x d (cosx)
d(tgx) . d (arcsinx) :
d(cotgx) - d{arccosx)

1097. Kruhova vyse¢ ma polomér R=100cm a thel o =60°. Jak se zmén{ jeji
obsah, jestlize se a) zvéti jeji polomér R o 1cm nebo b} zmensi thel ¢ o 30'?
Najdéte piesné a piiblizné feleni.

i

§ 4. DIFERENCIAL FUNKCE

1098. Dobu kyvu matematického kyvadla (v sekundéch) vypocteme podle vzorce
T= Qng ,kde ! je délka kyvadlav metrech a g= 9,81 m/s 2 gravitac‘fm’ zrychleni.
P _ . achy

Jak musfme zménit délku kyvadla [ =20cm, aby se doba kyvu T zvédila o 0,05s?

Nahrazenim pfirtstku funkce dxferenaalem vypoctéte prlbhzne hodnoty nisle-
du_]lcich vyrazii: S

1099. \f 1,02.

1102. arctg 1,05.

1100. 5in29°.
1103. log11.

1101._c05151°.

1104. DokaZte, Ze plati vztah | _
Jaleix=a+- (a>0),
2a

kde |x|<a (symbol A< B pro kladné A a B oznaluje, Ze hodnota 4 je pod-
statné men3 ve srovniani s hodnotou B). Pomoci tohoto vztahu vypoctéte
piibliZzné hodnoty a) J/5; b) /34; ) Y120 a vysledky porovnejte 5 tabulkovymi
hodnotami.

1104.1 Dokaite, Ze plati vztah

\/ag +X =}L+i-—r (a>0,x>0),
2a

kde
9

O<r<i_.
8a 3
1105. Doka’te piibliZnou rovnost

n
ya®tx=a+
na

Pomoci tohoto vztahu vypoctete pnbhzne nasledujici hodnoty

a) y9; b) y80; ¢) y100; d) 'y/T000.

1106. Naméfeni hodnota délky strany &tverce je x=2,4m=0,05m. S jakou
limitni absolutn, respektive relativni chybou lze uréit obsah tohoto &tverce?
1107. § jakou relativni chybou je nutno zméfit polomeér koule R, aby bylo moZno
urdit jeji objem s pfesnosti na 1%? '

1108. Pro uréent velikosti gravitaéntho zrychlenf pomoci matematického kyvadla
se pouziva vzorec g =4m2/T?, kde [ je jeho délkaa T je doba Kyvu. Jaky vliv m4
na vyslednou hodnotu zrychlenf g relativni chyba & pfi méfenf a) déiky / nebo
b) doby kyvu kyvadla 7'? |

(a>0), kde |x|<a.
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1109. Urcete absolutni chybu v§poctu dekadického logaritmu &isla x (x>0},
jestliZe relativnf chyba jeho vréeni je rovna 6.

1110. Dokaite, Ze uhly lze urdit pfesnéji podle tabulky funkce tangens ne¥ podle
tabulky funkce sinus se stejnym poctem desetinnych mist.

§ 5. Derivace a diferencialy vy$sich iada

% 1. ZAKLADNI DEFINICE. Derivace vyiiich ¥ddii funkce 5 =f{x) vypocteme pomoci nasledujiciha
vztahm {piitom pfedpoklidime, ie odpovidajici operace majf smysl!):
[P0 ={f"" Y, m=23,.).
Mi-li funkce fix) spojitou derivaci f™(x) na otevf'ené_m_interv'alu (a,b), piseme flx)eC T a,b).
M4l funkce f{x} viechny derivace spojité na ctevieném intervalu (g, b}, pak pouivime oznafeni
fixyeC(a,b). Analoglcky uréime diferencidly vyiSich fdds funkee y = f(x) postupné vztahy
d%y=d(d""y) (n=23,...),
kde d'y=dy =y ‘dx
Je-li x nezdvisle proménnd, poloZime
di=d%=..=0.
Pak plati vztahy

d y-y(”]dx" ay("}—jx{.

2. ZAKLADNI VZTAHY.
L@ =a*In"a {a>0); (e5)W=g*,

I1. (sinx)® =sin [x + %) .

ML (cosx)™ =cos (x +n—;] .
IV. ™™ emim-1).. . fm-n+1)x™ "

V. (g = U =D

® ”
3. LEIBNIZOVA FORMULE. Maji-li funkce u= (p(x} a v=y{x) derivace n-tého Fadu (]sou n-krit
diferencovatelné), pak plati
(um)™ =E[ n) u Dyt
ol i ;

kde u =y, vw)-

Analoglcky pro diferencml d " (uv) platf vztah

: d"(u-u)=§[ i)d””'ud"v,

kde d%=u ad% =v.
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§ 5. DERIVACE A DIFERENCIALY YY$SiCH RADU

vyjadiete ¥, je-li: :

1111 y=xy1+x?, 1112, y=—=
' Vl-xg
1114. y=tgx.

e

1113. y=¢
arcsinx

\fl—x2

1118. y=In(fix)).

1115. y=(1 +x%arctgx. 1116. y =

1117. y =xInx.
1119. y =x [sin(Inx) +cos(lnx)].

1120. Najdé&te 3(0), y(0) a y"(0), je-

y= s'“"cos (sinx).

Nechf u =@(x) a v =(x) jsou dvakrit diferencovatelné funkce. Vyjadiete y ", je-li:
1121. y=u?. 1122.y=1n£.
v

1128. y =yu” +v?.
Necht f{x) je tfikrit diferencovatelnd funkce. Vyjadiete y” a 3", je-li:
1126. y =f( l] .

. Tl x

1127, y=fle *). 1128. y =f{Inx).

1129. ¥ =f(p(x)), kde ¢p(x) md derivace dostatecné vysokych rada.

1124. y=u" {(u>0).

1125. y =f(x?).

1130. Najdéte d% pro funkci y=¢*, jestlife: a) x je nezdvisle proménnd; b) x
je funkci (argumentem) jiné proménné.

Nagdete d%, Jeli x nezévisle proménnd a plati:

1131, y=y/T +x2. 1132. y—ln—x. 1133. y=x".

Nechf % a v jsou dvakrat diferencovatelné funkce proménné x. Najdéte d?,
Je-li:

1134, y=uv. 1135, y=—

v

1136. y=4"v " (m a n jsou konstanty).  1137.y=a"

1138. y =Inyu® +0°.

(a>0).

1139. y =arctg£.
v
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Najdéte derivace 3., y:i. a y;;j funkce y =y(x) zadané parametricky, je-li:
1140, x =2t -2, y=3t-¢>.

1142. x =a(t -sint}, y =a(l -cosé).
1144. x=f"(t), y =t '@t} - fit).

1141. x =acost, y =asin.
1143. x =¢ ‘cost, y =¢ 'sint.

"

1145. Necht y =f(x) m4 derivace dostatetné vysokych fadé. Najdéte x', x Y x
a x™ inverzni funkce x =f'(y) za ptedpokladu, %e uvedené derivace existuji.

Najdéte )’.: , y;; a yx’f nasledujicich implicitnich funkef y=y(x):
v bode (3,4)?
1148. x? -xy +y2=1.

1146. x* +92=25_ Cemu se rovnaji y’, y” a y
1147. y2 =2px.

Najdéte y, a yf,‘je—li:

1149. y2 +2Iny=x*. 1150. yx2+y%=ae ™8 (4>0).

1151. Nechf funkce f{x) je definovana a dvakrit diferencovatelnd pro x<x,.
Urdete koeficienty a, b a ¢ tak, aby byla funkce

o ={f(x)

alx -xp)* +b(x ~x;) +¢ pro x>x,

pro x<xg,

dvakrit diferencovatelna.
1152. Hmotny bod se pohybuje po piimce v zivislosti na ase

s=10+20t - 5¢*
Vypottéte jeho rychlost a zrychleni. Cemu se I'OVIla_]l Jeho rychlost a zrychleni
v dase =27
1153. Hmotny bod M =(x,y) se rovnomérné pohybuje po kruznici x*+y*=a”
rychlosti jedna oticka za T sekund. Spocitejte rychlost v a zrychlem ] projekce
bodu M na osu x, jestliZe v &ase £=0 byl bod v poloze M,=(a,0).

1154. Hmotny bod M =(x,y) je v roviné xy vrien pod dhlem o vzhledem
. Sestavte rovnici pohybu hmotného
bodu (zanedbejte piitom odpor vzduchu), urdete jeho trajektorii, rychlost v
a zrychlenf j. Jakd bude nejvétsi dosaZend vy3ka a vzdilenost dopadu?
1155. Rovnice pohybu hmotného bodu maji tvar

x=4sinwt - 3coswt, y=3sinwt +4coswi (@ je konstantni veli¢ina).
Najdete Jeho tra_]ektoru rychlost a zrychlem

k horizontilni ose poditecni rychlosti Y,

T S
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§ 5. DERIVACE A DIFERENCIALY VYSSICH RADU

Najdéte derivace poZadovaného fddu ndsledujicich funkci:
1156. y=x(2x - 1*(x +3)*; najdéte y©ay 7.

1157. y =—; najdéte y 1158. y = y; najdéte 59,
X

2

1159. y= ﬁ; najdéte y®. (100}

1160. y = 1

+x .

; najdéte y
~x
x

@0 1162. y=<—; najdéte y 10,
X

1161. y =x % ™; najdéte y

1163. y =x Inx; najdéte y® 1164. y =l£9£; najdéte y®
x

(50 cos3dx

1166. y =~
) v1-3

”1168 y=x sinhx; najdéte y

1165. x 2sin 2x; najdéte y ; najdéte y "

(10) (100)

1167. y =sinx sin2x sin3x; najdéte »
1169. y =¢ *cosx; najdéte y & 1170. y =sin’x Inx; najdéie y .

V nasledujicich pfikladech najdéte diferencidly pozadovaneho fadu. Povaiujte
pfitom x za nezdvisle proménnou.

1171. y =x°; najdéte d°y. 1172. y = 1/\/x; najdéte dy.

0 1174. y=¢* Inx; najdéte d*.

1173. y =x cos2x; najdéte d'%.
1175. y =cosx coshx ; najdéte dﬁy.

V nisledujicich piikladech najdéte diferencidly pozadovaného tidu za pfed-
pokladu, Ze u ma jako funkce proménné x derivace dostate¢né vysokych fadu.
1176. y =u”; najdéte d '%. 1177. y =¢ *; najdéte d%y.

1178. y =Inw ; najdéte dy.

1179. Najdéte d %, d’y a d* funkce y =flx). Povéiu_jte piitom x za funkci néjaké
nezavisle proménné.' - |

1180. Vyjidiete derivace 3" a 3/ funkce y=£x) pomoci odpovidajicich dife-
renciald proménnych x a y a nepovaZujte pfitom x za nezdvisle proménnou.
1181. Ukaite, Ze funkce y=C, cosx +C,sinx, kde C, a C, jsou libovolné konstan-

ty, je feSenim rovnice 3 +y =0.
1182. Ukaite, ¥e funkce y=C, coshx+C,sinhx, kde C; a C, jsou libovolné
konstanty, je fefenifm rovnice y”/-y=0.
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1183. Ukaite, e funkce y =C,e ™ +C,e'”, kde C, a C, jsou libovolné konstanty,
je fedenim rovnice
y”—(ll +12)y’+lll2y =0
(4, a A, jsou konstanty).
1184. Ukazte, Ze funkce
y=x"[C, cos(lnx) +C,sin{lnx)],
kde C, a C, jsou libovolné konstanty, je feSenim rovnice
x% 7+ (1 -2y’ +(L+n2y=0
(n je konstanta).
1185. Ukaite, Ze funkce

Y =e"’ﬁ(61 oS — +625in-x—] +e ""‘/5[(35,‘(:05i +C,sin i] ,
V2 V2 V2 V2
kde C,, C,, C, 2 C, jsou libovolné konstanty, je feSenfm rovnice y“@+y=0.
1186. Dokajte, Je jestlize funkce f{x) m4 derivaci n-tého fidu, pak plati
[flax +8)]™ =a " ax +b) .
1187. Najdéte P™(x), je-li
Px)=ap"+ax" '+ . +a .

Najdéte y®, je-li:

ax +b 1189, y=— . 1190, y=—

x(1 —x) S x-3x+2

NAvVOD: Rozloite funkci na parcidlni zlomky.

1188. y= ——.

X

1191 y = 1192. y=

,/1—2x. i/m

1193. y=sin’%.

1194. y =cos’x. 1195. y =sin’x. 1196. y =cos’x.
1197. y -sinax sinbx. 1198, 3 = cosax cosbx. 1199. 5 =Vsina;c cosbx.
1200. y =sin"ax cosbx. 1201, ¥ =sin*x +cos*x. 1202. y =x cosax.
1203. y=x *sinax. 1204. y=(x?+2x+2)e *.  1205. y=¢"/x.
l206.y=ex:(:053c; 1207. y =¢ *sinx. 1208.y=lna_+bx.

S a=-bx
1209. y =¢“P(x), kde P(x) je polynom. 1210. y =x sinhx.

i g s R L ek

§ 5. DERIVACE A DIFERENCIALY VY3SICH RADU

Najdéte d "y, je-li

Inx

1211. y=x"e”. 1212, y=——.
x

1213. DokaZte rovnosti:
[¢% sin (bx +)]7 =e*(a ® + b )" sin (bx +¢ +n@)

[e% cos(bx +¢)]™ =% (a ? +b%"2cos (bx +c +ne),

a

kdesing =

a cos@=

a?+b?
1214. Najdéte y™, je-li:
a) y =coshax cosbx; b)y=coshax sinbx.
1215. Pfevedenim funkce f(x)=sin?x, kde p je pfirozené &islo, na trigonome-

tricky polynom f{x) = f: A, cos2kx vypoctéte ™).

k=0

v s . 1, - - < . .
NAvOD: Uvaiujte viraz sinx = -2—_(t ~t}, kde  =cos +isinx a t=cosx -isinx, a pouijte Moivreovu
]
vétu.

1216. Najdéte f™(x), je-li:

a) flx)=sin®*'x; b) fix)=cos¥x; ¢ fix)=cos¥ ',

kde p je piirozené ¢islo (viz pfedchozi pfiklad).

Pro flx) =f,(x) +1f,(x), kde 1 je komplexni jednotka a f(x), f,(x) jsou reilné
funkce redlné proménné x, definujeme

Fix) =fx) +ify).
1 _1{1 1
x2+1 2ix-1 x+i

(n) ~1V 3|
( 21 1] =(1( 12))(::)!2 sin[(n + )arccotgx].
xT+ +X

1217. Pomoci rovnosti

dokaZte, Ze

NAVOD: PouZijte Moivreovu vétu.

1218, Najdéte n-tou derivaci funkce

flx) =arctgx.
Vypoététe (0}, je-li:
1 X
1219.2a) fix)=————; b) fix)= .
' ft (1 -2x)(1 +x) I J1-x

109
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1220. a) flx)=x%"; b) flx)=arctgx; «c) fx) =arcsinx.
1221. a) f{x) =cos(m arcsinx); b) f(x)}=sin(m arcsinx).
1222, a) flx)= (arctgx)z; b) flx) =(arcsinx)?.

1223. Vypoltéte f™a), je-li -
%) =(x ~a)"otx),
kde funkce ¢(x) ma v okoli bodu & spojitou derivaci Fadu n-1.
1224. Dokaite, Ze funkce
‘ og . 1
x“"sin— pro x=0,
fix)= x P
0 pro x=0 7
(n je prirozené ¢islo) ma v bodé x =0 viechny derivace aZ do n-tého fadu véetné
a nemd derivaci fadu n + 1.
1225. Dokazte, Ze funkce

IR
57 pro x#0,

_{e
ﬂx)_{(] pro x=0

ma v bod¢ x =0 derivace viech Fada. Sestrojte graf této funkce.

1226. Dokaite, ze CebySevouy polynomy
T, (x)=

- cos (m arccosx) (m=1,2,..)
‘gm- ,

jsou feSenim rovnice S
(1-x 3T, (x) ~x Tpfx) +m*T (x) =0.

1227. Dokaizte, Ze Legendreovy polynomy

P (x)=——[(x*-1)"" (m=0,1,2,..)

2"m!
jsou feSenim rovnice

(1-x%)P, (x) - 2¢P . (x) +mim + )P _(x) =0.
NAVOD: Derivujte (m +1}-krét rovnost x2-lu'= Qﬁu, .k.de u=(x2-1)".
1228. Laguerreovy polynomy jsou definoviny vztahem
L (x)=e*(x™e ™™ (m=0,1,2,..).
Najdéte explicitn{ vyjidfen{ polynomu L (x). Dokaite, Ze L (x) je felenim

rovnice " ;
x L (x)+(1-x)L, (x)+mLl(x)=0.

NAvOD: UvaZujte rovnost xu’+(x -m)u=0, kde u=x"e™.

§ 5. DERIVACE A DIFERENCIALY VY3SICH RADU

1229. Necht y=fu) a u=¢(x), kde f(u) a @(x) jsou n-krat diferencovatelné
funkce. Dokazte, Ze plati iny &
=Y Alx ")(u ,
-3 4w
kde koeficienty A,(x) (k=1,...,n) nezdvis{ na volbé funkce flu).

1230. Doka’te, %e pro n-tou derivaci slofené funkce y=f{x?) plati vztah
_u = (Qx)"ﬂ")(x 2) + n(ﬂ‘l‘_l) (2x)n ~2rn- l)(x 2) + n(n - 1)(”'2'1— 2)(”‘ - 3) (2x)ﬂ -4r(n -2)(x ‘2) 4.
1231. Hermateovy polynomy jsou definovany vztahem

H (x)=(-1y"* ™)™ (m=0,1,2,..).
Najdéte explicimi vyjadfeni polynomu H_(x). Doka’te, %e H (x) je fefenim
rovnicg_

H(x) - 2xH (x) +2mH_(x)=0. .
NAvOD: Uvaiujte .rovnost w’+2xu =0, kde u=¢ Ll

1232, DokaZte rovnost

(=1 Yyl :'(—1)1"8 he
: . x"”
NAivoD: PouZijte metodu matematické indukce.
1232.1 Dokazte vztah
d n

n

{x " Inx) =n![lnx + E l] {x=0).
k=1 k

1232.2 DokaZte vztah

d (smx) = (Qn)!l[Cn(x)sinx—Sn(x) cosx],

dx2n x x2u+

kde :2 ) 9

C)=1-2 s +(-1y=
" 21 (2n)!

oa

8 2n -1

T PR RY. T N

S, =x -2 ,+'"+( 1) P

1233. Necht % =D oznacuje operaci derivovani a neché

£D) =Y peaD”
je symbolicky diferencidlni polynom, kde p,(x) (=0, 1,...,n) jsou spojité funkce
proménné x. Dokaite, Ze plati ' ' '

D) {e™u(x)} =e™AD + ADuix),
kde A je konstanta a I identicky operator. ;
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1234. Dokaite, Ze jestlize do rovnice :

Eaxk & _

‘, kde ¢ je nezavisle promenna, pak tato rovnice bude mit tvar

n

E a,&D(D ~Dy..(D-kI+Iy=
ic0

dosadime x =¢

kde D =% a I identicky operator.

§ 6. Rolleova, Lagrangeova a Cauchyova véta

1. ROLLEOVA VETA. JestliZe jsou splnény nédsledujici podminky: 1) funkee fix) je definovani
a spojitd na uzavieném intervalu [a,b]; 2} fix) md koneénou derivaci f/x) uvnitf tohoto
intervalu a 3) fla)=f(b), pak existuje nejméné jedna hodnota ¢ z mtcrvalu {a,b) tak, Ze

f () =0.

2. LAGRANGEOVA VETA. JestliZe jsou splnény n4sledujicf podminky: 1) funkce fix) je definovani
a spojitd na uzavieném intervalu [a,5]; 2) fix) m4 konecnou derivaci f "(_x) na intervalu (a,b),

pak

fi6) -flay=(b -a)f'(c), kde a<c<b
(véta o stfedni hodnots). . ‘

3. CAUCHYOVA VETA. Jestlize jsou splnény nisledujici podminky: 1) funkee fix) a g{x) jsou
definované a spojité na uzavieném intervalu [a,5]; 2) fix) a g(x) maji koneéné derivace f tx)
a g’(x) na intervalu (a,£); 3) f’g(x) +g ’2(1:)#0 pro a<x<b a4} gla}=g(b), pak

SO fa) _f1E) 4. a<c<bh.

gb)-gla) g (c)

1235. Ovéite platnost Rolléovy véty‘na piikladu funkce -

fix) = (¢ - 1)(x ~2)(x - 3).
1236. Funkce fix)=1 —i/;:— je rovna nule v bodech x, =-1 a x,=1, a pfesto plati
fix)#0 pro -1<x< 1 Vysvétlete zd:inlii{y? rozpor s Rolleovou vétou.
1237. Necht funkce fix) ma kone¢nou derivaci f'(x) v kazdém bodé omezeného
nebo neomezeného intervalu (a,b) a necht

limf{x) =lim{x).

X~a xrb

Dokazte e f (c) 0 pro nejaky bod ¢ zintervalu (a by.

vttt L e b it

§ 6. ROLLEOVA, LAGRANGECVA A CAUCHYOVA VETA

1238. Necht 1) funkce fix) je definovand a md spojitou derivaci f®"(x) fadu
n -1 na uzavieném intervalu [x,x ]; 2) fix) md derivaci fadu f ")(x) na inter-
valu {xpx,) a3) plati rovnosti

foeg) =) =

DokaZte, Ze pak v intervalu (x,,x, ) existuje nejméné jeden bod £ tak, Ze FeNEY=0.

=flx) (xg<x <..<x).

1239. Necht 1) funkce fix) je definovana a md spojitou derivaci f¢*9(x) fadu
p+g na uzavieném intervalu [a,b]; 2) fix) mé derivaci f®*¢"Nx) Fadup +g+1

fla)=fl@)=...=fPa)=0

f)=f) =..=fPb) =0.
Dokazte, Ze pak f’(’”“'+ D) =0, kde ¢ je n&jaky bod intervalu (a,b).
1240. Doka’te, e jsou-li viechny kofeny polynomu
+oota {(a,*0)

n) redlné, pak i derivace

na intervalu (a,b) a 3) plati rovnosti

a

P (x)=apx" +alx"_1
sredlnymi koeficienty a, (£=0,1,...,
Pi), Pl ), ... PR 7"
1241. Dokaite, Ze viechny kofeny Legendreova polynomu
P (x)=—— 1)
on

7!

(x) maji pouze redlné kofeny.

jsou redlné a lexf v intervalu (~1,1).
1242 Dokazte e vsechny kofeny Laguerreova polynomu

L{x}=e*—(x"¢™)
Jsou kladné, - dw”
1243. Dokaite, Ze viechny kofeny Hermiteova polynomu
H ()= (-1ye" Lo )
jsou redlné. @’
1244. Najdéte na kiivce y=x> bod, ve kterém je te¢na ke kiivce rovnob&ind
s tétivou, kterd spojuje body (-1, -1) a (2,8).
1245. Plati véta o stfedni hodnoté 1 pro funkci f(x) =
ab<0?
1246. Najdéte funkc1 B B (x, Ax) tak, aby plaulo

- flx+Ax) )-flx) =Axf’ (x +BAx) (0<B<]1),

je-liza) flx)=ax®+bx+c (a+0); b) flxy=x%; ¢ fix)=1/x;

1/x na intervalu [a,b], je-li

d) fix)y=e*
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1246.1 Necht f{(x) € C M —co, +o) a pro libovolné x a & plati rovnost
[l +h) ~f(x) =hf'(x).

Dokaite, 7e pak f(x)=ax+b, kde a a b jsou konstanty.

1246.2 Necht f{x)e C®)(—w, +=) a pro libovolné x a k plati rovnost

fe+h)-fi) =hf’[x , g] .

Dokaite, 7e pak f{x)=ax®+bx +c, kde a, b a ¢ jsou konstanty;
1247. DokaZte, %e pokud x>0, pak

— 1
+1- = —_—
. s 2yx +0(x)

kde
i <0{x)s -é—,
pfi¢emz lim B(x)=1/4 a lim B(x)=1/2.
x0 X - +oa
1248. Necht
3-x?

pro O<x<1,

- fx)=

—  pro l1<x<+om,

Vypoctéte hodnotu ¢ z véty o stfedni hodnoté'pro funkci fix) naintervalu [0,2].

1249. Necht f{x) -f(0) =xf "(E(x)), kde 0 <E(x) <x.Doka’te, ¥e je—li_ flx) =x sin(Inx)
pro x>0 a f{0)=0, pak je funkce £ =E(x) nespojitd na libovolné malém intervalu
(0,£), kde £>0.

1250. Necht funkce f{x) ma spojitou derivaci f/(x) na intervalu (a,b). Lze pak ke
kazdému bodu § z intervalu (2,b) najit dvojict bodé x, a x, z tohoto intervalu
tak, aby platilo

ﬂxg) _ﬂx ]) "

T2 TV o) (n <E<ng)?

Xy 7%y
Uvaiujte funkéi fixy=x3 (-1<x<1)a£=0. |
1251. Dokaite nasledujici nerovnosti: :
a) |sinx-siny| < |x-y[; b)py? Mx-y)<xlf-32<px?Nx-y), je-li O<y<x a p>1;

a-b a-b

c) |arctga —arctgh|<|a-b]; d) ——<ln%<T,je-li O<b<a.
a

§ 6. ROLLEOVA, LAGRANGEOVA A CAUCHYOVA VETA

1252. Vysvétlete proc neplati Cauchyova véta pro funkce
flx) =x 2 a g(x) =x°
na uzavieném intervalu [-1,1].
1258. Necht je funkce f{x) diferencovatelnd na uzavieném intervalu [x,x,],
pfitemZ x,x, > 0. Dokaite, Ze

1 X X

2 ‘ ;
e iy [TOY O

kde x, <€<x,.

1254. DokaiZte, 7e je-li funkce f{x) diferencovatelna, ale neni omezend na ome-
zeném intervalu (a,b), pak ani jeji derivace f'(x) neni omezend naintervalu (z,5).
Obricené tvrzeni neplati (najdéte protipiiklad).

1255. DokaZte, Ze ma-li funkce f{x) na omezeném nebo neomezeném intervalu (g, b)
omezenou derivaci f'(x), pak je flx) na intervalu (a,b) stejromérné spojita.
1256. DokaZte, Ze je-li funkce f{x) diferencovatelnd na neomezeném intervalu
(g +) @ lim f/(x) =0, pak je 1imm =0, . flx) =o(x) pro x— +e.

1257. Dokazte, Ze je-li funkce f(x) diferencovatelnd na neomezeném intervalu
(xp *) @ flx)=o(x) pro x-+e, pak lim |f'(x)| =0. Specidlng, jestliZe existuje
lim f'(x) =k, pak £ =0.

X=4e - .
1258. a) Dokaite, Ze pokud: 1) je funkce f(x) definovand a spojitd na uzavieném

intervalu [x;, X]; 2) mé funkce f{x) koneénou derivaci f(x) na intervalu (x5 X)

X+ 4o

a 3) existuje kone¢ni nebo nevlastni limita limf’(x), pak existuje koneénd,
x\xo

respektive nekoneéna jednostrannd derivace ff(xﬂ) a ff(xu) =limf’(x).

x\J.‘U

b) UkaZte, e pro funkci _
fix) =arctg? (x=1)a f{1)=0
-

existuje koneénd limita limf’(x), a pfesto funkce f{x) nemd jednostranné
x-1 '

derivace f(1) a f/(1). Interpretujte toto tvrzeni geometricky. Naproti tomu
v tomto bod¢ existuji zobecnéné jednostranné derivace (viz iloha 1009.1).

1259. Dokaite, 7e jestlize f'(x) =0 pro a<x<#b, pak f(x)=const pro a<x<b.
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1260. Dokaite, Ze jedind funkce fix) (-« <x < +x), kterd ma konstantni derivaci
f(x) =k, je linedrnf funkce tvaru flx) =hx +b.
1261. Co miZeme Fici o funkei fix), je-li f™(x)=0?

1261.1 Necht flx)e C")(~e, +=) ake katdému x existuje pfirozené &islo n_ (n, <n)

tak, Ze )
ey =0.
Dokaite, Ze funkce f{x) je polynom.
1262. Dokaite, Ze jedina funkce y =y(x) (- <x < +), kterd vyhovuje rovnici
y'=Ay (A=const),
je exponencidlni funkce y =Ce™, kde C je libovolnd konstanta.
NAvoD: Uvafujte derivaci (ye ™)'
1263. Ovéfte, Ze funkce
1+x
l-x

Sflx) =arctg a g{x)=arctgx

maji stejné derivace v oblastech 1) x<1 a 2) x>1. Najdéte vztah mezi témito
funkcemi.
1264. Dokazte nasledujici rovnosti:

a) 2arctgx +arcsin =msgnx pro |x|z21;

1+x?

b) 3arccosx -arccos (3x -4x*) =7 pro |x|s%

1265. Dokaite, Ze pokud funkce f{x): 1) je spojitd na uzavieném intervalu {a,b};
2) md konecnou derivaci f'(x} uvnitf tohoto intervalu a 3) neni na ném line4rni,
pak v intervalu (a,b) existuje nejméné jeden bod ¢ tak, ¥e

If."(c)| > ﬂb; _ﬂa’)
-a

Interpretujte toto tvrzen{ geometricky.

1266. Dokaite, Ze pokud 1) funkce f(x) mé druhou derivaci f "(x) na uzavieném
intervalu [a,#] a2) plati f'(a}=f'(b) =0, pak v intervalu (a,b) existuje aspon jeden
bod ¢ tak, Ze | | 4
FRGIE | /(&) -fla)|.

(b -a)? I

1267. Automobil se zacal pohybovat z néjakého po¢iteéniho bodu a za éas ¢
sekund wrazil vzdilenost s metri. Dokafte, Ze v nékterém asovém okamZiku
musela byt absolutnf hodnota ockamzitého zrychlenf automobilu v&t$i nebo rovna

§ 7. MONOTONNI FUNKCE. NEROVNOSTI

§17. Monoténni funkce. Nerovnosti

1. ROSTOUCE AKLESAJICI FUNKCE. Funka f{x) nazyvame ostfe rostouct (ostf'e klesajici) na uzavieném

intervalu [a,b], jestliZe
: flx)>flx)) pro a<x <z,<b

(resp. flx,) <flx)) pro a<x, <x,<b).

JestliZe diferencovatelnd funkce f{x) roste (klesd) na uzavieném intervalu [a,5], pak je f'(x)=0

pro a<x<b (vesp. f'x)<0 pro asx<b).

2. PoSTACUJICI PODMINKA MONOTQNIE FUNKCE. JestliZe je funkce fix) spojitd na uzavieném
intervalu {a,b] a uvnitf tohoto intervalu ma kladnou (zipornou) derivaci f'{x), pak je flx)

rostoud (resp. klesajici) na [a,6].

Urdete intervaly ostré monotonie nasledujicich funkei:
1268. y=2 +x -x 7. 1269. y =3x-x°.

' 2x ‘/:;

Ly = . 1271. y= x20).
1270. y . Y= 22100 (x> 0)
1273, y =x + | sin2x | .

2
1275, y =2

2x
1277. y=x?-Inx?.

1272, y =x +sinx.
L3
1274, y =COs —.
Y x

1276. y=x"¢ ™ (n>0, x20).

1278. flx) =x[g+sinlnx Jjeix>0,a f{0)=0.

1279. Dokalte, Ze s rostoucim poctem stran # obvod p_ pravidelného n-Ghelniku
vepsaného do kruZnice roste a obvod P pravidelného n-tihelniku této kruZnici
opsaného klesa. PouZijte toto tvrzeni a dokaZte, Ze p_a P_ majf spoletnou limitu
pron-o.

1280. Dokazte, Ze funkce (1 +l) roste na intervalech (-e, —1) a (0, +e).
x

1281. DokaZte, Ze polynomidln{ funkce

Pix)=a,+ax+...+ax" (nzl,a #0)

Je ostfe monoténn{ funkef na intervalech (-, —x,) & (x5, +), kde x je dostated-

né velké kladné éslo.
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1282. DokaZte, Ze raciondlni lomena funkce

ay+ax+..+ax "
R(x)= ul (@b #0),
b0+b1x+.‘. +bmx’”

kter4 neni konstantni, je ostfe monoténni na intervalech (-, -x.) a (x,, +*), kde
x, je dostate¢né velké kladné &islo.
1283. Plati, 7e derivace monoténni funkce je monoténni funkci?
Uvazujte piipad funkce f{x)=x +sinx.
1284. Dokaite, Ze je-li @{x) rostouci diferencovatelnd funkce a
|f’(x)|s ¢'(x) pro x2x,,

pak '

|Fe) ~fe)} < 9x) - () pro x2x,.
Interpretujte toto tvrzen{ geometricky.
1285. Necht funkce f(x) je spojitinaintervalu a<x < += a fix)>k>0 prox>a,
kde k je konstanta. DokaZte, Ze je-li fla) <0, pak ma rovupice f{x}=0 pravéjedno

k
1286. Funkei f{x) nazyfudme rostouct v bodé x,, kdyz v néjakém okolf |x-x,| <3 je

. . v w PR 1
redlné feleni v intervalu [a,a —M) )

znaménko piriistku funkece Aflx,) =flx) -flx,) identické se znaménkem prirtstku
argumentu Ax, =x -x. DokaZte, Ze pokud funkce flx) (@ <x <b) rostev kaidém
bodé néjakého omezeného nebo neomezeného intervalu (a,b), pak je funkce na

tomto intervalu rostouci.
1287. DokaZte, Ze funkce

fix)=x +x25in—2— pro x#0 a f{0)=0,
x

je rostouci v bodé x =0, ale neni rostouci na Zidném intervalu tvaru (-¢,€), ktery
tento bod obsahuje, pfi¢emz ¢ > 0 je libovolné mald veli¢ina. Nacrtnéte graf této
funkce. "
1288. DokaZte tvrzeni: pokud 1) jsou funkce @(x) a Y(x) n-krit diferencovatelné;
2) e®x)=v®(x) (*;=0,1,..,n-1) a 3) ¢")>¢"x) pro x>x,, pak plati
nerovnost

@(x) > Y(x) pro x>x,.
1289. Dokaite nasledujici nerovnosti:

2 B
a)e*>1+x prox=#0; b) x—%<ln(l +x)<x pro x>0;

§ 7. MONOTONNI FUNKCE. NEROVNOSTI

x? x> T
) x-— <sinx <x prox>0; d)tgx >x+— pro O<x<—;

6 3 2
e) (~¢°‘+y“)”“>(rp+yﬁ)w prox>0,y>0a O<a<pP.
Interpretujte nerovnosti a) aZ d) geometricky.

1290. DokaZte nerovnost

2 . T
—x <sinx <x pro 0<x<§.
n :

1291. Doka’te, Ze pro x > 0 plati nerovnost

.
(1 +—l—)x<e<(l +l]x l.
x x
1292. Aritmetick4 a geometrickd posloupnost maji stejny pocet clend. Viechny
deny jsou kladné a odpovidajici prvnf a posledni cleny jsou stejné. Dokaite, Ze
soucet denii takovéto aritmetické posloupnosti je vétsi neZ soucet ¢lend geo-

metrické posloupnosti.
1293. Pomoci nerovnosti -

Y @x+b)'>0,
=1
kde x, a, a b, (k=1,...,n) jsou redlns &isla, dokaZte Cauchyovu nerovnost
" 2 n n
2 2
[Eakbk] 52‘3# Eblz-
Py k=1 k=

1294. Dokaite, Ze aritmeticky primér kladnych &fsel je mensi nebo roven jejich

kvadratickému pruméru, tj.

Co : Ll le— @
-3, xﬁ«}—th-
MNE=1 Ng=]

1295. Doka’te, e geometricky primér kladnych &isel je mensi nebo roven
aritmetickému priméru téchto &isel, 4.

n 1
< — (A + +
X Xge X, 3 n(x' Xy BX ).

NAvoD: UZijte metody matematické indukce.
1296. Priimérem s -tého stupné dvou kladnjch &isel a a b nazyvime funkci

As(a,b>=[“ b

/s
] ,je-lis#0,

A a, b) =limA (a, by.
5-0

Pro s = -1 obdriime harmonicky primér; pro s =0 geometricky primeér (ovéftel);
pro s=1 aritmeticky primér a pro s =2 kvadraticky pramér.
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Dokaite, Ze plati nasledujici tvrzeni:

1) min(a,b)< A (a,b) <max(a,b);

2) funkce A{a,b) je pro a#b rostouci funkci proménné s ;
3) lim A (a,6) =min(a,b); lim A (a,b) =max(a,b). -

5= -0 X— 4

NAvOoD: Uvaiujte viraz ad—{ln A {a.b)).
5
1297. DokaZte nésledujici nerovnosti:

a)x“~1>a@x-1) pro «=>2, x>1;
c) 1+2lnx<x? pro x> 0.

b) Vx-Va<yx-a pron>1, x>a>0;

% 8. Konvexni a konkédvni funkce. Inflexni body

1. POSTACUJICI PODMINKY PRO KONVEXITU A KONKAVNOST. Graf diferencovatelné funkee 3 =f{x)
se nazyva konvexnim (konkdvnim) na uzavieném mtervalu [2,b], jestliZe se odpovidajici dsek jeji

kfivky y=flx) {as<x sb)

nachdzi nad (respektive pod) te¢nou v libovolném bodg tohoto intervalu. Postatujici podminkou
proto, aby funkce byla konvexni (respekuve konkavm) je za predpokladu existence druhé de-
rivace f"(x) na a <x<b splnénf nerovnosti

x>0 (respektlve_f x)<0) pr"o a<x<h,

2. POSTA(':U]iCinDﬁfNKA PRO EXISTENCI INFLEXNTHO BODU, Bod, ve kterém se méni konvexita
grafu funkce v konkdvnost nebo opagné; nazjvime mﬂexmm bodem. Bod- x5, pro ktery bud
f7x)=0, nebo f* ‘(x,) neexistuje, pritemi f'(x,) Jc definovina, je inflexnim bodem funkce,
pokud f "{x) méni v tomto bodg x, znainénko.

3f:is

1298. Vysetiete konvexitu a konkdvnost knvky

._1_‘_‘/_

v bodech (-1,0), (1,2) a (0,0).

Najdéte mtervaly konvexity a konkavnosti a inflexni body nasleduyc:ch funket:

1299. y =3x 2 1300. y= (a>0).
+x

1301. y=x +x°3, 1302. y =1 +x*.

1303. y =x +sinx. 1304 y=e .

1305. y=In(1 +x2)“
(x>0)

1306. y=x sin(lnx) (x>0).
1307. y=x*

i
i
i
]
i
b

§ 8. KONVEXNI A KONKAVNi FUNKCE. INFLEXNI BODY

1308. UkaZte, Ze kiivka
x+1

Ty
x=+1
ma tfi inflexni body, které leZi na jedné piimce. Sestrojte graf této funkce.
1309. Pro jaky parametr h mid ,pravdépodobnostni kiivka“

_ Bt s

b1

inflexni body x=%g?
1310. VySetfete konvexnost a konkdvnost cykloidy

x=a(t-sinf), y=a(l -cost) (a>0).
1311. Necht je funkce fix) na intervalu a<x <+e dvakrit diferencovatelnd,
piikemi 1) fla)=A>0;2) f'(a)<0;3) F"(x) < 0 pro x >a. DokaZte, Ze rovnice fix) =
mi v intervalu (g, +) pravé jeden redlny kofen. |
1312. Funkci f{x) nazyvame ostfe konvexni (ost¥e konkdvni) na otevieném intervalu
(a,b), jestlize pro libovolné dva body z tohoto intervalu x, a x, a libovolnou
dvojici &isel A, a A, (A, >0, A, >0, A +4, =1) plati nerovnost

S, +Agxg) <A flo)) + Ao flx,),
respektive '

SOz +Agxg) > A fle)) + A, fxg)
Dokazte, je-plati: 1) funkce f{x) je ostie konvexni na {a,b), je-li f(x)>0 pro
a<x<b;2) flx) je ostfe konkdvni na (a,b), je-li f(x}<0 proa<x<b.
1313. UkaZte, 7e funkce x™ (m>1),e”,
(0, +x) a funkce x " (0 <n < 1), Inx jsou ostfe konkdvni na intervalu (0, +=).

1314. Dokazte nasledujici nerovnosti a objasnéte jejich geometricky vyznam:

xInx jsou ostfe konvexni na intervalu

a) é(xn+yﬂ)>(%]" (x>0,y>0,x#y,n>1); b)e_x;_ej>e(x+y)f2 (x2y);
c) xlnx+ylny>(x+y)ln%,je-li x>0 ay>0.

1314.1 Necht f"(x)>0 pro as<x<b. Dokaite, Ze

f[x] ;xQ] < é[f(xl) -c-ﬂxg)]

pro kaidé x| a x,€[a,b].

1315. Doka’te, Ze kaZzdd omezend konvexni & konkavni funkce je viude spojiti
a ma jednostranné derivace zleva 1 zprava.

121
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1316. Necht je funkce f{x) dvakrit diferencovatelni na intervalu {a,b) a necht

f"(€)# 0 pron&jaky bod a <& <b. Dokaite, Ze v intervalu (a,b) existuji dva riizné
body x, a x, tak, Ze plati
L fixg) -fix))

X
2 7%
1317. Dokaite, Ze je-li funkce flx) dvakrit diferencovatelna na neomezeném
intervalu (x,, +=) a

=f'(®).

lim f{ix)=0, lim fix}=0,

x\xo X~ +m

pak v intervalu (x,, +«) existuje aspoi jeden bod £, pro ktery f(&)=0.

§ 9. Vypocet limit pomoci I’'Hospitalova pravidla

PRVNI EHOSPITALOVO PRAVIDLO (vipodet limit typu 2). JestliZe 1) funkce flx) a g(x) jsou
definoviny a spojité na néjakém okoli U_" bodu a (a je redlné ¢islo nebo symbol »)a pro x-a
obe funkce konverguji k nule:

lim fix) =lim g{x) =0;

x—a x-a

2} v okoli U_ bodu a existuji derivace f/(x) a g ‘(x)(s moZnou vyjimkou samotného bodu a},
pfiemz se nikde v tomto okoli nerovnaji nule; 3) existuje konednd nebo nevlastnf limita

lim f (x)

x-a g (x)

lim ﬂ ) =lim f’(x)
x-a g(x) xa g (x)

,pak

DrUHE EHOSPITALOVO PRAVIDLO (vipodet limit typu —) JestliZe:
1) funkee fix) a g(x) maji pro x-a nevlastni limitu
Ilmf(x) lim g{x}=»=,
X-a
{a je redlné ¢islo nebo symbol =);

2) pro viechna x z néjakého okoli U, bodu a existuji derivace f(x) a g (x), pFi¢emz plati

SRy +g %(x)# 0 proxelU, ax+*a;

D okolim U_ bodu a se rozumi mnoZina gisel x, ktera vyhovuji nerovnosti: 0 < |x -a| <z, jeli a rediné &islo, a |x | > U/,

Je l| a symbol

i 5 T e e

e T T TG A e 13

§ 9. VYPOCET LIMIT POMOC] L’HOSPITALOVA PRAVIDLA

3) existuje koneénd nebo nevlastni limita

lim f )
x-a g (X)
A f)

xjal g(x) x-a g (x)
Analogickd pravidla plati i pro limity zleva a zprava.

pak

Vypodet limit typu 0+, oo —ce, 1%, 0° atd.: pomoci algebraickych transformaci a logaritmovani

[-=]
se tyto neurdité vyrazy pievedou na dva zdkladni typy o a—.

Vypoctete hodnoty ndsledujicich vjrazi:

. 8l . coshx —-cosx
1318. lim n‘;’x 1319. lim 22T,
e-0 Sinbx 0 x
1320, lim 8% 7% 1321, lim 84~ 126gx
%-0 X =SLX -0 3sindx-12sinx
1322, lim 83% . 1323, lim 2<°8* 1
n IgX -0 x2
Ly
3 X . — X _1:
1324, lim V8%~ 1 1325, lim X" * 1) 32(" D
X 2sin?x - 1 x-0 X
* i
. 1-cosx? . arcsin 2x - 2 arcsinx

1328. lim ——|/a arctg ,J/ Vb arctg ( )
x-0 x\/;;

x _, sinx : x_
1329, im% "% (4>0). 1330. hm x|,
=0 x? Inx-x+1
1331, Tim 203 1332, lim LD(COSa%)
«-0 In(sinbx) -0 In{cosbx)

1333, ljy OS(SINX) ~COSX 1334. lim -1-[ L —L)
x=0 x? «—0 x\tghx tgx
1335, lim 2188inh(sinhx) “argsinh(sinx) ' o 5 roinhy =In e +/1x9).

xﬂo sinhx -sinx
1336. lim A2 (¢>0). 1337, lim 2= (@>0, n>0).
X +om xc xX= oo Bax
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1338.

1340.

1342.

1344.

1346.

1348.

1350.

1352.

1354,

1356.

1358.

1360.

1362.

1363.1 lim

¢ “l4?

lim

ee x 100

lim Inx In(1 -x).
xll

lim x*.

x~0

lim(x* - 1).

x-0
lim x Y079,
x-1

lim (tgx)

g 2x

ca
4

Limn, [ln l} .
x~0 X

. tox cotg{x —-a)
lim i) .
e \ (G0

lim'l*; ! ]

-0 | X 'e"—l

: 1]
lim |cotgx - —| .
-

x-0 k

)

(a>0).

lim
x~a X704
lim &3 2"
x=0 X

lim (tghx)*.

ERR ]

sinx] In?

x-~0 X

x-0 X

1363.3 lim E‘Etﬂ] .

{a>0).

1339.

1341.

1343.

1345,

1347.

1349,

1351

1353.

1355.

1357.

1359, Iim

1361.

1363.

lim x 2 00

X - 4oo

lim x® Inx (e>0).

20

- xA
limx* !,
x=0

lim x k(1 +1Inx)

x\O

lim (2 - %)%,
x-1

lim (cotgx) ™.

x-0

T lix
. hm tg S 1 .

2
a*-xlna e
b*-xInb

e
lim | —arctgx| .

gove W T

A arcsinx | 1x*
lim .
x=0 b

1x?
1363.2 lim [tgx) |

x=0 X

1363.4 lim argsmhx] kde argsinhx —ln(x +y1l+x )

x-0 X

1373.1 VySetiete, zda je nisledujici funkce diferencovatelnd v bod& x =0: |

§ 9. VYPOLET LIMIT POMOCT L' HOSPITALOYA PRAVIDLA

" Vi 1/x e
1364. lim Q=) . 1365. lim (Earccosx }
x-0 | € o b
_cosx | ui? Incoshx
66. Lim : 1367. lim
1 x-0 COth] e
- ycoshx - \/COth
) cotghx L
1368. lim |+ : 1368.1 lim —
x-0 2 e o0 (lnx)x
3 X
1369. lim \/x3+x2+x+1 _Jx2+x+1 In{e +x)]
X = +o0 x
1370. lim [(x +a)! "V 1 Vi),
¢ X— 4w

1371. Najdéte lim 2, jestliZe kiivka y =f{x) prochazi pro x-0 pocitkem soustavy
x-0 X

souradnlc (0,0) (lim fix) =f(0) =
x-0
1372. Dokaite, e pokud graf spojité funkce y =f{x) prochdzi pro x~0 pocitkem

0) pod thlem a.

soustavy soufadnic (lim fix)=0) a pro 0<x<e je celf uvnitf ostrého thlu

x~0
sevieného pfimkami y = -kx a y =kx (k#), pak lim xf¥=1
x0

1373. Dokaite, Ze jestlize funkce f{x) m4 druhou derivaci f*(x), pak :
i 1) i) -30)
r-0 h®

i1 pro x#0,
f) = x e: -1
3 pro x=0.
1373.2 Najdéte asymptotu kiivky y = x (x>0}
(1 +x)°

1374. Vysetiete, zda se dd nékteré I'Hospitalovo pravidlo pouZit k vypocm

nasledujicich Limit: '

x 2sin — _ L2 |
x b) lim X -smx . e ¥(cosx +2sinx) +¢ ™ sin’x

PP ¢) lim _
5o inx 5= 420 e (cosx +sinx)

a) lim —
x-0 sinx

’

; 1 +x +sinxcosx
d) lim

sinx

X (x +sinx cosx)e
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1375. Najdéte limitu podilu obsahu kruhové usece s t&tivou délky & a vyikou A
a obsahu rovnoramenného trojihelnika, ktery je do usece vepsany, jestliZe se
délka oblouku pfisluiné ¢asti kruznice pfi konstantnim poloméru R bliZi nule.
Pomocf ziskaného vztahu odvodte piiblizny vzorec pro obsah kruhové tisede ve
tvaru

s= 2.
3

§ 10, Taylorova véta

1. LOKALNI TAYLOROVA VETA. JestliZe funkce fix) 1) je definovana na n&jakém okoli |x -x,[<e
bodu x; 2) mid v tomto okoli derivace f(x),...,f" "(x) do fadu n-1 vetng; 3) v bodé *, mi
derivaci n-tého fddu ﬂ")(xu), pak .
fy= 3 ayte ) o )", ()
SO
ay

—-—| k=0,1,...,n).

kde

Speciilné pro x,=0 dostaneme
‘ fﬁ ( )b

fis)= E xt o). )
Vyjadfeni (1) je za uvedenych podmmek Jednoznac‘fne.

JestliZe v bodé x, existuje derivace Fis ’]_){xo.), pak je moiné vyjadrit zbytkovy clen ve vzorci (1)
ve tvaru O *((x ~x,)" N.
Pomoci lokdlni Taylorovy véty (2) je moZné odvodit pét nésledujicich dilleZitych rozvoji:

2 . n
L e=1+x+%+...+x—+o(x”).

n!

x3 L ox! .

II. sinx= x—§+ +(~1} (2 1)! +olx ).
£2

- + 2n+1
ITII. «cosx=1 2 (- (2 - a(x )
w. (1 +Jt:)'"=1+m7c+m(";| 1)x2+...+m(m_l)"'(1m_n+ l)x"+'o(x .

! n!

2
V.o In(l+x)=x -2 4. 4 (-11X +a(x ).
2 n

2. TAYLORGVA VETA. JestliZe funkce fix) 1) je definovdna na uzavieném intervalu [g,8]; 2) md
na tomto intervalu -spojité derivace f7(x),...,f" "x); 8) pro a<x<b md koneénou derivaci

[Px), pak

ﬂx):’g .fjk_)(.“_)(x_a)* +R (x) (asx<bh),
i K !

§ 10, TAYLOROVA VETA

'kdc _ )
R (x) =fﬂ”—nel("—'“ﬂ(x —ay (0<B<1)

(zbytkovy élen v Lagrangeové tvaru) nebo

)y + _
R (x)ﬂw(l e, Us —a) (0<8,<1)
n -1

(zhythovy élen v Cauchyové tvaru).

1376. RozloZte polynom Pfx)=1+3x+ 5x?-2x% na celé neziporné mocniny
dvojclenu x + 1.

Najdéte rozklad nisledujicich funkci na celé nezdporné mocniny proménné x az
do daného ¢lenu véetné:

1877. fix) = l—x--i-.dolf’:lenu s x*. Cemu se rovnd f*(0)?
1-x+x2
o) 100
1378. (1+x) do denu s x2.

(1-2x)*(1 +2x)%

1379, Vo™ +x (@>0) do denu s x*.

3
1380. \/1 - +x?- \[1 -3x+x2 do ¢lenu s x>,

1381. ¢ 2" do denu s x°. 1382. — do ¢lenu s x*.
, e*-

S _ _

1383. \fsinxa do denus x . 1384. Incosx do ¢lenu s x 5.

1385. sin(sinx) do denu s x°. 1386. tgx do ¢lenu s x°.

1387. In sinx do denus x 8

T x

1388. Najdéte prvni tii ¢leny rozkladu funkce ﬂx)=\/§ na celé nezdporné moc-
niny rozdilu x-1.

1389. RozloZte funkca fix)=x*-1 na celé nezdporné mocniny rozdilu x -1 do
denu s (x-1)°.

1390. Funkci y =acosh X (@>0) aproximujte v okolf bodu x =0 parabolou dru-
a

hého stupné.
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1391. RozloZte funkci fix) =y1 +x%-x (x> 0) nacelé nezdporné mocniny zlomky
1 . 1

— dodlenus —.

x x? :
1392. Najdéte rozklad funkce fi2)=In(x+h} (x> 0) na celé neziporné mocniny
piiristku 2 do ¢lenus A", kde n je pfirozené dislo.
1393. Necht '

n

fox +h) =fx) +hflx) + .+ 2 L fo+0h), 0<0<1,

pficem# f%D(x)=0. DokaZte, e pak lim 8 =
B0 n+l

1393.1 Necht pro x-0 je fix)=1 +kx +o(x). Dokaite, 7e lim [fx)]”" =et
x-0

1393.2 Necht flx)eC® [0,1] a f(0)=/(1) =0, piidem |f"(x)| sA pro xe(0,1).
Dokaite, ze |f/(x)| s% pro O<x<1,

1393.3 Necht flx} (-»<x < +w) je dvakrat diferencovatelni funkce
aM,= sup |f(”(x) | <+ (k=0,1,2). DokaZte nerovnost M{?sQMOME.

=0 <] X < e

1394. Odhadnéte absolutni chybu v nisledujicich pfibliznych vztazich:
2 n 3

a) e"=1+x+% +"'+71T pro O<x<1; b) sinx=x—-% pro |x|s—é—;

3 , 2
c) tgxzx+%-pro|x|50,1; d) ‘/1+xz1+-§—%pr003xsl.
: ' 2
1395, Projaké hodnoty x plati pfiblizny vztah cosx =1 —% s pfesnostina 0,0001?
1395.1 DokaZte vztah

n\/a"+x=a+ X nz2,a>0, x>0), O<r<ﬂ—1 X
na™"! on? 9n-1
1396. Pomoci Taylorovy véty vypocitejte ptibliZné hodnotu nasledujicich vyrazi:
3 5 12
a) /30; b) y250; ¢) 4000, \/E; e)sinl8°; 1 Inl,2; g)arctg0,8;
h) arcsin0,45; 1) (1, 1)l % a odhadnéte chybu jejich vypoctu

2

1397. Vypocitejte hodnotu nisledujicich vyrazi:
a) e s pfesnostina 107; b} sinl® s ptesnosti na 107%;
c) cos9° s pfesnosti na 107°; - d) /b. s pfesnosti na 107%;

e) logll s pfesnosti na 107,

§ 10. TAYLOROVA VETA

pomoci rozvojli L. — V. vypoététe nasledujici limity:

_,x2 x - _
1308, lim S22 7¢ 1399, lim £-3mx =X +%)
) x=0 x4 x-0 x?
L : G 6 \
1400. lim x32(f 1+ —1-2/%). 140L. lim (\/xhxf”_\/xﬁ_xfi}_
R T x e ’ X+ o0
X "x"
1402. lim [x?’—xg«i»i]e”"— v B a1 1403. limf'_u {a>0).
B X 2 =0 x?
1404. lim x-x2ln(_1+l”. 1405. lim [l_ 1 ]
| xee IR «-0 lx sinx
3
NI o
1406. lim l(l ~cotgx| . 1406.1 lim SI(in%) ~xyl-x"
x~0 X x . . x=0 . . x:>
_ sinx . _
'1406.2 lim 1-(cosmy™ 1406.3 lim Sinh(tgx) —x
x- 0 x3 20 x?:

Pro x~0 urcete hlavni ¢len rozvoje ndsledujicich funkei ve tvaru Cx ", kde C je
konstanta.

1407. y =tg (sinx) - sin (tgx). 1408, y=(1 +x)" - 1.
o ' L

1209, y=1 - L9

1410. Pro jaké hodnoty koeficientli @ a b bude vyraz
x —{a +bcosx)sinx
nekonecne malou velitinou 5. fidu vzhledem k proménné x?

1410.1 Najdéte koeﬁaenty 4daB tak, aby pro x- -0 platila asymptoticka rovnost

I +Ax?

cotgx = O(x ).
x +Bx>
1410 2 Pro Jake koeficienty 4, B, C a D plau pro x~ 0 asymptotickd rovnost
5o 1 +Ax + Bx*® L0
1 +Cx +Dx?

: 1411. PovaZujte | x | za malou veli¢inu a odvod'te jednoduché piiblizné vztahy pro

hodnoty nasledujicich vyrazi:

_ 1 1 31 v 3 - p _

a) — - (R>0) b) - : Al x 17|
R* (R+x) 1 -x L+x ) . 1 [1 =5l

- R
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d)

In2
Injl1+ X
101

1412. PovaZujte absolumi hodnotu x za malou veli¢inu a odvodte pfibliZny tvar
vztahu x = sinx +Btgx s piesnosti do denu s x°
pfiblizny vypodet délky oblouku s malym dhlem.

1413. Odhadnéte relativnf chybu Cebysevova vzorce: délka kruhového oblouku se
piiblizné rovna sou¢tu délek ramen rovnoramenného trojiihelnika sestrojeného

. Pouzijte tento vztah pro

na tétivé tohoto oblouku, ktery ma s visku rovnou y4/3 vyiky kruhové dsete.

§ 11. Extrémy fﬁnkce. Maximalni a minimalni hodnoty funkce

g 1. NUTNA PODMINKA EXISTENCE EXTREMU. Rekneme, e funkce f{x) m4 v bodé x, extrém
(maximum, resp. minimum), je-li definovina v oboustranném okolf bodu %, a flxy<fixg) (vesp.
g fx)>fix,)} pro vSechny body x z mnoZiny 0< [x-x,|<85.

JestliZe v bodé extrému existuje derivace, pak pro ni plati f(x,}=0.

2. POSTACUJIC] PODMINKA EXISTENCE EXTREMU.
Prumi pravidlo, Jestlize 1) funkce f{x) je definovand a spojitd na ne_]akém okoli }x -x0| < bodu

x4, pro ktery plati f {x,)=0 nebo ve kterém derivace neexistuje (kriticky bod); 2) fix) md
koneénou derivaci f/(x} na mno¥iné 0 < |x-x,| <8; 3) derivace f’(x) m4 konstantni znaménko
vlevo od bodu x, a vprave od bodu x,, pak je vztah funkce fix) k extrému charakterizovin

g prehledem v nisledujici tabulce:
£
z - .
g Znaménko derivace f'(x) Tvrzeni
£ _
ﬁ .
x<x, o x>x,
I + + v bodé nenf extrém
1l + - maximurn
HI : - N + minimum
v ' - ' - v bod# nen{ extrém

Drubé pravidle. JestliZe funkce f{x) md drubou derivadi f"(x) av nékterém bod& x,, jsou splnény
podminky Fle)=0a fx )0,
pak mi funkee f{x) v tomto bodé extrém, a to: maximum, je-li f"(xﬂ)«(() aminimum, je-ti f7(x,)>0.

Tveti pravidlo. Necht ma funkce flix) na n&akém intervalu |x-x,| <0 derivace f 1), o1

e

a v bod& x derivaci f"](xo) pFicem? plat

M) =0¢k=1,..,

n-1), f™x)#0.

§ 11, EXTREMY FUNKCE. MAXIMALN{ A MINIMALN| HODNOTY FUNKCE

V takovém pifpadé: 1) jestliZe je n sudé &islo, pak v bodé x, md funkce fix) extrém a to: maximuwm,
je-li [P%x,) <0, aminimum, je-li f™(x,)>0; 2)jestliZe je n liché &islo, pak flx) v bodé x, nemd

extrém.

3.GLOBALNT EXTREM. Spojitd funkce f{x) nabjvd nejvEi (nejmensi) hodnoty na uzavfeném
intervalu [a,b] bud ve svém kritickém bodé& (. tam, kde derivace f "(x) je rovna nule nebo
neexistuje) nebo v hrani¢nich bodech @ a & twohoto intervalu.

VySetfete extrémy ndsledujicich funkci:
1414, y=2 +x -x %,
1415. y=(x - 1)*.
1416. y=(x - 1%
1417. y=x "(1 -x)" (m a n jsou pfirozena {isla).
1418. y =cosx +coshx. :
1419. y =(x +1)!% =
2 n

1420. y =[1 +x +§é-‘— +... +%]e ™ (n je pirozené dislo).

1421 y=|x].

1422. y =x 3(1 -x)*3.

1423. Vysettete, zdali ma funkce
J) = (x —x, ) o)
extrém v bod¢ x,(n je pfirozené ¢islo). Predpokladejte, Ze funkee @(x) je spojitd
vbod€ x=x, a ¢(x)=#0.
P (x)
}Q)gg S Q;@)
Pi(x,)=0a Q(x,)# 0. Doka¥te, ¥e sgnf"(x ) =sgn P} (x,).-

1424. Necht f(x)= a x, je staciondrni bod fankce fix), tj.

1425. MZeme T{ci, Ze pokud funkce f{x) md vbodé€ x, maximum, pak v n&jakém
dostatecné malém okoli je funkce fix) vlevo od bodu x,, rostoucl a vpravo od néj
Klesajici? UvaZujte pfipad funkce
Jix)=2- (1+sm ] prox#0a f(0)=2.
1426. Doka¥te, Ze funkce

fixy=e ™" prox+0a f{0)=0
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m4d v bodé x =0 minimum a funkce

glx)=xe i pro x#0 a g{0)=0

nemd v bodé x =0 extrém, ackoli plati

F™0)=0, g™(0)=0 (n=1,2,...).
Sestrojte grafy téchto funkci.
1427, Najdéte extrémy funkce

a) f(x)=e‘lf|x|[ﬁ+sinl] pro x%0 a ﬂ0)=0,
X

b) f(x)=e'”|"|[\/§+cos%) prox=0 a f{0)=0.

Sestrojte grafy téchto funkci.
1428. VySetiete, zda ma v bodé x =0 extrém funkce
fix)= [xl(? +cosl) pro x+#0 a f{0)=0.
x

Sestrojte graf této funkce.

Najdéte extrémy ndsledujicich funkcf:

1429. y=x’ -6x%+9x -4. 1430. y =2x° -x*.
1431, y =x(x - 1)*(x - 2)*. 1432. y xel,
x
2—»
1433, y= 2=, 1434, y= X 342
1+x x?e2x+1
3
1435, y=y/2x -x 7. 1436, y =x yx - 1.
1437. y =xe . 1438. y =/xInx.
2
1439. y= In L 1440. y =cosx +—;—c052x.
x
1441. y =—L(-)-——-. 1442. y=arctgx-~l—ln(l +x%y.
1 +sin®x 2
1443. y=¢ "sinx. 1444, y = |x]e 1*7 11,

Najdéte nejmensi a nejvétsi hodnoty nisledujicich funkei:
1445, f(x)=2" na uzavieném intervalu [-1; 5].
1446. f(x)=x ? —4x +6 na uzavieném intervalu [-3; 10].

1447. fix) = |x? - 3x +2| na uzavieném intervalu [-10; 10].

132

§ 11. EXTREMY FUNKCE. MAXIMALNE A MINIMALNI HODNOTY FUNKCE

1448. fix)=x +l na uzavieném intervalu [0,01; 100].
X

1449. fix) =5 ~4x na uzavieném intervalu [-1; 1].

Najdéte infima a suprema nésledujicich funkcf:
1450. fix) =xe % na intervalu (0, +).

2 n

1451. f(x) =(1 +x +% + +—‘] ¢ na intervalu (0, +«).
! nl

2

1+x .
S na intervalu (0, +).

1452. flx)=

1+x

1453. fix) =¢ * cosx” na intervalu (-, +o).

1454. Urcete infimum a supremum funkce f(€) = L +Ez na‘intervalu x <<+,

+§
Sestrojte grafy funkef M(x)= sup fi) a m(x)= inf fRE).
x<E <40 X< < 4w

1454.1 Necht M, =sup | f®x)|, £=0,1,2, ... Najdéte My, M, aM,,je-li fix)=e ="
1455. Urlete hodnotu nejvétitho denu nasledujicich posloupnostf:

D7 m=12.0; b)—Y L2y Ve (m=L2.).
on n + 10000 S T

1456. Dokazte nasledujici nerovnosti:

a) |3x-x°|<2 pro |x|<2; b) :st”+(1-x)f’s1pr0()sxslap>l;
or-
) x™a-x)"< mon a”" prom>0,n>0a O0zx<a;

xta ot —— , . 2,72
d) -Q(R_l)ms\/x ta'gx+a (x>0,a>0,n>1); e) |asinx +bcosx|sya”+b".

14'56.1 DokaZte nerovnost

2 x+l
—<———— <2 pro ~e<x< +oo.
: 3 x%ex+l .
1457. Uréete ,,odchylku od nuly” polynomu P(x) =x(x - 1)2(x +2) na uzavieném
intervalu [-2,1], 6.

E,=sup|P(x)|.

-2¢xcl




DIFERENCIALNI POSET FUNKGI JEDNE REALNE PROMENNE § 12. VYSETROVANI PRUBEHU FUNKCE

1458. Pro jaky koeficient ¢ md polynom Sestrojte grafy nasledujicich funkci:

4
P(x)=x2+q 1471.y=3x—x3. 1472.y=1+x2—36--.
nejmensi odchylku od nuly na uzavieném intervalu [-1,1], 0 2
. E,=sup | P(x)| je minimdlnt? 1478, y = (6 + 1)(x - 2)%. 4748 y= 275
SPrs! 1+x*
1459. Absolutni odchylkou dvou funkci f{x) a g(x) na uzavieném intervalu [a,b] se 1475.¢ 3= x2-1 1476.% -
nazyva &slo A=sup |fix)-g(x)|. Urdete absolutni odchylku funkci fix) =x2 x2-5x+6 ' (1 +x)(1 -x)° '
asxsh . 4 4
a g(x) =x” na uzavfeném intervalu [0,1]. ; 1477. y = > 1478. y =( 1+x ] .
1460. Funkci f{(x) =x? pfiblizné nahrad'te na intervalu [x,x,] linedrni funkci (12+x) 1-x
% x"x-1) x
glx)=(x, +x)x +b i 1479. v = — 1480. y =
. ' : (x+1) (1-x%?
tak, aby absolutni odchylka funkei fix) a g(x) (viz pfedchdzejici tloha) byla mini- 1y .
. +
mélni, a urete tuto nejmensi absolutni odchylku. 1481. ¥ =—(-x—~—-—2;. 1482.% y= x +8
1461. Urdete minimum funkce ' (x-1) x3+1
1 10 1
x)=max{2|x],|1+x]}. 1483. vy = - + . 1484. y=(x -
fi |1 +x] T e T 484. y =(x - 3)/x.
Urdete polet redlnjch kofend ndsledujicich rovnic a separujte tyto kofeny: 1485, y = = foxZ—x?. 1485.1 y=—_ 2
1462. x* - 6x* +9x - 10 =0. 1463. x° -3x* -9x +h=0. T
1464. 3x* ~4x> -6x 7 + 120 -20=0. 1465. x° -bx =a. 3 -
- . 1486. y = £4/(x - 1)(x - 2)(x - 3). 1487.% y=y/x*-x2-x+1.
1466. Inx =kx. 1467. e =ax°. s '
3
1468. sin’x cosx =a pro O<x< ™. 1469.  coshx =kx. 1488. y = \/:F - \/xg +1. 1489. y =(x +2) —(x-2)%5,
1490. y =(x + 1)¥* + (x - 1)*3 1491. y=
1470, Za jakych podminek ma rovnice x* +px +g =0: a) jeden redlny kofen; yler Iy e-1) I3 7 '
b) i realné kofeny? Vyznaéte odpovidajici mnoZiny v roving (p,9). T
' xfx? -1 | 1+x]¥2
1492, y== 1= 1493, y=1——"1
2x*-1 Jx
§ 12. VySetiovini prubéhu funkce o S B
1494, y=1 —x + N 1495, y= | X
' 3+x x+1
Abychom sestrojili graf funkce y =f{x), postupujeme v ndsledujicich krocich: 1) uréime definicni
obor této funkee a vyfetfime chovini funkce v jeho hraniénich bodech; 2) rozhodneme o symetrii . x*+3 ) .
grafu ajeho periodinosti; 3) najdeme body nespojitosti a intervaly, na kterych je funkce spojitd; 1496.* y = r o 1497. ¥ =SIX +COS"X.
4) uréime nulové body funkce a mnofiny defini¢niho oboru s konstantnim znaménkem; x“+1 1
5) najdeme extrémy funkce a zjistime intervaly, na kterych je funkce rostouci a klesajict; 1498, y =(7 +2cosx)sinx. 1499. y =sinx +—sin3x.
. :

6) uréime inflexni body funkce a zjistime intervaly konvexnosti-a konkdvnosti grafu funkce;
7) najdeme asymptoty funkee, jestlize existujf; 8) ukdZeme dal3i specidlni viastnosti grafu funkee.
Ve zvla¥tnich pifpadech se toto obecné schéma zjednodusi.

i V tilohdch, které jsou oznadeny hvézdickou, urcete inflexni bedy pouze piiblizné.

1500. y =cosx - -;— cos2x.

1502, y =sinx sin 3x.

1501. y =sin*x +cos*x.

1503, § = —nx

. T )
sin| x +—
9
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AR

1504. y = cosx 1504.1 y=__51.’lx__
cos2x 2 +cosx

1505. y =2x - tgx. 1506. y=¢ =%

1507, y=(1+x2e . 1508, y=x +e .

1509. y =x 2% . 1509.1 y=¢ > sin’x.
e” g

1510.3;=1 . 1511, y=y1-e™ .
+x

1512 y=l—:;_£. 1513.y=ln(x+\fx2+1).

x
1514, y=yx*+1 ln(x +\}x2+1). 1515. y = arcsinx.

1-x2
1516. y =x +arctgx. 1517. y=%+arcc0tgx.
1518. y =x arctgx. ' 1519. y =arcsin
5 1 +x
1520. y =arccos — 1521, y =(x +2)e '
1+x
S -yRT1 o x%-3x+2
1522, y =2V¥* o 1523.* y=lp———.
xZ+1
1524, ¥ —qarcsinZ -ya?-x? (a>0). 1525, y =arccos _2 i
a —ZX
1526. y=x . ' 1527.% y=x .
. . x
1528. y =(1 +x)**. 1529.* y =x[1 +l] (x>0).
- _ X
171 -2 ‘ ,
1530.* y= 5 (bez vySetfovani'konvexity a konkdvnosti).
1+x

Sestrojte kiivky, které jsou zadany parametrickjm popisem:
(VN D

1531, x = , 1582, x =212, y=8¢-1>.
4 4
2 C ' 2
1
15388 x=——, y=—t . 1584, x=— y=—m.
t-1 t?-1 1-¢* 1+t?

1535, x=t+e ", y=2l +¢ 2, 1536. x =acos2t, y=acos3t (a>0).

T g et e e e T e T

§ 13, ULOHY NA MAXIMUM A MINIMUM FUNKCE

1537, x =cos’t, ¥ =sin*. 1538. x =t In¢, y =litt.
1539. x =——, y=atg®t (a>0).
cos’t
1540. x =a(sinht -#), y=a(coshi-1) (a>0).
parametrizujte nasledujici kiivky a sestrojte je:
1541. x> +9* -3axy =0 (@ >0).
NAvoD. Poloite y =ix.
1542.x2+y2=x4+y4. 1543.x2y2=x3—y3. 1544, x =47 (x>0,y>0).

1545. Sestrojte graf funkce cosh’x - cosh’y =1.

Sestrojte grafy;na’lsledujicich funkef, které jsou zaddny v polarnich soufadnicich
(9,r), r=0): = ' :
1546, r=a +bcos¢p (0<asbh). 1547. r =asin3¢ (@>0).

a - : :
1548. r=——— (2 >0). 1549.% r = tgho k
T | T a(p—l ykde p>1 (a>0).

1550.,* ¢ =arccos

T

Sestrojte grafy nésledujicich tfid kiivek (¢ je proménny parametr):

B : 2 ,
1551, y =x"-2x +a. 1552. y=x+ <. 1553, y =x =y/a(l -x7).
X

1554, y=%+e"“". 1555, y=xe .

§13. Ulohy na maximum a minimum funkce

1556. Dokaite, e je-li funkce fix) nezdpornd, pak md funkce F(x) = Cf 2x) (C>0)
pfesné tytéZ extremalni body jako funkce fix).

1557. Doka’te,: e je-li funkce @(x} ostfe rostouci pro -« <x < +=, pak maji
funkce fix) a @(flx)) tytéZ extremalni body.

1558. Uréete nejvétsi hodnotu soudinu m-té a n-té mocniny (m >0, n>0) dvou
kladnych &isel, jejichZ soucet je konstantni a roven a.

1559 Najdéte nejmensi hodnotu souctu m“té a #-té mocniny (m >0, n>0) dvou
Kladnych ¢isel, jejichZ souéin je konstantn{ a roven a.
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1560. Pro jaké zdklady logaritmi existuje ¢islo, které je rovno svému logaritmu?
1561. Ze viech obdélnikhi daného obsahu § urdete ten, jehoZ obvod je nejmendi.
1562. Ze viech pravouhlych trojihelniki s danym souctem délek prepony a od-
vésny urcete ten, jehoz obsah je maximalni.

1563. Pro jaky polomér a vyiku bude mit uzavfend valcovd nidoba daného obje-
mu V' nejmensi povrch?

1564. Do dané kruhové tisede, ktera nenf vét3{ nei pilkruh, veplste obdélnik ma-

ximilniho obsahu.
2

1565. Do elipsy f—— + i =1 vepiste obdélnik, jehoZ strany jsou rovnobéZné s osa-

mi elipsy a ktery ma maximalni obsah.

1566. Do trojihelnika o zdkladné délky & a vy3ce A vepidte obdélnik s maxi-

milnim obvodem. Provedte diskusi feditelnosti této tlohy.

1567. Ty¢ kruhového prifezu o priiméru d je ofezdna na hranol o obdélnikovém

prifezu se zdkladnou délky & a vyikou h. Pro jaké velikosti zdkladny a vySky

bude mit vysledni ty& nejvétsi pevnost, jestlize je pevnost Gmérna bh*?

1568. Do polokoule o poloméru R vepiste kvddr s ¢étvercovou podstavou a maxi-

malnim objemem. ' |

1569. Do koule o poloméru R vepiste vilec s maximdlnim objemem.

1570. Do koule o poloméru R vepiste vilec s maximdlnim povrchem.

1571. Dané kouli opiste kuZel s minimalnim objemem.

1572. Jaky je maximalni objem kuZele s danou délkou plasté { .

1573. Do kuZelu s thlem 2« v osovém fezu u vrcholu a polomérem podstavy R

vepiite véilec s maximdlnim povrchem.

1574. Najdéte nejmensf vzd4lenost daného bodu (p,p) od paraboly y* =2px.

1575. Najdé&te nejkratsi a nejdel3{ vzdilenost bodu (2,0) od kruznice x” +y 2=

1576. Najdéte nejdelsi secnu elipsy E-Z- + -J-lb-z- =1 (0 <b <a), kterd prochdz{ bodem
a

(0, -b). 22

1577. Najdéte bod (x,y) na ehpse —+ %— =1, pro ktery tena ehpsy sestrojend

v tomto bodé vymezuje s osami souradmc trojuhelnik s mmlmalmm obsahem.
1578. Téleso se skladd z vélce zakonceného polokouli stejného poloméru. Pro
jaké hodnoty polomeéru a vysky vilce bude pii daném objemu V povrch tohoto
télesa minimalni?

1579. Kandl ma prifez tvaru rovnoramenného lichobéZniku. Je naplnen vodou
do vysky h, plodny obsah prifezu &sti kanilu naplnéné vodou je §. Pfi jakém

§13. ULOHY NA MAXIMUM A MINIMUM FUNKGE

ghlu ¢ mez1 bo¢nimi sténami a vodorovnou rovinou bude mokra ¢ist obvodu
rafezu kanilu minim4ini?
1580. Kfivolakosti uzavieného obrazce o plode § se nazjvd pomér jeho obvodu
a délky kruZnice vymezujici kruh o stejném obsahu §. Jaka je vy¥ka rovnora-
menného lichobéinika ABCD (AD| BC), ktery ma minimalni kiivolakost, je-li
délka jeho zdkladny AD =24 a ma-li ostry dhel velikosti <BAD=a?
1581. Jakou vyse¢ je potieba vyfiznout z kruhu o poloméru R tak, aby bylo
moiné ze zbylé ¢asti svinout nilevku tvaru kuZele o maximalnim objemu?
1582. Tovarna A je vzdilena a km vzdudnou ¢arou od Zeleznice, kterd vede z ji-
hu na sever a prochdzi méstem B. Pod jakym dhlem ¢ k Zeleznici je potieba
postavit vle¢ku, aby niklady na dopravu zboZi z tovirny do mésta byly minimalni,
jestlize ndklady na pfepravu jedné tuny zboZi na vzdilenost 1 km jsou na vledce
p, na Zeleznici q, {#>¢) a mé&sto B se nachdzi b km severné od tovarny A?
1583. Dvé lod¢ pluji konstantnimi rychlostmi % a v po pfimych trasich, které
spolu svirajitihel 8. Uréete nejmensi vzdilenost, na kterou se sobé& pfibliZi, jestli-
%e v urcity okamzik byly vzdileny od priisec¢iku tras po fadé¢ a a b.
1584. V bodech 4 a B se nachizeji zdroje svétla o svitivostech S, a §,. Najdéte
nejméné osvétleny bod M na tsedce AB o délce a.
1585. Bodovy zdroj svétla je umistén na spojnici stfedii dvou neprotinajicich se
kouli o polomérech R a r (R >r), pri¢emi leZi vné obou koulf. Pii jaké poloze
zdroje bude soucet osvétlenych &asti obou koulf nejveétsi?
1586. V jaké vy¥ce nad stfedem kruhového stolu o poloméru a je zapotiebi
umistit elektrické svitidlo, aby osvéteni okraje stolu bylo maximalné jasné?
NAPOVEDA: Jasnost osvétlen] je ddna vzorcem

A ksmtp

r2

kde @ je ihel sklonu paprskil, 7 je vzdilenost svételného zdroje od osvétlovaného mista a % je
svitivost zdroje.

1587. Kolmo k fece o $ifce 2 m je piiveden kanil o 3ifce & m. Jakou maximaln{
délku miaZe mit kldda, kterd se dd splavit z f'eky do tohoto kanalu?

1588. Denni ndklady na plavbu lodi se skliddaji ze dvou ¢asti: konstantni, ktera je
rovna a a proménné, kterd se zvétiuje imérné tfeti mocniné rychlosti. Pro jakou
rychlost v lodi bude plavba nejekonomicté)si?

1589. Bfemeno o hmotnosti P, které leii na vodorovné drsné roving, je ti'eba
zdvihnout s pouZitim urdité sily. Pro jaky sklon této sily vzhledem k vodorovné
roviné bude jeji velikost nejmensi, jestlize koeficient tfeni biemene je £?

1590. Najdéte rovnoviinou polohu koliku délky { vloZeného do misky tvaru po-
lokoule o poloméru 4, je-li [>2a.
R Z==a

RN 0




DIFERENGIALN] POCET FUNKCI JEDNE REALNE PROMENNE

§ 14. Dotyky kfivek. Oskulaéni kruZnice (kruZnice krivosti). Evoluta

1. DOTYK n-TEHO RADU. Rekneme, e dvé k¥ivky

y=olx) a § =ix)
maji v bodé x, dotyk n-tého Fddu (v ostrém smyslu!}, jestliZe plati tp(‘“(xu) =w(*)(x0) k=0.1,..,7)
a g l](xo) # *”(xo). V tomto piipadé je pro x-x,

Px) - Plx) =0 "G ~x I

2. OSKULACNI KRUZNICE (KRUZNICE KRIVOSTI). KruZnice
(x-EP+(y-n*)=R*
kterd ma s danou kfivkou y=fx) dotyk alespofi druhého Fadu, se nazyva eskulaéni kruinicl
_Q+oh*"
5"

, __ 1 P
se nazyva polomérem kitwosti a hodnota k= g ¢ nazjv kitvosti.

v odpovidajicim bod&. Polomér této kmznlc

3. EVOLUTA. Geometrické misto stiedd oskulacnich kruZnic (§,n) (stfedy kftvostt)

1+ 2 1+ h2
o 206 ﬁf)

se nazyva evolutou dané kiivky y=f(x).

1591. Najdéte parametry k a b pifmky y=kx+b tak, aby méla s kiivkou
y=x2-3x*+2 dotyk Fidu véitho nez prvniho. .
1592. Pro jaké koeficienty 2, b a ¢ ma parabola
y=ax®+bx +c
v bodé x =x, dotyk druhého Fadu s kfivkou y=¢*?
1593. Jaky ¥4d dotyku s osou x maji v bodé x =0 nasledujici kiivky:

2
a) y=1-cosx; b)y=tgx—sinx; c)y:e"—[1+x+%]_

1594. DokaZte, Ze kiivka § =¢ U5 srox=0ay=0 prox=0 mavbodéx=0sosou
¥ p y=up

x dotyk nekoneéné velkého radu.
1595. Vypoltéte polomér a stied kfivosti hyperboly xy=1 v bodé: a) (1,1);
b) (100;0,01).

Urdete polomery kiivosti ndsledujicich kiivek:
1596, Paraboly y2=2px.

2
1597. Elipsy -—+~‘;—-1 (@2b>0).
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& 15. PRIBUZNE RESENI ROVNIC

1598. Hyperboly —%—2— =1. 1599. Astroidy x ¥% +y %3 =¢ %3,

1600. Elipsy x —acost, y=bsint.

1601. Cykloidy x=a(t-sinf), y=a(1-cost).

1602. Evolventy kruinice x =a (cost +£sint), y =a(sinf -£cosf).

1603. Dokaite, e polomér kiivosti kiivky druhého fadu y? =2px —gx? je umérny
tfeti mocniné dseku jeji normdly.

1604. Vyjiadiete polomér kiivost kiivky zadané v poldrnich soufadnicich.

Urdete poloméry kiivosti ndsledujicich kiivek zadanych v poldrnich soufadnicich
(s kladnymi parametry):

1605. Archimedovy spiraly r=a@.
1607. Kardioidy r =a(l +cos¢).

1606. Logaritmické spirdly r=ae ™%,
1608. Lemniskaty 7% =a%cos2¢p.

1609. Najdéte na kiivce y =Inx bod, v ném? je kfivost maximalni.
3

1610. Maximalni kfivost kubické paraboly y =kx? (0gx <+, k>0) je rovna
t

—_‘10100 . Najdéte bod x, ve kterém je dosaZeno této kiivosti.

Napiste rovnice nisledujicich kiivek:

1611. Evoluty paraboly y?=2px. r

1612. Evoluty ehpsy —_—
b?

1613. Evoluty astroidy x ¥ +y¥% =4 %*

BN o S
1614. Evoluty kiivky traktrix x=aln axmve 7y ya® -yt
: 3
1615. Evoluty logaritmické spirdly 7 =ae™®.
1616. DokaiZte, Ze evoluta cykloidy
x=a(t-sint}, y=a(l -cost)
Je také cykloida, kterd se od pavodni cykloidy lisi pouze pozici.

§ 15. PribliZzné fe§eni rovnic
1. METODA REGULA FALSI (METODA SECEN). [e-li funkce f{x} spojitd na uzavieném intervalu [a,b]

a plati-li Ra)fb) <0,
piidems f"(x) #0 pro a <x <b, pak rovnice

ftx)=0 , (h
mi pravé jeden redlny kofen £ v otevieném intervalu (g,5). Jako prvni aproximaci tohoto Fegent
miiZeme vzit hodnotu
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kde
8,=-—AL@_(5.0).
f)-fla)
PouZitim tohoto postupu v tom z otevienych intervall (z,x,) nebo (x,b}, v jehoZ hraniénich

bodech ma f{x) rliznd znaménka, ziskime druhou aproximaci x, kofene € atd. Pro chybu n-t¢
aproximace x,_ plati vzorec

) . B
: |x, -€| < Iﬂ I ‘ _ @)

kde m=inf|f'(x)|, pkicem¥
g<x<h .
limx =g,

L d

2. NEWTONOVA METODA (METODA TECEN). [estlife na uzavieném intervalu [a,b] plati f"(x)#0
a fla)™a)>0, pak za prvni aproximaci £, kofene § rovnice (1) miZeme vzit hodnotu
g -a-12
flay e
Opakovinim tohoto postupu ziskime posloupnost aproximaci En (n=1,2,..), kterd rychle
konverguje ke koteni £ a jejiz piesnost je vyjadiena napiiklad vzorcem (2).
Pro hrubou orientaci je uZiteéné naértnout graf funkee y=f{x).

Pomoci metody sefen aproximujte s pfesnost{ na 0, 001 koreny nésleduyjicich
rovnic:

1617. x> -6x+2=0. ' 1618. x*-x -1
1619. x ~0,1sinx=2. 1620. cosx=x>.

0.

Pomoci Newtonovy metody aproximujte s poZadovanou presnosu koreny nasle-
dujicich rovnic: :

1621. x +i2=10x (s pfesnosti na 1073),
x

1622. x logx =1 (s pfesnosti na .10‘4).

1623. cosx coshx =1 (s pfesnosti na 107%) (pro kladny kotfen).
1624. x +e * =0 (s presnosti na 107%), |

1625. x tghx =1 (s pfesnosti na 107°).

1626. Urcete s piesnosti na 0,001 prvni tii kladné kofeny rovnice tgx =x.

1627. Urlete s presnosti na 107 dva kladné kofeny rovnice cotgx =i —g.
' ' x

KAPITOLA |11

Neurcity integral

§1. Nejjednodussi neurcité integraly

1. DEFINICE NEURCITEHO INTECRALU. Je-li funkee f{x) definovana a spojitd na otevieném
intervalu (2,h) a funkce F(x) je jeji primitivni funkee, 1j. plad, Ze F'(x}=flx} pro viechna

a<x<b,pakje [fixydx=Fx)+C, a<x<b,

kde C je libovolni konstanta.

9  ZAKLADNI VLASTNOSTI NEURCITEHO INTEGRALUY
a) d[ ffix)dx] =flx)dx;

b) fdP(x) =®(x)+C;

) fAfx)dx =A [fix)dx (A =const; A=#0);

d) f[fix) +g(x)]dx = [flx)dx + [ g(x}dx .

3. TABULKA ZAKLADNICH INTEGRALU:
I f xdx=

a+l

Yo +C (n+-1).
n+l

1. fi‘f=ln|x| +C (x=0).
X

_] aragx+C,

_I;I ] ) —arccotgx +C.

v dx l ]
1-x2 X

] dx ] arcsinx+C,

5 |-arccosx +C.

VL [ dx =Inlx +yfx 2+ 1|+C.
yrxizxl _

VII. *dx =
1 fadx ina

—
M

I+

i, @>0, axl); feTdx=e*+C.
VIII. fsinxdx=-cosx+C.

IX. fcosxdx =sinx +C.

X f _dx =—cotg.;c +C.

sinx

o
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=tgx +C.

! X1 [_dx
] cos?x

f XIL fsinhxdx=coshx+C.
XIIL  fcoshxdx =sinhx +C.

sinh®x
dx
XV. = tghx +C.
J’ cosh®x

4. ZAKLADNI METODY INTEGROVANI.
a) Integrace zavedenim nového argumentu, Je-li

[fix)dx =F(x) +C,

XIV. f dx =-cotghx +C.

ak
’ Jflo() ¢'(x)dx = [ flu)du=Fu)+C, -
kde u =(x) je spojité diferencovatelns funkce.
b) Integrace metodou rozkladu. Je-li

fix) =fix) +fylx)s
pak
fﬂx}dx =fﬁ(x)dx +ff2(x)dx.
c) Integrace pomoci substituce. Je-li funkce f{x) spojitd, pak substituci
x=0(t),

kde () je spojitd funkce spole¢né se svoun derivaci @'(f), dostaneme

[redx={fome'ed.

funkce proménné x. Pak

Lottt B B

Judv=uv - fodu.

Pomoci tabulky zdkladnich integrald vypoététe nisledujici integraly:

1628. [(3 -x%)%dx. 1629. [x2(5 -x)*dx.

1631. f[ l—x]gdx_
X

1633. f"‘* L.

Jx

r 3 3
1634, | Yx-2yx7+1 1635. f(l %) .

1630. f(1 -x)(1 -2x)(1 - 3x)dx.

f
1632. [E +a_2 +£] dx
3 .
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d) Integrace metodou per partes (metodou po &istech), Necht u a v _]sou diferencovateiné

e B pm——p———

1636.
1638.

1640.
1642.

1644.

1646.

1648,
1650.
1652.

1654.

§ 1. NEJJEDNODUSST NEURCITE INTEGRALY

1637. J‘(\/Q—x—?]/?ﬁ)zdx

x 1+x2

\ ,
xdx . 1641.

f SIS PN 1639, | * dx X

\/1+x2+\/1-x2dx- 1643. x2+1-yx? ldx.
1-x* o 1
[(27+3%%dx . 1645. [
e¥+1 |
dx. 1647. {(1 +sinx +cosx)dx.
e+1. : S
f\/l sm?xdx (Ozx<m). 1649. fcotgﬂxdx.
[tg? xdx. 1651. f(asinhx +bcoshx)dx.
f tgh’xdx. 1653. f cotghgxdx.
Dokaste, 3e pokud je [fix)dx =F(x)+C, pak

[ flax +b)dx =1F(ax+b)+C (@a+0).
a .

Vypodtéte ndsledujici integraly:
v

1655.

v
1657.

v

1659.

\%

1661,

dx 1656. [(2x -3)dx.
X +a
' 44"’?1/?‘)--‘ 1658. f dx

[iT=s%ax. |
' 7 V2 -5x
- v
. - 5
L 1660, [ Y1-2c+x®
{bx - )5"2 A ;o ‘ 1-x

_dx - 1662. |_ 9%
2+3x? - X I 2 -3x*
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NEURCITY INTEGRAL

1663. |9
V2 -2

1665. [ (¢ ™ +e H)dx.

dx

1667. .
sin? ( 2x + il ]
4

1669. dx
1 ~cosx

1671. [[sinh(2x +1) +cosh (2x -

dx

1672. .
cosh? X
2

Pomoci vhodné transformace integrovaného vyrazu vypottéte nasledujici integraly:

1674, | X%
\/_—'2‘

NAVOD: Pouiijte vztah %x_ua?d (,/E).

X x

1681. fsinlﬂ.

1682, _ﬁ_
'x\/xz 1

1685.f xdx

1664, |
J3x2-2

1666. [ (sinbx -sinba)dx.

1668. | 9
1 +cosx
1670. |_ 9%
o 1 +sinx
1)]dx.
dx
1673. .
sinhgi
2

- . - 3
. _16'75.5.[::::2 1+x3dx. 1676, |_Xdx
T 3 -2*
1678, | *dx 1679, | * dx
: 4+x4= : kS—Q

1686. .
(x2 _ 1)3/2 f(sxs +27)2f3

§ 1. NEJJEDNCDUSSi NEURCITE INFEGRALY

dx.

SINX + COSX
5
Ysinx - cosx

1700.1 J‘ SINX g,

JcosZx

1700.3 f _sinhx

JcoshZx
dx

sin’x + 2cos’x

1702.

dx .

COsx

1704.

dx
1 coshx

1706.

i

dx

—_—
J cosh®x y/tgh®x

o, [ dx

J (arcsinx)g\/l——x?

1691, |_ 9%
ex+e'x

1694. f dx .

x Inx In (Inx)

1692. dx .
vl +e

1695. f sin®x cosxdx.

1697. ftgxdx. 1698. {cotgxdx.

1700 SINX COSX dx
,/a %sin®x +b % cos?x

1700.2 f COSX_ix.

yCos2x

1701. _—fx .
sin®x y/cotgx

1707 sinhxcoshx e
\/ sinh*x +cosh®x

l+x

1711. H In (x +‘/1+x2)dx
——dx.




NEURCITY INTEGRAL ‘ § 1. NEJJEDNODUSET NEURCTE INTEGRALY
ni2 SRR
1714, | xtdx 1715, | XA 1740. dx @?+h?).
x*+1)* Jlex™2 x*+a®)(x?+b?)
1 X dx 1717. [____cosxdx 1718. f SInXx COsSX de 1741. fsiandx_ 1742, fcos2xdx. 1743. fsinx sin (x + a)dx.
T : SRR W o
X V2 +cos2x SIN"X +COs X 1744. [sin3x sin5xdx. 1745. fcosgcosgdx‘
% qx dx - . .
179, | 23 1720. ad . . _
[9" —4 \/1 sx2ayf(1+x?)? - 1746 fsin(?x —%) cos[3x +-g-) dx. 1747. [sin®xds.
3 4 4
Metodou rozkladu vypoététe nasledujici integraly: 1748. f cos”xdx. 1749. f sincdx. 1750. f cosxdx.
' ' : 1751. fcotggxdx. 1752, ftggxdx. 1753. fsin23x sin® 2xdx .
1721 [x2(2-3x%%x. 17211 [x(1 -x)"dx. 1722. [1*x . "
1-x 1754. | — .
‘ : sin®x cos’x
1723. | _x° | 17 x* (1+x)° | o
. dx. 24. dx. 1725. dx. : NAVOD: PouZijte rovnost 1 =sin®x +cos’x.
1+x 3+x 1 +x? | G '
o | . , Cous % 1756, [ 1757. [ cos’x
1726. | C-%) 1727. X dx 1728. | X~ 4. sin®x cosx sinx cos®x siny
2-x? (1-x)1% x+1 | _ .
" - s, |9 1759, | % 1760. [(L+e™)
1729. [— 1730. fx1/2 - bxdx . ' cos*x 1+e” l1+eX
varl+yx-1 1161, [sinh®xdsx. 1762. [ cosh®xdx. 1763. [sinhx sinh2xdx.
NAvOD: Pouiijte rovnost x = -l_(ﬂ -5x) + g
5 5 1764, fcoshx cosh3xdx.  1765. f =
dx i sinh®s cosh?x
1781, |_xx 1732. fxﬁ ; 1 +x 2dx 1738 | — . 1‘ _ .
3 . (x-1)}x+3) ;: :
y1-3x l - Pomoci vhodné substituce vypottéte nasledujici integraly:
NAvOD: Poudijte rovnost 1=—~[{x+3)-(x - 1)]. . 3 . ' ' 2
4 1766. fo J1-xdx. . 1767. fxf‘(; -5x)%x.  1768. [ X e
v2-x
1734, | x| 1735. f_Jx_. 1736. f_dx—. | )
9 b
xF+x-2 (e + 1)(x +2) (x?-2)(x +3) 1769, f 2 . 1770, [5(2-5x%%%dx. 1771 [cosdx JSimwds. |
g ' y1=-x2 '
1737 f xdx 1738, [__ xdx
(x+2)(x+3) x*+3x%+2 . |sinxcos’x .y [sinx 1774, | _Inxdx
‘ ) 1+cos’x cos®x xy 1 +lnx
o P | "
(x +a)*(x +b)* s [ dx 1776, % 17 |aragyk dx
: exf'2+ex ,!'1+ex ﬁ 1 +x
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Substituci goniometrickymi funkcemi x =a sint, x =a tgt, x =a sin?¢ atd. vypoctéte
nasleduyjici integraly (viechny parametry jsou kladné):

1778.[ dx 1779.[ x%dx

1780. f\/l —x2dx.

(L-x%% yaZ-2
1781, [___dx 1782. | |a*% . 1783. |x | % dx.
(x2+a2)3’2- a-x 20 -x

1784. f__dx_.
V(x -a)(b -x)

NAvOD: PouZijte substituci x-a =(b -a)sin’t.
1785. \I(x —a)(b -—x)dx

Substituci hyperbolickymi funkcemi x =g sinht, x=a cosh¢ atd. vypoctéte
nésledujici integrily (viechny parametry jsou kladné):

2
1787. X dx.

1786. f a2 ex2dx.
a®+x?

178 | ® . 1190 [(Era)xehydx.
(x +a)(x +b) '

NAvoD: Poutijte rovnost x +a =(b -a)sinh®¢.

1788, f X782 dx.

X ta

Metodou per partes vypoctéte nasledujici integraly:

1791. [Inxdx. 1792. [x"Inxdx (n+-1).

1793. f{ lrl_x]i’dx 1794. f‘/.;c_lngxdx. 1795. fxe"‘dx.
X

1796. fx2% >dx. 1797. [x% * dx. 1798. [xcosxdx.

1799. [x?sin2xdx.
1802. farctgxdx.

1801. [x* cosh3xdx.
1804. fx arctgxdx.

1807. fln(x +y1 +x2}dx.

1810. {sinx In(tgx)dx.

1800. fx sinhxdx.
1803. f arcsinxdx .

1805, [x 2arccosxdx. 1806. farcsch dx.
2
x

1809. farctgﬁdx.

1808. fx L1t g

-X

e

§ 1. NEJJEDNODUSSI NEURCITE INTEGRALY

vypoctéte ndsledyjici integrily:
1811. _[x 5% dx . 1812. f(arcsinx)2dx. 1813. fx (arctgx)*dx.

1814. flenl-xdx_ ~ 1815. xln(‘*\il“‘xz)dx. 1816.[ x?

1+x fl +x2 (1 +x2)2
1817, | 1818, [{aT-ctdx. 1819, [{x7va dx.
(aﬂ +x2)2 .
22, 37 inxdx . f‘/’;dx
1820. fx a” +x"dx. 1821. [x sin®xdx. 1822. J ¥ ax.
1823, [ x sinyxdx. 1824, | _xe*% 1825, | €™
(1+x2)%2 (1 +x)*?
1826. [sin{Inx)dx. 1827. fcos(Inx)dx. 1828. fe‘”‘c_osbxdx.
1829. fe“"sinbxdx. 1830. feg"singxdx. 1831. f(e*~cosx)2dx.
1832. | arccotge” \ 1833, [InGinx) 1834, | *dx
e* sinx cos®x

1835. |_xe” .
(e + 1)

Integrace ndsledujicich funkd je zalofena na transformaci kvadratického troj¢lenii na kanonicky
tvar a na poufiti tabulky zdkladnich integralis:

dx 1 x
L =— ol .
[a2+x2 aarctgaﬂ? @=0)

+C (a>0).

v. [ dx 1n|,+m
f
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Vypoctéte nasledujici integraly:

1836. dx (ab = 0)-
a+bx? :

1838, dx
3x?-2x -1
1840 (_%*1 5.
x24x+l
1842, [ *’dx
x*-x2+2
1844. dx .
$sin’x - 8sinx cosx +5cos’x
1846, | (6+0).
a +bx?

: ‘
VIIL [\/ﬁ:a?dx%\/ﬁ:a?i%lnL +fxTxa?

? -
VIL [‘/aE—xigdx=%\/a2—x2+%arcsin£+c {@a>0)..
it

+C (a>0).

1839.

1837, _dx
: x2-x +2

Ex—

1841.

X -2xcosa+1 :

1845.

sinx + 2cosx + 3

o 1847

\#1 2x —x?

1849, | — — |
2x2 -x+2

1850. Doka?te, Ze pokud y=ax®+bx +¢ (a #0), pak plati _

yl

fﬁxﬂiln_
5 fa

2

dx 1 :
—_— = ————arcsin
f b

Vb2 -4ac

+Jay|+C proa>0
i
—2 ¢ pro a<0.

[ _.
f
==

§ 2. INTEGROVANI RACIONALNICH LOMENYCH FUNKGI

dx

1860. - .
f(x +2)2\fx2+2x-5

1862. [/ +x +x 2dx.

1864.
x

. Inte

1-x+x? dx-

y1+x-x2

ovani raciondlnich lomen

1852. [—’“1 dx.

yeZ+rx+1

1853.1 J‘ cosxdx
7

\/1 +51NX +COs™ X

1855.

1859.

857, | &
x2yxtax -1

1861. f\j? +x -x 2dx.

1863. [ /%" +0x7 Ldx.

2
1865. [_”_”_dx

ch funkei

Rozkladem na parcialni zlomky vypoététe'nésiedujici integraly:

2x+3

1866.
5

-2)(x +5)

1867. xdx _
J.(x +1)(x +2)(x +3)

3- .
1869. | x"*1
-5x2+6x

1871, |__ ¥
x3-%x+2
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1872, | %+l o 1873, ) x de-_
(x+1)2(x—-1) x?-3x+2

1874. d« 1875. dx .
( +1)(x +2)%(x +3)° xP et -2x3 -2 2ax 1

1876, | X +5x+4 o w87 |4
xt+5x2+4 (x+D(x2+1)
1878. dx . 1879. xdx
(2 -4x +4)(x? -4x +5) (x - 1)%(x%+2x +2)
1880. dx . 1881. | &
x (1 +x)(1 +x+x?) x3+1
1882. | *dx 1883, [_%%
x3-1 xi-1
1884, | 1885. dx_
P | xtrx?+l

1886.

=
it
[—)

(1 +x)(1 +x3(1 +x %)

1887.[ s .

E 2
x“dx
1888. 1889. 3
x5—x4+x3—x2+x—l x4+3x3+—2-x2+3x+1

1890. Jakou podminku musf spliiovat parametrya, ba ¢, aby integral
ax?® +bx+¢
x3(x-1)2

byl racionalni lomenou funkei?

Pomoci rozkladu na parciilni zlomky vypoctéte nésledujici integraly:

1801, | x| 1892, &
x - 1)20x + 1) x*+1)

§ 2. INTEGROVANI RACIONALNICH LOMENYCH FUNKCE

1805 |4 1896, | x"+3x-2
(x*+1)2 ' (x-Dx2+x+1)°
1807. |
(c*-1)?

Urdete algebraickou &ast nasledujicich integralh:

2
1898. f Xl

(x4+x2+ 1)‘2

- 1899, &
7 (x3+x+1)

5
1900, | -1
(x5 +x + 1)

© - 1901. Vypoctéte integral

dx -
xt+ 2% +3x 242041
1902. Jakou podminku musi splfiovat parametry integrované funkce, aby integril
.[ w2y dx

(ax 2 + 2bx +¢)?

byl racionaln{ lomenou funkci?

":':Rl"i'zn)’rmi postupy vypoctéte nasledujicf integrily:

903, |_x 1904, | ¥ 1905, [ %d%
(- 1! x8-1 x8+3
1906. [x2+x dx. 1907. x'-8 . 1ges. |_x'dx
- Jx%+1 x (x®+3x%+2) (x1°-10)°
cingeg, [_xMs  qepe [ x%x  aenn {2,
Jx®+8x*42 (! +2x5 +2)? x"+1
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1915.[ 1-x" . 1916.[ x*-1 .

x(1+x7) x(x*-5)x°-5x+1)
2
917, |_x"+1 1918. -1
xt+x?+1 xtexdaxZaxal
1919, |2°-% ;. 1920, {x'+1
x8+1 x8+1

1921. Najdéte rekurentni vztah pro vypocet integralu

I = & a-0)
(ax? +bx +c)"

Pomocf tohoto vztahu pak vypoctéte integral

dx
Y L —
f(x 2ix+1)3

NAvon: UvaZujte rovnost 4a{ax? +bx +c) = (2ax +b)? +(dac -b?).

[ b
(x +a)"(x +b)"

(m a n jsou prirozens &sla). Pomocf této substituce pak vypoététe integral
(x-2)*(x +3)’

P :
f ®
(x a)n +1

kde P (x) Je polynorn stupne"n v proménné x.

1922 Subst.1tuc1

1923. Vypoététeé-iﬁtegrél

NAvVOD: PouZijte Taylorovu vétu.

1924, Necht. R(a&) R"(x' ), kde R* _}e rac1onaln1 lomeni funkce. Jake vlastnosti
mi rozklad funkce R(x) na soudet polynomu a parciilnich zlomka?

1925. Vypoctéte integral

v o |
- 1930. r;df— 1931. J‘\/x*'l- x-ldx.

§ 3. INTEGROVANI FUNKGCI S ODMOCNINAMI
dx
E
1+x 2n

§ 3. Integrovani funkci s odmocninami

kde n je piirozené ¢islo.

Pievedte integrovany vyraz na raciondlni lomené funkce a vypoltéte nasledujici

integrily:
"4
1996, [ %% 1927, (- &
R x {125+

1928. rx X y2rx g 1929.

-"‘x+‘/2+x '_" ‘

< N e R

1932. [ p da : 1033, 2% (150
J (+ 1) - 1) %7 (a -x)

1934, r - ds (n je piirozené dislo).
J \/(x —a)" "t -by"”

1935.
1+,/§+,/1 +x

2 _ 1 2
NAvoD: PouZijte rovnost x =[ u2 ] .
Ay BN : CAU

1936. Dokaite, Ze integral

[Rx, (x -ay™(x -b)"dx,
kde R je raciondln{ lomend funkce a p, g a » jsou celd &sla, je elementdrni
funkei, je-li p +g =kn, kde & je celé &islo. '
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Vypodtéte integraly funkci obsahujicich odmocninu kvadratického trojélenu:

f 2
1937, | — % ix. 1938. dx
J Y1 +x+x’ (x+1)yx?+x+1
1939. L_c}_x__ 1940. x2+2x+2dx
J (1 =x)2y/1 -2 X '
2
oarn, [ xd o 1oae, (Lo
J(l +x)yl-x-x2 1+x-x2

Pomoci vztahu

P [ax
[aamnafs.

kde y =yax® +bx +c, P, (x) je pblynom stupné 2, Q__ (x) je polynom stupné »n - 1
a A je realné ¢islo, vypoctéte nasledujici integraly:

o 10
1943, [ %" 4o - 1944, | 9%
y1+2x-x? : : y1+x?

3 2
1948. fx -6x +“x_6dx.

YxZ+dx+3

1945, [ a®-x%dx.

1947, r;{x_. 1948, | &
ng x2+1 xtx?-1
1949. r dx . 1950, | &

J -1 Yx2+8x+1 (x+1)°yx? +2x

1951. Jakou podminku musi spliiovat koeficienty integrovaného vyrazu, aby
integral
a

2
X +bix +e

yax 2ibx +c

Byl algebraickou funkci?

1958. —dx————
S N Vs

§ 3. INTEGROVANI FUNKCT § ODMOCNINAMI

——

yypoitéte integrdl f
- P(x)

Jjomené funkce —— na jednodussi zlomky.
_ Q(x)

1952. xdx . 1953. xdx
(x~l)2\f1+2x—:q2 (xﬂ—l)\fo—x—l

3
1054, | yxZ¥xrl 1955. x dr.
(x +1)* (L +x)y/1 +2x ~x2

1956. f adx 1957.

(e?-3x+2)yx T -4x+3

P(x)

Qx)y

dx, kde y=yax® +bx +c, pomoci rozkladu racionalni

1960. J. x%42

x2+1

Pomoci transformace' kvadratickych trojclenti na kanonicky tvar vypoctéte
nisledujici integraly: N
. 9,
1961. r dx : 1962. xdx :
J P+ )yfx®ex-1 (4 -2 +x2)/2 + 2% -2
[ weldx -

J P ey ex 1

1963.

+[3t

+{

. ) L, . o
1964. Pomoci substituce linedarni lomenou funkci x =

dx
f(x2—x+1)\jx2+x+l

vypoctéte integral

1965. Vypoctéte integral

s
f(x2+2)1/2x2—2x+5
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Pomoci Eulerovych substituci:
1) yax? +bx +c =% fax+z, je-li a>0;
9) Yax? +bx +c=xz = /e, je-li ¢>0;
8) Jalr =& )x -xy) =x(x -x))

vypoctéte nésledujici integraly:
1966, — & 967, | &
1+

x+\fx2+x+l 1/1-2x—x2
1968. [x Jx? 2% +2dx. 1960, [X-yxZ+3x+2
x+yfx?+3x+2
w70, | R
[1+,/x(1+:vc)]2 :

Riiznymi postupy vypoctéte ndsledujici integrély:

1971. dx 1972, | xd&x
\/x2+1— x?-1 (l—acs)\/l—x2

f :

1973.[ d . 1974, | _x+ylea+a®
TR VZefT-xryTax J.,l¢x+\/1+xr+x2:
1076, | (:*-Ddr

1975, | FED
Y e T
tor7, | @Erldx

@2 -Tyxt+1

1979. P+ lyde

e fex?al -

1980. Dokaite, ¥e integrdl

funkce.

1978. _i___
xynteq?-1

v

[Rle, /a5, o vd)dx,

kde R je raciondlni lomen4 funkce, lze pfevést na integril racionilni lomené

{x _2.+ 71-)'¢x7'f*'+: 1 .

§ 4. INTEGROVANI GONIOMETRICKYCH FUNKCE

- Integral diferencidiniho binomu

[xt(a+bxtyde,
kde p, g a r jsou raciondlni &fsla, lze pievést na integraci racionalnich lomenych funkci pouze
v nasledujicich tiech ptipadech (CebySevova véta):

1. Je-li r celé &islo, pouZijeme substituci x =z *, kde n je spolecny jmenovatel zlomkf p a g.

9. Je-li ALY, éislo, pouZijeme substituci g +bx¥=2", kde n je jmenovatel zlomku r.

q

' L p+l P . e . ..
3. Je-li ? +r celé &islo, pouZijeme substituci ax ¥ +b=2", kde n je jmenovatel zlomku 7.
: q

Pro g=1 jsou tyto podminky ekvivalentni podminkim:
1) 7 je celé &islo; 2) p je celé &islo; 3) p +7 je celé slo.

Vypoctéte nasledujic integrily:

f
1981. f x % +xtdx. 1982. idx_ 1983. -—ﬁi‘ﬂf_
- A
1984. [ <% . 1985. ra d 1986. E .
s Jes? RS

1987. 1988. | ‘ 1989. f 3x -xYdx.

v
¥ X

1990. V jakych pfipadech je integral

[yTstas,

kde p je raciondlni &islo, elementdrni funkei? ?

_ 4. Integrovani goniometrickych funkei

Integral funkci tvaru f sin™x cos"xdx, kde m a n jsou celd &isla, lze vypodist pomoci vhodngch ‘
transformaci nebo pfevodem na vyrazy s niZ$imi mocninami. |

Vypotététe nasledujici integrily:
1991. f cos®xdx. 1992. [sin®xdsx.
1994. [sin%x cos’xdx. 1995. [sin*x cos’xdx.

1993. fcosﬁxdx.
1996. f sin®x cos®xdx.
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1997. | sin’x , 1998, | cos’x 1999. [_&
cos*x sin’x sinx

2000. 2001. | 9% | 9002. |___dx
cos’x sin'x costx sin’x cos®x

2004. [ tg®xdx. 2005. [ cotg®xdx.

2003. .
sinx cos'x

2006. | Sin'x 2007 | & . 2008. .___-..‘.jfL.__
cos® x sin®x cos®x cosx y/sin’x

2009[ . 2010. sdx .
tgx tgx

2011. Odvodte rekurentni vztahy pro 1ntegraly
a)l, fsmxdx b)K fcosxdx (n>2)

a pomocf nich vypoctéte integrily f sin®xdx a f cos®xdx.
2012. Odvodte rekurentm vztahy pro integrily

ayg - &; b)K dx
sin"x cos"x

a pomoci nich vypodtéte integrily
dx a . dx '.
sin®x ) cos’x

Nasledujfci integrily se vypoctou s pouZitim téchto vztahi:

(n>2)=_ﬁ

I. sinesinf =%[c03 (o ~P)-cos{a +P)].
II. cosacosp =%{cos(rx -P) +cos (o +BY].

I11. sinacos[}=%[sin(a ~PBy+sinfa +P)].

Vypociéte nasledujici integraly:
2013. sinbx cosxdx. .

2015. | sinx sin> sin X dx-
2 3

2014. [cosx cos2x cos3xdx.
2016. [sinx sin(x +a) sin(x +b)dx.

=S

i

e e e o FE

§ 4. INTEGROVANI GONIOMETRICKYCH FUNKCI

9017. f cos®ax cos®bxdx. 2018. [sin®2x cos?Sxdx.

Nésledujici integrily se vypogtou pomoci rovnosti:
sin (o - B} =sin{(x +a) - (x + B)]
cos(o-By=cos[(x +re)-(x+[)].

Vypoctéte nasledujici integraly:

2019. dx . 2020. dx .
sin(x +a)sin(x +#) sin(x +a)ycos{x +b)
2021. dx . 2022. de
cos(x +a)cos(x +b) sinx ~sina
2028. | ¢ 2024. [tgx tg(x +a)dx.
T ] cosx +cosa '

i'ih'tég’f‘él')} tvary
[ R(sinx,cosx)dx,
kde R je raciondlnf lomend funkce, lze obecné pFevést na integraly raciondinich lomenych funkci

‘pomocf substituce tg-;? =t

a) Jestlife plati rovnost
R{-sinx,cosx) =R (sinx,cosx)

nebo :
R(sinx, -cosx) = - R(sinx, cosx),
pak lze vyhodné pousit substituci cosx =¢, respektive sinx=¢.-
b) JestliZe plati rovnost :

R(-sinx, -cosx) =R (sinx, cosx),
pak lze pouiit substitud tgx =¢.

Vypoctéte nasledujfcf integraly:

2025. dx .
2sinx -cosx +5

2026. dx :
(2 +cosx)sinx

, -
2027. | sim’x 2028. |_ ¥ 0<e<]; fes1.
sinx + 2 cosx 1+ecosx
2029, [_sin’x - 2030. dx .
1 +sin’x a’sin’x +b%cos’x

T e

R A S ST L EEES e

163
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sinx COSJC

2
2031. COSs xdx ) 2032.
Slnx + Cosx

(a?sinx +b%cos’x)®

2033. smxdx

2034.

(asinx +bcosx)> sin’x +cos’x

e

[
2035. J‘ 2036, J“ sinty costs

[ [

[

sm x+COS X 51n x+cos X

sinx COSDC

2037 SIH X - COS x . 2038.

sinx +cosx I +sintx

dx

(sin®x +2 cos? x)

2039. _Hd_.. 2040.
Sm by +COS X

2041. Vypoctéte integral J‘ pfevedenim jmenovatele vyrazu na tvar
s logaritmem.

2042. Dokaite, Ze plati

asinx +bcosx

a,sinx +b, cosx .
dx =Ax +Bln |asinx +bcosx | +C,

asinx +bcosx
kde 4, B a C jsou konstanty.

NAvVOD: Pouiijte rovnost
&, sinx +b cosx =A (asinx +bcosx) + B(acosx -bsinx),

kde 4 a B jsou konstanty.

Vypoctéte nasledujici integrily:

2043. | SIn¥-cOSX 20431 [__ sinx
sinx +2 cosx sinx - 3cosx

dx : ' a, sinx +b_cosx
2044. [ __ax 2045. | “1 190 e
3+5tgx (asinx +b cosx)®

2046. Dokaite, 7e plati
fa sinx +b. cosx +¢ dx

- 3
asinx +bcosx +¢

1 1 1
asinx +bcosx +¢
kde 4, 8 a C jsou konstanty.

dx =Ax+B In|asinx +bcosx +¢ | +Cf

§ 4. INTEGROVANI GONIOMETRICKYCH FUNKCI

vypoctéte nasledujict integraly:

2047. sinx+2cosx -3 d.

2048. SR 7}
sinx - 2 cosx +3 V2 +sinx +cosx

2049. 2sinx +cosx
Isimx +4cosx -2

2050. Dokazte, Ze plati

dx
- i
gsinx +bcosx

alsingx +2b sinx cosx +¢, cos’x )
, - dx=Asinx +Bcosx +C
asinx +bcosx

kde A, B a C jsou konstanty.

‘Vypoctéte nasledujici integraly:

dx.

sinx + 2 cosx

9051. | sin®x -4sinxcosx +3 cos’x dx
sinx +cosx

2052. fsian -sinxcosx +2cos’x

2053. Dokazte, Ze pokud (a —¢)* +6%# 0, pak

alsinx+blcosx .y dul +Br du2
2

J k2u22 +A, ,

a sin®x + 26 sinx cosx +¢ cOs°X k1u12+l1

kde 4, B jsou konstantni koeficienty, A,, A, jsou kofeny rovnice

a-A b
b c-A

=0 (A, #A),u;=(a-A)sinx+bcosx a k, =% (i=1,2).
Vypottéte nasledujici integrily:

2054. 2sinx - cosx -
3sin®x +4 cos®x

2055. (sinx + cosx)dx
2sin?x -4 sinxcosx + 5 cos’x

2056, | sinx -2cosx _sinx-2cosx
1 +4sinxcosx
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2057. Dokaite, Ze

Asinx +Bcosx “C r dx

dx =
{asinx +bcosx)”
kde A, B a C jsou konstantni koeficienty.

(asinx +bcosx)" ™! J(a, sinx +bcosx)" 2

2058. Vypoltéte integral | %
(sinx +2cosx)®

2059. DokaZte, 7e
dx = .Asmx +Br dx «C dx (|ai+]b]),
(a +bcosx)” (a+bcosx)" ! J (@ +bcosx)" ! (a +bcosx)"”

a urcete koehaenty A, B a C, je-li n pfirozené &islo véti{ neZ jedna.

Vypoctéte nasledujici integraly:

, . Ly
2060, [ Sox& . 2061. r&dx__

cosxwil#sinzx' ) cos’x tgx

2062. J'_M 2063, | dx

Y2 +sin2x - ] (1_-sfscos;=;:)2

;.!x'l'.a;

{0<e< )

cos” 5
2064, | ____ < g

sint 12X "%
2

X +a
COS5—

NAvOD: PouZijte substittici £ =
. x-a
sin

2065. Odvodte rekurentni vztah pro integral

n

I = ———| dx (n je piirozené &islo).

vttt 3 e otme e man e s ey e g

§ 5. INTEGROVANI TRANSCENDENTNICH FUNKCI

J—
§5. Integrovani transcendentnich funkci
3066. DokaZte, Ze je-li P(x) polynom stupné n, pak

P @),

n+i

J‘P(x)e“"dx =™ P(x) —Pl(zx) (1) —=
a a

2067. DokaZte, Ze je-li P(x) polynom stupné n, pak

- " @)
[P(x)cosaxdx= Snax Px}- Px) + P ) —...}+
2 4
a a
L COS0X |y PP POx)
a a? at

‘a 'J"P(x) sinaxdx = - “23%
a

P(x) ‘——*—Pﬂgx)+-—--P(4)(x) —.;.}+' '

a a4;
sinax P/(x)- P (x) . POx)
. a’ a’ at

Vypoctéte nasledujici integraly:

2068. fx e 3, 2069. _I‘(ac2 -2x+2)e dx.
2071, [(1 +x)2cosndx. 2072, [x7e < dx.

2074. fe cos®bxdx . 2075. fe = sin® bxdx .
2077. fx e *cosxdx. 2078. fxe *sinxdx.

2080. [ cos®yxdx.

2070. [x®sin5xdx.
2073. [x%eVeix.
2076. f xe *sinxdx .
2079. [ (x - sinx)>dx.

2081. Dokazte ie je-li R raciondlni lomena funkce a pomér hbovolnych dvou
' Elsel za,a

g ") , Je raciondlni ¢islo, pak integral

fR(ea'_x,ea?t,...,ea"x)dx

Je elementirni funkei,

Vypoctéte nédsledujici integraly:

2082, |_dx 2083. | €
(L+e* 1+e*

2084, |
e 1g%-9

2087. dx .
e*-1

2085, dox . 2086. | _1*e” o
| +¥2 4 o3 4 ,l6 (1 +ex/4)9
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2088.[ e"-ldx_

2089.f e +4¢% - 1dx. 2090.[ dx
e*+1

\/1+e“+\/l—e"-

2091. Dokaizte, Ze je-li R je raciondlni lomen4 funkce, jejiZ jmenovatel md pouze

realné kofeny, pak integral
P 8t [Rx)e =dx,

Ize vyjadiit pomoci elementirnich funkci a transcendentn{ funkce

J.e—dx=li(e .+,
X

: ] dx
lix=] —.
Inx

2092, Za jakych pfedpokladi je integral

f p[g]exdx,

a a

1 ] o . .

kde P [—) =a,+—+..+~Zaaya,.,a_jsoukonstanty, disté elementdrni funkci?
X X x R

kde

Vypoctéte ndsledujici integraly:

2093. [1 ——) e *dx. 2094. ( 1 ———-) e *dx. 2095. —dx.
x X x?-%x +2

2096. f (”" . 2097. f xf™ . | |

x + 1)

(x-2)?

Vypoé’téte integrély, které obsahuji Inf{x), arctgf(x), arcsinf{x), arccosf(x), kde f{x)
je algebraicka funkce: '
2098.

2100. ﬂm_x]3dx_
X

2102, f-lng(x +yl+x 2)dx.‘

2104, [ In¥
(1 +x2)3/2

2099, fx Indxdx.

2101. f In{(x+af e +by™]
(x+a)(x+b)

f In"xdx (n je piirozené &islo).

2103. [In{/T % +/T+x)dx.

2105. [x arctg(x +1)dx.

:?106. f\/:; arctg/xdx.

2110. farcsing—‘/_x-dx.

2116 fsinhgxcoshgxdx.

- 2122, [ fighwdx.

§ 6. DALST PRIKLADY INTEGROVANI FUNKGI

2107. [x arcsin(l -x)dx.

T?108- faTCSiﬂ‘/de- 2109. [x arccosidﬁc.

X

2111. f arccosx
(

x 1 -x%)¥2

2113. fx arctgx In(l +x%)dx .

2115. [ln(“\/l +x2)dx_

(1 +x2)3f2

2112. X arccosx
(1 -x 2)3/2

éllf‘- J‘x In1*% gy
2l X

i'yi)-bététe integrily, které obsahuji hyperbolické funkce:

. 2117, fcosh‘*xdx.

2119. [sinhxsinh2xsinh3xdx.

2121. fcotghzxdx.

2123. dx .
sinhx + 2 coshx

2118. fsinhg_.xdx.
2120. [tghxdx.

2123.1 dx .
sinh®x - 4sinhx " coshx +9cosh?x

p1es2 [ dx
0,1 +coshx

i,

2123.3 coshxdx .
3sinhx - 4cos._hx

2125. {sinhax cosbxdx.

2124. {sinhaxsinbxdx.

& 6. Dal3i piiklady integrovini funkci

Vypoctéte nasledujici integraly:
2126, [ 4% 9197, | *%dx |
. xﬁ(l +x2) (1'_x2)3
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2132. }

2134,

[ S—

) \f 2(1 ~x)
2136. ;
,/ 2x2 1

2138. IM.

1+1'fx+x2

2140. [(2x +3)arccos(2x -3)dx.

. -
2142, | Arcsinx 1+x d.
x? 1-x2 -

2144, fx Jx2+l—ln\/x2—ldx.

2146. f,_ﬂ_

2 +sinx)?

2148.

fsmx y 1 +cosx
)
2150, | @*” b, ‘L
[x -1
f'x arctgx

J ¢1+x

3 o
92154. rx arccosx
3

dx.

2152,

v 1_"_"

2156. X 'aI‘CCOIgXde
(1+x2)?

- 2155. J‘x arctgx

In{l +x+x2) dx.
(1+x)?

2141. [x In(4+x Ydx.

2143. ["1‘11*\*1”‘ )dx.

2145. : dx-
1 -x2 x
' -2147 sm4x
sin®x +cos®x
ax?+b
2149. 7. arctgxdx
X

2151, |_*Inx
J(1+ 2)2

2153.

2157. xln(x+\/1+x dc

(lx) '

2158. fﬁl -x?arcsinxdx. 2159. fx(l +x ®)arccotgxdx .
2160. [x*(1 +Inx)dx. 2161. | arcsine®

. “-gx
2162, | _arctge™ 2163. dx
e e (Lee) e R
2164f tgh2x+ldx. 2165, | 1 +sinx ¢ *d
‘ I +cosx '
2166. [ |x|dx. 2167. fx|x|dx.
2168. [ (x+|x|)2dx. 2169. {{|1+x|-|1-x|}dx.
2170. fe “Ixlgy - 2171, fmax(l x dx .

2172, f®(x)dx, kde @(x) je vzdilenost ¢&fsla x od nejblizitho celého &isla.

§ 6. DALS PRIKLADY INTEGROVANI FUNKCI

2173. [[x]|sinnx|dx (x>0).

2174. ff(x)dx,kde_ﬂx)={} :Txl g;g }:Iiill

1 pro -=<x<0,
2175 ff(xdx kde fix)={x+1 pro O<x<l,
2x  pro 1 <x < +eo,

2176. Vypoctéte f xf"(x)dx.

2177. Vypoctéte [f/(2x)dx.

2178. Vypoltéte f(x), je-li f/(x?) = (xl> 0).
2179. Vypottéte f(x), je-li f’(sm x) cos’x.
2180. Vypoctéte f(x}, je-li

i

. _J1 pro O<x<l,
2180 1 Nechf f(x} je monoténni spojitd funkce a 7' (x) jeji inverzni ﬁmkce
Dok
0 azte Ze pokud ff(x)dx F(JC) + C . ‘
pak _ [
“ e =xf @ @y +C

Uvazu_]te ptipady:
a) f(x)=x" (n>0) b) fix)=¢*; c) f(x) =arcsinx a d) f(x) =argtghx.




i KAPITOLA IV

Ur¢ity integral
§ 1. Definice uréitého integrilu

1. DEFINICE RIEMANNOVA INTEGRALY:. Nechf je funkee f{x) definovana nauzavieném intervalu [z, 5]
anecht a=x,<x, <x,<..<x, =b. Pak integrdlem funkce f(x) na intervalu[a,b] nazyvame &islo

!f(x)dx— lim Zf(E)Ax (1)

max |Ax;|~0 i=
kde x,<f<x,  a Ax;=x,  -x,.
Pro existenci limity (1) je nutné a stadi, aby dolni tntegrdini soudet
s E m Az,
£=0
£ a hornd integrding soucet

i
=

: kde m = inf flx) a M = sup fix}, mély stejnou limitu pro max | Ax,|~0.

X EXSH; g X;EXS%, )

Funkce f(x), pro které existuji konetni limita na pravé strané rovnosti (1), kterd nezdvisi na
volbé& E,, se nazjvaji integrovatelné (maji vlastni integral) na pisluiném intervalu. Specidlné plad,
fe: a) spojitd funkce; b) omezens funkce s koneénfm poctem bodi nespojitosti a ¢) omezend
monoténni funkce jsou integrovatelné na libovolném omezeném intervalu.

9. PODMINKA PRO EXISTENCI INTEGRALU. Nutnou a postafujici podminkou pro existenci
integrilu funkce f{x} na intervalu[a,b] je platnost rovnosti

n-1
lim E wl.Ax,.=0,

max jAx,| -0 =0

kde @,=M,-m, je oscilace funkee f{x) na uzavieném intervalu [x,x;, ).

2181. Vypoltéte integrilni soucet S_ funkce

f)=1+x
na intervalu[-1, 4] pomoci jeho rozdéleni na n stejnfch interval a vypoctu
funkénich hodnot ve stiedech £, téchto intervalt ¢=0,1,...,n-1).
2182. Pro funkci f(x) vypoctéte dolni integrilnf soucet S a horni integralni
soucet §_ na zadanych intervalech pomoci jejich rozdéleni na n stejnych ¢asti,

je-li: : _
)f(x) =x3 [2sx<3] b) fx)=yx [0<x<1]; <) f(x =9* 0<x510]

e x

§ 1. DEFINICE URGITEHD INTEGRALU

2183. Vypottéte dolni integrilni soucet funkce f(x)=x* na uzavieném intervalu
[1,2] pomom Jeho rozdélenf na n dasti, jejichi délky tvo¥i geometrickou
posloupnost Cemu je rovna limita tohoto souétu pro n—e?

2184. Pomoci definice integrilu vypoététe

T
g [, +ghat,
kde v, a g jsou konstanty. ?

Pomocf definice integrélu jako limity vhodnych integrilnich sou¢tii vypoctéte ni-
sledujici urcité integraly:
2

2185. fx2dx. 2186. fa *dx (@>0). 2187. fsinxdx.
: 1
0

2188. j'coszdc. 2189. f_ (O<a <b)

it

NAVOD Uvafyjte funkéni hodnoty v bodcch §=fxx.,, (z 0,1,. )

2190. fx'."'dx (O<a<b;m=-1).
NAVOD Vyberte body rozdéleni intervalu tak, aby x, tvofily geometnckou posloupnost
i !

2191. [_ (0<a<b).

2192. Vypodltéte Poissontiv mtegv”al f In{l ~2¢cosx +a )dx pro:
a) je]<1; b)|a|>1. S :

NAVOD PoiiFijte rozklad polynomu & -1 na kvadratické éinitele.

2193. Necht f(x) a ¢(x) jsou spojité funkce na uzavfeném intervalu (a, B].

Dokaite, 7e

b
ma)};‘:}l o Z f( ) ( )szz_"f(x)(p(x)dx,
kdexsE <x,,%<0,<x,, (1=0,1,..,n-1)a Ax,=x; | -x, (xy=a,x_ =b).

2193 I Necht f (x) je omezend a monoténni funkce na uzavieném intervalu {0, 1].

Dokate, 7e [f(x dx - = Zf[ ) [:L]

172

173
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2193.2 Necht f(x) je omezeni a ostie konkdvni funkce (viz dloha 1312) na
uzavieném intervalu [a, &]. DokaZte, Ze

e b
® —a)ﬂa);—f(b)sff(x)dxs(b -a)f[%—’_’] .
2193.3 Nechf f(x)eC®[1, +) a f(x)20, fix)20, f/(x)<0 pro xe[l, +o),

Dokaite, 7e E f(k)=-é f)+[f()dx+0(1) pro n~w.
k=1 1

. SR b _, m _
2193.4 Necht f(x)eC" [a,8] a A =[f(x)dx- bra Yy f(a +k£_"'_].
2 n k=1

Vypottéte lim nA . -
2194. Dokaite, Ze nespojita funkce fx)= sgn(sm ‘n:] je integrovatelnd na
mtervalu [0, 1]. '
2195. DokaZte, Ze Riemannova funkce
pro x iraciondlni,

cp(x) {I/n pro x =m/n,
kde m a n (n>1) jsou vzijemné nesoud&lna celd &sla, je integrovatelna na libo-
volném omezeném intervalu

2196. Dokazte ie funkce f (x) == —[-1-] pro x#0 a f(0)=0 je integrovatelnd na
intervalu 10, 1]. * -
2197. Dokaite, Ze Dirichletova funkce

0 pro x iraciondlni,

x{x) = , . .
,x(, ) {l pro ¥ raciondlni,
nenf integrovatelnd na zidném intervalu.

2198. Necht funkce f(x) je integrovatelnd na intervalu [a, #] a f (x) =sup f (x) pro
b

n; n=1,2,...). Dokaite, Ze lim [ f, (x)dx =

1= g

x,<x<t. | kdex2a* 2 (b-a) (i=0,1,...,
n

b
=[f)dx.

2199. Dokaite, Ze je-li funkce f(x) integrovatelnd na intervalu {a, 8], pak existuje
posloupnost spojitych funkef ¢ (x) (n=1,2,.. .) takovd, 7e

[4

' ff(x)dx“llmf(p {(x)dx pro ascsb

a n-mo g

§ 2. VYPOLCET URCITEHO INTEGHALU POMOCT PRIMITIVNE FUNKCE

2200. Dokaite, Ze je-li omezend funkce f(x) integrovatelnd na intervalu [a, B],
pak je jeji absolutni hodnota |f(x)| také integrovatelna na [a, b], piicem?

b b
‘ff(x)dx’sf |fx)| dx.

2201. Necht funkce f(x) je absolumé& integrovatelni na intervalu [a,0], g.
. :

integral f | f(x)[dx existuje. Je pak tato funkce integrovatelnd na intervalu [a, 5] 7

L 1 pro, x racionalni,
Uvazujte p Fipad f&) { 1 pro x iracionilni.

2202 ‘Necht f(x) e mtegrovatelna funkce na intervalu [a, b], pficem? A<f(x)<B

pro asx<b, a necht! ¢(x) je spojiti funkce definovani na intervalu (A, B].

Dokaite, Ze sloZend funkce ¢ (f(x)) je integrovatelni na [q, b].

- 2203. Jsou-li funkce f(x) a ¢(x) integrovatelné, musi byt slozena funkce FACIEY)

iﬁtégrovatelnzi?‘

0 prox=0,

pro x =0 2 @(x) je Riemannova funkce

Uvazu_]te piipad, kde f(x)= {
(viz uloha 2195).

~ 2204. Nechtfunkce f(x)j Je mtegrovatelnanamtervalu [4, B]. DokaZte, Ze pakje f (x)

integrdiné spofitd, tj. i;m [ |fx +h) -f®)|dx =0, kde [a, b]<[4, B].
: -0 ,
2205. Necht funkce f(x) je integrovateln4 na intervalu [a, b]. Doka¥te, ¥e rovnost
ff 2(x)dx =0 plati tehdy a jen tehdy,jestliie f(x) =0 ve vSech svjch bodech spo-

Jitosti na intervalu [a, b].

$ 2. Vypodet uréitého integrilu pomoci primitivni funkce

"1. NEWTONOV VZOREC PRO VYPOCET URCITEHO INTEGRALU. Necht funkce f{x) je definovani
a spojitd na uzavieném intervalu [a,b] a necht F(x) je jeji primitivni funkee, tj. F'(x)=f(x). Pak
b b

8
Hodnota uréitého integralu f flx)dx funkee f(x) > 0 predstavuje geometricky obsah § &sti roviny

R . a
Vymezené kfivkou y =f{x), osou x a dvéma ptimkami kolmymi k ose x v bodech 2 a &
(viz obr. 9).
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y=f(x)

=1
n
o~

Qbr. 9

] &
[fiodg e =fix)g ()

¢ o

2. METODA PER PARTES PRO wPoéET URGITEHO INTEGRALU. Necht f(x) a g(x)eCV[a,b]. Pak

A _
- [g@)f ).

3. SUBSTITUGNI METODA PRO VYPOCET INTEGRALU. Nechi jsou spinény ndsledujici predpoklady:
1) funkee f(x) je spojitd na uzavieném intervalu [a,b]; 2) funkce @{!) je spojitd a md spojitou
derivaci ¢'(f) na intervalu [, B], kde a =@(a), b=@(B); 3)sloZend funkce f(p(t)) je definovani
a spojita na intervalu [a, B}. Pak

b B
[Fwax=[foune' .

Vypodiéte pomoci Newtonova vzorce nasledujici ur¢ité integrily a zndzornéte
graficky odpovidajici ¢4sti roviny:

8
2206. [ \rdx.
. "_1

s
2208. % _
I+x2
14/3
sinh 2
2210, dx

. 2'
© sinhl \‘1”‘7

2212. f dx
: x2-2xcose +1

2207.

2209.

2211.

ks
fsinxdx.
0

1

dx

3
APR A

2
[11-x|dx.
0 :

§ 2. VYPOCET URCITEHO INTEGRALU POMOGT FRIMITIVN] FUNKCE

dx

(lef <1, |6l <1,ab>0).

2214. .
Y \/(I—Eax+a2)(1 -2bx+47)

SiTe dx .
2215. T (ab=0).
/ a?sin’x +b2cos?x . )

2216. Vysvétlete, pro¢ formalnf pouziti Newtonova vzorce vede k nespravonému
visledku u nasledujicich urcitych integrald:

1 2 1
| dx sec’xd
a-)f-x—; b) [——;; ) d—d~(arctgl]dx.
A A 2+1g°x g X X
- L

2217. Vypoctéte integril f i[ ! ]dx

dx
-1
100n

f v1-cos?xdx.

0

1+21%

2218. Vypoctéte integril

Pomoci detinice a vipodu odpovidajiciho urditého integralu vypocitejte ndsledu-
jict limity:

2219. lim L+—2—+...+nh1 ]
| wewln? n? nl
o
2220. lim 1 + 1 o+ 1 .
: n-ukt+tl n+2 n+n
2221, lim L ot )
. oo n2+12 n2+22. ﬂ2+'n2

2222, lim l(sini +sin 2T e l)n] )
- n-= N n n n

1P+ 4+ 4t

2223. lim = (p>0).

o np

2224. limi{ 1+l+ l+g;...
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Vypoditejte limity:
ey
2225. limﬂ. 2226. lim[ E f( ]
s n H— e n k

Postupnym oddélovinim nekoneéné& malgch vehcm vyssxch radi vypoctéte
nasledujict limity: '

9997 lim [1+1) sin " +[1+2) sin 2%+ of1.271) 4o - Dx|
o T S n) g n n?

n

2228. lim sini'z——l———.
pem N km
2 +cos—

k=1 n

Zn: Jnx +k)(nx +E+1)

2229, lim £°! (x>0).
2
n-e n
1/n 2/n nin
2230. lim 2 + 2 +..,+ 2
now| B +1 1 1
n+— 7+
2 ]
2231. Vypoctéte: .

b b b
d%cafsinx?dx, %{sinxzdx, %{sinxzdx.

2232. Vypodtéte:

3 COo5x .

a) ..fi_f 1+t2dt; b) if dt ;o C) ifcos(ntg)dt.
dx / dxxgm dx

sinx

2233. Vypodtéte nisledujici limity s uréif)?mi integraly:

X X X 2
fcostht f(arctgt)gdt [fe’zdt]
a) lim *——; b) lim 2 ¢) lim 0———-—.

X“O X X= 4 2 X+
yx©+1
feh dx

2233.1 Necht f(x)eC [0, +=) anecht f (x)-A pro X~ +o0 Vypoctete lim f fnx)d

= ()
2234. Dokaite, 7e fe dtz%e" Pro x-~eo.
0 x

DU SR

) ff(x)dx kde f(x)= {

' a)I(a f|x aldx; b) I(e)= f sin’x

§ 2. VYPOCET URCITEHOD INTEGRALU POMOCI PRIMITIVNI FUNKCE

sinx

f@dt

2235 Vypodtéte lim

0 BF
e [ Mdt
Ll 0
2236. Nech f(x) je spojitd kladn4 funkce. DokaZte, Ze funkce
o Jifwde
P x) ==
[
0

j-é: pro x>0 rostouci.
2237 Vypociéte nasledujici mtegraly

pro Oszx<1,-
2-x pro l<xs2

x  pro Osxsi,

o1
b) f f&)dx, kde f(x)=1, 1~

pro {¢s<x<l.
2238. Vyjddtete integrily /(a) jako ﬁmkce parametru « a sestrojte jejich grafy,

Jedi .
de; o) I(a)=f sinxdx ‘
' 1-2acosx +¢”

1+2acosx+o

Metodou per partes vypo&téte nasledujict uréité integraly:
In2

2239, [ xedx.

0

T o 2=
2240. fx sinxdx. 2241. fxgcosxdx.
] 0

/3

e 1
2242.. f |Inx|dx. 2243. farccosxdx. 2244. fxarctgxdx.
0 0

/e

Substitu¢ni metodou vypottéte nasledujic uréité integraly:
‘ 1

0,75
d 73
2245, f i 2246. [x2/a%-x2dx. 2247. f _d=
Y V5 -dx 0 0 s DyxZ+l

n2 ]
2248..-f. e’ -ldx. 9949, farcsm\/g_cdx.
0 ) Vx(T-2)
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1

I
2250. Vypodtéte integral f

1
4% pomoci substituce x ~—=t.
1+x* x

2251. Vysvétlete, proc formalnl pouZiti substituce x =¢ (¢} vede k nespravnym vy.
sledkdm u nisledujicich integrélﬁ

1
2) fdx,kdet=x2’3; b)f dx
Y 1 +x2

2252. Lze pro vypodet integrilu f x 1 -x?dx pouZit substituci x =sint?
0

, kde x——; C)f . kde tgx =t.
1 +sin’x

2253. Lze pro vypocet integrilu f y1-x2dx substituci x=sin¢ pouZit meze

integrace T a g? 0
2254. DokaZte, Ze je-li funkce f(x) spojitd na intervalu [a, b], pak

b 1
[ferdx=0-a)[fla+®-a)r)dx.
a 0

2255. Dokaste rovnost afx (x é) dx = ';'af xfx)dx (@>0).

2256. Ngchﬁ fx) je :pojité funkce 0n;al uzavieném intervalu [A, B]>[a, b].
Vypoctéte %j‘f(x +y)dy pro [a-x,b-x]c[A, B].

2257 Dokaite aieje li fankce f(x) spojiﬁ na intervalu [0, 1], pak plati

n/2

a) ff(smx)dx ff(cosx)dx b) fxf(smx)dx——ff(smx)dx

2258 Dokaite, Ze pro spojitou funkcn f(x) na mtervalu [-{,{] plati nasledujici

vztahy

ff (x)dx= 2ff(x dx, je-li funkee f(x) suda;

2) [ F)dx =0, je-li funkce f(x) lich4.
-1

Uvedené vztahy interpretujte geometricky.

2259. DokaZte, e jedna z primitivnich funkci k sudé funkci je funkei lichou.

Dokaite, Ze kaZda prlmltwm funkce k liché funkei j _]e funkce sudd.

2263. Vypoctéte integral f

""2264 Vypoctéte integral f

§ 2. VYPOCET URGITEHC INTEGRALU POMOGT PRIMITIVN] FUNKCE

2

9260. Vypoltéte integral f (1 *x __1_) e*" " dy pomoci substituce ¢ =x + 1

1/2
2n

2261. Pii vypoctu integralu f [f{x)cosxdx pouiZijte substituci sinx =¢.
0

ol

xsinx

1 +cos>x

1

9262. Vypoctéte integral f

-2nn

dx, kde n je pfirozené ¢islo.

r

dx.

/|
8 gy vde = ErE-D
1 +f x) x3(x-2)
2265. Dokazte, Ze je-li f(x) spojitd periodicka funkce definovani pro -« <x < +e,

ktera ma periodu T, pak
a+T

ff(x)dx ff(x)dx

kde a je libovolné &islo.

2266. Dokazte, Ze pro licha » jsou funkce F(x) =fsin"xdx a Gx)= f cos"xdx pe-
' o 0

riodické s periodou 2% a pro sudd n je kaidi z téchto funkci souctem linedrni

a perlodlcke funkce.
2267 Dokazte, ze funkce F(x)= f fix)dx, kde f(x) je spojitd periodicka funkce

%o
$ perlodou T, je v obecném piipadé souctem linedrni funkce a periodické funkce
s periodou T.

Vypodtéte ndsledujici integraly:

- 1 (4
2268. [x(2-x%%dx.  2269. f x| 2270. [(xInx)’dx.
o J x%+x sl 1
9 ) d 1
2271. [x YT -xdx. o979, | 2% 2273. [x13/1 +3x3dx.
1 2 0

sy
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3 2
2274, farcsm X dx 2275, f dx. .
+x {2 +cosx) (3 +cosx)
0 0
2x
dx _ /2 .
2276, | —m8¥—. © 2297 f sinx sin 2x sin3x dx.
| sm‘*x +cos4x o
2278. f(xsinx)gdx. 2279. fe"coszxdx.
0 0
in2
2280. f sinh*xdx.
0

Pomoci rekurentniho vztahu vypoététe nasledujici mtegraly, které zavisi na
parametru piirozeném &sle n:

n/2 it
2281. ] = f sin"xdx. 2282. 1 = f cos"xdx. 2283. 1 = f tg?"xdx.
0 0 0

1
1

2284. 1 =[(1-xY'dx.  2285.1 f
)]

b
M _ 2n+1
sSInx +COsx -
0 .

" 1
dx_ 2286. =[x "(Inx)'dx.
\jl -x? 0

Pro komplexni funkci f(x) =f, () +if,(x) redlné prom&nné x, kde f, (x}=Ref(x), folxy=1m f(x)

ai?=-1, definujeme

ff(x)dx =ff: {x)dx +1Eff2 (x)dx
Je fejmé, e pak plati: Re[f(x)dx =IRef(x)dx a Im_rf(x)dx =fImf(x)dx.

B LR NI

2288. Pomoci Eulerova vzorce ¢'* =cosx +1sinx dokazte, Ze
2n
f einxe —imxdx ={ O PI'O m#n,
9 21 pro m=n

(n a m jsou pfirozeni Cisla).
b

be~i +i
2289, Doka’te, ie f e@riBxg, € “iP) - grte iy

(e a B jsou konstanty).

o+if

Dokaizte, ie

§ 2. VYPOCET URCITEHO INTEGRALU POMOCT PRIMITIVNI FUNKCE

S . | S | IR e
pomoci Eulerovychvzorci cosx = 5 (¢ +e ™), sinx = % (e** —e ™) vypoltéte nisle-
i

dujfci integraly (m a n jsou pfirozend ¢isla): -

2291. fs‘f““‘ dx.

SInx

ézgo f sin’™x cos>"xdx .
fals 0 ’

0

m

9202. fmdx_

b1
2293, fcos"x cosnxdx.
COSX o

0

n
9294, f sin"xsinnxdx.
0

Vypottéte nasledujici integrily (n je pfirozené Cislo):
T T

2295. fsin”"xcos n+Dxdx. 2296. [cos""xsin (n+1)xadx.
0 0

n/2

2n
2297, I e cos"xdx. 2298, f Incosxcos2nxdx.
0 0

2299. Opakovanym pouZitim metody per partes vypoctéte Enleriiv integrdl proniho
! /

druhu (funkei beta) B(m,n) =fx"" '(1-x)""'dx, kde m a n jsou piirozena &isla.
0

2300. Legendreitv polynom P (x) je definovdn vztahem:

P (x)=

L 4% (e 1y (0=0,1,2,..).
2t dx "

1 - 0 pro m#n

[P )P, )dx={ 2

-1 2n+l

2301. Necht funkce f(x) md vlastni integral na [a, b] a F(x} je funkce takovi, Ze

pro m-=mn,

plati F'(x)=f(x) ve viech bodech intervalu [4,b] aZ na koneény pocet jeho
vnitfnich bodil ¢, (i=1,...,p) a bodii @ a b, kde md funkce F(x) nespojitost
prvniho druhu (,,zobecnena primitivni funkce®). Dokaite, e

b
ff(x)dx lim F(x)-lim F{x) - i [llmF x)-lim F(x){.

a x-b x~a LA xre;
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2302, Necht funkce f(x) ma vlastni integral na uzavieném intervalu [a, b] a necht
F(x)=C+ f FE)E je jejl neurdity integrdl. Dokaite, Ze funkce F(x) je spojitd a ve

viech bodech nespojitosti funkce f(x) plati rovnost F “(x) =f (x) . Co miZzeme Fici
o derivaci funkce F(x) v bodech nespojitosti funkce f(x)? UvaZujte ndsledujici
piipady:

a} f(—;-]=1 (n==x1,%2,..) a f(x})=0 pro x#%; b) f{x)=sgnx.

Vypoctéte neurdité integrély nisledujicich omezenych nespojitych funkei:
2303. f 2304. Isgn(smx)dx 2305. f[x dx (x=20).

2306. [x[x]dx (x0). 2307. [(-1)¥dx.

sgnxdx.

x l,
2308. [f(0dt, f(t) ={[1) . f,f.ﬁ }i} :z.
{ .

Vypoététe uréité integrdly omezenych nespojit;?cl; funkci:
3

2309. [sgnfx -x%)dx 2310. [[¢ *1dx.
1] 0

6 T
2311. [[x]sinlﬁ’fdx. 2312. [xsgn(cosx)dx.
0 0

n+l

2313. f In[x]dx, kde n je pfirozené cislo. -
i

1
2314. fsgn [sin{lnx)]dx.
0

2315. Vypoététe integral f |cosx|y/sinxdx, kde E je mnoZina hodnotz uzaviené¢ho

£ : 3 - -
intervalu [0, 4], pro které m4 integrovany vyraz smysl.

§ 3. Véty o stfedni hodnoté

1. STREDNT HODNOTA FUNKCE. Cislo
) 1
M[fl=—71f(x)dx
i

nazyvime stfedni hodnotou funkce f(x) na intervali [a,b]. Je-ii funkce f{x) spojitd na intervalu
[a,b], pak existuje &islo ce(a,b) tak, Ze M[f]=f{c).

B dtahih b i B ]

b

§ 3. VETY O STREDNI HODNOTE

;9. PRVNI VETA O STREDNI HODNOTE. Necht jsou splnény ndsledujici podminky:

1) funkce f{x) a <p(x) Jsou omezené a obé maji vlastni integral na uzavieném intervalu [a,b];
)funkce lp(x) ma konstantnl znaménko na intervalu @ <x <b. Pak

ff(x)tp(x)dx u[(p(x)dx kde mspusM, m=inf f(x)a M= sup Fix).

2sxsh esxs<h

' "jes'r.lii'ejé navic 3) funkce f{x) spojitd na intervalu [a,b], pak je pu=f(c), pro n&jaké ¢ €[a,b].

3. DRUHA VETA O STREDNT HODNOTE, Necht jsou splnény nasledujici podminky:
1) funkee fix) a @(x) jsou omezené a ob& maji vlastni integral na uzavfeném intervalu [q,5];
2) funkce @(x} je monoténni na intervalu a <x <b. Pak

b

£ b

[ 9 @) dx =1im @) [f(x)dx +lim @ (x) [fix)dx, kde asE<b.
a x~g a xsb E

- JestliZe navic 3} funkce tp(x) je klesajict (v obecném smyslu!) a nezdpornd, pak

j fe)9)dz =Lim ¢ ) [ feydx  (@sEsh);

3) funkce @©(x) je rostouct (v obecném smyslu') a nczapoma, pak

ff(x) @@z -lim g (2 If(x)dx (a<E<b).
*s E

* 2316. Urcete znaménka nisleduyjicich integrali:

2n ’ 2 L
a) fxsinxdx; b} fﬂdx c) fx32"dx; d) fxglnxdx.
0 -2 12

2317. Uréete, které z nasledujicich integrald jsou vEsi:
w2 /2

a) fsin“’xdx, nebo fsiandx?

e"‘dx nebo fe dx?

™ cos?xdx, nebo fe = cos?xdx?

2318 Vypoctete stredm hodnoty nasledujicich funkei na ptisludnych intervalech:
a) Fley=x% na [0, 1]; f(x)=/x na [0, 100]; '

C) J(x)=10+2sinx +3cosx na [0,27]; d) f(x)=sinxsin(x +¢) na [0, 27].
2319 Vypoctete stfedn{ hodnotu délky vektoru privodice s pocitkem v ohnisku

C

O‘-—ﬁ:l Q

elipsy

o P

1 -ecosg

(D<e<l).
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2320, Vypodiéte stfednf hodnotu rychlosti télesa padajiciho volnym padem
s poddtedni rychlosti v,.

2321. Intenzita stfidavého proudu se méni podle vztahu i =7, sin[-gm + ] » kde

i, je jeho amplituda, ¢ je as, T perioda a ¢ poditecni fize. Vypoltéte stfedni
hodnotu druhé mocniny intenzity proudu.

23211 Necht f(x)€C [0, +=) a lim f(x)=A. Vypottéte lim — [ f(t)dt

X = +oo X~ 4w

UvaZujte prlpad f{x) =arctgx.
2322, Necht j’ f(©)dt =xf (0x). Najdéte hodnotu 8, je-li:
. . ;

a) fOy=t" (n>-1);b) f(t)=In¢; ¢) f(t):e‘.éemuserovnaji lim@ a lim0©?

x~0 X~ tea

Pomoci prvni véty o stfedni hodnoté odhadnéte hodnoty nésledujicich integrald:
2n 1 )

10
9 -x
2323. f __dx 2324, f X dx. 2325, f ¢ dsx.
/ 1+0,5cosx / T+x o 0 x+100

2326. DokaZte rovnosti: a) lim [ lx dx =0.; b) lim :sin",xdx =0.
' +x e

L
2326.1 Vypoctéte: a) limf ch ; b} hmff(x)-—- kde a>0, 6>0

e-0d Ex”+1 e0
a f(x)eC[0, 1].
2327. Necht f(x) je spojitd funkce na nzavieném intervalu(a, b] a necht ¢ (x) je
funkce spojitd na [a, b] a diferencovatelna na otevieném intervalu (g, b), pficemz
9'(x)= 0 pro a <x <b. Dokaite druhou vétu o stiedni hodnoté pomoci metody
per partes a prvni véty o stfedni hodnoté. 4

Pomoci druhé véty o stfedni hodnoté¢ odhadnéte hodnoty nasledyjicich integréli:
T . b
sInx

200
2328. |
160 x

b
2330. [sinxgdx (0<a<b).

dx. ' 2329.[8_ sinxdx (€20;,0<a<b).
. - ‘ - x

a

Eo o i

§ 4. NEVLASTNI INTEGRAL

2331. Necht funkce @(x) a (x) jsou integrovatelné na intervalu [g, b] spolu se
svyml druhymi mocninami. Dokaite Schwarzovu nerovnost

2
{f cp(x)l.]r(x)dx} <[ (x)dx f P2 (x)dx.
2332 Nechtfunkce f(x) je spojité dlferencovatelna na uzavieném intervalu [z, 5]

a necht f(a) =0. Dokaite nerovnost M2<(b -a) f f R(x)dx, kde M= sup |f(x}] -

n+p asxsh

9333. Doka’te rovnost lim f %d -0 (p>0).
R f oo X

§ 4. Nevlastni integral

1. DEFINICE NEVLASTNIHO INTEGRALU FUNKGE. JestliZe funkee f(x) je integrovatelnd na kafdém
omezeném intervalu [a,5], pak definujeme

[ flx)ds = lim f ). (1)

b von
‘Jestlize funkce f(x) nenfi omezens v okoli bodu b a m4 vlastnf integral na kaidém intervalu
[a,b-€] (e>0), pak definujeme .
[ f(x)dx =lim f flxydx. _ (2)

0 4

V uvedenych pfipadech, jestlize ex:stu_p koneéné limity (1) nebo (2), fikime, Ze odpovidajici inte-
grily konverguji (jsou konvergentni). V opacném piipadé integrdly divergufi (jsou divergentni).

2. BOLZANOVO-CAUCHYOQVO KRITERIUM KONVERGENCE INTEGRALU. Pro konvergenci integrilu
(1) je nutné a stadd, aby ke kaZdému € > 0 existovalo &islo b =b (&) tak, aby pro libovolnou dvojici b/ > b

ab’>b platila nerovnost
b”

ff(x)dx
bl’

Analogicky se formuluje Bolzanovo-Cauchyovo kritérium pro konvergenci integrilu tvaru (2).

<E.

3. KRITERIA ABSOLUTN{ KONVERGENCE INTEGRALU. Jestlife integraly funkee |f(x)} konverguji,
pak fikdme, Ze odpovidajici integrily (1) a (2) funkce fix) konverguji absoluiné (jsou tedy i neabso-
lutn& konvergentni).

Pruni srounduact kritérium. Necht [f{x) | < F(x) pro x za. JestliZe integral fF(x)dx konverguje, pak

integral f Sflx)ydx konvcrguje absolumé,




URCITY INTEGRAL

Druhé srovndvact kritérium. Necht §1(x) > 0 a @ (x} =0 " (ff (x)) pro x ~ +o. Potom integral f Q) dy

konverguje (diverguje), pravé kdyZ konverguje (diverguje) integral f Y (x)dx. Specmlnc toto
wvrzen{ plati, je-li 9{(x)—Y(x) pro x- +e.

Tieti srovna’vaf:i kritérium.

a) Nechi f(x) =0 { ) pro x -+ Pak integril (1) konverguje prop>1 a diverguje pro p< 1,

X

b) Necht f(x)=0 [ n !

—-X

)ﬂ) pro x »b. Pak integral (2) konverguje pro <1 adivergujepro p= 1.

4. DIRICHLETOVO KRITERIUM KONVERGENCE INTEGRALU. Jsou-li splnény nésledujici podminky:
1) funkce @({x) je monoténni a konverguje k nule pro x— +; 2} funkce flx} md omezenoy
primitivni funkci

Fix)= If(E)dE
Pak integral f Jix)plx)de konverguje (ne nutné absolutnég).

sinx

Specidlné integraly f 0S¥

5. INTEGRAL VE SMYSLU HLAVNI I-IODNOTY JestliZe funkce f(x) je takovd, Ze pro kaidé e>0

existujf vlastni integrily [ fix)dx a ] flx)dx (a<c<b), pak integrdlem ve smystu hlavni hodrnoty
nazjvime slo - e

v.p. ff(x)dx llmh fooyde+ | f(x)dx}

€*E

Analogicky v.p. [ flx)dx = lim j feydx.

a- iy

Vypociéte nasledujici integraly:

+oa 400

1
d
2334. f 2 @>0). 2335. [Inxdx. 2336. f T
x? 0 v 1+x
]. ¥ -0 +oa
2337. f dx 2338. f dx 9339. f - dx -
1-x2 x“+x-2 (x+x+1)
-1 2 ~oa

§ 4. NEVLASTNI INTEGRAL

+o0

'2343. f

2346 f e
0

5347. f F]

. 0

Pomoci rekurentniho vztahu vypocététe hodnoty nasledujicich nevlastnich inte-

grali (n

2351. 1

2353. a)

1x1x+x

2348. ] =

/2
f Insinxdx;
0

1

!
x"dx

" -{ (T=2)(T+2)

2354. Vypoctéte integril f e

E

a) f@) =sinx +cos2(xy2); b fix) =arctgs;

“*cosbxdx (a>0).

“*sinbxdx (a>0).

8% 934 f x lnx

+o

2345. .([ (

arclgx

1 +% 2)3/2

+oa

2352. 1 = f _dx
A cosh™*1x

w2
b) flncosxdx.
0

ysinx

M(f)= hm~ ff(E

X~ 400 X

~Vypoliéte stiedni hodnoty nasledujicich funkc1:
c f(x) =x sinx.

z intervalu (0, +=), pro které ma integrovan;’z vyraz smysl.

7a predpokladu e vyraz na levé strané rovnosti ma smysl.

je prirozené dslo):

fx"e"‘dx.
=f___dL__(ac—b2>O). 235°-In=f dx :
© J (ax®+2bx +c) lx(;vc+1)...(x+n)

o2 |Sinx -cosx ; .. .
2 gdx, kde E je mnoZina téch hodnot x

I 2355. DokaZte rovnost ff[aaﬁ—] dx = ff \/x +4ab)dx kde a>0a >0,
X

2356. Stredni hodnotou ﬁnkce f{x) na intervalu (0, +°°) nazyvame dislo
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2357. Vypoctéte ndsledujfci limity s nevlastnimi integraly:

1 [Y1+t%de [t7le"ds l
. i
a) lim xf oSt 4¢; b) lim L 9limEi——  d) limx® f_()l_dt
x-0 t2 x—o2 X x=0 In— x-0 . im+
¥ X
kde «>0 a f(t) je spojitd funkce na intervalu [0, 1].
Vysetiete konvergenci nasledujicich integrali:
oo 9 +00
2358. f #5"—. 2359. f _Sﬂ—;
x¥-x+1 | x R
2 +os
2360. | 25 2361. fxi’"e‘*dx.
Inx
0
1 - e .
2362. f i’lnq ldx 2363. dx n20).
1+x™
0 0
9364, | 2XC8A% 1 (a#0). o365, | L) 0
x" x"
0 0 .
2366, | X8 1y n>0). 2367. | 3% 4y (n>0).
- 2+x® 1+x”

+o

2
2368. f S X 1x.

X

0

dom

2370.1 f dx

y Yx ex

2373. dex.

)

+oo

dx

/] h 1
N n
2369. f —Pd"—_—, ~ 2370. f x'dx
1 q f 4
0 SIN"XCOS™X

e, [ dRosE

2376.f ; ;
o lxma [ e -ay.

Jx-a
n

o V1-x
SUR 1
2371. f dx - 2372.[ Inx_,
xp +xq 1-x
R 0
as7a. | %X 2375, dx
1 xPlnfx x?(Inx)¥(Inlnx)
(a,<a,<...<a).

IP,, :

§ 4. NEVLASTNI INTEGRAL

2876.1 [ x*|x-1]dx.

dx,kde P_(x) a P, (x) jsouvzijemné nesoudélné polynomy stupné
‘m, respektive n.
Vydetfete konvergenci a absolutni konvergenci nésledujicich integrali:

[ sin
'2378. u

dx.

-.. 0
‘NAvOD: UvaZujte nerovnost |sinx | zsin’x.

o5 +o0

2380, | xPsin(x%dx (g#0).

x+100
0 : 0
. - /2 +oo
2380.1 f sin (secx)dx. 2380.2 f x2cos(e *)dx.
o 0 . 0 ,
) +oz +oo o 1
P sinx o (x i ;)
9381. f X dx (g20). 2382. f S WY
. 1 +xq A x"

AL

+ o

P_(x)
-2383. f P"'( ) snxdx, kde P_{x) a P _(x) jsou polynomya P _(x)>0 pro x>a>0.
X

n
3

, _,}2384 Jestlize f fx)dx konverguys, plati pak nutné, Ze f(x)-0 pro X +oo?

| z-‘Uvazu_]te naslecluya prlpady

3 [sin@ddxs by | (-1,
0 0

2384.1 N(;:Shf pro funkci f(x)EC(”[xO, +e2) takovou, Ze | f(x)| <C pro X, <X < +eo,

Integral f |f(x)|dx konverguje. Dokaite, e pak f(x)~0 pro x~ +e,

*y

“*NAvVOD: Uvazujte integral I fe)f x)dx.

%o
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b
9385. Miizeme konvergentni nevlastni integral f f(x)dx neomezené funkce fix),
. a - rs L o : ra -
definované na intervalu [g, ], povaZovat za limitu odpovidajictho integralniho

n-1
sou¢tu ¥ f(E)Ax;, kde x;sE;<x,
i=0

aAx.=x.  -x7?
i i+1 t

2386. Necht If(x)dx . "
konverguje a ¢ (x) je omezena funkce Konverguje pak nutné i integral
[ feowdx? @

Najdéte odpovidajici piikiad. Co muieme fici o konvergenci integralu (2), jestlize
integral (1) konverguje absolume?

2387. Dokaite, Ze jestliZe mtegral I f(x)dx konvergujea f( (x) je monoténni funkce,

1
pak f(x)—O(—;} .

2388, Necht f(x)je monoténni funkce na intew;lxlu 0 <x< 1, kterd neni omezend

a

v okoli bodu x =0. DokaZte, Ze jestliZe existuje I fx)dx, pak
0

hm—E f [ ] =}0f(x)dx-

n-o Mk=
2389. Dokaite, Ze jestliZe funkce f(x) je mgnoténni a omezend na intervalu

0 <x <a ajestliZe existuje nevlastni integral fx"’ fx)dx, pak
0

limx?*! f(x)=0.
0
2390. Ukazte, Ze plad

a) v.p. f——O b) v.p. f

=0; c) V.p- J‘Sinxdxé().
-x? e

2391. Dokazte, 7e pro x= 0 ex1stuje

lix =v.p. I
Vypoctéte nasledujla mtegraly e
—_— 2393. v.p. .
2392. v.p. I L2 a2 J;gxlnx

400

2394. v.p. f 2395. v.p. [arctgxdx.

&5, VYPOGET OBSAHU ROVINNYCH PLOCH

| §5. Vypocet obsahu rovinnych ploch

]

L OBSAH ROVINNE PLOCHY POPSANE VKARTEZSKYCH SOURADNICICH. Obsah § rovinné plochy A,4,8,B,

(\qz obr. 10} vymezené dvéma spojitymi kiivkami y=y,(x) a y =35(x) ({x)2y,{x)) a dvéma
pﬁmkaml x=a ax=b (2<b) je roven

b
§ = [ yx) -3, () dx.

>4 yh
4 By jy=ys(x)
-
A'E BIEJ' =.7_1_ {(x)
T 0 a P X 0 >
Obr. 10 Qbr. 11

"9, OBSAH ROVINNE PLOCHY VYMEZENE KRIVKOU POPSANOU PARAMETRICKYMI ROVNICEMI.

[ Jestlize x=x(f) a y=y() [0<t<T] jsou parametrické rovnice po ¢istech hladké uzaviené

chnoduche smycky C s orientaci preti sméru hodmovych rucidek a vymczuyu zleva plochu
“s'obsahem § (viz obr. 11), pak je
T

T
§=-[y@x'adt=[x@y Ot
0 a

i P S=%f[x(t)y’(t)-x’(t_)y(_t)]dt.

:3 OBSAH ROVINNE PLOCHY POPSANE V POLARNICH SOURADNICICH. Obsah § plochy 0AB
t(obr 12) vymczene spcgltou kiivkou r=r{p) a dvéma polopfimkami ¢= o a . = =f (z<P) je

B i T

—-roven

B
1
S=-2-Ir2((p)dcp.
[
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2396. Dokaite, ¥e obsah piimé parabolické usece je roven § =§bk, kde b je
délka jeji zakladny a # jeji vy¥ka (viz obr. 13).

Vypodtéte obsahy nésledujicich rovinnych ploch vymezenych kiivkami zadanym;
v kartézskych soufadnicich: " '
2397. ax=y g ay=x 2,

2399. y=2x-x?, x+y=0.
2400.1y=2%,y=2,x=0.

2398.y=x2,x+y=2.
2400. y = |logx|, y=0, x=0,1, x=10.
2400.2 y=(x+1)%, x=sinmny, y=0(0<y<1),

3
2401. y=x, y=x+sin’x (Osx<m). 2402, y= ,y=0.
a?+x?
9 .2
Xy 2__92{ 2 .2
2403. ¥+;2--1. 2404, y2=x2(?-x?).

2405. y2=2px, 27py*=8(x-p)°.

2406. Ax2+2Bxy+Cy=1 {4>1,4AC-B2>0).
3

2407. y2= x “{kisoida), x=2a.
2a-x . t
I RS _ :
2408. x =a lni—f—u—\/ag—yg, y =0 (traktrix).
y
2409, y2=—% _ (x>0,n>-2).  2410. y=¢ |sinx|, y=0 (x20).
(1 +x""2)2

2411.V jakém poméru déli parabola y 2= 2x plochu vymezenou kruznicf x Ziy2=87
2412. Vyjadfete soufadnice bodéi M=(x,y) hyperboly x®-y*=1 jako funkee
obsahu hyperbolické visede § =0M ‘M, kter je vymezena kfivkou hyperboly M ‘M
a polopfimkami OM a OM’, kde 0=(0,0) a M’ =(x, -y) je bod osové soumérny
s bodem M vzhledem k ose x.

Vypoététe obsahy ndsledujicich rovinnych ploch vymezenych kfivkami zadanymi
parametricky:

2413. x =a(t -sinf), y=a(l -cost} (0<ti<2m) (cykloida)a y=0.

2414, x =2t -2, y=22 13,

2415. x =a (cost +tsint), y=a(sint ~tcost) (0st<2m) (zdvitnice) a x =a, y<0.
2416. x =a(2cosi -cos2t), y=a(2sinl -sin2¢).

o rsechny paramelry v tamia | v dallich paragrafech kapitoly IV Jsou Kadnd Zisla._

" 9417.1 x=acost, y=

2426. x° +9® =3axy (Descartestv list).

§ 5. VYPOCET OBSAHU ROVINNYCH PLOCH

ait- 2 9
2417. =%C053t= ¥ =c—b'51n35 ?=a%-5%) (evoluta elipsy).

asin’f

9 +sint

Vypoététe obsahy nasledujicich rovinnych ploch vymezenych kiivkami zadanymi
v poldrnich soufadnicich:
2418. 7 2=a%c0s2¢ (lemniskata). 2419. r =a (1 +cos¢) (kardioida).

2420. 7 =asin 3¢ (trojlistek).

P T
1.r=——am b ]- 1] E— =—.
M2 v 1-cosg (parabola), ¢ 4 ¢ 2
2422, T:_I—Tff::()_stp (0<e<1) (elipsa). 2422.1 r=3+2cos@.
)
0} sin@ 2

2428. r =acos@, ¥ =a(cosQ *sin @) ({%, OJ ES] .

2424. Vypoltéte obsah plochy vymezené kiivkou
@ =7 arctgr

a dvéma polopiimkami ¢ =0 a @=—.

2424.1 Vypoctéte obsah plochy vymezené k¥ivkou
riegi=1.

2424.2 Vypoitéte obsah plochy vymezené ¢asti kiivky
¢=sin(nr) (0<r<l).

. 2424.3 Vypoctéte obsah plochy vymezené kfivkami

@=4r-r3a ¢=0.
2424.4 Vypodiéte obsah plochy vymezené kiivkami@ =r -sinr a ¢ =1.
2425. Vypoctéte obsah plochy vymezené uzavienou smy¢kou zadanou popisem
2at o

r= , .
1+¢* T

Pomoci transformace kartézskfch soufadnic na poldri soufadnice vypoctéte
obsah ploch vymezenych nasledujicimi kifivkami:

2427. x* +9* =022 +y2).

2428. -&2 +y 2)2 =2a%xy (lemniskata).
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Pomodi transformace kartézskych soufadnic do parametrického tvaru vypoctéee
obsah ploch vymezenych nésledujicimi kfivkami:

2429. x ** +y%3 =0 ** (astroida). 2430. x1+y*=ax®y.

NAvoD: Poufijte parametrizaci y =tx.

§ 6. Vypocet délky rovinnych kiivek

1. DELKA ROVINNE KRIVKY V KARTEZSKYCH SOURADNICICH. Délka hladké (spojité diferencova-
telné) kiivky
y=3(x) (azxzb)

MR R

je rovna

b
s=I 1 +9 (x)dx.

2. DELKA ROVINNE KRIVKY ZADANE PARAMETRICKYMI ROVNICEML. JestliZe je kfivka zaddna para-
metrickymi rovnicemi
¥ x=x(),3=y) (,<tsT),

kde x(¢), y(t)eCm[tO,T] » pak je jeji délka rovna

T
s=[ %2 (t) vy 2 (t)dt.

fo

IR LR RHERTS

3. DELKA ROVINNE KRIVKY POPSANE V POLARNIGH SOURADNICICH. Je-li
r=r(p) (@<@<P),
kde r(g) e C*[e, B, pak je déika edpovidajici kiivky rovna

B
s=[{r? (@) +r 2 (p)de.

O délkach prostorovych kfivek pojednéva kapitola VIIL

Vypoctete délky nisledujicich kiivek:
2431. y=x>? (0sx<4). 2432.y2=2px (O<x<xy).

2433. y =acoshZ od bodu (0, a) k bodu (b, &).
a

2434. y=¢" (O<x<x). " 2435. x'—'%y?—-%lny (1<y<e).

a2

2436. y=aln (O<x<b<a). 2437. y =Incosx [Osxsa<g) .

a” —Xx

. [ 2 2
2438, x=a In2VE 7Y LT 0T (0<bsy<a).
y

2440. x 2% +9 2 =0 ¥ (astroida).

3 .
x 0sxs~5~a . =

§ 6. VYPOCET DELKY ROVINNYCH KRIVEK

'ﬁ441. x= %cosst, Y= CTisinst, ¢?=a?-b? (evoluta elipsy).

2442, x =cos'i, ¥ =sin’t. ‘

9443. x =a({ ~sint}, y=a(l -cosf) (0<t<2m).

2444. x =a(cost +{ sint), y =a(sinf -t cost) pro 0<t<2m (zdvitnice).
2445. x=a(sinh{-¢), y=a(coshi-1) (0<t<T).

9445.1 x =cosh’t, y =sinh®t (0<1<T).

2446. r =a @ pro 0<¢@ <27 (Archimedova spirila).

2447. r=ae™® (m>0) pro 0 <r<a.

9448. r=a (1 +cos@).

i _ P T
449, = —_L — <—].
244 T=cosp @] < 5

"~ 92450. 7 =asin® %

2451. r=atghi;- O<p<2m).

2452, (p='—l-(r+-l—) (1sr<3).
2 T

2452.1 ¢ =\/'F (0=r<h).

r

2452.2 q)=fsmhgdg (O<r<R).
SV e

' 0
2452:3 r=1 +cost, cprét—tg% (O<t<T<m).

2453 Dokazte, 7e délka elipsy
- ' x=acost, y=bsin{

je rovna délee jedné viny sinusoidy y =¢ sin%, kde c=ya®-b*.

2454. Parabola 44y =x? se kutali po ose x. Dokaite, e ohnisko paraboly opisuje
fetézovku. . :

2455. Najdéte pomér obsahu plochy, kterd je vymezena smyckou kiivky

(i)

k obsahu plochy kruhu, kterj ma obvod rovny délce smycky této k¥ivky.

RN
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§ 7. Vipocet objemu téles

g
& 1. OBJEM TELESA O ZNAMEM PRUREZU. M4-li t&leso konefny objem V a oznaduje-hi §=5(x)
[z <x <b] obsah priifezu télesa rovinou, kierd je kolmd k ose x v bodé x, pak

[
V=[S e)dx.

nostmi
asxsbh, 0<y<y(x)

kolem osy x, kde y(x) je spojitd jednoznaind funkee, je roven
b
Vx=1tfy2(x)dx.

V obecnéjsim ptipadé je objem vilce vytvofeného rotaci rovinné plochy a<x<b, y, (x) <y sy, (x),
kde y, (x} a y,{x) jsou spojit€ nezdporné funkce, kolem osy x roven

b
§ V=r[lys (x) -y (x)dx.

2456. Vypoctéte objem podkrovni mistnosti tvaru klinu, jehoz zikladnou je
obdélnik o strandch a a b, jehoZ horni hrana je délky ¢ a ktery ma vysku 4.
2457. Vypodtéte objem obelisku (komolého klinu) o vyce h, jehoi rovnobéiné
zakladny majf tvar obdélnikii o strandch délek 4, B a a, b.

2458, Vypoltéte objem komolého kuZele visky k, jeho? zdkladnami jsou elipsy
o délkach poloos A, Baa, b.

2459. Vypoctéte objem rota¢niho paraboloidu o zikladné velikosti S a vySce H.
2460. Necht se velikost plochy fezu S=8(x) trojrozmérného télesa, ktery byl
veden kolmo k ose x, méni podle kvadratické zdvislosti

Sx)=Ax2+Bx+C {a<x<bh],

kde A, B a C jsou konstanty. Dokaite, Ze objem tohoto télesa je roven
+h
sy eas|20) es ),
=|S@+ [ 5 ] ( )]

kde H =b -a (Simpsonovo pravidlo).

2461. Téleso je ddno mnoZinou bodd (x,y,z), kde 0<z<1, piidemz O<x<l,
0<y<l,je-li z raciondlni, a -1<x<0, -1<y<0, je-li z iraciondlni. DokaZte, Ze
objem tohoto télesa neni deﬁnovan ackoli pro odpovidajici integral plati

f S(z)dz L.

2. OBJEM ROTACNIHO TELESA. Objem télesa vytvoieného rotaci rovinné plochy zadané neroy-

§ 7. VYPOCET OBJEMU TELES

yypoctéte objemy téles, kterd jsou ohranidena nasledujicimi plochami:
2 .2 2

2
L XT O y ¢ x* 9%z ..
62, —+—-=1, z=—x, 2=0. 2463. — +=—+— =1 (elipsoid).
?;4 al b2 a a? b2 (* d
cxt oyt AP g . 2__2 .2 ,2__°2
2464.—+y—-—=1,z=tc. 2465, x"+z"=a", y"+z7=a".
AR T
9466, x2+y% 422202, x%+y? =qx. 2467. 22 =b(a-x), x2+y?=ax.
2 .2
2468. X 42 o (0<z<a). 2469.x+y+z2=1,x=0,y=0,z=0.
a® 22
2 2

2470. x% +y% +2% +xy +yz+zx=a*.

247 1. Dokaite, Ze objem télesa vytvofeného rotaci rovinné plochy
asx<b, 0sysyx),

' *kdc -y(x) je jednoznaéni spojiti ﬁmkce kolem osy y, jeroven

v, =2n f x y(x)d
ﬁ};poététe objemy téles ohrani¢enych plochami, které vzniknou _rot_acf nasleduyji-
cich kiivek: _
93 '

2472 y= b[ ) {0 <x<a) kolem osy x.
2473. y=2x-x%,y=0:2) kolem osy x; b} kolem osy y.
2474. y =sinx, y=0, (0 sx<7): a) kolem osy x; b) kolem osy ¥.
: 2
2475 y =b(f] ,y=biZ

a a
2476. y=¢ ™, y=0 (0<x < +»): a) kolem osy x; b) kolem osy y.

2477 5%+ (y-b)?

: a) kolem osy x; b) kolem osy y.

=a? (0 <a<b) kolem osy x.
'.24778 x?-xy+y?=a? kolem osy x.
2479 y=¢ *ysinx (0 <x < +) kolem osy x.

2480 x=a(f-sint),y=a(l -cosf) (0<i<2m): a} kolem osy x; b) kolem osy y;
_,c) kolem piimky y =2a.
'2481. x=a sin’t,y =b cos®t (0<t<27): a) kolem osy x; b) kolem osy y.

"72481.1 Vypoctéte objem télesa, které vznikne rotaci plochy vymezené smyckou
' krwky x=2t-1%, y =4t -3 kolem a) osy x; b) osy y
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2482. Dokazte, Ze objem télesa, které vznikne rotaci rovinné plochy
O<a<p<Pzn, O<r<r(g)
kolem poldrni osy (¢ a r jsou polarni soufadnice), je roven

=2—;£r3(cp)sincpd(p.

Vypoctéte objemy téles, kterd vzniknou rotaci nisledujicich rovinnych ploch
zadanych v polarnich soufadnicich:

2483. r=a(l +cosg) (0<p<2n):

a} kolem poldrni osy; b) kolem pt¥imky r cos¢ = -2,

2484. (x2 +y 2)2 =q 26:2 -3 2): a) kolem osy x; b) kolem osy y ; ¢} kolem p¥imky y=x.

NAvVQD: Pouiijte transformaci na poldrni soufadnice.

2484.1 Vypoctéte objem télesa, které je vytvofené rotaci rovinné. plochy vyme.-
zené obloukem Archimedovy spiraly -

r=a@ @>0;0<p<m)
kolem poldrni osy.

2484.2 Vypodi€te objem télesa vzniklého rotaci plochy vymezené kiivkami
@=mr?, ¢ =7 kolem poldrnf osy.

2485. Vypoctéte objem télesa vzniklého rotaci plochy a<r <ay2sin2¢ kolem
poldrni osy. :

§ 8. Vypocet povrchu rotaénich ploch

Pouvrch rotaéni plochy vznikl€ rotaci hladké kiivky AB kolem osy x.je ddn vzorcem

B
P=2x[|y|ds,
A

Gl e et R ]

kde ds je diferencidl délky kfivky.

Vypoctcte povrchy ploch vznikljch rotaci nasledujicich kfivek:

2486. y =x J‘i (0 <x<a) kolem osy x. 2487. y=acos%(|x|sb) kolem osy x.
a .. . : .

2488, y=tgx {O X< %] kolem osy x.

2489. 3% =2px (O<x <x,): a) kolem osy x; b) kolem osy y.
2,2 :

2490. E'E + y_2 =1 (0<h<a): a) kolem osy x;‘ b) kolem osjr ¥.
a* b '

§ 8. VYPOCET MOMENTU. SOURADNICE TEZISTE

2491. x*+(y-b)?=a? (b>a) kolem oSy x.
9492. x4 +y -2 kolem OSY X.
2498, y =acosh (Jx] <&): a) kolem osy x; b) kolem osy y.
: a .

' [2_.3
9494, xx=gIn22VE 7Y ~ya?®-y? kolem osy x.
¥
2495. x=a(t-sin¢), y=a(l -cost) (0<t<2m): a) kolem osy x; b) kolem osy y;
c) kolem piimky y=2q,
2496. x =acos’t, y =asin’f kolem piimky y =x.

2497. r =a(1 + cos @) kolem poldrnf osy.
2498. 7% =a?cos2¢:a) kolem poldrni osy; b) kolern osy ¢ = g ; Y kolemosy ¢ = g

2499 Téleso je vytvofeno rotaci plochy vymezené parabolou ay =a®-x? a osou x

__kolem osy. x. Najdéte pomér mezi povrchem tohoto.rota¢niho télesa a povrchem

koule 0 stejném objemu.
2500. Plocha vymezend parabolou y2=2px a pifmkou x =p/2 rotuje kolem
piimky y =p. Spoctéte objem a povrch takto vzniklého rotaéniho télesa.

§9.V

i

Fl

ocet momenti,

Soutadnice téziste

»1::MOMENTY. JestliZe v roviné€ xy hmotnost M s hustotou g@=p{) vyplinje néjaké amezené
“kontinuum Q @isecku, kiivku, rovinnou plochu) a Je-li w=w(y) odpovidajici mira {délka disecky
nebo kiivky, obsah plochy) té &sti kontinua Q, pro jejiZ body plati, Ze jejich soufadnice nejsou
vétdine? y, pak se k-tm momentem hmotnosti M vzhledem k ose x nazjvi &islo
M= tim Y 000y A00) =0y o) =0,1,2,..),

P _ maxAyl--.D,';l o Q .

kde Ay =y.-y, | a Aw()=w(y) ~wiy_ )

Jako speciilni pFipady ziskime pro k =0 hmotnost M, pro k=1 staticky monent a pro k=2 moment
setrvacnosti. Analogicky se definuji hmotnostni momenty vzhledem k soufadnicovym rovinim.
Je-li 0 =1, pak se odpovidajici moment nazyv4 geometrickym (moment dsecky nebo kfivky, rovinné
‘plochy, &lesa atd.). : Coo '

2. TEZISTE. Soufadnice (25§t {x, 5’0) homdgehni rovinné;piochj/ o obsahu § se definuji pomoci
yzorcd
- Ml(v) Ml(x]

X =—.._...’ L —

T : Ty N7 $ :

kde M® M ,(x) Jjsou geometrické statické momenty této plochy vzhledem k osim yax.

2501. Vypoctéte statickj moment a moment setrvaénosti piilkruznice o poloméru
a'vzhledem k priiméru, keery prochézi obéma koncovymi body této plilkruznice.
Ry, s ORI A R IS e e RS
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2501.1 Vypoctéte statickj moment oblouku paraboly y*=2px (0<x<p/2) vzhle.
dem k pfimce x =/2.

2502. Vypoctéte statickf moment a moment setrvacnosti homogenni desticky
tvaru trojihelnika o zdkladné b a vyice & vzhledem k jeho zdkladné (g=1).
2502.1 Vypoctéte momenty setrvacnostl I =M, “ a I =M, o parabolické Gsece

vymezené kiivkami ay=2ax - -x2 (@a>0)ay=0 vzhledem kosimx ay.
Cemu se rovnaji poloméry setrvacnosti T AT, to jest veli¢iny urdené vztahy

=S}, 1=81],
kde S je plocha této usece?
2503. Vypodiéte momenty setrvaénosti homogenni ellptu:ke desticky s poloosami
o velikostech ¢ a & vzhledem k jejim hlavnim osdm (p=1).
2504. Vypociéte staticky moment a moment setrvacnosti homogenntho kru.
hového kujele s polomérem zdkladny r a vy3kou h vzhledem k roviné jeho
podstavy (g=1).
2504.1 Vypoltéte moment setrva¢nosti homogennf koule o poloméru R a hmot-
nosti M vzhledem k jejimu priméru.
2505. Dokazte prvni Guldinovu vétu: po‘}rch télesa, které vzniklo rotaci rovinné
kiivky C kolem osy, kterd ji neproting a ktera leZi v roviné této kiivky, se rovna
soudinu jeji délky a délky kruznice opisované t&#istém kfivky C.
2506. Dokazte druhou Guldinovu vétu: objem télesa, které vzniklo rotaci rovinné
plochy S kolem osy, ktera ji neprotin a kterd leZi v roviné této plochy, se rovna

W v

soudinu obsahu plochy § a délky kruZhice opisované t€zidtém této plochy.

2507. Uréete soufadnice t&Zi$té kruhového oblouku zadaného rovnicemi x = cos¢,

y=asing (|¢|sazm). \
2508. Urcete soufadnice t¢Zi8te plochy vymezene parabolam; ax y ;ay=x* (a>0).

oty

2509. Urcete soufadnice téZi8té plochy —+ i— <1 (0sx<a,0<y<b).

Wt

2510. Uréete soufadnice t22i§te homogenm polokoule o poloméru a.

2511. Urlete soufadnice t&Zi¥t€ (p,, r,) ¢asti logaritmické spiraly r =ae " (m > ()
odbodu (-<, 0) k bodu (¢, ). Jakou kiivku opisuje bod (¢, 7)) pfi pohybu bodu
(p,7)? .

2512. Uréete soufadnice t&%i8t& plochy vymezené kfivkou r=a(l +cos¢).

2513. Uréete soufadnice t&%i3té plochy, kterd je vymezena prvnim obloukem
cykloidy x =a(t -sinf), y=a(l -cost) (0<t<2m) a osou x. :

Wty

2514. Uréete soufadnice t&%i$t& t&lesa vzniklého rotaci plochy Osxs<a, y*<2px
kolem osy x.

wr

2515. Urcete soufadnice t&7i3té polosféry x2+y? +z%=a? (z20). |

]
i
(i
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§10. ULOMHY Z MECHANIKY A FYZIKY

" §10. Ulohy z mechaniky a fyzik

Reite ndsledujici ulohy sestavemrn odpovidajicich integrilnich sou¢td a vypoéte-
ptmjejich limit.

2516. UrCete hmotnost ty¢e délky /=10 m, jestlize se jeji hustota méni podle
vtahu 8 =6 +0,3x kg/m, kde x je vzddlenost od jednoho konce tyée.
#517. Vypoctéte velikost price, kterd se vykond zvednutim télesa o hmotnosti m
zpovrchu Zemé o poloméru R do vysky k. Jakd bude velikost této préce, jestlize
se téleso vzdali do nekonecna?

2518. Vypoct€te velikost price, kterd se vykond roztaZenfm pruziny o 10 cm,
jestliZe se silou 1 N roztdhne o 1 cm.
NAvop: PouZijte Hookiv zikon.

2519 Vilec o priiméru 20 cm a vi¥ce 80 cm je naplnen parou pod tlakem 10 kPa.

~_Vypoctéte prici potiebnou k zmeneni.objemu pidry na polovmu pii konstantni

teploté.

2520. Vypoctéte sflu, kterou piisobi voda na kolmou sténu tvaru pfilkruhu o polo-
méru a, ktery ma primér v Grovni vodni hladiny.

2521. Vypoctéte silu, kterou pilisobi voda na kolmou sténu tvaru lichob&inika

~ ospodni zikladng délky a = 10 m, horni zdkladn& délky 6 =6 ma o vy¥ce £ =5m,

jeli spodni zékladna ¢ =20 m pod drovni vodni hladiny.

Rete nasledujici dlohy sestavenfm a FeSenim piislusngch diferencidlnich rovnic:
2522. Rychlost hmotného bodu se méni podle vztahu v =v, +at. Jakou drihu
urazi tento bod béhem ¢asového intervalu [0, 7°]?

2523. Homogenni koule o poloméru R a hustot& & rotuje kolem svého praméru
dhlovou rychlosti w. Uréete kinetickou energii koule.
2524. Jakou silou pitahuje hmotnd pfimka s konstantni hustotou g, hmotny bod

0 hmotnosti m, ktery se nalézd ve vzdilenosti a od této pfimky?

2525. Vypoctéte silu, kterou pfitahuje homogenni kruhové desticka o poloméru
@ akonstantni ploiné hustoté & » hmotny bod P o hmotnosti m, ktery je umistén
na pfimce prochaizejici jejim sl:redem Q, kolmé k roviné kruhu, je-li vzdilenost PQ
tohoto bodu od stfedu kruhu rovna &.

2526. Podle Toricelliho zikona je rychlost vytékdn{ kapaliny z nadoby rovna
v=cy2gh, kde g je gravitacni zrychleni, £ je vy$ka hladiny kapaliny nad vyto-
kovym otvorem a ¢=0,6 je empiricky urleny koeficient. Kdy se vyprazdni
naplnéni a kolmo postavend vilcova nddoba o primeéru zdkladny D=1 m, vyice
H=2m, ze které vyték4 tekutina otvorem o prumeru d=1cm ve dn&?
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2527. Jaky tvar musi mit rotaéné symetrickd niddoba, aby smiZovdni hladiny
kapaliny pii vytékdni z ni bylo rovhomérné?

2528. Rychlost radioaktivniho rozpadu radia je v kazdém okamziku imérna jehg
okamZitému mnoizstvi. Najdéte zikon radioaktivniho rozpadu radia, jestlize na
poditku rozpadu v ¢ase ¢ =0 bylo jeho mnoZstvi ¢, a béhem doby T=1600]let se
jeho mnozstvi zmensi na polovinu.

2529. V pifpadé procesu druhého fddu je rychlost chemické reakce, kterd ménj
litku A na latku B, imérna soudinu koncentraci téchto litek. Vypoététe
procentudlni mnozstvi latky B v reakdni smési v éase £=1 h, jestlize v Case =0
bylo ve smési 20% latky B a v ¢ase ¢ =15 min bylo ve smési této litky 80%.
2530. Podle Hookova zdkona je relativni prodlouZent ty¢e € imérné napétisily o
v jejim piisluiném prifezu, tj. plati e =0/E, kde E je Youngiv modul v tahu,
Vypoctéte prodlouZeni namihaného lesa tvaru kuZele upevnéného zikladnoy
a obriceného vrcholem-smérem dold, -jestlize jeho zdkladna mé polomér R,
vy$ka kuZele je H a jeho hustota .

§ 11, PiibliZzné metody vypoétu uréitych integrali

1. OBDELNIKOVE PRAVIDLO. ]estliié funkce y=y x) je spojité a md derivace dostatecné vysokych
b-

rzidu na omezeném uzavrenérn intervalu [a b] ah= =27e, x;=a+ih (i=0,1,.,n), y,=¥{x}, pak
, 1

fy(x}dx =hyg *y, o+, l)+R-

k- a)h
" 2

kde

R =——y'(E) (asF,sb)

2. LICHOBEZNIKOVE PRAVIDLO. Za vyie uvedenych piedpokladi plati
b

; - fy'(x)dx =h [y" -
3

- a,)h

In ¥yl'+y2 +oty ) +R

R, =- fUEY {a SE’sb)

3. PARABOLICKE PRAVIDLO (Smrsomovo PRAVIDLO). Necht n =2k . Pak
b
h
? [y{x)dngig‘}-ry%) +4(yl+313+
3 kde

+y2kﬁl}+2(y2 TPt +y2i%2)] +R ..

= _te- ayh’ 1) (g “
R =- 80 A (a s& <b).

—45'3‘5‘. [ Jrdx (n=4).
. 1

§ 11. PRIBLIZNE METODY VYPOCTU URCITYCH INTEGRALU

2531 Vypoctéte piiblizné podle obdelm’koveho prawdla (n= 12) mtegral
2n

f xsinxdx

a.vysledek porovnejte s piesnym vysledkem

Pomoci lichobéinikového pravidla vypodtéte ptiblizné nasledujici integraly a od-
h'adnéfe chybu vypoctu:
. n/2

. l
, d ’
9532. f X (m=8). 2533, f 4% n=12). 2534, f 1-LsinZcdx (n=6).
: 1+x 1+x3 4
: 0 0 4]

P0m0c1 Simpsonova pravidla vypoctéte nasledu_]la mtegraly

253%6. f\/3 +cosxdx (n=6).

=2
2537. f SINE e (n=10). 2538. f _xdx 6.
A In(l +x}
Q0

2539. Pro n=10 vypodtéte Catalanm{u konstantu

G:farctgxdx'

X

1 Q

X T v e -5
5 Vypociéte ¢islo m s pfesnostina. 107,

25{40 Pomoci vzorce — = f
’ 4 1 +x

2541.Vyp0€téte f e*’dx s presnosti na 0,001.

2542 Vypoctéte f(e 1)ln dx s pfesnostfna 10° .

2543. S presnosti na 0,001 vypoctéte pravdépodobnostni integril f

2544. Vypoctéte piiblizné obvod elipsy, kterd ma poloosy délek a = 10 a b=6.

2545 Sestrojte graf funkce y= f -ililﬁdt (0<x<2m) po jednotlivich bodech. Pii

konstruka pouzgte délku kroku Ax=m/3.




KAPITOLA V
Rady

§ 1. Ciselné fady. Kritéria konvergence fad s konstantnim znaménkem

1. OBECNE POJMY. Ciselnd fada
a, +"12+---+‘1,,+---=E a, (1)
a=1
se nazyva konvergentni, existuje-li kone&na limita
himS, =S (soudet fady),
e

kde $_=a, +a,+...+a .V opatném piipade se Fada (1) nazyva divergentni.

2. BOLZANOVO-CAUCHYOVO KRITERTUM. Rada (1) konverguje tehdy a jen tehdy, jestliZe ke
kazdému £ >0 existuje &islo N =N (g) takové, e pro viechna pfirozend &sla n > N a p je splnéna

nerovnost nt
15,.,-5.]= igl a<e.
Specidlng, konverguje-li fada (1), pak
' lima_=0.

n-o

¢ 3. PrVNI SROVNAVACI KRITERIUM. M&jme kromé fady (1) je3eé fadu
bl+b2+...+bn+....=,§ b (2)
JestliZe pro kaidé n=n, plati nerovnost

O<a, sb

pak 1) z konvergence Fady (2) vyplyva konvergence fady (1); 2) z divergence rady (1) vyplyvd
divergence Fady (2). Specidlng, je-li a, ~b, pro n—w~, pak tady s kladnymi ¢leny (1) a {2) bud obg
E konverguji, nebo obé diverguji.

4. DRUHE SROVNAVACE KRITERIUM. Je-li [ 1 ] n
a =0

nt

pak a} pro $ > 1 fada (1) konverguje a b) pro <1 diverguje.

5. D ALEMBERTOVO PODILOVE KRITERIUM, Je-li ¢, >0 (n=1,2,...) a

a -
]im"_] =q,

n-w E"

pak a) pro g <1 je fada (1) konvergentni a b) pro ¢> 1 je divergentni.

§ 1. CISELNE RADY. KRITERIA KONVERGENGE RAD S KONSTANTNIM ZNAMENKEM

6. CAUCHYOVO ODMOCNINOVE KRITERIUM. Je-li a 20 (r=12.)a
lim'fa_ =g,
o=
‘pak a) pro g <1 je fada (1) konvergentni a b} pro 4> 1 je divergentni.
7. RAABEOVO KMITERIUM. Je-li o >0 (n=1,2,..) a

li S P
imn =1 =p,
LEL A

pak a) pro p> 1 je fada (1) konvergentni a b) pro p <1 je divergentni.

8. GAUSSOVO KRITERIUM. Je-lia_ >0 (n=1,2,..) a

a 0
2 =1+E+_",
aﬂ"l n nht

‘kde | 8,/ <Cae>0, pak a) pro A>1 je fada (1) konvergentni a b) pro A <1 je divergentni;
) pro A =1 je fada (1) konvergentni, je-li ;2> 1, a divergemtnf, je-li ps 1.

+9. INTEGRALNI CAUCHYOVO KRITERIUM. Necht f(x) (x21) je nezdpornd nerostouci spojitd
funkce. Pak je Fada o

3. fm)

e

konvergentni nebo divergentni pravé wehdy, je-li konvergenini nebo divergenini integral

[ fwyds.

Dokazte konvergenci nésledujicich fad a najdéte jejich soucty:
n-1
2546 I- L 1-——1-+. L+ /
2 4 8 gn-1

2547. -}-+l + i+i o+ i+i +...
9 5 22 32 271 gn

- 2548, —+ T+ x4+

2549,

+ + +...+ +
1-2 23 3.4 n{n+1)
1 1 1

+.. .+

2550. + +
(3n-2)(3n +1)

1-4 4-7

2551, a) gsina+g”sin20+...+q "sinno+..;

b) gcosa+qcos2a+...+g"cosna +.

.. (lgl<1).
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2552, ijl (rr2-2/m 1 +yn).

2553. Vysetfete konvergenci fady Y sinnx.
n=1
NAvoD: Ukaite, %e pro x #kx (k je celé ¢islo) nenf mo#né, aby platilo sinnx~0 pro n- !

w

2554, Dokaite, 3¢ jestlize je fada Y a, konvergentni, pak je fada

n=1

s Pn-l_l
Z] A kded = Z,, a, (,=1p,<py<...),

kterd se zisk4 uzdvorkovanim élent pivodni fady beze zmény jejich potadyi, take
konvergentni a mi tentyZ soudet. Opaéné to viak neplati. Najdéte protipfiklad,

2555. Dokaite, Ze jsou-li ¢leny fady Z a, kladné a fada Z A, kterd se ziski

n=1
uzévorkovanim &lentt pivodni fady, je konvergentni, pak je puvodm fada také
konvergentni.

Vysetiete konvergenci nasledujicich fad:
2556. 1 -1+1-1+1-1+...

2557. 0,001 +/0,001 + /0,001 +...

1 1 1 1
2558- 'ﬁ+§+a+...+;+...
2559, 1+-1—+l+—1-+..:+ 1 +.
3 5 7 2n-1
2560. 1 + 1 + 1 +...+ L +
1001 2001 3001 1000n +1
2 3 n '
2561. 1+—+—+... + +.
3 5 -1
2562. 1+L+i+...+————l—-—+...
32 52 (9n - 1)°
2563. L+ ! ! ..+;+...
V2 2‘/_ 3\/_ nyn+l

1 l

T3 \/ﬁ ey

2564.

2565. Dokaite, ¥e &selnd fada, kterda m4 eny inverzni dendim aritmetické
posloupnosu (ma li tato inverze smysl), Je dwergentm '

§ 1. CiSELNE RADY. KRITERIA KONVERGENCE RAD S KONSTANTNIM ZNAMENKEM

2566. Dokaite, Ze jsou-li ¥ady Z a, a E b, konvergentni a a,sc <b , pak je

o n=1 n=l =
fada Z:l ¢, také konvergentni. Co mfiZeme fici o konvergenci fady 2:1 ¢, s Jsou-li
n= n=
~ M /p
fady Z:l a_ a Z:i b, divergentni:
a= n=

2567. Mé&jme dvé divergentni fady Z_; a a z_:l b_snezapornymidleny. Co miZe-
me Fici o konvergenci fad e "

a)Emma b)ab)Emaxa b)?

2568. Dokazte, Ze je-li fada Z a_ (a,>0) konvergentni, pak je také fada E a,

n=1

konvergentni. Obracené tvrzeni neplatl Uved’te protipiiklady.

—2569. Dokaite, Ze jsou-li fady E a, a E b konvergentnl pak jsou konver-

=1

gentni také fady E la b |, E(a +b) E 1,

~2570. DokalZte, Ze je-li limna =a =0, pak je fada E a_ divergentni.
e n=1
9571. Dokajte, Je je-li fada Y a_ s kladnymi a ostie klesajicimi ¢leny konver-
genr_ni pak limna_=0. ne!

2572. KonvergUJe fada E a_,je-li 11m fn@c 2-!»...+avﬂ+ﬁ)=0
pro $=1,2,3,. i

‘DokaZte konvergenci nisledujicich fad pomoci Bolzanova-Cauchyova kritéria:

0,1 a,
2573. a',0+—.+___+ (la |<10
o 10 00
9574, DX sin 2x . G snnx
92 on
‘gpnp. COSX ~cos2x  cos2x-cosdx  cosmx-cos(n+l)x
2 "
2 n
25755 SO3% , COSX L LOS%
12 22 n?
NAvoD: Poufijte nerovnost
— 1 :;—_1. (n =2,3 )
nt nn-1) n-1 =
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Dokaite divergenci nisledujicich fad pomoci Bolzanova-Cauchyova kritéria:

2576. 1+l+—1-+...+l+...
2 3

n
o577, 1+4-L, 1,1 1,
2 34 5 6
5771 —L_+_ 1 . 1

yni{n+1)

VySetfete konvergenci nésledujicich fad pomoci srovnavacich kritérii, d Alem-
bertova podilového kritéria nebo pomoci Cauchyova odmocninového kritéria:

2 3 n
9578, 1000+ 1000 . 1000 R 1000 .

1t 21 31 al
2 2 2
o579, LD, 20 nh)
21 4! (2n)!
2580. £+3-!-+£+...+n—!+...
1 92 33 n"
-1 2.0 3. ay L
2581, 2) 2-1! 2%.21 2 3.+-._+2n.+ ;
1 92 33 n"
3-1t g%2.21 3331 §7n!
b) + + +...+ +
1 92 g3 "
2 2 2 2
2582, COMMRCD ) +...+—(n!) +
2 24 29 2112
2583 1000 , 1000-1001  1000-1001-1002
1 1-3 1:3-5

n-1
- 1/n, je-li n=m? pro nékteré pfirozené &slo m,
2585.1 Y. a_, kde a_= s . 9 ) . .
% " |1/n* je-li m#m* pro viechna pfirozend &isla m.

. "
2585.2 Ean —-—gl—x}——k—a—.
2 k1 1+x®+costha

§ 1. CISELNE RADY. KRITERIA KONVERGENCE RAD S KONSTANTNIM ZNAMENKEM

n nn+lln

nn—l
2589. (2‘".2"‘??, + 1)(n+l)l2

n= n=1

e 5 -
n n-1}nt-1
.1 . . .
o1 ) oz ) (2]
n=1 n=2

- fﬂNA\'OD: ﬁ =2cos %

2591. Dokazte, 7e je-li llm—— =g (a,>0), pak a —o%f), kde ¢, >g.

noes a

. 9501.1 Necht pro fadu Ea" (2, >0), kterd md viechny ¢leny kladné, je splnéna
n=1

. -aﬂ +1
nerovnost
' a
_ n
plati odhad AR
' R za

n n

<@ <1 pronzny. Dokaite, e pro zbytekfady R =a__ +a_ ,+...

0 1 Py pro 'J’I.Zﬂ.o.

(2n)1?

@ , kde (2n)!1=2-4...2n, stadi vzit, aby se od-

2591.2 Kolik ¢lent fady E [

.....powdajlm castecny sou(‘fet S, se lisil od souctu S této fady o méné nez £=10"°?

_ 2592 Dokazte, fe je-li lin

—q <1 (a,>0), pak je fada Zan konvergentni.
- n=1 .
Opac":né tvrzeni neplati. Uvazujte piipad
1 1.1 1 1 1

—_t—= _—t—t—+

2 3 22 32 23 33

2593. Dokazte, Ze existuje-li pro fadu Z a, (a,>0) limita
n=1

lim

- a
noeo n

KNIHOVNA MAT.FYZ FAKULTY
Matematické oddéleni

‘ Sokolovska 83
i 186 75 Praha 8
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limﬂ‘/a—n =q. {2)
Opaéné tvrzenf neplati: jestlize existuje limita (2), pak limita (1) nemusi existovat,
Uvazujte piipad -
8+(-1)"
on + 17

n=1

pak existuje také limita

2594. Dokate, Ze je-li lim \/_ g (s, 20), pak a) pro ¢ <1 je fada E a, konver-

n-w =1

gentni; b) pro ¢>1 je tato fada divergentni (zobecnéné Cauchyovo odmocninové
kritérium).

Vysetiete konvergenci nasledujicich fad:

_1y 2nm/3
2595. Z 2+ 2596. E acos’nn/3
2" 2"
n=1 : n=1
3'/; (__1)11" - 1 +cosn 9 -Inm
n + .
L d .
2597. E gn 2597 [[2 +cosn]
n=1 ) "=

Vysetiete konvergenci nasledujicich fad s pouZitim Raabeova a Gaussova kritéria:

1Y (1-3Y2 [1-3-5)7
w3 (53) )

a a(a+d) a(a+d)(a+2d)
2599. b b(b+d) b(b+d)(b+2d)

nle . \/m .
2600'Enﬂ+ﬁ' e '“2601}2(2+ﬁ)(2+ 2)“.(2“/7_1)

n=1

nin? Ep(p .. (p+n 1)
. 0). 2603. ,
2602 ;q@mm(qm) (¢>0) T

i 1-3-5...2n-1)IF 1
2604. 246(27’1) nt

2605. E[p@”)'”(pm_l)]a (p>0,4>0).

...(@>0,5>0,d>0).

nq

o glg+1)...(g+n-1)

# N " n
- W__o - ( 1- \/a—n) o 2p>1 pron>ng,,

§ 1. CiseLNE RADY. KRITERIA KONVERGENCE RAD S KONSTANTNIM ZNAMENKEM

9606, Dokaite, 7e plati-li pro fadu Y, a, (a,>0) s kladnymi ¢leny pro n-c

n=1

a
=1 +£+o[l] , pak
n n

a’n+l 1
an=o .
bt

W

kde £> 0 je libovolné malé &islo. Ptitom, je-li p >0, pak a,~0 pro n-e
(§. a, pro n2n, ostfe klesd k nule).

podml’nka

Stanovenim fddu klesdni clenli @ vySetfete konvergenci fady Ea", je-li:

. n"+aln1’"+...+a
2607. a_= L kde n?+bni'+.. +b >0.
n‘f+b1n‘i’"+...+b f

q

B 7276708. a, =——1—sinE.
nt n

2609. a, =(1/n +1 —‘/ﬁ)‘b ln-n—_% (n>1). 2610.a =In? [sec—]
n+

2611. a *logb,[1+£] (@>0,6>0). 2612. a —[e—[l )
1

2613. a =-1—. 2614. a_=
s n nl+klln‘n n 1+l!n

2614.1 DokaZte ndsledujici kritérium konvergence fad: fada E a_ s kladnymi
EE n=1

“deny je konvergentni, plati-li

Ca Je divergentni, plati-li
1-"/a ) —=<l pron>n,
( \/_” Inn pro®

'2615. Dokaite, 7e fada ¥, a_ (2 > 0) je konvergentni, existuje-li takové &fslo
b3 n

n=1l
lni lni
. a
e8>0, Ze -2 l+a pro nzny, a je divergentni, plati-li =<1 pro nzn,
IS : nn
B (logaritmické kritérium).
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Vy3etfete konvergenci fad s ndsledujicimi obecnymi deny:

2616. a,n=n'“" (x>0). 2617. aﬂ:..ul_. n>1).
1 (Inlnn)"™"
2618. ¢ = ——— (n>1).
(lnn)lnlnﬂ

Pomoci Cauchyova integrilniho kritéria vy3etiete konvergenci fad s ndsledujicimi
obecnymi ¢leny:

2619. a_= n>1). 2620. a_= 1 (n>2).
nInfn . a(lnn) (Inlnn)?
2620.1 VySetfete konvergenci fady
E In2:In3...In(n+1) 0>0).

~ In2+p) In(3 +p)...In(n+1 +p)

2620.2 VySetfete konvergenci fady E L?-, kde v(n) je pocet cifer ¢isla n.
n
n=1

2620.3 Necht A (n=1,2,...) jsou po sobé jdouci kladné kofeny rovnice tgx =x.

Vy3etfete konvergenci fady ¥ A,

n=1

2621. VySetfete konvér_genci fady E
n=2

2622. DokaZte, e fada E a, s kladnymi a klesajicimi ¢leny konverguje nebo di-

n=1

1
ln(mY)"

verguje pravé tehdy, konverguje-li nebo diverguje-li fada E 2"a,
2623. Necht f(x) je kladni nerostouci funkce. Dokaite, 7e Jesthze fada E fn)
konverguje, pak pro jejf zbytkovy ¢len !

R = E f®)

k=n+1

plati odhad

[f(x dx<R <fn+1)+ ff(x

e+l n+l

N Vi ,
Pomoci tohoto vysledku vypoctéte soudet fady 2_3 s pfesnosti na 0,01.
n

§ 1. CISELNE RADY. KRITERIA KONVERGENCE RAD S KONSTANTNIM ZNAMENKEM

' :2524 DokaZte nasledujici Jermakovovo kritérium konvergence fad: necht f(x) je

kladna klesajici funkce a necht lim j{( (g) ) -A.Rada Z f(®) jekonvergentni pro

x~eo

A <1 adivergentni pro A>1.

2625. Dokaite Lobaceuského kritérium konvergence ad: fada Y, @, skladngmi cleny,

n=1

které ostfe klesaji k nule, je konvergentni nebo divergentni, je-li konvergentnf

E me—m'

m=0

nebo divergentni fada

kde p,, je nejvétdi index dlenu a_ této Fady, ktery vyhovuje nerovnosti

.22 (n=1,2,..,p ).

J Vy§etrete konvergena nésledujicich fad:

2626. E" _" - 2627. (n+a— n +n+)
2628 E[mtg mr o sin"T ) 2629 E(_l__ lnn”J
Lo 4n -2 In+1 L \/,j 7)
| = = s
.2630.2 n(f). 2631. ¥ ¢ V",
- n n=|]
n=] .
hnd hnd 1
2632. ¥ n2e V7, = 2633, ¥ ( o ]
. n=1 n=1 n -1
n o alnn+b . 1 .
2634, Y ¢ 4, 2635. ln‘*’(sinl) -
n=1 n
n=1
- cosh ~—
, a n? n
2636. [cos—] . 2637. In
oy n COs—
n=3 "
e nl - nlnn
- 2688, 2639.
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e et

— /n 1/n .
2640. E[a ””——L—;C—] (@>0,6>0,c>0).
1

E
n

[
’3—‘-5
)
'
Nl

-

2641.

£

2

2642.

g

lni—ln sin—~1- .
n n*

a -(b inn +cln2n) (a > 0) )

=
H
—

2643.

hok

k-]
1t
—

n?u

(n +.a)"+b(n+«’})’MI

2644.

-3

(@>0,5>0).

=

[(n + Y

2645 ) oral_@n)l

E

o

VySetfete konvergenci fad Y %, s nisledujicimi obecnymi &leny:

™ n=1 .
2646. u - | 424% 2647, u =
" 1+x? tong
f 1 +xtdx
0
(ﬂ‘rl)'l't n+l
.2
2648, u_= f Y . 2649, u"=fe"/;dx.
X
nn n
fifn ]
. 11+21+_ .. +nl
sin”x 1421+,
R = dx. : 2661 4 =—— ————
2650. u_ f1+x x. | u @)1
0
n
Elngk
2652, u =21
nﬁ'.

Vysetfete konvergenci nésledujicich posloupnosti x (n=1,2,..) pomoci konver-
gence vhodnych fad, je-li:

. 2
2653- xn=1+i+___+_l_—2ﬁ' 2654. xnz %_(ln;)
n

‘-"'sé'riazyvﬁ absolutnd konvergentni, jestliZe je Fada

_§ pfipadé platf pro zbytek rady

3 1) Estetné soucty A =y a; jsou omezené stejnou konstantou; 2) b konverguje monoténné
i=t

§ 2. KRITERIA KONVERGENCE RAD S OBECNYMI CLENY

9655. Kolik ¢lent je tieba asi vzit, abychom secetli nistedujici fady s pfesnost{
P
nald™:

§ 2. Kritéria konvergence ¥ad s obecnymi ¢leny
1. ABSOLUTNI KONVERGENCE RADY. Rada

i', : E a, - (1)

n=1

Y la, | @)

n=1
konvergentni. V tomto pfipadé je ¥ada (1) také konvergentni. Souéet absolutné konvergentni
fady nezavisi na poradi s&tangch clend.
Kurceni absolutni konvergence fady (1) stadi pouZit na fadu (2) znadmi kritéria kbni'ergence pro
fady s konstantnim znaménkem.
JestliZe Fada (1) konverguje a fada (2) diverguje, pak se ¥ada (1) nazjva neabsolutné (podminéne)
konvergentni. Pro libovolné &islo je mo#né prerovnat neabsolutné konvergentni fadu tak, aby se
Jeji soudet tomuto &ishu rovnal (Riemannova véla).

-2. LEIBNIZOVO KRITERIUM. Rada se sttidavymi znaménky
by~by by ~b + (=17« ..

(6, 20) je konvergentni (obecné neabsolutng), je-li a} b S b, {(n=1,2,.)ab)limb =0.Vtomto

n-=

R =(-1)'b, (+(~1y"""'b ,+...

‘odhad :
b . (058 <1).

n

R, =(-1y'8

'8/ ABELOVO KRITERTUM. Rada

E ab (3
n=1
.je konvergentni jestlize: 1) fada E a, je kor‘lvergénml'; 2) &isla 5" (n=1,2,..)) tvoff monoténni

n=1
a omezenou posloupnost.

4. DIRICHLETOVO KRITERIUM. Rada (3) Je konvergenwi, jsou-li splnény nisledujici podminky:

k nule pro n-,
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2656. Dokaite, Ze ¢leny neabsolutné konvergentni fady je moiné bez jejich
pferovniani uzdvorkovat tak, Ze takto ziskand novd fada bude absolutng
konvergentni.

2657. Dokaite, Ze fada Z a_je konvergentm Jjsou-li splnény nasledujici pod.

minky: a) a -0 pro n-°°°, b) fada EAﬂ ziskani uzivorkovanim denti fady
« n=1

Z:lA" bez jejich pferovndni je konvergentni; ) pocet séitanci a, v soudtech

n= s :

PR
A8 o op<ps
i
2658. Dokaite, Ze soucet konvergentni fady se nezméni, jestlize dleny této fady
pierovndme tak, Ze Zddny z nich nebude od své plivodni pozice vzdilen o vice
nez m mist, kde m je piirozené &islo.

...) Je omezeny.

DokaZte konvergenci nisledujicich fad a najdé&te jejich soucty:

2689 1-3+2- T 2660, 1+4-L, L, L 1,
2 4 8 ' 518 16 32
o661, 1-L+L2_ 1,1 1,
5 4 5 6

NAvOD: Poufijte vzorec 1 +% + +l =C+Inn+g , kde C je Fulerova konstanta a lime =0.
n

2662, Vypoététe soucty nasledujicich rad ziskanych pferovninim &lent fady, pro

kterou platf E

_ n+1
1 =In2.

+..; b) 1—%—71-+

+...

oo[»--

1
6

_1)ﬂ+|

/r

2663. Perovnejte Cleny konvergentni fady E tak, aby se stala divergentni.

n=]

Vysetfete konvergenci nisledujicich fad s obecnymi ¢leny:

(-1yre-he E 97+ 100
2664. ——, 665. 1 —_— .
E 2" 2 -1y [ In+l )

2666, 1+

1
—+
6

1
5

| 2666.1 Uvazujme fadu

- konverguje, je-li b

£ 2, KRITERIA KONVERGENCE RAD S OBECNYM CLENY

(—D"b,,, (1)

‘kde b >0ab_ -0 pro n—e. Vyplyvi z téchto pfedpokladd, Ze je fada (1) konver-

gentni? VySetfete pfipad

o 2

2668. E( 1y sin’n

. -1y
" 9669. )} (-1) —‘/foﬁ. 2670. E—L
= n+ n=2ﬁ+(_l)n
B N (-1l
2671.Esin(n\/n2+k2).- 2672. E( n) :
- n=1 -
' n=1
= . .
© 2673. (ul) . . 2673.1 E 3OS Tml‘
o] ﬁ = In“n n+

2674. DokaZte, e fada se stf’idav;’rmi deny b, b, +b,-b, +... +(- l)""bu +... (b, >0)

n -:1+_p.+0 _l ,
b,“l n n

kde p >0 (viz uloha 2606).

__VySetfete absolutni konvergenci (kromé tlohy 2690) a konvergenci nésledujicich

_fad: .
( 1)11 1 (_l)n-l
2675. E 2676. YETI
n=1 n=1
. - _1yn = S )
2677.Eln1+( | 92678, E( -1 2sinTx
nt n
) n=2 n=1
Cere, ) LD 2680. E_.(_i)__
n=] xrn n=2 [n+(_1)n][]




T
‘ RaDY § 2. KRITERIA KONVERGENCE RAD S OBECNYMI CLENY
- i
- - BT o 1 1 1
(—1)"'1 Slﬂ-z" 9695. 1+_-_1_ — _-i+i+_1._—i+
2681. = o 2682, ) ' S 3 1# 5 7 3¢ 9 1P 5
-1y -1 . MT T
s =t i e, 12,1, L 2,1, 1 2 1,
P w 99 gF 42 B P T 8§ o
- 100 i :
i | 2683. E(-l)"" 1%. 2684. E(—l)"("‘”’?”—. v
il fot n+ L5 ~ n . ' 2697. Dokajte, e fady
( 1)" = onm ) sinx + su;?x . sm?.)Sx .. b) cosx+ co;ﬂx . co;?»x .
2685. 2686. 12 \ o
lnn jsou neabsolutné konvergentni na intervalu (0, m).
n=2 2698. Urcete pro fady N
1 [f] = _1ylnn] ' . E COSTX E sinnx
2687. E( ) 2688.2( T)l . | L b L g (O<x<m),
n - kl:ere jsou parametricky zavislé na dvojici parametrii (p, x): a) oblast absolutni
2689 E (1! 1-3-5...2n-1) | 2690 Z sinn-sinn 2 konvergence b) oblast konvergence.
' 2:4-6...(2n) ' n ' 92698.1 Vyetfete konvergena ndsledujicich fad:
=1 n=1 .
= iy 2 S (-1 sm!n+—!
2691. z_:l sinn -, a) E_(_l)—\[ﬁ, b) 9 E sllgn
n= L lon In(In%) n+10sinn’
NAvOD: Dokaite, Ze limsina2=0.
o ' 2699. Urcete pro fadu ,
2692. Necht ' ‘ e ' -l (LY 2 ). (n+p)
axlb-!-a xp_1+___+a - T : (—1) E
R(x)=— l - £ nln?
-1
byx T +bx? +h, a) oblast absolutni konvergence; b) oblast konvergence.
je racionalnf lomend funkce, kde N m m-1)...(m-n+1
ay=0, by=0a |byx¥+bx9'+ ..+b | >0 proxzm,. 2700. Vyietiete konvergenci fad kde [ ™| =mOrZ b Gmont])
P 0 ¥ 8 Y nl oy
VyZetfete konvergenci a absolutni konvergena rady
E 2701. MizZeme fici, Ze jestliZe je fada Z a_ konvergentni a plau lim—=1, je
(-1y'R(n). ai —y
n=n, fada Z b, také l-;onverg'entm>
n=1
- o A (-1) -1
Vysetfete konvergenci nasledujicich fad: Uvazujte pfipady ——a +; .
1 1. 1 1 1 1 Hmo Hlm
2693, —P_—"'—p-—""'“—;_—"'... o
1720 37 4% 50 6 2702. Necht Y a_ je (neabsolutng) konvergentm‘ fada. Definujeme
) n=1 n
o694, 1+ L, L, 1 1. |a|+a |a|-
g 20 BF P 4P P -




RADY

Dokaite, ie:

lim—==

_1yni .
2703. Dokaite, Ze soucetfady E "y leZi pro kazdou hodnotu parametru p > ()
mezi —a 1. n=l
i . - (-1y*! N\ sinn® :

2703.1 Kolik ¢lent fady a) ; b) musime veit, abychom

n?+1 \/E

n=1 n=1
aproximovali jeji soudet s pfesnosti na £=107%?
2704. Dokaite, Ze jsou-li ¢leny fady _
1 1 1.1
] -+ —-
2 3 4 5
pferovniny tak, %e se skupiny p po sob& nasledujicich kladnych &end budou

stiidat se skupinami g po sobé naslecluyach ziporngch dend, pak soudet nové

fady bude In2 +—ln£
2 q
2705. DokaZte, ¢ harmonicka Fada
1 1 1
lsmt—+ =+,
2 35 4

zilistane divergentni, jestliZe bez pferovninf{ clenti zménime jejich znaménka tak,
aby za p kladnymi deny nasledovalo q zapomych dent (p#g). Rada bude
konvergentni pouze pro p=q.

§ 3. Operace s fadami
SOUCE’!‘ A SOUCIN RAD. Tyto operace deﬁnUJcme nisledujicim zpiisobem:

a+2b E(a xb);
“LhBo

uMa

"

kde ¢, mab ra,b v ta b

Rovnost a) md smysl tehdy, jsou-li obé fady E a a E b_ konvergentni, a rovnost b) ma smy s,

n=1 n=1

% jestliZe je navic alespoti jedna z téchto fad absolutné konvergentni.
H

§ 3. OPERACE S RADAMI

S
2706 Co miiZeme Fici o souétu dvou iad, a) Je-hi jedna z nich konvergentni
3 druhd divergentni; b) jsou-li ob& fady divergentni?

#707. Najdéte soulet: _
-1y - 1yl
--1— -I-ﬂ +E 1 + ( 1) )
n n3 _l 31’!"’1 '-‘?.3

Najdéte soucty nisledujicich fad:
1, <—1)"]'

 g708. E

n=1

PR

2nn

cos
2709
S on

n=1

2710. 3 x "y (0% (|y) <1).
il n=0

- oy
2711 Dokaite, Ze E ( )
7! n!

n=0 n=0

2712 Dokaizte, ze[zq ) i(n%—l)q" (lgi <1).
n=0

- 27 13. DokaZte, %e druhd mocnina konvergentni fady

| ;‘; o E (-1

n=1
" jedivergentni fadou.
2714 Dokaizte, Ze soutin dvou konvergenmlch fad

E(ﬂ)"l E(")"'

) n=1
Jekonvergentni fadou pro a+p>1 a dwergentm fadou pro ¢ +pf<1.
2715 Overte, Ze soucin dvou divergentnich fad

r[ o
1_—E[§J"a1+z(§)" 1[2% 1 ]
e 2 2 =

n=1 o om=1

(B>0)

Je fada absolutné konvergentni.




Rany

§ 4. Rady funkei

1. OBOR KONVERGENCE. Mnofinu X téch hodnot x, pro které je fada funkei
u, (x) +ug k) .. ru (x) + . . (0
£ konvergentni, nazveme oborem konvergence této fady a funkdi.
a
()= llmz ufx) (xeX)

freemi=

jejim soudtem.

2. STEJNOMERNA KONVERGENCE. Posloupnost funkci

F16) fole), s f 06D, -
se nazyva steynomérnéd kenvergenini na mnozing X, jestlize:
1} existuje limitni funkee

f(x)=limf”(x) (xcX);

2) ke kaZdému e> 0 existuje fislo N=N{g) takové, Ze
-]
[Fee) £, ()| <=
pro kaidé >N a xeX.V tomto piipadé budeme zapisovat f (x)=f(x).

Rada funkei (1) se nazyvi stejnomémé konvergentni na mno%iné X, jestlize je na této mno¥ing
stejnomérné konvergentn{ posloupnost jejich &asteénych soudod

S,,(x)=i|3u,-(x) n=1,2,..).

3. BOLZANOVO-CAUCHYOVO KRITERIUM STEJNOMERNE KdNVERCENCE' Rada(l) je na mnoZing X
stejnomérné konvergenml pravé tehdy, kdyi ke kazdému e>0 exlstuje cislo N =N{g) takové,
%e pro viechna n>N a #>0 plati nerovnost

15,9 -5, )] = lzf u(x)i(a

=
pro viechna x€X.

4. WEIERSTRASSOVO KRITERIUM. Rada (1) je absolutné a stejnomérné konvergentm na mnoZiné

X, existuje-li konvergentni ¢iselnd fada _
€ HCytun tE o . 2)

takovd, Ze |u_(x)| <c_ pro kaidé xeX (n=1,2,..).

5. ABELOVO KRITERIUM. Rada

Y a@bE 3
n=1
je stejnomérné konvergentm na mnofiné X Jestlize plati: 1) fada Z a,(x) je stejnomérné
acl
konvergentni na mnoZingé X; 2) funkce & (x) (»=1,2,..) jsou viechny stejné omezené a pro

R I A S M A SR T

kaidé x jejich hodnoty tvoii monoténni posloupnost.

D
2716. E_ﬂ
PR n=1 x

§ 4. RADY FUNKGI

' 5 DIRICELETOVO KRITER]U‘M Rada (3} j je stejnomérné konvergentni na mno¥iné X, jestlize

plat.i' 1) éastedné soudty Z a, {x} jsou viechny stejné omezeng; 2} posloupnost b (x) (n=1,2,...)

je monoténni pro kazde x astejnomérné konverguje na X k nule pro n-e.

';"7', VLASTNOSTI RAD FUNKCI.
Ja) Soudet stejnomérné konvergentni fady spojitfch funkd je spojitd funkce.
b) Je-li fada (1) stejnomé&rné konvergentni na kaidém intervalu [o, B] < (a,b) a existuji-li konedné

' {imity limu (x)=4, (n=1,2,..),

x-a .

-pak 1) je fada ¥y A, konvergentni a 2) plati rovnost

n=1

lim{ Y (x)} -y {lim u, (x)}.

x-a |a=1 a=l [ x-a
¢)Jsouideny konvergentni Fady (1) spojité diferencovatelné pro a < x <& aje-li fada derivad Z
- stejnomérné konvergenini na intervalu (g,b), pak ' mi

.l : ‘5‘{2 u, (x)]=E u:(x) pro x&(a,b).

=) r=1l

d) Jsou-li deny fady (1} spojité a tato Fada stejnomérné konverguje na omezeném uzavieném
intervalu [a,b], pak

b w b
I{Z’ uﬂ{x)}dxaz_:l fu“(x)dx. (4)

: b w
-Obecnéji rovnost (4) plati, je-li f R (x)dx~0 pron-= kde R {x)= E u,(x). Tato podminka

i=n+)

=)'.. - - PN E B - ,a - - o - ] - .
‘je vhodna k vyetfovdni limitnich piechodii v integralnim poéu.

Uréete obory absolutni konvergence a obory konvergence nisledujicich fad
funkci:

oo

772(—1)" 1 -&)"
2717, 2‘!&"‘1 1+x)°

n=1
- N x S 1-3..@n-10)f 2% Y
2718'En+1[2x+1] : 2719'2 2-4...(2n) [mﬂ] '
= n=1 n=1I
G _w .321’1 - F I ]
2720. E 22 x"(1-x) 2721. Em
2 n?
n=1 r=l




T
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o

(-
2722. E )

n=1

n"’sx nnx
2723. q>0 O<x<m).

= x(x+n)|"
— |

™ o

x" x"
2726. E & 2727, E. Tl o)

- | Wl 1
2728. Y ne ™. 2729. '

n 20, 2"
z 7 1+a™"x
n=1 aol n!

2730. 3 (2-0)2-x )2 -x

E]

2724. E 1x — (Lambertova fada). 2725.

=2
=
—

1) (2 -x ') (c>0).

™ g

+ 43 xn n
2731 M. 2732.2 ny = (x>0;5>0).
nrﬁx . x +y
n=1 n=1
xﬂ : o n
2733. E ~ (y20). 2734. Y, x|
nel n+y n=1
N n(le) ool o2
2735. — (x=20). 2736. ) tg"|(x+=|.
n’ / n
n=1 n=

+o0

2737. Dokaite, e je-li Laurentova fada Y, a_x" konvergentni pro x =x, a pro

f1=~00

x=x, (]x,| <|x,|), pak je tato fada konvergentni také pro jx,| < | < x| -

2738. Urcete obor konvergence Laurentovy fady

n n
oln|

n=-=
a najdéte jeji soucet.
2739. Urete obory konvergence a absolutni konvergence Newtonovych 7ad:

=, [1] = ] k] 7 []
xn! ; u E (ex)'y ,kde Pl =x(x-1)...[x - (n-1)].
= 1

n"

§ 4. RADY FUNKCI

2740 Dokaite, Ze je-li Dirichletova fada Z— konvergentni pro x = =x,, pak je tato

 fada konvergentni také pro x > x,

2741 DokaiZte, Ze k tomu, aby na mno#iné X dand posloupnost f (x) (n=1,2,...)
- stejnomérné konvergovala ke své limitni funkci f(x), je nutné a staci, aby platila
l-ovnost llm{supr (x)} 0, kde 7, (x)=|f(x)-f (x)].
n-e xeX
2742. Co znameni, Ze je posloupnost [, n=1,2

,---): a) konvergentni na
intervahl (xoy +

«); b} stejnomérné konvergentni na ka?dém omezeném intervalu
(@, b)= (x +=); ) stejnomémé konvergentni na intervalu (s o) ?
- »2:9743. Urcete pro posloupnost
R f@=x"(n=1,2,.)(0<x<l)
' nejmenﬁ index N =N (g, x), pro ktery za¢ind byt odchylka ¢lendi této posloup-
nosti od limitni funkce mensi nez €=0,001, je-li x —l e L

. T
_]e tato posloupnost ste_lnomérne konvergentm na intervalu (0, 1)?

sinnx
2744 Kolik ¢lenti fady E 2mel) musime vzit, aby se jeji ¢iste¢ny soucet S (x)

n=1i
1i3il pro -« <x < += od sou¢tu této Fady o mén¢ ne? & ? Provedte kontrolu vipoc-

tem pro ndsledujici ptipady: a) £=0,1; b)€=0,01; <) £=0,001.
" 9745. Pro Jaka disla n bude zajiiténo splnéni nerovnosti

e*-z’% <0,001 (0<x<10)?
2. i
i=0

Vysetrete stejnomernou konvergenci nasledujl(:mh posloupnosti na zadanych
lntervalech

2746 f)=x" a)Osxs%;b)Osxsl.

| 2747 f,x)=x"-x Ti0<xsl.

2748. f (x)=x"-x""; O<x<l.

nx

l+n+x

2750. f (x)= ; Ol

2749, f.) L
+n

***** 2751 f.x)=

;a) O<x<l-g; b) 1-g<x<l+g;¢) L+esx<+oo,kde £>0.

1+x™®
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2nx : .:;‘_.. n-1
2752. f, (x) = ] +n2x2; a) O<x<1; b) 1 <x<+oo. - g766. Necht [, &) =Eif[x+i] , kde f(x) je funkce spojitd na intervalu
Do b M1 n
1 . : B 1_0
2753. f (x) = x? r—y; T <X < 4o, . (-, *+=). DokaZte, Ze posloupnost f (x) je stejnomérné konvergentni na
n

. ! ) ' - - -libovolném uzavieném intervalu [a, #].
HiHl - 2754. fn(x)zn{ lx+-l-—\[,§]; 0<x < +00, _ T
il n

: Vysetfete charakter konvergence nasledujicich fad:
sinnx

| ' x
1 755. = ; < x<+o; b =sin—; -0 <x <+, - = . .
HEL 2755. 2) , ) n e ) 1, () =sin n * 2767. ) x":a) naintervalu |x| <g, kde g <1; b} na intervalu |x| <1.
i 2756.2) f (x)=arcignx; 0<x< +o; b) f (x) =x arcignx; 0 <x < +e. | ":0
il 2757, f,(x)=e"*D; 0<x <. | --2768. E% na intervalu -1<x<1.
: 2 : s
I 2758. fﬂ(x)=e‘(""‘) ;a) -I<x<!,kde! jelibovolné kladné &fslo; b) ~o <x < +eo, "‘l
2759.]‘;(3&:) =iln£; O<x<l. - 727681 zx_ na intervalu (0, +=).
B R = n!
= i n' dm 1 : i -0, 400 : i
3; 2760. f (x) (1 + n) ; 2) na omezeném intervalu (g, b); b) na intervalu (-, +), 2769. 3 (1 %)% * na intervalu 0 <x<1.
) o n=0
. 2761. f (x) =n(x”_"—1); l<x<a. : v e N
| 2762. fn(x)=n1/1+7x";(}sxs2._ _ _ 2770; n om+l s olsxsd.
[ 1 : I
; nox Ozgxs<—, :
: P s 2771. E x ;0 <x < +oo,
i 9 1 2 - . Hn-Dx+1](nx+1)
! 2763. f (x)=1 n2[——x) pro —<x<-—, : .
! n 7n n ) — 1
2 2772, E ; 0 <x < oo,
0 proxa~ Lin)x+n+1)
na intervalu Q<x<1. __w = " :
2773. E T o 0 ; a) 0<x<e,kde e>0;b) esx < +oo, i
2764. Nechf f(x) je libovoln4 funkce definovand na uzavieném intervalu [a, 5] IS (1 +x)(1+2x)...(1 +nx)
a necht [nf (9] -~ 2774. DokaZte pomoci Weierstrassova kritéria stejnomérnou konvergenci nésle-
: [ )= (n=1,2,000). ~ dujicich fad funkei na zadanych intervalech:
L ' " ¥ n . o w : = n
il Dokaite, Ze fn(x)::f(x) na [a,b]. . : 2) E . oo < 4o b) (-D 9 <x< 4o r
TEN R 2765. Necht md funkce f(x) spojitou derivaci f/(x) na otevfeném intervalu (a, b) oxtin o2
a nechi 1
[, &) =ﬂf[x+;] -f(x)]-
{ Dokaite, ie fn(x)::ff(x) na intervalu a<x<p,kde a<a<p<b.
228
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E—(x s Loje<2;
2

. |x| <a, kde a je libovolné kladné ¢&islo;

x

n

2
_Eiﬁ?_l_x_.' |x|<+00' = COSnx

g VT{ ’ h)E > 5 |x] < oo
/ n X : il n

i Zsinnx »
1 i jx| < Hoog
nﬁ b b

) : 2
J) Eln 1+ 2| |x]| <a;
nln’n

k) E x%e ™ D < 4o 1) Earctg

|x|<+oo.

VySetfete stejnomérnou konvergenci nisledujicich fad funkci na zadanych
intervalech:

sinnx
2775. Z
n

n=1

:a)naintervalu esx <27 -g,kde €>0;b)naintervalu 0 <x<2n.

v S (-1
2776, 22”5111—; 0<x< +oo, 27717. E( ) ;
Iy xX+n
n=1 n=1,
NAvoDp: Odhadnéte zbytek Fady. .
n(n 1)
a77s, § ; 0<xs2m. 2779, E ;x| <10.
) n+sinx’ {_""
n=2
2nm \
COs = )
sinx sinnx
2780. —_—; LX< oo, 2781. ——; O<x < +o0,
mZix? e n+x
n=1
(— )V]
2782, 0<% < 4o

DokaZte, 7e fada E o

§ 4. RADY FUNKCI

-9783. MiiZe posloupnost nespojitjch funkd stejnomérné konvergovat k spojité
funkcﬁ Uvaiujte piipad funkci
f&)==¥(x) n=1,2,..)),

0 pro x iraciondlni,
1 pro x raciondlnf.

kde ¥ (x) ={
§784. Dokaite, Ze jestliZe je fada E |f, (x)| stejnomérné konvergentni na uzavie-
ném intervalu [a, b], pak je Tada E f,(x) také stejnomérné konvergentni na

[a,b].
2785. Plati nutné, Ze jestliZe fada Z f, (x) konverguje absolutné a stejnomérné

oo

‘.1;......na uzavieném intervalu [a, b], paklrada Z |/, )| konverguje stejnomérné na

"*'[a, b]? UvaZujte pFipad Z (- 1)"(1 -x)x ", kde O<x<1.

2786. Dokazte, ¥e fadu E f, () (0sx<1), kterd je absolutné a stejnomérné
konvergentni, pficemz " !

0 pro 0<sx<27®",
[ 6= lsin?(2“-*111:ac') pro 27 Day <27,
" n .

10 pro 2™<x<1,

nelze majorizovat konvergentni éfselnou fadou s nezapornymi ¢leny.

2787, Dokajte, %e jestlize je fada Y @, (x), jejiz ¢leny jsou monoténni funkce na

[ n=1
uzavieném intervalu [a, 5], absolutné konvergentni v koncovych bodech tohoto

“intervalu, pak je tato fada absolutné a stejnomérné konvergentni na celém
mtervalu [a, b].

_2788. DokalZte, e mocninn4 fada Y e x " absolutné a stejnomérné konverguje
v n=0
na libovolném uzavieném intervalu, ktery leZf uvnitf jejiho oboru konvergence.

2789. Necht je posloupnost a -« zvolena tak, Ze fada E —| konverguje.

n

n=]
absolutné a stejnomérné konverguje na libovolné

omezené a uzaviené mnoziné, kterd neobsahuje body ¢, (=1, 2,...).
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2790. Dokaite, Ze jestlize je fada E a, konvergentni, pak Dirichletova 7adg
a

2 — stejnomérné konverguje pro xz()
n=l n* w0 .
L - v oo™ -nx 1 >
2791. Necht je fada z; a, konvergentni. DokaZte, Ze fada Z:l a e stenomér.
n= n=

né konverguje na mnoZiné xz2 0.

2792. Ukaite, Ze funkce f(x) = E
bodech -® <x < +oe,
2793. Ukaite, 7e funkce

JC spojitd a ma spojitou der1vac1 ve viech

1
o8 -

2= =00

a) je definovani a spojita ve viech bodech s vy_pmkou celych ¢isel 0, =1, £2,.
b) je periodicki s perlodou 1.

2794. Ukaite, 7e fada E [nxe o (n-1xe ™" '}*] konverguje, ale nikoli stejno-
n=1 :
mérné, na uzavieném intervalu 0<x< 1. Ovéite, Ze piesto je jeji souet spojitou

funkci na tomto intervalu.
2795. Urcete defini¢ni obory funkci f(x) a vy3etiete, zda jsou spojité, je-li:

o 1) D x+n (1)
= F o ; b = ———;
2 1) 51[ n] ) fe=Y, o

n=1
2796, Necht 7, k=1,2,..
UkaZte, Ze funkce

.) jJsou raciondlni ¢isla z uzavieného intervalu [0, 1].

s
f(x)=E s
k=1

md ndsledujici vlastnosti: 1) je spojitd; 2) je diferencovatelnd v iraciondlnich
bodech a neni diferencovatelnd v racionilnich bodech tohoto intervalu.
2797. Dokaite, Ze Riemannova zeta-funkce

(=Y 4
n=ln

Je spojitd pro x >1 a mé na této mnoZing spojité derivace viech Fadi.
2798. Dokaite, Ze theta-funkce ‘

(O;xs 1)

B(.’JC) = E é—m‘zzx

1= -ea

je pro x>0 definovana a mé derivace viech #add.

§ 4. RADY FUNKGI

L .2799 Urcete defini¢ni obor funkce f(x) a vySetiete, zda je diferencovatelni, je-li:

) - E(”ﬂ; b)f()E S

..2800 Ukazte Ze posloupnost

£, (x)——arctgx n=1,2,..)
stejnomérné konverguje na intervalu (-, +e), ale
[— llm f (x

2801 Ukazte ie posloupnost

£, ) =x? +lsinn (x +£)
n 2

n-o

~stejniomémeé konvergujé na intervalu (-, +), ale

';)':.-':;
- N i

2802. Pro jaké hodnoty parametru & posloupnost

ol f@)=nxe™ n=1,2,..)

5)’k0nv'erguje na uzavieném intervalu [0, 11;b) stejnomérné konverguje na uza-
vieném intervalu [0, 1]; ) je moZny limitni piechod v integralu
- L
lim [ f, (xydx?
== 0
2803. UkaZte, %e posloupnost f, () =nxe -nx? (n=1,2,...) konverguje na uzavie-

ném intervalu [0, 1], ale

1 1
i [lim £, (0))dx# lim [ f, (x)dx..

0 A=~ r=0Q
o b —_— —_— n =

2804. Ukaite, Ze posloupnost f, &) =nx{l-x)" (n=1,2,..

stejnomérné, na uzavieném intervalu [0, 1], pfidemi

1 i
lim [ f, (x)dx = lim f, (x)dx.

n=my Qn-e

.} konverguje, ale nikoli

2805. MiZeme provést limitni pfechod pro n~e za integrilem ve vjrazu
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Vypoctéte ndsledujici limity:

= _1y+l »
2806. limE( . x
n

x"+1

2807. lim E (x ’“1).

xs1 n=

2
2808.1 limE——
xmm k] g Py

a

2808. lim
a0 B4 2" ¥

2809. MiZeme derivovat fadu E arctg—xg ¢len po ¢lenu?

n=1 L

2810. MitZeme na uzavieném intervalu [0, 1] &len po ¢lenu integrovat fadu

o | ] .
g
n=1

2811. Necht f(x) (-=<x< +=) mi spojité derivace viech fidi a posloupnost
derivaci f™(x) (n=1,2,..

intervalu (a, b) k funkci ¢(x). Dokaite, Ze @(x)=Ce*, kde C je konstanta.
UvaZujte pfipad f (x)=e o ps1,9,..

2811.1 Necht jsou funkce f (x) (n=1,2,...) definoviny a omezeny na intervalu
(-, +=).a necht déle f (x)=¢(x)nakardém uzavieném intervalu [a, b]. Vyplyvd
odtud, Ze :

.) stejnomérné konverguje na kaidém omezeném

lim sup f(x) = sup px)?

n-e X

§ 5. Mocninné fady

1. INTERVAL KONVERGENCE. Pro kaZdou mocninnou fadu

aora (x-a)+..+a (x-a) +...
existuje uzavieny interval konvergence |x -¢| < R, v jehoZ vnittku dand Fada konverguje a vné kte-
rého diverguje. Pro polomér kenvergence R plati Cauchyito-Hadamardiiv vzorec

——Iunﬂ_[

f®-=

Polomér konvergence R je také moiné spocitat podle vzorce

a
R=lim}-2{,
#o= aﬂ +1

pokud tato limita existuje.

2. ABELOVA VETA. Konverguje-li mocninn fada $(x)= Y, ax" (|x| <R) v krajnim bodé x=R
intervalu konvergence, pak S{R)=hmS$(x). n=0

g xR

. l ve tvaru mocninné fady

§ ztythouy dien 1610 Fady

§ 5. MOCNINNE RADY

<8 TAYLOROVA RADA. Funkdi f{x), kterd je analytickd v bodé a, lze Vy_}adrlt v n&jakém jeho okol{

fin)= ):ﬂ @) (¢ —af.

R_(x)=f(x) - Z’d @ )(x -aft

‘miZeme zapsat v Lagrangeové tvarn:

R (x)—f(—_—m”((“:?)(f D (¢ —ayt 0<B<1)

nebo v Cauchyoud tvary
; [ @8, (x-a)

R, ()= —

(1-8)&-ay" (0<0, <1). -

' Nyni uvedme pét zskladnich rozvojii funkef do mocninnych fad:

X

+ = +_,_(-m<x< +m)_

.{'!'

._ '_:d) flza (- a)"}dx c+z'

x

I e*=1l+x+2—+..,
| n!

3 2a-1

L sinx=x-Za L e(-1pt X
31 @i 1)|

x?
(2n )'
1) 2,

v (moCx < 1),

w(=1Y

x2
,III Cosx = l—2 +, o {re << ),

m(m m(’m—l)...(m—n+l)xn

V. (1+x)"=1+mx+———L
n!

L {(-1<x<]).

2 3 n '
V. In(Eey=x - X o ey e (c1<xs]).
2 3 n

14 OPERACESMOCNINNYMI RADAMI. Uvnitf spoleéného intervalu konvergence |x-a| <R plati:

’a)za (x-a)y' = Eb(x -alt= E(a *b Yx-a); b)za (x - a)"zb (x-a)* = Ec(x—a)”,

n=0

kdec =a, b +a b .+a b ,c)‘i a (x-ayl=), (n+l)a_ {x- a)"
l 20 dJC h = n+l
(x —a)y L.

n=(} n+l

; 5. MOCNINNE RADY ¥ KOMPLEXNIM OBORU. Uvajujme Fadu

PIENCE

: n=0

kde ¢, =a,+ib ,a=a+iP, z=x+iy, i?=-1.

Pro kazdou takovou fadu existuje uzavieny kruh konvergence |z -a| <R, v jehoZ vnitfku dand fada
konverguje (a ziroven absolutné konverguje) a vné kterého diverguje. Polomér konvergence R je
-roven poloméru konvergence mocninné fady

2 e 7
n =0

v redlném oboru.
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Urdete poloméry a intervaly konvergence nasledujicich mocninnych fad a vyge.
tiete jejich chovani v hrani¢nich bodech intervalt konvergence:

[

n n -2
2812. } —. 2813, E—L(ﬂl)".
n‘f’ n
n=1 =1
2814 i:(n—1)2~x 2815 fj e x" (0<a<l)
' - (2n)! ' = '
= ! 1 1'!2 - n! n
2816. 1+_) x". 2817.2 ~x" (@a>1).
n=l" n ﬂ=1an
= .2 - I ~1\n = 7 i 142 b4
2818.2 1'3°5..@n-D)Pf x- 11" ZSIQ.E(—I)" 2 e,
2-4-6...(2n) 2 (2n+1)
=l n=1
3 “D.fm-n+1 " gpn
2820. Em(m Joobmom i 1) 2821.2[“_+f’_]xn (@>0,5>0).
n! n o op?
n=1
n=1
i i 0,6>0 i:x” 0
2822, : T (e>0,b>0). 2823. la‘ﬁ (a=>0).
3Vaxn ok i
2824. 2825, @Lx ",

4 @n+ 1)l

" '\fn2+1‘

(_l)n[f) nx".
n! \e

n=1

2826. 2827.

E[3+(—l)“]” \ [1+2cos_”}
2828, } ———1 1 x" 2829. .
n X
n=1 Inn
n=2
R Wi 5 (WAl
2830. Ex . 2831. E¢x"
- 2 e n
(Pringsheimova fada).

P et

Ty

: 52}'83_9. Rozvirite funkci f(x) =

§ 5. MOCNINNE RADY

v{n)

(1-x)", kde v(n) je pocet cifer &isla .

qiin

" 2832. Urcete obor konvergence hypergeometrické fady
e L a@rDBE-D) b

I

1-2-y(y+1)
“+m(a+1)...(a+n—1)B(B+l)...(|3 +1f.',-l)x,,+
1-2..2y(y+D...(y+n-1)

Najdéte obory konvergence nasledujicich zobecnénych mocninnych fad:

2653 z L [L=x)" 30} Loin ™
Ly 2n+1 1+x) VLA
o 7=0 n=1| )
' ns xn = 1 -n2 .
2835. E — 2836. E(l +“] ¢
.2 sl "

QIR 3n 13
2837. Z—S ) gy

(3n)

n=1

- 2838. Rozvifite funkei f(x)=x* do mocninné Fady s nezdpornymi mocninami

dvojdenu x +1. .
—— (a#0) do mocninnych fad: a) v mocninich x;

a-x

- b)vmocnindch dvojélenu x -5, kde b #a; c) v mocnindch i Najdéte odpovida-
Jicf obory konvergence. -

. 2840. Rozvinte funkci f(x) =lnx do mocninné fady s nezipornymi mocninami
Tozdilu x -1 a najdéte obor konvergence rozvoje.

- Seététe fadu

it z (_1)n+1
: n=1

237
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Rozviiite nasledujici funkce do mocninnych fad s nezdpornymi mocninam;
proménné x a najdéte odpovidajici intervaly konvergence:

2841. f(x)=sinhx. 2842. f(x)=coshx.

2843, f(x)=sin’x. 2844. f(x)=a” (a>0).

2845, f(x)=sin(u arcsinx). 2846. f(x)=cos(u-arcsinx).

2847. Napiste prvni tfi ¢leny rozvoje funkce f(x) =x* v mocninnou fadu s celymj
nezapornymi mocninami dvojélenu x - 1.
2848. Najdéte prvni tfi deny rozvoje funkce f(x)=(1+x)"* (x#0) a f(0)=,
v mocninnou fadu's celymi nezipornymi mocninami proménné x.
2849. Rozviiite funkce sin{x+k) a cos(x+h) do mocninnych Fad s celymj
nezipornymi mocninami proménné .
2850. Najdéte interval konvergence rozvoje funkce

e x2-5x+6
do mocninné fady: a) v proménné x; b) s mocninami dvojélenu x -5, bez
konstrukce tohoto rozvoje.

2n-1
X . .
=sinx na intervalu (-, +<) pro N-?

2850.1 Je pravda, Ze Zl (-1! o’

Rozvirite nasledujici funkce do mocninnych fad v proménné x pomoci zdklad-
nich rozvoji funkci 1. - V

2851. ¢ ", 2852. cos’x. 2863. sin’x.
x !0 1 - X
2854, . 2855, — . 2856. .
1-x (1-x)2 J1-2x
2857, In_ | % 2858, —~
% 1+x-2x2
NAvVOD: RozloZte zadany zlomek na parcidlni zlomky.
2859, —1275% 2860. — %
6-5x-x? (I-x)}(1-x%)
2861, — L 2862 L
l-x-x2 ] +x +x2
2862.1 f(x) = 1 . Cemu se rovna £19(0)?

1+xsx2+x

9863,

§ 5. MOCNINNE RADY

2

X COSO - X X s x sinha

2865.

2864

1-2xcosq +x? 1 -2xcosa +x° 1-2xcosha +x2

2867. In{l +x+x2+x%).  2868. ¢***cos (xsina).

1
C(Q-xHyIat

L ﬁAVOD Pousijte Eulerty vzorec.

~ Rozviiite ndsledujici funkce do mocninnych fad pomoci rozvoji, jejich derivaci

- Zlomku

.- 2878, Rozvitite funkci f(x) =

- c) f(x) arctg 2- ;

—.2875 Rozvitite funkci f(x)=In

_a integrovani téchto rozvoji dlen po ¢lenu:

( l)ﬂ+1

9869. f(x)=arctgx. Najdéte soucet fady E ol
-

2870 f (x) arcsinx.

'Lfizs’n. f(x) =ln(r 1 +x2).

2872, f(x)=In (1 -2xcosa +x2).

-2873. Riiznymi metodami rozvifite nisledujici funkce do mocninngch fad:

| i')"'f(x)=(1+x)1n(1 x);

b) f(x)-=%ln i ii +-;—arctgx;

2x

d) f(x)=arctg 22x

x
e) f(x) =x arctgx - 1nm
g) f{x)=x arcsinx +m;

) f(x)= arccos(l 2x)
h) f(x) xln(x+\fl+x )—\/l+x

[TiateN

2874. Uzgte Jednoznacnost rozvoje f (x +h) -f(x) =hf(x) +
derivac{ #-tého fidu nasledujicich funkei:

a) fx)= ch; b) f(x)ﬁe“’x; <) f(x)=arctgx'.

5 f”(x_) +... kvjpotm

v mocninnou fadu s pfirozenymi

2+ 2 x+x
mocninami dvojclenu x +1.

1
2876 Rozvifite funkci f(x) = —— v mocninnou fadu se zdpornymi mocninami
-X

proménné x.

2877. Rozviiite funkci f(x)=Inx v mocninnou fadu s pmrozenyml mocninami
x-~1

x+1°

v mocninnou fadu s piirozenymi mocninami

zlomku V1+x

1+x
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2879. Necht f(x)= E Z—' Dokaite, 7e z této definice bezprostfedné vyplyva

rovnost f(x)f () =f(x+y).
2880. Definujme

sinx = E(—

Dokaite, Ze plati:

2n+l
—— a2 cosx= E( )n

. 1. .
a) sinx cosx = 3 sin2x; b) sin®x+cos’x=1.

2881. Vypoctéte n€kolik ¢lent rozvoje funkce f(x}=
fadu. n=0

Rozviiite nasledujicf funkce pomoc1 mocninnych fad:
2882. f(x)=(1+x)e™ 2883. f(x)=(1-x) coshf
2884, f(x)=1n?(1 -x). 2885. f(x)=(1+x )arctg_xr

2886. f(x)=e *cosx. 2887. f(x)=¢*sinx.
2888. f(x) =M. 2889. f(x) =(arctgx)2. L
+x
2890. f(x) [arcsmx] '

Vypottéte prvni tfi nenulové cleny rozvoje nasledUJ icich funkci v mocninnou fadu
s kladnymi mocninami proménné x: : |
2891. f(x)=tgx. 2892. f(x)= tgh'x. '2893. f(x) =cotgx - =

2894. Necht je rozvoj funkce secx zapsdn ve tvaru

E,
secx x.
. (2 n)f
Najdete rekurentni vztah, ktery platl pro koeﬁcxenty E (Eulemvy koef ictenty).
2895. Najdéte rozvoj funkce fix)= ! (x| <1y v mocninnou fadu.
1-2tx+x2

2896. Necht f(x} = E a,x" . Najdéte rozvoj funkce F(x) = f (x)

n=0

x n
v mocninnou
n+1

§ 5. MOCNINNE RADY

2397 Necht ma fada Z a x" polomér konvergence R, afada Z b x™ polomér
n=0 n=0

konvergence R,. Jaky polomér konvergence maji rady a) Z (@, b )x";

=0
Eaﬂ n
1;=0
] an
a L=lim .
new |y

splituje nerovnosti [<R<L.

- .
9898. Necht {=lim|—"
R a

Dokaite, Ze polomér konvergence R

Ll et T |

mocninné fady ¥ a x"
o =0

_ 2899. Dokaite, 7e je-li fix)= Z a x", pfitem? |nla | <M (n=1,2,..), kde M je

konstanta pak plati nasledujla tvrzeni: 1) f(x) md derivace viech ¥adi v libovol-
nem bode a; 2) f(x) E ﬂ (a) (x - a)" (|x| < +).

2899.1 Necht fx)eC("’)(a,b )a [f® )] <™ (n=0,1,2,..) pro x€(a,b). DokaZte,

fe funkce f(x} md mocninny rozvoj f(x)= ¥, a, (x-x)" (x,€(a,b)}, ktery konver-
guje na intervalu (a,b). n-0

9899.2 Necht f(x)eC™[-1,1]a f™(x)20 (n=0,1,2,...) pro xe[- 1, 1]. Dokaite,

je na intervalu (- 1,1) lze funkci f{x) rozvinout v mocninnoutadu ¥ a x".
o n=0

NAVOD: Vyufitim monotonie derivaci /™ (x) odvodte pro zbytkovy ¢len R, (x) Taylorovy fady
funkce f(x) odhad |R_(x)| < < |x|" ' f(1).

2900 Dokaite, Zec jestliZe a_ 2 0 ajestlize existuje lim ): ax"=§,pak Z a R"=S§.
x-Rn=0 n=

" Najdéte mocninny rozvoj nasledujicich funkei:

s, [y,

%905, f tds
| In(1 +)
0

201, [oas. 2002. f di

0
x
9904. farctgt

(uréete prvni ¢tyfi cleny).
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Derivovinim ¢len po denu vypo&tete souéty nasledujicich fad:

£® x5 - x3 x5
2906, x +— +— +_,, 2907, x - — +— - ...

3 5 3 5

2 4 2 3
2908, 1+ +% & 9909, ~* _+ % . *

4! i-2 2:3 3-4

2910. 1+lx+£x2+ l.3.5:»&‘:3+..

2 24 2:4-6

NAvVOD: Vyndsobte derivaci fady funkci 1 -x.

Integrovinim ¢len po ¢lenu vypottéte souéty nasledujicich fad:

2911 x +2x%+3x%+ .. 2912, x-4x2+9x7 - 16x*+ ...
2013. 1:2x+2:3x"+34x%+. '

2914, Dokazte Zefada y=

Je feSenim rovnice y ¥ =y.
"o (4 ) -

n

neo (1)

2915. Doka’te, e fada y= 5 Je FeSenim rovnice xy " +y/-y=0"

Vypociéte polomeér a uréete obor konvergence nasledu_]lc:ch mocninnych fad
v komplexnim oboru (z =x +iy):

2916. Z("—l’):
n=1 nzn :

nlz"
2918. ; (1+3)(1+24)...(1 +ni)

2990, Z ._H(u

o n(l _elﬂ)ﬂ.

(142"
017, } LY E
2 @ +1)(n+2)

o

_ z"
2919, Z s

n=1 B

2921. Pomoci vzorce binomické véty vypoététe piiblizné hodnow &sla j/@
a odhadnéte chybu, které se dopustime, jestlize pouZijeme prvni tfi ¢leny rozvoje
odpovidajici funkce.

2922. Vypoltéte prlbhzne nasledujla hodnoty:

a) arctg1,2; b)  ¢1000; d) In1,25

c} ——;
[

a odhadnéte chyby jejich uréent.

§ 5. MOCNINNE RADY

:‘:.'.Pomocf vhodnych rozvoji vypoctéte s danou piesnosti nasledujici hodnoty:
5923 sin18° s pfesnosti na 1075,
2924 cosl®s presnosti na 10}~ 6
2925 tg 9° s piesnosti na 1073,
' 292.6. e s presnosti na 107,
2927 Inl1,2 s pfesnostf na 107%.
(

. . T 1 ‘oo . . -4
2928, Pomoci rovnosti ry =arcsm§ vypoctéte éislo © s piesnosti na 1077,
i,

- ';'5929. Pomocf identity E = arctg-l— + arctg—l— vypoctéte ¢islo m s presnostina 0,001,

-~ ~2930. Pomoci identity Y =4:m:tgl —atrctgL vypoltéte &islo © s piesnosti na

239
10'

2931. Pomoci vztahu In(n+1)=Inn+2

+} vypoctéte In2

+
2n+1 3(2n+1)

 4In3 s pfesnostina 1073,

2932. Pomoci rozvoje funkcl v argumentu 1ntegralu vypodltéte s piesnosti na

0, 001 hodnoty nasleduycnch mtegralu 1

o )
a)f ‘dx; b) e dx; ¢ fsmx fcosxgdx; e) fsmhxdx;
0 o
‘o U3 1 100 12
dx dx dx n(l+x arctgx
f)f 3 g) 2 ; h)f ;) f n( )dx ) xg dx;
p Lex o 1 -x2 o y1+x* 0 0

T N
k) farcsmxdx; ) fx"dx.
x

0 _ :
5933. Vyp_oététe spfesnostina 0,01 délku kiivky jedné polovlny sinusoidy y =sinx
(O<x<m).
2934. Vypoctéte s pfesnosti na 0,01 délku elipsy s poloosami a=1 a b=1/2.
2935. Elektrické vedeni zav&¥ené na dvou sloupech, jejichi vzddlenost je
21=20m, ma tvar paraboly. Vypoététe s pfesnosti na lcm délku vedent, je-li
" hloubka jeho prohybu & =40cm.
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6. Fourierovy rad

1. FOURIEROVA VETA O ROZVOJIL. Jestlife je funkce f{x) po &istech spojitd 2 ma po dstech
spojitou derivaci f’(x) naintervalu (-1,{), pfi¢emZ jsou viechny jeji body nespojitosti & regularni

(. plat f(E)=—;~ lim f{x) +hm f(x)]), pak lze funkei f(x) na tomto intervalu rozvinout ve
xr£ XK

Fourierovu fadu

_""_04_ A™X Lo RTX
flx)= 3 ;(ancos 7 b_sin ; ), (n
kde
2 -——ff(x)cos X dx n=0,1,2,.) &3}
a
——ff(x)sm X dx rn=1,2,...). L ")

Specidlné plati nasledujici vztahy:
a) je-li funkee f{x) sudd, pak

f(x)———+z cosn?x, (3)
n=1
g kde
; ) _
n=~?—f (x)cos dx (n 0,1,2,...);
0
# b) je-li funkce f(x) lichd, pak .
f)= Y b, sin 275, @
n=1

kde

nnox

!
bn=%ff(x)sm dx n=0,1,2.).
Funkd f(x) definovanou na mtcrvalu (0,1), kterd spliiuje vyse uvedené prcdpoklady spojitosti,
lze rozvinout na tomto intervalu jak do tvaru (3}, tak do tvaru (4).

2. PODMINKA UPLNOSTL Pro kaZdou funkei f{x), kterd je spolu se svou druhou mocninou

integrovatelnd na intervalu [-1,{], spliiuje fada (1} s koefictenty (2), (2 ) Parsevalovu rovnost
)

047 @bt Ifz(x)dx

3. INTEGROVANI FOURIEROVYGH RAD. Konvergenini nebo divergentni Fourierovu fadu (1}
funkce f{x), kterd je na intervalu{~1,!) riemannovsky integrovatelnd, lze na tomto intervalu
integrovat ¢len po clenu.

e LA

§ 6. FOURIEROVY RADY

59_36. Rozvifite funkei f(x) =sin*x do Fourierovy fady.

o '9987. Jaky tvar ma Fourierova f‘ada trigonometrického polynomu

P (x)= Z (o.cosix +B,sinix) ?
i=0

5 ,.2938 Rozviiite do Fourierovy fady funkci f{x) =sgnx (- <x <n). Sestrojte graf
--fiinkce a grafy nékolika prvnich ¢éstenych soucth Fourierovy fady této funkce.
Pomoc1 tohoto rozvoje vypottéte soucet Leibnizovy Tady

Najdéte Fourierovy fady nisledujicich funkci na danych intervalech:

::2939. f)= A pro 0<x </,

0 pro I <x <2, kde A je konstanta, na intervalu (0,2{).

_ 2940. f(x)=x na intervalu (-m,n).

2941. f(x) = na intervalu (0,2 x).

2942. f(x =|x| na intervalu (-, m).
o, -5 PO S0
2944. f(x)=7"-x? naintervalu (-, ™).
2945. f(x)=cosax na intervalu (- m,n) (a-meni celé &slo).
2946 f(x) =sinax na intervalu (-m,n) (a nenf celé ¢islo).
2947 f(x) =sinhax na intervalu (-, 7). '
2948, f(x)=¢°" na intervalu (-4,h).
2949, f(x)=x na intervalu (a,a +21).

_ 2850, f(x)=xsinx na intervalu (-=,m).
: W

9’ i

” kde a a & jsou konstanty, na intervalu (-, ).

2951 f{x)=xcosx na intervalu

Rozvmte do Fourierovych fad nisledujici periodické funkce:
2952 flx) =sgn(cosx). 2953. f(x)=arcsin(sinx).
2954 [flx) =arcsin(cosx). 2955. f(x)=x-[x].

% 39_56. [flx) =(x) — vzdalenost ¢isla x od nejbliz$iho celého &isla.

. 2957, f(x) = |[sinx|. 2958. f(x)=|cosx|.

;; f(x) Z n sinnx |<1

244

245
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2960. Rozviiite do Fourierovy fady funkci
s s
x)=secx|-—<x<—|.
fx) [ , 4]

NAvop: Najdéte vztah mezi koeficienty @, a a, _,. .

2961. Rozviiite funkci f(x)=x* do Fourierovy fady a) na intervalu (-, 1) pouze

s kosinovymi ¢leny; b) na intervalu (0, 1) pouze se sinovymi ¢leny a ¢) na intervaly

(0,2 m). Sestrojte grafy funkci a grafy odpovidajicich souctovych fad pro pfipady
a), b) a c).

Pomoci téchto rozvoji vypoctete soudty fad:

Plyer.y i

n= 1(2"’ 1)

2962. Pomoci rozvoje

s sinnx
x =22(- 2 (n<x <)
n .
n=1 :
a integrovinim této fady ¢len po d¢lenu rozvifite na intervalu (-7, 1) do
cxtaxt
2963. Napiste Parsevalovu rovnost pro funkci
) = 1 pro [x| <a,
0 pro a< |x| <m.
Pomoci Parsevalovy rovnosti vypottéte souéty fad

Fourierovych fad funkce x?

L) . . Ba

Z sinno a E cos n o
9 n?

n=1 n n=1

2964. Rozviiite ve Fourierovu fadu funkci
x pro O<x<1,
fx)=11 prorl' <x<Z; .
3-xpro2sxsg3.
Pomoci vztahti cosx =%(t +1) a sinx = %(t -F), kde t=¢™ a { =¢ ™, rozvifite do
Fourierovych fad nasledujici funkee:
2965. cos™™x (m je piirozené &islo).

2966. — 1% (|g] <1).

1-2gcosx +¢°

248

§ 6. FOURIEROVY RADY

_‘ |:‘4

2967. (lgl <1).
et 1-2gcosx+g* !

1—2qcosx+q

*'“"""2969 In(1-2qcosx +¢%) (gl <1)

; Rozvmte do Fourierovych fad nisledujici neomezené periodické funkce:

2970. f(x)=In 2971. f(x)=In COS%’. 2072. f(x)=ln‘tgg‘.

.x
sin—|.
2

;l"' ’
* 2973, Rozvitite do Fourierovy fady funkci f(x) f In ‘ cotg—-— dt (-m<x<m).

'2974. Rozviiite do Fourierovy fady funkee x x(s) ,9=9(s) (0<s<4a), které
parametricky popisujf obvod dtverce 0<x<a, 0<y<a, kde s je délka této
kfivky od poéateéntho bodu (0, 0) s orientaci proti sméru hodinovych rucicek.
2975. Jak musime prodlouZitintegrovatelnou funkci f(x) deﬁnox;anou na (0,m/2)
. pa interval (-T,T), aby jeji Fourierova fada méla tvar f{(x)= ) a_cos(2n-1)x
(-m<x<m)? nel
-2976. Jak musime prodlouZitintegrovatelnou funkei f(x) definovanouna (0,1/2)
~ na interval (-m,7), aby jeji Fourierova fada méla tvar f(x) = Z b sin(2n-1)x
(-m<x<m)? n-l

~ 2977. Funkci fx) =x[%—x) rozviiite na intervalu (0,7/2): a) do fady pouze

~* skosinovymi lichjmi ¢leny; b) do fady pouze se sinovymi lichymi &leny. Sestrojte
- grafy souctovych funkci Fourierovy fady pro piipady a) a b).
7 2978. Funkce f(x) je antiperiedickd s periodou m, pokud plati f(x+m)=-f(x).
' jﬁk&l vlastnost ma Fourierova fada takové funkce na intervalu (=, m)?
2979. Jakou vlastnost ma Fourierova fada funkce f(x) na intervalu (-, ), je-li
C feeem)=fx)?
- 2980. Jaké vlastnosti maji koeficienty Fourierovy fady a_, b (n=1,2,...) funkce
y=f(x) s periodou 27, jestlie graf této funkce: a) ma stredy soumérnosti v ho-
dech 0,0) a (= =/2,0); b) m4 stfed soumérnosti v poditku soufadnic a osy sou-
mérnosti x =+ m/27?

| 77772981,V jakém vzdjemném vztahu jsou koeficienty Fourierovychfad a , b a o ,
- (n=0,1,2,...

) funkef @(x) a Y(x), je-li (-x) =P (x)?
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2982. V Jakem vzdjemném vztahu jsou koeficienty Fourierovjch’ fad a,b
ao,B (@=0,1,2,.) funkc @(x) a Y(x), je-li p(-x)=-Y(x)?

2983. Pomoci Fourierovych koeficientd a,b (n=0,1,2,.) integrovatelné funkce £ (x)
s periodou 21 vyjidfete Fourierovy koeficienty a,, b (=0,1,2,...) ,,posunute"
funkce f(x +h), kde h je konstanta.

2984. Pomoci Fourierovych koeficientd a, bn (n=0,1,2,..)) integrovaté]né funkce

f(x) s periodou 2m vyjadfete Fourierovy koeficienty 4 ,B, (n=0,1,2,.)

Stéklovovy funkce
fh(x)—-* ffE)dE

2985. Necht f(x) je spojita funkce s perlodou 2naa,b (n=0,1,2,..) jsou jej
Founierovy koeficienty. Vypoctéte Fourierovy koeficienty 4 , B (n=0,1,2,..)
konvoluéni funkce '

Fe)=— [ flfe +ide.

-T
Vysledek uZijte k odvozeni odpovidajici Parsevalovy rovnosti.

§ 7. V¥pocet souctu fady

! 1. PREMY VYPOCET SOUCTU. JestliZe plati :
u =v , -uv (m=12,.})alim v =v_, pak ):u =v_-v,.

+ = U]
=

¥ Specialng, je-li
1
w om—
kL
ana'ﬂ «1* a'n +am

kde disla a, (i =1,2,...) wofi aritmetickou posloupnost s piiristkem 4, pak

2. ABELOVA METODA. Jestlife fada ¥ a, konverguje, pak
n=0

™

Ya=limy¥ax".

n=0 xs1n=0

£ g-rovamm rady den po clenu
=

1 1
[ p—
Pomdaea | .a .,
V nékierych piipadech lze ¥adu vyjidfit ve tvaru linedrni kombinace fad se znimym souctem,
jako jsou: - i - . & L
E.,____('l) =In?2; _1-;“_; CD
n n=l T 2 6 n=1 n z 12

Souet mocninné Fady E aux * lze v jednoduchych ptipadech vypocitat derivovinim nebo inte-

& 7. VYPOCET SOUCTU RADY

5 SOUCET TRIGONOMETRICKYCH RAD. Pro vypocet souctu fady

E a,cosnx nebo ): a, sinnx
n={ r=1

o lze obvykle uvaZovat redlnou nebo komplexni &ist mocninné fady E a z" v komplexnim oboru,
A ‘kde z=¢*
..} ¥V téchto prlpadech byvd uZite¢ny soudet

Y2l (<.
il 1-z

Seététe nasledujm fady:

111 ] 1 1
. 2987. + + *
2986 13 35 57 {93 934 345
' L1 11 |
88. - - + ... 2989.2 ;
288 12793532 15 1) +2)n+3)

o«

2990. Z 1 (m je piirozené &islo).
- i nn+m)

o1, .1 . 1 . 2992.2‘1

1-2-3 345 567 2
2993, E 2n-1 . 2994. Z--l—
‘ oLn (n+1) ‘ ~ n(Zn+1)
-, n
2995 M 2996. 22 (n+1)
i n! . ‘ - ard '

- 2907, Z—-—I— 2998, Z 1 .
ey =+ 12 +2)?
2999, Y -1m 3000, Z—('L
e (2n+ 1! ‘ e nlen-2

73001 Necht P(x) =g, +a x +... +a,x"
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Vypoététe soulty nasledujicich fad:

. oyt 3
3002. Z” tlon 3003. me
. n=

won 2'n! e (n+1)!

oo

7 2.0
3004. Z( 1'@n2+1) s, 3005. Zﬂ—
2n)! ' (2n + 1)

Pomoc{ derlvovam ¢len po ¢lenu setéte nédsledujici fady:
)n l 2n

o T2 s ¥ L1
n(2n-1)

3009. Z afa ”;)_'é‘gfind" Ddl on @ >0).

NAvOD: Derivaci fady vynésobte funke 1-x.
2
3010. li l 4 x 1 4- 7 .
32 3.6 3 6-9 2

Pomoci integrovani ¢len po dlenu se¢téte nasledujici fady:

4n+1

soos.E x .

. 4n+1]
n=0

n=1

. - Zn
3011. Znﬂx"'l. 3012,7_’-Zn(n+2)x”. © 3013, Zw
=1 o n=1 n=0 "
Abelovou metodou vypoctéte souéty nasledujicich fad:
I 1 1 ' 1 1 1
3014. 1-—+—-——+ ., 3015. | -—+—-—+...
4710 35 7
ETIUHD TR SR 2 PO S VAR WLI DL 20 B
2 2 2-4-6 23 245
Sectéte nasledu;jicf trigonomenické fady:
3018. E sinnx | 3019._2 cosnx 3020. sinnasinnx
nel o nel T n=1 ”

o

3021. Z sin” nosinnx [O<o¢< n]
no 27/

n=1

- "f'VypoEtéte soudty nésledujicich fad:

" 3037,

§ 8. VYPOCET URCITYCH INTEGRALU POMOCT SOUCTU RADY

o

-3022 Zsm(?" Dx. 3023.2(-1)"‘3025“:_ 3024.Zc05(2n—1)x.
. n=2 ne-

2n-1 w1 (@n-1)
5025 Z( 1! SINAX_ g0 Zcos'nx
— nin+1)

3027. Sestrojte kiivku, ktera je definovana rovnosti

Z sinnxsinny_o
i ' 2 '

n=1 n

12
..;3028 Z[(n 1)] (2x)*". s029. ) 20 .
| et ()]
1.‘ 20 31
303 + +
x+1 (x+1)(x+2) (x+1)(x+2)(x +3)
: a a a
. 3031. L 2 +..za podminky, Ze x>0, a >0 (n=1,2,...) atada
Gy tX  Gy*X Gy +X
Z-—— diverguje.
=] 0 .
' 3032. E X L E +..proa)|x|<1;b) [x|>1.
‘ -x% 1-x* 1-x
= xu+1
3933. proa) |x|<1;b) [x|>1.

A (1-x™)(1-x"1)

8 Vypocet uritych integralti pomoci souétu radg

7 'Pornoc1 rozvoje mtegrovane funkce do rady vypoctéte hodnoty nisledujicich

mtegralu 1 ]
o f ]
3034, In—dx. 3035, ]‘de 3036. fmdx.
-X X X
0 0

x? 'n(l-x9dx (p>0,4>0).

|
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1 e tou
3038. flnxln(l—x)dx. 3039. fﬂ. 3040.f xdx
.0 A e21tx__l A e*+1]

3041. Rozviiite do mocninné fady s celymi nézépornymi mocninami argumeng,
k(0 <k < 1) siplny elipticky integrdl pruniho druhu
n/2
Fhy= | —2®
o V1 -k3sin’g
3042. Rozvifite do mocninné fady s celjmi nezdpornymi mocninami argumenny
k(0 <k < 1) splny elipticky integrdl druhého druhu

w2
E(k)z_f,/l ~k2sin*pdg.
0

3043. Vyjadiete délku elipsy x =acost, x =bsint (0 <¢<2 1) pomoci mocninné fady
s celymi nezdpornymi mocninami argumentu ktery se rovna vystfednosti (excen-
tricité) elipsy.

Dokaite nésledujici rovnosti:

1
3044, £=ZL_
0x:n: ﬂ=1,nn

.
+ o

—_1V'm 1
3045. fe “"2sinaxdx =lE _(._D-_""_a Znsl
5 2400 (2n+1)!

2n
3046. fe 5¥ cos (sinx) cosnxdx = —n-'- n=0,1,2,..).
nl

Vypoctete nisledujici 1ntegra1y

3047. f e® ¥ cos (asinx - nx)dx (n je prlrozene sloj.

0
n

3048. f XSIN® .
A 1 -2xcosx +a?

Nivod: Viz uloha 2864.

3049. fln(l ~20cosx +0)dx.

§ 9. NEKONECNE SOUCINY

-x
dx=L_1L,
At a g2

(- = (1)

n+1

21 wet (= 1)1 0, n!
ol 1
G3 ( ) n

a

ke a>02a 0< 8, <1.8 jakou pfesnosti aproxtmujeme hodnotu integrilu

R4
-X

..-——-—150 dx, jestlize ve vzorci (1) pouZijeme prvni dva ¢leny?
‘ +

1. KONVERGENCE SOUCINU. Rikdme, Ze nekoneény soudin

T astadi, aby konvergovala fada

p\py=p HP (1)

‘ kmvm‘gu]e JjestliZe existuje konednd nenulova hmlta posloupnosu

lim Hp —hrnP =P.

n-w i=1 e

! :Eﬂlécht P=0. Jestlize Zidny z ¢len p_ neni roven nule, pak fekneme, Ze soudin (1) diverguge

k nule. V opadném piipadé fikime, e soudin konverguje k nule.
Nutnou pedminkou konvergence soucinu je rovnost

llmp =1.

- | Soudin nenulovych élent (1) konverguje, pravé kdyZ existuje n, takové, Ze konverguje fada

i Inp . (2)

1t =9,

-~ JestliZe p =1 +e (n=1,2,..)a ¢ neméniznaménko, pak pro konvergenci soudinu (1) je nutné

); E @, 1) 3)

| .V obecném pnpade, kdyZ ¢ méni znaménko a fada (3) konvcrgUJc, sou(‘,m (1} konverguje nebo

diverguje k nule, pravé kdyz konvergu_]e nebo dlverguje fada

=

‘ ila,ﬁ ):',1(17”-1)2.

2. ABSOLUTNI KONVERGENCE, Rikdme, Ze soudin {1) konverguje absolutné (resp. neabsolutné},

- ¥ Jestlize absoluiné (resp. neabsolutn&) konverguje fada (2). Nutnou a postadujici podminkou pro
. j‘_:absolutni konvergenci soutinu (1) je absolutni konvergence fady (3). .
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. 3. ROZVO] FUNKCE DO NEKONEGNEHO SOUCINU. Pro - < x < + oo plati nasledujici rozvoje:
2 4 2
sinx=xl I[l— : 2] 4 Cosx= | | 1——-—5-—2-—2.
n=1 L n=1 (21’1— 1)

Specidlné substituci x =%/2 do prvniho z nich zlskamc Wallisitv vzorec

2 H?n 1 2n+1

[ttt 2 L B e R

DokaZte nasledujici rovnosti:

{
3051. H l—l] =-—1—.
2] 2

n3-1_2

a=2 \ 7 wez 71
i 2n
3053. H 1- 2 =-1—. 3054.Hl+ -1—- =2.
nn+l)| 3 2
ne2 b . =0
n 2 . x _sinx
3055, Hcos =—. 3056, Hcos—= .
n=1 2’1*1 T - n=1 - 2" X
3057. Hcosh—’-‘-= sinhx 3058, | [(1+x22t (x[<1).
ity o x iy 1-x

2 \/2 +y2 \/2+ 2+ /3

s060. | [ 2 _3n _2m
13n-13n+1 3/3

3059.

Dokazte, ¢ nasledujici soucmy konvergujl a vypoctete jejich hodnoty
3062. H 1+
n (n +2)

.(2-n+l)(2n +7) -
T (@n+3)(2n +5)' | 30@- nl:[lla (.:q,>0).

3063

a),H(P +4,);

osome. [T -xm.

P -....I' 1 ﬂ2 ‘ ’ °
| - [1 = T/
~-3081. H 1+ ml | 3082, H 1-2e

§ 9. NEKONEGNE SOUCINY

3065. Vyplyva z konvergence soucini H £, a H g, konvergence soudint:

n=1
oT1E

b) Hf)n, c) HP 9.5, .
n=1

vy§etrcte konvergenci nekoneénych soudinii:

1)®

: s.H-. 3067. H nr

: 3?6 n nn+2)

3069. H[l +1] .
n

"15' n=1 ﬂ=2
FA T = g P

- 3070. | I n -l

B e alntel

T & :ﬁ2+aln+b] oo . . : ,
. 3071 ———— kden“+an+b>0 pronzn,.

. s H (n-a)n-ay)..(n _‘_zf’), kde n,> b, (=12, .p).

iy (n-b)n —ﬁz)...(niébp)

'3073.H n+l
n+2

3074. H n

n=0 N n=l ynZ+1
Lt n = n?
3075.H 1+1 - s076. [ [ " /7.
'—"— n=] n : . . n=l
3077, H[ui)e‘ﬂ". 3078.H 1-L)e*’”,kde ¢>0.
o it n a1\ c+n

xi/m 22
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- ? 1 1 1 1 1 1
n N | sin= . UkaZte, Ze soudin ( I+— +—] ( 1-—] ( 1+—+ —] [ 1 ——]
3083. I | 1+x—p cosx—q. 3084. | | n _ | 2 2\ 2 J3 3 V3
n=1 n n s

3699, UkaZte, % soudin [] (1 +a ), kde

n=1

1

VE
1 1

1
Y

E a’ diverguji.

3085. Hn\/ In(n +x)-lnn.
n=1

) " pron=2k-1,
3086. DokaZte, Ze soulin Hl cosx, konverguje, jestlize konverguje soucin [] x?. :
7= ; n=l

o =
n

: pro n =2k,
3087. DokazZte, Ze soucin H tg[ % + an) [ lee | < %] konverguje, jestlize konver- _

guje absolutné fada )3 an=1 ___iomferguje piestoie rad

n=1

Vf.uoo Necht |
VySetfete absolutni konvergenci a konvergenci néstedujicich nekonecnych soucint: o '_M . ' .‘ ()= Ell n*
I _qynel] o o [ Cqynel ' Riemannouva zeta nkce) a (n 1,2,...) je vzestupné odfslovani posloupnosti
n=1t n - r=1| . ‘/’;’" ’ ,
w . : . e , oL . w v ]- -
(__ l)ﬂ+l1 . . T 3 (__ l)n ) QOkaZte, e H ]. _—'—x‘ =C(x).
3090. 1+ 3091. 1+=——| - n=l by
aal o mt wal Inn - .
= \/?—1 S = ) 3101 DokaZte, Ze soudin H 1——1— N a f"ada‘zi}, kde p, n=1,2,.}je
3092 3093. [ [nCV". - il WY 2% S § S
wz yn+(-1) o ~posloupnost viech prvotisel, diverguji (Eulerovo tvrzent).
Zen - b - _qynln-1)2 __3102 Nechta >0 (n=1,2,...) a
3094, [[ynt V. 3095. H[ML_D_._l, A 1
n=1 R n=1 " - .' — =l+ +O . (S>0)
e I . @n n n!e
3096.[1+i][l—i]['l—i][hi][1—_1_][1——1—][1+L] . Dokaite, ze .
N L G | G G | G L L 0[7] .
ol Co n

so07. [ 1+ L) (1= L) (1 L) (1. L) (1= )0 2) imitu lim a_n? ﬁa’“‘ K
1e ou 31;”" Ty 5 6t :N.AVOD:Vyﬁetf'ete limitu lim a n’ <a, [l'+;) .

noe n=1 a, .
#&3103 Pomoci Wallisova vzorce dokaite, fe 1'35.@n-1) 1

9-4-6..(2n)
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' ® . -
——; M nenulovou limitu A pro n-e.

nt’

3104. Doka’Zte, Ze if)?raz a =

Odvodte pak Stirlingovu formuli 1 =An"""2¢ "7 (1 +¢ ), kde limg,_ =0ad =27,
B ‘ : _ _ noo
NAvOoD: Limim vyjidiete jako soudin ‘- a
A=lima, =a, ] LA

R n=1 aﬂ

Konstante 4 uréete pomod Wallisova vzorce.
3105. Eulerova definice gamaﬁmkce T'(x) je
' nin*

T }HE x(x+1)...(x+n)

Pomoci tohoto vzorce: a) vyjadfete funke I'(x) ve tvaru nekoneéného soucinu;
b) dokaite, Ze I'(x) je definovina pro viechna reilna ¢isla x kromé celjch zipor-
nych &isel; c) odvodte vztah T'(x + 1) =xI'(x) ; d) vypoctéte hodnotu I'(r) pro kazdé
pfirozené ¢islo #.

3106. Necht funkce f{x) mi vlasini integril na intervalu [a, ] ad —-{)—‘i
n

£ —f(a+16) (z—l 2,.

-»n). DokaZte, Ze
i 5
n ﬁﬂﬂﬂ
Um J(1+8_f )=e"
n-oi=0

3107. Dokaite, Ze

n

\ ilj(:(a +1b)

Dm0 o

" if@z+ib)
i=0

E{l
e)
kdea>0a b>0.

3108. Necht f (x) ('n=1°: 2,..
n=1,2,..

.) jsou spojité funkce na intervalu (a,b) a | () <c,
), kde fada }, ¢ konverguje. Dokaite, Ze funkce
n=1

P = T] [1+/, 0]

je spojita na intervalu (a,b).
3109. Najdéte vztah pro derivaci funkce

H [1. +f, (x)]

Jaké jsou postacujici podmmky k tomu aby derwace F ’(x) exnstova}a?

§10. STIRLINGUV VZOREC

110. Dokaite, Ze jestlize 0 <x <y, pak
i lim x(x+1)..Gc+n) _

aee Y +1) Ly +m)

L §10 Stirlingtv vzorec

1[{ pnbhinému vypoém nl pro velké hodnoty disla n lZe pouiit Stirlingliv viorec

=Pannne "W (0<8,<1).

L .

Pomoci Stirlingova vzorce vypottéte piblizné nésledujici hodnoty:

._:§}11210g100!. 3112.1-3-5...1999.
1-3-5...99 (100}
113 _—_— - 3114.
R eyt [ 40 )--
1
oo - 100!
$115. ——————. : 3116. [(1-x2)%dx.
~ 201301501 [ >
. 2n

.- 3117 f sin®®xdx .

3118. Odvodte asymptoticky vztah pro soudin
@n-1)11=1-3-5...(2n - n

el S
3119 Vypoctete prlbhzne hodnotu disla [ 2n ) pro velke hodnoty n.
n

3120 P0m0c1 Surhngova vzorce vypoltéte pI‘lbllZIle nasleduym limity:

a) 11m n' b) lim —— ) lim L'; d) im '

Inn!

[

§:11. Aproximace spojitych funkci pomoci polynomi-

il LQ;RANGEOVA INTERPOLACNI FORMULE. Pro Lagrangedv polynom

(x-x,)

P (x)= (e —x)n (-3 ) f-xg )

(i e : P (x‘.—xﬂ)..;(xt.—xl._])(x!.—x‘.”)...(xr.-xn)y"

N 3 piau’ Pn (xi) =yf (l =0’ 1, "-,n) ’
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2. BERNSTEINOVY POLYNOMY. JestliZe f{x) je spojitd funkce na uzavieném intervalu [0, 1], pak

Bernstetnovy polynomy
B (x)= Z[ Jf[ ]x (1=x)""¢

pro n- konvergujf stejnomérné na intervalu (0, 1] k funkdi f(x).

3121. Najdéte polynom P_(x) nejmensiho moZného stupné n, ktery nabyva nj.
sledujicich hodnot: :

X -2 0 4 5]
y 5 1 1 -3 1

Uréete piblizné hodnoty P_(-1), P.(1), P, (6).

3122. Sestavte rovnici paraboly y=ax?+bx+c, kterd prochdzi tfemi body
o=ty )5 ®epdo)s %y +huy)).

3123. Odvod'te pfiblizny vztah pro odmocninu y =y/x (1 <x<100) s vyuZitim zn4-
mych hodnot x,=1,34=1; %,=25, 9 =5; x, =100, 3,=10
3124. Odvodte pfiblizny vztah tvaru

sinx°=ax +bx?® (0<x<90; x =arc x°)
s vyuZitim hodnot sin0°=0, sin30° =?12- sin90° = 1. Pomoci tohoto vztahu vypo-
¢téte piiblizné hodnoty sin20°, sin40°, sin 80°.
3125. Pro funkci f(x)=|x| na intervalu[-1,1] najdete Lag‘rangeuv interpola¢ni

polynom s uzlovymi body x = 0 ; +1.
3126. Pomoci aproximace funkce y(x) Lagrangeovym polynomem vypotiste
2 .

priblizné integral [y (x)dx, kde
0

x 0 05 1 15 [ 2

y (%) 5 4,5 3 2,5 5

3127. Vyjidiete Bernsteinovy polynomy B, (x) pro funkce x, x2%, x3 na intervalu
[0,1].

3128. Najdéte vzorec pro Bernstemovy polynomy B, (x) funkce f{(x) definované
na uzavieném intervalu [a,5].

§ 11. APROXIMACE SPOJITYCRH FUNKCI POMOCT POLYNOMU

29 Aproximujte funkci f(x) = I | na uzavieném intervalu [- 1, 1] Bernstei-

ovym polynomem B (x). SestIo_]te grafy funkci y = Jxl+x I ay=B,(x).

180. Aproximujte funkci f(x)=|x| pro -lsx<1 Bernstemovyml polynomy
dého stupné.

g 131 Najdéte Bernsteiniv polynom B_(x) pro funkci f(x)= =e* (a<x<h).

E _5_1;,2 Sestavte polynom B_(x) pro ﬁJnka f(x)=cosx na uzavieném intervalu

1-x% Y 1-3.. ( -3)
24 (23) (17

i=2

. ¥ b . .
3133 1 Necht f(x)eC[a b] aM =f f(x)dx 0 (k O 1 2 ) Dokazte zef y=0

Welah]l. e _ _ -
. : VyuZijte Welerstrassovu vét.u o aproxunaa spojlt)'ch funkd'. polynomy
_3134 Necht f(x je spcglta perlodlcka funkce s periodou 21 a a,b_ (n 0,1,2,. o)

jsou jeji Fourierovy koeﬁaenty. Doka’te, 7e Fejérovy trigonometrické polynomy

n-1

a’o 2 . . .i
i a (x)=—+2[ I —-—] (@, cosix +b, sinix)
S m 2 n ‘ .

i=l
_-konverguy stejnomérné k funkci f(x) na intervalu [-m, n].
3135. Najdéte Fejériiv polynom o, ,(x) pro funkci f(x)=|x| na intervalu

TREXLT.
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KAPITOLA VI

Diferencialni pocet funkci vice realnych
promeénnych

§ 1. Limita a spojitost funkce

1. LIMITAFUNKCE. Necht je funkee f(P)=f(x,x,,...,x,) definovina na mnoziné £ s hromadnym
bodem PO . licknemc, ie llmf(P) =4 ,
PP,
jestlife ke kaidému e> 0 existuje §= 8{(e,P)) > 0 takové, Ze
fiPy-A|<e
pro kazdé PeE spliujici 0 <@ (P,P) <8, kde o(P,P,) je vzddlenost mezi body P a P.

2. SPOJITOST FUNKCE. Funkce f(P) se nazjvd spojitou v bodé P, je-li
lim f(P)=f(P,).
r-p,
Funkee f(P) je spojitd na dané mnozing, jestlize je spojitd v kaZdém bodg této mnoZiny.

3. STEJNOMERNA SPOJITOST FUNKCE. Funkce f{7) se nazyva stefnomérné spojitow na mnoziné G,

jestliZe ke kazdému £ 0 existuje 8=5(¢) > 0 takové, ze pro libovolné dva body P’ a P* z mno-
Ziny G plati nerovnost

§ 1. LIMITA A SPOJITOST FUNKCE

fP")-fP")| <,

pokud -
o(P,P")<8.

“Funkce, kterd je spojitd na uzaviené a omezené mnoZing, Jje na této mnoZiné stejnomérné

spo_jité.

" Najdéte a na¢rtnéte definiéni obory nasledujicich funkcf:

3136, u=x 4y, 3187, u=y1 x2+yh7-1.

5138, u =1 -x2 42, : 3139 u=— 1
: : fx2+y2_l

' 2, .9
3141 u = X1y x
3 ‘ 2x-:x::2-—y2

o

3140, u=y(x2+y2-1)(4 -2 -y?).

3‘142.u=\f1 -(x 24y, 3143, u=In(-x —j).

3144, u arcsin .. 3145. u =arccos X,
e X o x+y

3147. u =\./sin (x? +3%).

3149. u=In(xyz).

| $146. u =arcsin 12 +arcsin (1 -9).

' b

‘3148, u =arccos )
- YxTey?

y

3150, w=In(~1-x%-y2+z?).

. Sestrojte vrstevnice nésledujfcich funkei:

3151, z=x +y. 3152.z=x2+y2. 3153.z=x2-5)2.

3154, z=(x +y)". 3155. z=2. 3156, z=— 1
T X x2+2_‘)’2

3157, 2= \fxy. 3158. z = |x| +y. 8159. z=|x| +|y| - |x+y]|.

'3159.1 z=min(x,y). 3159.2 z =max(|x], [y|) 3159.3 z =min(x?,y).

L8160, 7= 2617, 3161. z=x" (x> 0). 3162. z=x¢ " (x> ().

| ‘ a2 4yl
--3168. z=In _(L)QJ’_? (@>0). 3164. z=arctg—2@— (@>0).
. (x +a)" +y x*+y*-a®

A_~_3165' z=sgn (sinx SinJ’) .




DiFERENGIALINI POSET FUNKCI VICE REALNYGH PROMENNYCH

Sestrojte ekvipotencidlni plochy nasledujicich funkei:
3166. ic=x +y+z,
3169, u=(x +y)2 +z2,

3167. u,—x2+y2+z2 3168. u=x"° +y -z2

3170. u = sgnsm(x +y?+z?),

Vy$etfete charakter ploch zadanych nisledujicimi rovnicemi:

3171. z =f(y -ax). 3172. z=f(yx 2 +3?).
3173. 2 =xf(l] . 3174. z=f(1

X X
3175. Sestrojte graf funkce F(£) =f(cost,sin¢), kde

_JL je-liyzx,
fe:9) ‘{0, je-liy<x.

3176. Vyjadiete f(l,l] jeli fla,y) = gxyz.
x xZ+y

3177. Vyjadrete f(x), je-li

X

f[l] _yxT+y? (x> 0).
X

3178. Necht

2=y +flfx-1).
Urcete funkce f a z,je-li z=x pro y=1.

3179. Necht
z=x+y+f(x -y).
Uréete funkce fa z, je-li z=x? pro y=0.

3180. Vyjadfete f(x,y), je-li f(x+y,2)=x?-y2.
X .

3181. Ukaite, Ze pro funkci

flag) =222
X +y
plati
lim{}im f (x,y)} =1; lim{lim f (x,'y)} = -
x~0 |y~-0 ¥~0 |x~0
zatimco lim f(x,y) neexistuje.
x-{
y-0

3182. Ukaite, e pro funkci

2,2
fee) == 2—s
x%y?+ (s -y)

- plad

? 3183 Ukaite, Ze pro funkci

§ 1. LIMITA A SPOJITOST FUNKCE

y-0 |x-0

1inol{1ixg fx, y)} =lirn{lim f, y)} -0,
-0 |y-

Ci avEak lim f (x,y) neexistuje.

x-0
y-0

flx,3) =(x +y)sin lsml
¥

K hmlty lim /lim f (x, y)} a hm{hm fx,y) } neexistuji, a piesto lim f(x,y)=0.

x-0 y=-0 0 x-0
¥-0
3183.1 Rozhodnéte, zda existuje limita
- ., ‘lim 2xy .
e-0 x2 +y2
e y-0

3183 .2 Cemu je rovna limita funkce flx,)=x2e ") podéllibovolné polopiimky

x=lcosq, y=tsina (0<f< +o) pro ¢~ +°°>je tato funkce nekoneéné mali pro
x—oe ay—-ooﬁ

x- ~b

: 3184 Najdéte limity llm{llm f (x,y)} a ilm{hm fxy } , je-li:

R

%1) fley) ==

9 fley) =sin=
7 2x +

b

2
4;a=w, b:oo; b) f(x,y):

x“+y 1+x

d) fexy)= xly

,a==,b=0 (yb);

2 a=m! b=w;

X ,a=0, h=o;
1 +xy

e) f{x,3)=log (x+y), a=1, b=0.

'_ Viipoététe nasledujic limity:

- 3185 lim

'.: [ ) . ) 12
- 8188, lim (x2+y%)e **D. 3189, lim[ a3 2] :

Xy 3186. lim xry? 3187, lim sinxy
X—m x2 -xy +y X~ Y +J' x-0 X -
3= 3= y-a

X+ x-+ml X+ x=0
bl y-+e= J‘ y~0
) . e+ ; ¥
3191. lim (1 +l]" “P 3192, lim e
~a X -1 2
;Ha ;-O x +y
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DIFERENCIALNF POCET FUNKGI VICE REALNYCH PROMENNYCH

3193.V jakych smérech ¢ existuje kone¢ni limita

a) lime™&" "7, b) lim ex" 7 sin2xy,
Q\O g—-+>
je-li x=pcos¢ a y=psing?

Najdéte body nespojitosti nasledujicich funkei:

3104 u-— L 3195, u=22_ 3196, u=——2 .
/x2+y2 x+y x3+y3
3197. u =sin—. 3198, u-— L 3199. u=In(l -x2-y?).
xy SlnxSlﬂy
3200.u=i. 3201. u= ln 1
xyz \/(x —a) +(y b +(z - c)

3202. Ukaite, Ze funkce:
¥ 2xy
fley)=1x2+y?
' 0, je-lix?+y?=0,.

,je-lix?+y7#0,

je spaojitd vzhledem ke ka?dé proménné x a’ y zvladt (pfi druhé proménné kon-
stantni), ale neni spojitd vzhledem k obéma proménnym najednou.

3203. Ukaite, Ze funkce

xE

0, _je—li X _+y, =(},
jevbodé (0,0) spojitd podél kaidé polopfimky x =t cosa, y=¢ sina (0 <t < +},
keerd timto bodem prochdzi, tj. pro kazdé ¢ existuje lim f(¢cosa,isina)=£(0,0),
a piesto tato funkce nem v bodg (0,0) spojita. -0 :
3208.1 Vydetfete, zda je linedrni funkce u=9x* ' Sy +5 stejnomernc spojitd na
roving E?={|x| < +w, |y| < +o}.
3203.2 Vyletiete, zda je na roviné E?={|x| < +w, |y| < +»} stejnomérné spojita
funkce u =yx2+y?,
3203.3 VySetiete, zda je funkce
fx.3) = sm—n— :
1-x2- y?
stejnomérné spojitd na mnozing x2+y%< 1.

266

§ 1. LIMITA A SPOJITOST FUNKCE

. M . X Sy i wa g S, e .
903.4 Je diana funkce u =arcsin =. Je tato funkce spojitd na svém definiénim obo-
_ ¥

E?Je funkce u stejnomérné spojitd na mnoZing E?

9204. UkaZte, Ze mnoZina bodd I'lCSpO_]ltOS[l ﬁmkce f(x,y

xsm—l—, je-li y=0,
’—'f(x, 0) =0, neni uzavicena. Y

" 3205. Dokate, e je-li fnkce f(x,y) spojitd na ngjaké mnoZiné G vzhledem

- kpromeénné x a pro viechna x stejnomérné spojitd vzhledem k promenne ¥, pak
 jé'tato funkce na mnoZing G spojita. 5

3206. Dokaite, e jestliZe je na n&jaké mnoZiné G funkce f(x,y) spojitd vzhledem
- k proménné x a spliiuje Lipschitzovu podminku vzhledem k proménné y, .

suzlpyistuje konstanta L tak, Ze

_ o : :
pro kazdé (x,y')€G a (x,y

It .y)-f(x,y”)ldly w2 L
"YeG, pak Je tato funkce na mno¥iné spoyta

7. B 3207. Dokaite, ¥e je-li funkce f(x,7), kde (x,y)€ E; spojitd vzhledem k proménnym

x a y zvladt a monoténni vzhledem k jedné z nich, pak je tato funkce na dané

mnoZiné E spojita.

posloupnost funkci ¢, (x) (n=1,2,.

3208. Necht je funkce f(x,y) spopta na mno%n& a<x<A, b<y<B a necht
) stejnomerné konverguje na intervalu {a,A]

a vyhovu_]e podmince b <@ (x)<B. Dokaite, Ze posloupnost funkei
' F,(6) =60, ) (n=1,2,..)

- stejnomérné konvergu_]e na {a,A].

3209. Necht jsou splnény nisledujfci podmmky 1} funkce f(x,y) je spojitd na

- mnoiiné {a <x<A;b<y<B}; 2) funkce p(x) je spojitd na otevieném intervalu

- {(a,4) ‘a jeji obor hodnot je &

sti intervalu (b,B). Dokaite, 7e funkce
F(x) =f (x,(x)) je spojitd na intervalu (a,A4). '

. 3210. Necht jsou splnény ndsledujici podminky: 1) funkce f(x,y) je spojitd na
- mnoZiné { a <x <A;b <y <B}; 2)funkce x = ¢ (4,v) shodnotamiv intervalu {a, A)

a funkce y=1r(x,v) s hodnotami v intervalu (6,B) jsou spojité na mnoZing
{a'<u<A’;b'<v<B’'}. Dokaite, %e funkce

F(u v) “f((P u,v), ¥ (4, ))

267
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§ 2. Parcidlni derivace. Diferenciil funkce

1. PARCIALNE DERIVACE. Vysledek parcidlniho derivovani funkce vice proménnych nezilesi na
potadi derivovani, jsou-li viechny derivace spojité.

2. DIFERENCEAL FUNKCE. Pokud mii%e byt piinistek funkce f(x,y,z) nezdvisle proménngch «, ¥,z

vyjadien ve tvaru A7) A A +BAy+Chz +o(g),

kde koeficienty A4, B, C nezavisi na Ax, Ay, Az a Q=J(Ax)2+{Ay}2+(Az)2, pak se funkce
flx,3,2) nazyva diferencovatelnou v bod& (x,y,z). Linedrni &ist piiristku AAx +BAy+CAz, kterg

je rovna .
dftx,3,2) =f, (e 2)dx +f e300 dy +f (e, 2)dz, §)

kde dx=Ax, dy=Ay, dz=Az, se nazyvi diferencidlem této funkce.

Vztah (1) zdstane v platnosti i tehdy, jesilize promé&nné x,y,z jsou diferencovatelnymi Rankcemj
nezdvisle proménnych.

Jsou-li x,3,z nezdvisle proménné a funkce f{x,y,z) m4 spojité parcidlni derivace aZ do n-tého
fddu véetné, pak pro diferencidly vyiSich fddi plati nasledujici vztah

a 3] aij*
d7fx,y,2) =) dx-L +dp-— +d> - ¥,z).
f(xy;) [ xax +dyay +dzaz] flxy2)

3. DERIVACE SLOZENE FUNKCE. Je-li funkce w =f(x,y,z) diferencovatelnd a x = {u,v), y=(u,v),
z=x(u,v), kde ¢, ¥, x jsou diferencovatelné funkce, pak

f_z_u___c?;wi{ dw ay dw Oz
du dx Ju By au 9z du
Bw aw Ox 6w ay dw Oz
v ox av By dv 0z ov
Pro vypodet derivaci druhého fadu funlu:e w jsou uZite¢né ndsledujici vzorce:
Pw Q d 2w+ﬂ aw' an dw BRI dw
81;2 2y Bx '3 161 du dx Bu ay 8w 9z
a }
'32‘” 0 2 9 +Q, = 0 i+ ﬁa_w _aQ"_w _SR] 6_w
Judv P ax ! ay & az Pogz 6x 2 ay Ry dz gv 8x dv 9y v A’
kde )
oz
P =2, =Lz
_ Ql au Uoaw’
‘gz
Q2 av 2. v

4. DERIVACE V DANEM SMERU. Je-li smér 1 v prostoru 'xyz vyjddfen pomoci smérovych kosind
I ={cosa,cosP, cosy) aje-li funkee u=f(x,y,z) diferencovatelna, pak derivaci ve sméru I miZeme
spoditat podle vzorce

du du
df ox

du du
— =—cost +—cosf +—cosy.
oy 0z

§ 2. PARCIALNI DERIVACE. DIFERENGIAL FUNKCE

velikost a smér rychlosti nejvétitho riistu funkce v daném bodé jsou uréeny vektorem - gradientem
6u du du ]

3 ay oz

jchoi velikost se rovni
|gradu| = du 2 du a“
gre dx ay Bz]

= 4;211. Dokaite, fe f;(x,b) =i [f x.0)].

: 3212 Vypoitéte f.(x,1),je-li

fley)=x+(y —l)arcsing.

3 .
3212 1 Vypoététe £,(0,0) a £(0,0) je-li fx,y)= ,/‘xy' . Je tato funkce diferenco-
; ;

' ”_""_“"** teln4 v bodé 0,0?

3212.2 ]e v bodé (0,0) diferencovatelnd funkce

flx,y}= \fx +y°
:_137212.3 Vysetfete, zda je funkce f(x,y) =¢ "¥&**¥) prox®+y%>0a £(0,0)=0 dife-
: frencovatelné v bod¢ (0,0) .

| Vypoctete parcidlni derivace prvniho a druhého fadu nasledupcu:h funkci:

': _.3213.1& =x* +y -4x? y . 3214. u-= xy+;' '
i : .
'.3215 w=" 3916, 45—
:':] '3’2 x2._+y2
‘ 2
. COsX
C O R17T. u=xsin(x+y). 3218. u= y
__ , ) | |
3220. u=x7.

L X
3219. u=tg—.
‘ Y

3221 w=lnx +y9). 3222, u=arctg%.
A - ) x+y . _ ]
3223, u=arct . 3224, y =arcsin .
8Ty T eyt
1 x)?
3225 s — — . 3226. u=|—| .
e FEFSE I y
3227. u=x"". 3228. u=x7".
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3229. Ovéite platnost rovnosti
Fu _ Fu
dxdy dydx’
je-li
a) u=x2-2xy-39%; b)u=x""; ¢ u=arccos\JE.
' J

x?_ 2
3230. Nechi f(x,)=xy=—2

1/ ! )
f9(0,0)#£,,(0,0).
3230.1 Existuje [1(0,0), je-li

pro x2+y%220 a f(0,0)=0. Ukaste, e

2xy
rox +y25(,
f(x,y)— x2 +y p Y

0 prox=y=0?

3231. Necht u =f(x ,y,z) je homogenm funkce stupné x. Ovéite Eulerovu vty
o homogennich funkcich na nisledujicich piikiadech:

: e\
a) u=(x-2y +32)%; b) u=—x—_-,,_; c) u:[f]y .
X +y +Z2 y

3232. Dokaite, Ze jestlize diferencovatelns funkce u =f (x,y,z) vyhovuje rovnosti
du du _du

pak je homogenni:funkeci stupné n.

NAvop: UvaZujte pomocnou funkci
p F(t);=f(tx,ty,tz} )

i
3233. DokaiZte, Ze je-li f(x,y,2z) diferencovatelnou homogennl funkef stupné n,
pak jsou jejf parcidlni derivace f {x,9,2), f (x,9,2), f x,%,z) homogennimi funk-
cemi stupné n-1.

3234. Necht u =f(x,y,2) je dvakrat diferencovatelna homogenni funkce stupné n.
Dokaite, Ze (

Najdéte diferencidly prvnfho a druheho radu nasledujicich funkci, kde x,y,z jsou
nezavisle proménné::

3235, u=x"y". 3236, =2, 3237.u=\/x +y2,
- ¥

3238, u=Inyx2+y?. 3239. u=¢™. 3240, u=xy+yz+zx.

3241, u=—=

x2+y2

. ;e')i(} 97195,
m 3246 O kolik se zméni délka diagonsly a obsah obdélnika o stranich délek

§ 2. PARCIALNI DERIVACE. DIFERENCIAL FUNKCE

242. Vypoitéte df (1,1,1) a d2f(1,1,1), je-li f(x,y,2)= \J‘i

s ¥

243. DokaZte, Ze je-li u=yx? +y2+2%, pak d*u>0.

.. §844. Pfedpoklddejte, Ze x, y majf malou absolutni hodnotu. Odvodte ptiblizné

m.g- worce pro nasledujici vyrazy:

X +y

+x)l

a) (1 +x)”’(l +3)" b)In(1+x)In(1+y); c} arctg

L 3245. Nahrad'te pfiristek funkce diferencidlem a vypoctéte piiblizné hodnoty

;}é,lslcdujicich vjrazi;

’ L 2 . :
~--3) 1,002 2,003 3,004°; rb)L; ©) y1,022+1,97%;  d) sin29° tg46°;

3
\/0,984«,/1,053

‘#=6m a y=8m, jestliZe se strana x zv&¥{ 0 2mm a strana y zmen3{o 5mm?
3247. Stiedovy thel kruhové visede «=60° se vEsi 0 Aa=1°.0 kolik j je tieba

-; znensit polomér této vysede R =20cm, aby jeji plocha zistala stejna?
- 3248, Dokaite, Ze relativni chyba souéinu d&isel je prlbhzne rovna soudtu relativ-
" nich chyb soudiniteld. ' ‘

3249, Méfenim poloméru podstavy R a vySky H valce se mskaly nasledujicf

- vysledky: R=2,5m+0,1m; H=4,0m=0,2m. S jakou absolutni chybou A a re-

- lativnf chybou 8 miiZe byt spocitan objem tohoto vilce?

~'3250. Strany trojihelnfka maji rozméry @ =200m=*2m, =300m =5m a dhel
~ mezi nimi je roven C=60°+ 1°. § jakou absolutni chybou lee vypoditat délku trett

"~ strany trojuhelnika ¢ ?
- 3251, UkaZte, fe funkce

f&3)=vixyl
_]C spojitd v bodé (0,0), ma v tomto bodé& obé parcialni derlvace f" (0,0)a f {0,0),

a‘pfesto neni v bodé (0,0) diferencovatelnd. Vy3etfete chovini parcidlnich deri-

- vad f/(x,5) a f,(x.3) v okoli bodu (0,0).
- 3252, Dokaite, e funkce

ft,3) =—2— pro x2+y*#0, f(0,0)=

X +y

_]e v okoli bodu (0,0) spojitdi a md zde omezené parc1ﬁlm denvace fix,5)

Ta f '(x,3), a pfesto neni v bodé (0,0) diferencovatelna.
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3253. Dokazte, Ze funkce
fiee3) =% +3 %) sin—
x2+y .
md v okolf bodu (0,0) parcilni derivace £, / (x,5) a f (x,y), které _]souvbode (0,0)

nespojité a neomezené v jeho libovolném okoli. Dokazte Ze piesto je tato funkce
v bodé& (0,0) diferencovatelna.

3254. Dokaite, Ze funkce f(x,y), kterd ma omezené parcidlni derivace f(x,y)
a f /(x,y) na n&jaké konvexni mnoziné E, je na této mnoZiné stejnomérné spojita,
3255. Dokaite, Ze je-li funkce f(x,y) spojitd vzhledem k proménné x pro kazdou
hodnotu y a mé-li omezenou parciélni derivaci f (x,y) vzhledem k proménné y,

pak je tato funkce spojita jako funkce dvou proménnych xay.

pro x2+3220, £{0,0)=0

Vypoctéte poZadované parcidlni derivace v nésledujicich tlohich:
Fu . dtuw Fw ..

3256. , , Je-li
oxt’ axf"ay‘ dx2ay?

u= x—y+x +2xy+y +x%-8%2 y y +x —4x ZyZagt, -

3257. je-li #=xln(x )
dx _ay}‘_]__ o )

3258. -
6x38y3

—, je-li u=xsiny +y3sinx

- -
3259. I u , _]e diu- arctgw.
S axayaz - 1-xy-xz-yz. .

3260.

xyz

sje-hiu=e
4
3261. -a—u ,je-li uw=In 1 .
| Ve E)2+(y

u-
je-li u= (x x Y .
axf’ay ) 0 )’0

1t
5263, 0% je-li u=222

3262. -

ox™ady" . x-y
3264. i——u—,je-li w=(x2+yf)e*,
ox may" S . o
+q‘+r .
3265. u—-,je-li u=xyze "I,
Ox?3y 1927

§ 2. PARCIALNI DERIVACE. DIFERENGIAL FUNKCE

: 70(0,0), je-ti f(x,y)=e "siny.
.3267 Dokaite, Ze je- 11 u =f(xyz}, pak
et 83

3266. Vypoctéte

=F(@),

h 3273 d3u,je~liu=xy;.

dxdydz

11(16 i=xyz, a najdéte funkci F.

: '“5268. Vyjadfete d*u; je-li

u=x4—2x3y—2xy3+y4+x3—3x2y—3xy2+y3+2x2-—xy+2y2+x +y+1.
e . dtu dw  tuw  *u  du
. Gemu jsou rovny derivace , , y ;2 7’
AL ax* 0x33y 0x0y? oxdy® Iy

""“Na_ldete totdlni d]feren(:laly pozadovanych Fada v nasledujicich prikladech
28269, d3u, je-li u=x>+y> -Bxy(x-y). 3270. d’u, je-li u=sin(x?®+y?).
"—_'”5271 d%u, je-li w=1n(x +y). 3272. d°u, je-li u =cosxcoshy.
- 3274. d*u, je-li w=In(x*y?z%).
3275. d ™u, je-li u ="t 3276. d "u, je-li u=X (@)Y (y).
8277. d "u, je-h u=f(x+y+z). 3278. d "u, je-li u=e*"0" 2,

(x,%,2z) je homogenni polynom stupné n. DokaZte, Ze

3279 Necht P =
d"P (x,y,2)=n!P (dx,dy,dz).

3280 Nechi Au =x?—u +y%£. Vypodtéte Au a A?u=A(Aw), je-li a) u=
ox y

b) u=Inyx? +y2.

2 2
3281. _Ju + glu , je-li a) % =sinx coshy;
dx? dy?
S sl
3282. Nech
282 _ec.f, Au= du 2+ a_u'2+ % 2
. ™ ax dy Bz
a .
Fu_ *u  Pu
Aju= .
7 ax? dy? 9z
. Vypottéte A u a Ayu, je-li
) u=x’+97+27-3xyz; b)u-= !
FENS I
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Vypoctéte derivace prvniho a druhého F4du nisledujicich sloZengch funkei:

3283, u=f(x?+y%+z%).  3284. u=f (x,-’-c-) : 3285. u =f(x,xy,%y2).
¥

2
3286. Vypoctéte o
ox

gy yJeli u=f(x +y,xy).

2 2,
:;’; 2yu+a Jeli w=flx+y+z, x¥+y?+2?),
Z

3287, Vypoctéte Au =

Najdéte totdlnf d1ferenc1aly prvniho a druhého fadu nasledujicich sloZenych
funkef, kde x, y a z jsou nezédvisle proménné:

3288. u =f(¢), kde {=x +y. 13289, u=f(), kde = -"”.

3290, u =f(yx2+y?). 3291. u=f(t), kde ¢ = xyz
5292, u=f(x® +y2+2%). 8293. u=f(£,1), kde E=ax, n=by.

3294.
3296. u

u =f(E:Tl)_, kde sz +J’ ’ N=x-3.
u=f(x+y,z).

f52)
Y z .
u=f(x,y,2), kde x =¢, y;-tz, z=13.

u=f(E,T'I,C), kde §=Gx, n:by, C=CZ.
u=f(En,(), kde E=x2+y2, n=x?-y%, {=2xy.

3295,

w=f(€n), kde E=xy, n%
3297,

wu=fle+y+z, x2+yez?),
3298.

3299.
3300.
3301.

Najdéte d "u, je-li:
3302. u=f(ax+by +cz). 3303. u=f(ax,by,cz).
3304. u =f(€,7,{), kde £=a x +by+cz, M =agx +byy+c,z, {=a,x +b,y +cyz.

3305. Necht u =f(r), kde r=yx*+y?+2? a f je dvakrét diferencovatelns funkce.

Ukazte, e Au=F(r), kde Au =
funkcd F.

3306. Necht u a v jsou dvakrit diferencovatelné funkce a A je Laplacetiv
operitor (viz tiloha 3305). DokaZte, e A(uv)=uAv+vAu+2A(u,v), kde

Fu 82u 82
dx? 6y2 0z

JC Laplacetiv operitor, a najdéte

274

§ 2. PARCIALNI DERIVACE. DIFERENCIAL FUNKCE

- 3807 Dokalte, e funkce u =Iny/(x =a)?® +(y -b)?, kde a a b jsou konstanty, vyhovu-
- : jc Laplaceové rounici ?u . 2u

S ox? By
',..3508 DokaZte, Ze plati-li pro funkd u=u(x,y) Laplaceova rovnice (viz dloha

" 3307), pak funkee v=“[ —5 —— | Tovné vyhovuje této rovnici.

| 2 +y2 | X2+ y2
- 8309. Dokaite, e funkce b

oy . 1 2
: w= 4a 4 ,

2a \[—
— kde a a b jsou konstanty, vyhovuje rovnici vedens tepla
du_ 20" a2
Bt ax
- 3310 Dokaite, 7e jestliZe funkce u = (x, ) vyhovuje rovnici vedeni tepla (viz iloha
. 3309), pak funkce 2
1= Lg 4a 2‘ H i
ayt e a‘t

il

] t>0)

- také vyhovuje této rovnici. .
3311. Dokaite, Ze funkce u = — kde r= \/ (x @)’ +(y-b)* + (z'—c)l2 ,vyhovuje pror #0

' Laplaceove rovnici

Pu 62u 62
_ 6x2 dy? az
. 3312. Dokaite, Ze jestlize funkce #=u(x,y,z) vyhovuje Laplaceove rovnici {viz

uloha 3311), pak funkce o
1 1 k% k% k2z
V==Y ——=—,
e ro| g2 p20 2

" kde £ je konstanta a r =yx%+y? +z*, rovn&? vyhovuje této rovnici.
7

R Ce ¥ +(C.e®
- 3313, Dokazte, ¥e funkce u=l—-2—, kde r=vx2+y2+12 a €, G, jsou
- konstanty, vyhovuje Helmholtzové rovnici

Fu Fu Fu_

+ + =a-u

ox? 3y az°
.. 3314. Nechtfunkce u =u (x,5,2) a ,=u, (x,¥,z) vyhovuji Laplaceové rovnici Au=0.

Au=

|7 Dokaste, 7e funkce v =u (x,9;2) +(x * +32 +2%)uy (x,y, 2) vyhovuije biharmonické rounici
A(Av)=0.
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3315. Necht f =(x,y,2) je m-krat diferencovatelnd homogenni funkee stupng 4,

Dokaite, Ze
[xiwiﬂ“] Fe32) =n(n-1)...0-m+ 1)f te,y.2).

3316. Zjednoduste vyraz

oz o0z
secx — +secy —,

ox oy
je-li z=siny +f(sinx -siny), kde f je diferencovatelna funkce.

3317. Dokaite, Ze funkce z =x"f [12] ,kde f jelibovolna diferencovatelna funkee,
X

dz
splfiuje rovnost x 3 + 2y —=nz.

x 9y

3318. Dokaite, Ze z =yf(x* -3%), kde f je libovolna diferencovatelns funkce, spl-

9 0z o0z
fiuje rovnost y F™ +Xy— =xZ.

oy
3319. Zjednoduste vyraz 9u  Ou Bu ,je-li
ox ay dz
u—l—2x -—x (y+z)+—-x fyz+f(y-2,2-%),

kde f je dlferencovatelna ﬁ,mkce
3320. Nechi x* =vw, y =uw, 2% =uv af(x,y,z)=F(u,v,w). Dokazte, ie
j;+y];’,+,,zﬂ—uFi+vF;+wF1:.

Predpoklddejte, Ze funkce @, ¢ atd. maji derivace dostatecne vysokych fadd.

Ovéfte pak platnost nisledujicich rovnosl:l

3321. yﬁ-x?—O je-liz= ek +y 7).
¥

3322, x“’g; yg; ‘+y2=0,je—liz—§ +(x9).

x‘.’
3323. (x? -y 2)E +xy % =xyz, je-li z=e 7(p{yg 23’2] )
J’

3324. x-a—u+ay% +Bz——nu jeli u=xmg| L, 2 |.
dx dy dz x® 3P

3325. xfﬁ+y_+ Ou —u+ﬂ,je-liu=£y-lnx+xcp LIy
Oox ~ OJy 8z z z X X

. :_3331. z=x+@(xy).

§ 2. PARCIALNi DERIVACE. DIFERENCIAL FUNKCE

2 2
gu a‘“’i—,je-h uU=@x-al) +y(x +ai).
a5l

o Pu , Pu Fu
dx 2 axay 3y 2

FPu . 0%u ¥
+ =(), je-li u= +x | =
xy 5%y y? 5y , Je-li tp[ ) lif[x

2 2
Ju ,,20u =n(n-1u, je-li u=x (p(l) "”1]1(2) :
X

+y 3
,Je li u=gx+ Y ).

=0, je-li w=xpx+y) +yPr(x +y).

Y dx0y y

Postupnym derivovanim nahrad'te nasleduJu:l rovnice takovymi, které neobsahuji ¢
s am I (@ a Yjsou libovolné funkce): h
7 X
3332. y=x (p[~—-2—) .
- Y

5333 z=(p(\/x2 +y2). ' 3334. u=9(x-y,y-2).
5_5 -3335 w= (p(— 2]. 3336, 2= (x) + U {y).

ik yz] -

, ?337. 2= )P (y). 3338. z=@(x +y) + Y (x -y).

;"_:f% }339. z =x<p(£] +y m(i) _ 3340. z =@ (xy) +¢{i) -
i y y | 7

: ?3341 Vypo¢téte derivaci funkce z=x%-y? v bodé (1,1) ve sméru /, ktery svird
- thel @=60° s kladnou poloosou .

3342. Najdéte derivaci funkce z =x* -xy +y* v bodé (1, 1) ve sméru [, keery svird
thel & s kladnou poloosou x. V jakém sméru mé tato derivace: a) nejvétsi
odnotu; b) nejmensi hodnot; ¢) hodnotu 0?7 -
7713343, Najdéte derivaci funkce z=In(x*+y? v.bod& (x,,y,) ve sméru, ktery je
~~ kolmy na vrstevnici prochézejici timto bodem.

2 2 b
3344, Vypodtéte derivaci funkce z=1 '['{C‘E +2-2-] v bodé [—, —] ve sméru

ot b R

SO R . .. X
nitiniho normalového vektoru v tomto bodé ke kiivce - +2_=1.
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3345. Najdéte derivaci funkce # =xyz vbodé (1,1,1) ve sméru (cosa, cosp,cosy).
Cemu je rovna velikost gradientu funkce v tomto bodé?

3346. Vypoctéte velikost a smeér gradlentu funkce u= l kde r ~m
v bodé (x,,,.2,). r
3347. Vypoctéte thel mezi gradlenty funkce u=x?+y?
a (0,g,0).

3348. O jakou hodnotu se i v bodé (1,2,2) velikost gradientu funkce % =x Y4z
od velikosti gradientu funkce v =x+y+z+0,001sin(10®nyjx? +y%+2%)?

3349. Ukaite, 7e v bodé M, =(x, Yo Z,) Ghel mezi gradienty funkci

v bodech (g,0,0)

u=ax?+by?+cz? a v=ax?+by?+cz?+Amx +2ny+2pz 7
(a,b,c,m,n,p jsou konstanty a a® +b% +¢c?+0) konverguje k nule, jestlize se bod
M, vzdaluje do nekonedna.

3350. Necht wu=f(x,y,2) je dvakrit difércncovatélﬁé funkce. Najdéte
62_u=i Ju sou-li cosa, cosP, cosy smérové kosiny sméru I ..
a2 all 3] Y v Y

3351. Necht u =f{x,y.z) je dvakrit diferencovatelna funkce
al =(cosw ,cosP,,cosy)), I, =(cosa,, cosP,, cosy,), I, =(cosa3,cos[33,cos~{3}
jsou tii navza’ljem kolmé sméry. Dokaite, 7e plati nz’lsledu_jici vztahy:
2) ﬂ ou ou|*_(ou)? (ou)? [du
al, EANEA dx ay oz)
Pu  Fu Fu _du ,Fu Fu
al’ 6!2 azs ax* ay az
3352. Necht u =u(x,y) je diferencovatelnd funkce a pro y=:_c? plati u(x,y)=1

b)

du v, OUu 9
a — =x. Vypoltéte — pro y=x"°.
ax oy’ ' Py
3353. Necht funkce u =u(x,y) vyhovuje rovnici __"_u_ -——= 0 a necht navic
ox2 dy®

u(x,2x) =x, ui(x,?x)=x )

Vypottete u” (x,2x), ufy(x,?x), u;’y(x,Qx');

Reste ndsledujici rovnice pro z=z(x,y):

2 2 7
9z . 3355. 0% _0. 3356, 02
ox? dx3y -

§ 3. DERIVOVAN! IMPLICITNICH FUNKGI

- 3
4357. Najdéte fedeni » =u(x,y,z) rovnice ————=
: dxdyoz

. _5558. Najdéte feSeni z=z(x,y) rovnice E=3c2+23.l, které vyhovuje podmince

Ly (x,x 2) =1.
i 2 ,
R 3559 Na_]dete feSenf z=z(x,y) rovnice —-2~—2 které vyhovuje podminkdm
z(x,O) 1, z] ‘(x,0)=x. 0

8%z
360 Najdéte 1 resem z=z(x,y) rovnice 373
X

i} Z(x’ ) =X, Z(O.}’) 3’ - J

=x +y, které vyhovuje podminkdm

: §f3: Derivovani implicitnich funkci

1. VETA O EXISTENCL JestliZe jsou splnény nasledujicf podminky: 1) funkce F (x,3,z) je rovna
Iﬁulf: v bodé& (x,,5,2); 2) F{x,y.z)a F ! , (,3.z) jsou definované a spojité v okolf tohoto bodu;
3) Flx39,2,70, pak v n&jakém dostatccnc malem okoli bodu (x,y,} existuje pravé jedna
spo_]lta funkce ) ) _

o 2=fte,y), . (1)
‘i’{které spliiuje rovnost ‘
i : Flx,y3.2)=0,
:'ta.kovﬁ, e 1, =f(x,,).

{2. DERIVACE IMPLICITNI FUNKCE. JestliZe je navic 4) funkce F (z,y,z) diferencovatelna v okoli

. bodu (X, %%, pak je funkce (1) diferencovatelni v okoli bodu (x,,5,) a jeji derivace 9z a— 9z
- Yo %o/ PAK] ) w¥e) el 3x 3y
vypocteme z nasledujicich rovnosti:
¥ , 9F E.a_z_'o OF oF3:z_, ' (2)
1 ¥ ' : - dx 8z ox- ay dz dy C

R Ma-ll funkce F{x,y.z) derivace dostateéné vysokych 4du, pak pestupnym derivovanim rovnosti

- ;.(2) vypolteme také derivace vy$sich fadi funkee z.

3 IMPLICITNI FUNKCE URCENE SOUSTAVOU ROVNIC. Nechf funkece F{x|,..x_,¥,...%)

(:—l 2,...,n) sphiuji nésledujici podminky: 1) jsou rovny nule v bod& (x,,,..., X ¥ o)
aF,..F)
2) jsou diferencovatelné v okoli tohoto bodu; 3) Jakobiin ——a(y] ") je nenulovy v tomto bodé.
s '...,J'r" ’
,E,Pol:om systém rovnic 1
F'.(xl,...,xﬂ,yl,...,yﬂ)=0(z'=1,2,...,n} (3)

Jjednoznaténé urduje v né&akém okoli bodu (x,,...x ;) systém diferencovatelnych funkci

¥, =f{x0x ) (1=1,2,..,n), keré vyhovuji rovnostem (3) a podminkdm f{x

100 X m) =Fia

(@=1,2,...,n).
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: Diferencialy téchto implicitm’ch funkci Ize najit pomodi soustavy rovnic

—dx

ax Zm——dy* =0 ¢=1,2,..,n) .

#

3361. Ukazte, Ze Dirichletova funkce
_ {I pro x raciondlni,
710 pro x iracion4lni,
kterd je nespojitd v kazdém bodg, splituje rovnost y2 -3 =0.
3362. Necht je funkce f(x) definovina na otevieném intervalu (a,b). Za Jakych
podminek mé rovnost f(x)y =0 pro a <x <b privé jedno spojité fedeni y =0?
3363. Necht jsou funkce f(x) a g(x) definované a spojité na otevieném intervaly
(@,b). Kdy md rovnost f{x)y=g(x) na otevfeném intervalu(e,b) pravé jedno
spojité feseni?
3364. Méjme rovnici _ .
xPey?t=1 (1)
a necht
=30 (-1sx<1) | - (@)
Jejednoznatna funkee, ktera vyhovuje rovnici (1). 1) Kolik jednoznaénych funkci
(2) vyhovuje rovnici (1)? 2) Kolik jednoznaénych spojitych funkei (2) vyhovuje
rovnici (1)? 3) Kolik jednozna¢nych spojitych funkei (2) vyhovuje rovnici (1), je-li:
a)y(0)=1;b)¥(1)=07
3365. Mé&jme rovnict
x%= ¥ 2 ' (1}
a necht
§=3(x) (-2 <x < +oo) _ (2)
Jejednoznalnd funkce, ktera vyhovuje rovnici (1). 1) Kolik jednoznaénych funkci
(2) vyhovuje rovnici (1)? 2) Kolik jednoznaénych spojitfch funkei (2) vyhovuje
rovnici (1)? 3) Kolik jednoznaénych diferencovatelnych funkei (2) vyhovuje
rovnici (1)? 4) Kolik jednoznaénych spojitych funkef (2) vyhovuje rovnici (1), je-li:
a) y(1)=1; b) y(0)=0? 5) Kolik jednoznafnych spojitych funkci y=7y(x)
(1-8<x<1+8) vyhovuje rovnidi (1), je-li y(1)=1 a 8 je dostaterié malé &islo?
3366. Rovnost x*+y2=x*+y* definuje y jako obecn& mnohoznacnou funkci pro-
ménné x. Na jakych mnoZinich je tato funkce 1) jednoznaéna, 2) dvojznacnd,
3) trojznalnd, 4) Ctyfznacnd? Urdete body vétvent této funkce a jejf jednoznacné
spojité vétve.

1 . -
) Ve formulaci v&tdiny loh tohoto paragrafu se bez daldiho uvedeni predpokladd, Ze jsou spinény podminky existence
implicitnich funke! a jefich derivact.

280
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';'g,_;ﬁ?. Najdéte body vétveni a jednoznac¢né spojité vétve y =y(x) (- 1<x< 1) mno-
' poznainé funkee y, kterd je definovdna rovnosti (x% +y%)?=x% 52,
b 8368. Necht je f{(x) spojitd pro a<x<b a @(y) ostfe rostouci a spojitd pro
'j':-:_ ¢<y<d. V jakém piipadé rovnost @(y)=f(x) definuje jednozna¢nou funkci
‘riv?%'ﬁ’-,'-:'cp' I f(x))? UvaZujte nasledujici pfipady: a) siny +sinhy=x;b) e 7= - sin’x.
"7773369. Necht
x=y+@ly), (1)
- kde ¢ (0)=0 a |¢’(y)| <k <1 pro -a <y<a.Dokaite, Je pro -e<x<e existuje
jednozna¢né urcend diferencovatelnd funkce y=y(x} vyhovujici rovnosti (1)
takova, Ze y(0) =0.
3370. Necht y =y(x) je implicitni funkce, uréend rovnosti

“*?-QEE:-: i x=ky+Q(y),
kde % # 0 je konstanta a ¢(y) je diferencovatelnd perlodlcka funkce s periodou ®,

pro kterou plati |¢’(y)] < |k]. Dokaite, Ze y== +1|J(x) kde 1|J(x) Je periodicka
funkce s periodou |k|w.

© Vypodtdte y’ a y” pro funkee y zadané nésledujicimi rovnostmi:

3372. Inyx % +y? =arctg'l
x

3374. xV=9" (x#y).

3371 x?+2xy-y?=a’.
- 3373. y-esiny=x (0<e<1).
3375, y =2x arctgl.

3376. Dokaite, Ze pokud 1 +xy=k(x -¥), kde % je konstanta, pak plati rovnost
_dx _ 4y
1+x 2 2’

1 +y
__3377. Dokaite, Ze je-li

, xZy2ex?ey?o1=0,

pak pro xy >0 plati rovnost

dx N dy _0.

\ﬁl—x“ 1 —y*

- 3378. Doka’te, Zerovnost (x2 +y )2 =a?(x% -3%) (a=0) definuje v okolibodu x =0,

=0 dvé diferencovatelné funkce y =y, (x) a y =y, (x). Vypoctéte 3](0) a y,(0).

3379. Vypoltéte y" prd x-O ay=0,jeli (x*+y%)?=3x%y-y°.

~3380. Vypodtéte y ,y " a y ,je-li x? +XY +j’3=3-

- 3381. Vypottéte y', y" a gy’

"prox=0, y=1,je-li x?-xy+2y2+x-y-1=0.
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3382. Dokaite, 7e kiivka druhého fadu ax® +2bxy +cy* +2dx +2ey +f=0 spliiuje
Tovnost

d’ M-2/3
— =0-
el A

Vypottéte parcidlni derivace prvniho a druhého fadu funkce z =z(x,y), je-li:
2 3384. z° -3xyz =a’

3383, x2+yZ+z%=q?,
3385. x +y+z=e". 3386. z=yx? -y tg

3387. x +y+z=¢ &,

3388. Necht _
x2+y%+22-8xyz=0 (1)
Sflx,,2)

Vypoctéte nasledujla paraélni derivace: a) f’(l L1), jeli z= z(x,y) implicitn{
funkce definovana rovnosti (1); b) f;’ (1,1, 1), je-li y=y(x,z) implicitnf funkce de-

finovana rovnosti (1). Vysvétlete, proc se tyto derivace li3i.
?r Pz &Pz

x2 Oxdy’ dy*®

a
=xy2z3.

3389. Vypociéte

prox=1,y=-2,z=1, je-li
x2+2y%+82%+xy-2-9=0,

Najdéte dz a dgz,je-li:
x2 yz 22
3390. — +£—+—=1.

a® b2 (?

3392. Z-InZ+1. 3393. z=x +arctg—2’—.
z 0y z-x

3391. xyz=x+y +z.

3394. Najdéte du, je-li u?-3(x +y)u?+23=0.

2

3395. Vypoctéte Iz ,je-li Fx+y+z, x2+y2+2%)=0.
dx oy

3396. Vypoctéte 9z a — oz —,je-ll Flx-y, y-z, z-x)=0.
dx 0y

2
3397. Vypoctéte “g—‘ E a—; Iz ,Je i Fx, x+y, x+y +z) 0.
x?

9y
s Oz . o
3398. Vypoctéte Py je-li Fxz, yz)=0.
x

—~-:-..*3.40'7 1 Vypocltéte % a — v bodé u= 1

§ 3. DERIVOVANI IMPLICITNICH FUNKCI

3399 Najdéte d*z, je-liza) F(x+z, y+2)=0; b)F[ JJ) =0.

zz

; 399.1 Necht z=z(x,y) je dlferencovatelna funkce uréena rovnosti

_ | L —xz+y

“ ktera mi pro x =3, y=-2 hodnotu z=2. Najdete dz(3,-2) ad®z(3,-2).

i 5400 Necht x =x(y,z), y =y (x,2), z =z(x,y) jsou funkce uréené rovnosti F(x,y,z)=0.

. pokazte, je — 2L =1,

‘.:::3401-Vyp06téte % a %,‘je—.li x+y +2=0, x2+y2 +z2=1-

dx afy d?x d2y
1= 3402, Vypoctéte ——, —£, ——
;34 P dz’ dz’ 4,2 d 2

2

prox=1,y=-1,2z=2,

__;je:lix +y =%z yX+y+z=2,

' 713403 Vypoctéte a_u % a_va @,‘je-li xu-yv=0, yu+xv=1.
. ox dy 9x dy
3403.1 Soustava rovnic

u“‘ﬂ -

u

+2uv=1, ye* '~ Too =2x

| definuje diferencovatelné funkce u=u{x,y) a v=v(x,y) takové, Ze u(1,2)=0
av(1,2)=0. Najdé&te du(1,2) a dv(1,2).

_:..._:;3404 Najdéte du, dv, d2u ad2U ,je-li

sinu

x
u+v=x-+y, —.
sinv  y

3405 Na_]detedu dv d2 advprox=1,y=1, u=0, U——,Jell

x U
e cos———, ¢ “*sin

Y B y

=2
V2
a 2 2
3406 Nechfx =t+t7!, y=t2+272, 2=23+¢7% Vypotiste =L dJ’ dz d7y dz
- " dx’ dx? dx

'3407 Vjaké Eésu roviny xy uréuje soustava rovnic x =u +v, y=u~ +v?, z=u’+v?

(parametry “av nabyvajl vsech redlnych hodnot) z jako funka proménnych x

. a 3 » Vypoctete parcxalm derivace _é?_z a ﬂ
dx 3y
oz v=1, je-li x=u+lnv, y=v-lnu,

x dy

Tr=2uy.
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2

vbodé u=2, v=1,jeli x=u+v? y=u?-0v% 2=2uv,

3407.2 Vypoctéte
Xy
Y . .
3408. Vypoctéte —2,J6-11 X=Ccos@cosy, y=cos@sing, z=smn¢.
ox

3408. Vypoctéte - z, =2 9 2:;,_le-ll X =uUCcosvy, y=u sinv, z=v.

— a

ox? 0xdy 3y 7

3410. Necht funkce z=z(x,y) je definovana soustavou rovnic x=e"

z=uv, kde u a v jsou parametry. Najdéte dz a d?®z pro u=0a v=0.
9 .

3411. Vypoltéte % a —a—z?,je-li z=x2+y?, kde pro y =y(x) plati x*-xy +y%=1,
X Jdx

+v, yzeu-u

3

3412. Vypottéte 2% a S jeli w=2"%,
ax ay y+z

ze*=xe +ye’
3413. Nechf rovnosti x =@ (,v), y Y(u,v), 2=y (u,v) deﬁnuy z Jako funkcix ay.
Vypoctéte 9z a _@_z_
ox Jy
3414. Necht x=@{u,v}, y=y(u,v). Vypoltéte parcdlni derivace prvniho
a druhého fadu inverznich funkei ©=u(x,y) a v =0 (x, x,5).
du du Ov Jdv

3415. Vypoctéte —, —,

3%’ 3 Bt ay Jjelia)x = ucos; »y= usm; ibyx=¢*+usinw,

y=¢*-ucosv.
3416. Funkce u=u(x) je definovdna soustavou rovnic u=f(x,y,z), g(x,y,z)=0,

2

h(x,y,2)=0. Vypoctete d_u a d—
dx dx
3417, Funkce u=u(x,y) je definovina soustavou rovnic % —f(x, y,z £}, g,z =0,
h(z,t) =0. Vypocltéte % a a_u :
ox Oy du 0 d
3418. Necht u =f{u,v,w), y=g(u,v,w), z =h(u,v,w). Vypoltéte ou Th a2
dx dy Oz

3419. Necht funkce z =z(x,y) vyhovuje soustave rovnlc f(x,y,z £) = 0 g(x,y,2,6 =0
s parametrem ¢ . Najdéte dz.

3420. Nechf u —f(z) kde z je 1mp11c1r.m funkce promennych X a y definovana
rovnosti z =x +y@(z). DokaZte Lagrangetiv vzorec :

n n-1

Tu_ & 1{[ @ }
dy " 6

NAvVOD: Postupujte indukci podlc 7.

kde funkce z je definovdna rovnostf

i 'T;._:f;(x.z. y2og?

§ 3. DERIVOVANI IMPLICITNICH FUNKCI

;421 Dokaite, Ze funkce z =z(x,y) definovana rovnosti

P(x-az,y-bz)=0, (1)

kde @ (u,v) je libovolni diferencovatelna funkce proménnych u a v (@ a b jsou

o0z

; oz
.' "k‘ stanty) je feSenim rovnice g — +b—=1.

dx Oy

;’yysetfete geometrické vlastnosti plochy (1).
. %422. Dokaite, ie funkce 4 =; (x,Jl) deﬁnované rO\-’IIOStf

P

XX - :
0 9 yo] 0 o

Z —ZO Z —.Z(l

= i{de @ (u,v) je libovolna diferencovatelnd funkce proménnych u a v, vyhovuje

dz dz
(x —xo)a +(:v _yo)a_y =z _ZQ'

‘w&tfetc geometrické vlastnosti plochy (2).

3423. Dokaizte, ze funkce z =z(x,y) definovani rovnosti
Z-.;n . ' ax +by+cz=®(x+y2+z?, : (3)
. kde ®(u) je libovolna diferencovatelna funkce proménné u (a,b a ¢ jsou kon-
'g.:l?;l_nty), vyhovuje rovnici (cy -bz) S—z +(az -cx) -g—y— =bx -ay. Vysetrete geometrické
B _vlastnosti plochy (3).

B ':3424. Funkce z=z(x,y) je zaddna rovnosti x2+y2+Z2=J’f (E] Dokaite, 7e
g J

0z oz
— +2xy— =2xz.
)Bx Xy % Xz

""_"'33425 Funkce z= z(x,y) Je zaddna rovnosti F{x +yz~ ,y +2X l) 0. Dokazte, Ze
9z

: dz
) oo +y— =z - xy.

dx ~ dy
3426 Dokaite, ze funkce z =z{x,y}, definovani soustavou rovnic
xcoso +ysing +Inz =f(), -xsine +ycosa =f"(«),

‘:_:ff_;‘kde a=axy) je parametr a f(a) je libovolnd diferencovatelnd funkee, vyhovuje
o :rovma :

a5

""7-";3427 Dokazte, Ze funkce z=z(x,y) zadand soustavou rovnic z=ax+= +f(oc

x-2 +f (o) V}’hOVU.JC rovnici _a_z 9z _ 1.
o ax dy
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3428. DokaZte, Ze funkce z =z(x,y) zadand soustavou rovnic [z - f (@))% =x2 (52-
[z - fla)]f(e) = cex vyhovuje roviici gﬁ 9z =x

x 9y
3429. DokaZte, Ze funkce z=z(x,y) zadana soustavou rovnic z =ex+y@(a)+ Y(a),
Pz 3 ~_[ 22
Ix? ay? | 0xdy
3430. DokaZte, Ze implicitni funkce z=z(x,y), kterd je definovdna rovnost

9 A2 2 2 2
y=x¢(z) +Y(z), vvhovuje rovnici il Q—QQEQ'E Iz [9z)° 32

dy) gx? Ox dy axay ax ay

0=x+y¢/(@) +¥(e) vyhovuje rovnici 0.

§ 4. Zaména proménnych

1. ZAMENA PROMENNYCH VE VYRAZU OBSAHUJiCIM POUZE OBYCEJNE DERIVACE. Ve virazu s deri-
vacemi A =®(x,y,5/,3”,...) pottebujeme pfejit k novym proménnym: nezavisle proménné ¢
a funkci u, které jsou svizdny s proménnymi x a y vztahy
x=ft,u), y=g(t,u). o (1)
Derivovinim vztahi (1) obdriime
| % %,
7 ot ou f
SR
ot au :

Analogicky lze vyjadtit vy$si derivace 3/, ... Opakovinim tohoto postupu ziskdme

A= tI)(tuu t_,, ).

2. ZAMENA NEZAVISLE PROMENNYCH VE VYRAZU OBSAHUJICIM PARCIALNI DERIVACE. JestliZe ve
vyrazu s derivacemi :

2 2
B=F|xyz—= —, 8z 9% 9z

ax 6)7, ax? axay' 6}2,"- 7
poloiime
x=flu,v), y=gw,v), _ ‘ 2
£
z
%

. P 5 e 4 dz 0z . .. p
kde u a v jsou nové nezdvisle proménné, pak se parcidlnf derivace % 3v uréuji pomoci vztaht
: xocy

dz 0z Of o0z29g 9dz_0z of oz ag

Bu dx ou dy du’ dv 0x dv BJ.' ay

3. ZAMENA NEZAVISLE PROMENNYCH A FUNKCE VE VYRAZU OBSAHUJICEM PARCIALN{ DERIVACE.

V obecnéj§im piipadé, mame-li vztahy
x=flu,v,w), y=g(u,v, w) z= h(u v, w) 3)

§ 4, ZAMENA PROMENNYCH

-

' . . < . . . dz
de #, v jsou nové nezdvisle proménné a w =w(u,v) je nova funkce, pak parcidlni derivace ™
x

.g—z- splituji ndsledujici rovnosti:
’ ﬂ[iﬁﬂiﬂ) ii[ﬂﬁ_gaw]_ah oh
: 3y

du Jw du du Owou) Ou Ow du

(Y. ). 0 0, dpgu) 0k Sh o
dy

dv Jw Jv v owov) ov %3-1;

R B

’ V nékterjch piipadech zamény proménnych je vhodné poudit viraz pro totdlni diferencial.

" “3431. Transformuite rovnici y'y "

-3y®=x tim, e zvolite y za novou nezdvisle
yroménnou.

. 3432 Timté? zplisobem transformujte rovnici 3 2y ® - 10y’y 'y " + 15y = 0.

3438, Transformujte rovnici 5 + gy +y =0 tak, Ze budete povazovat x za funkci
.+.a.£:=XY za nezdvisle proménnou.

. Zavedenim novych proménnych transformujte ndsledujici oby¢ejné diferencialni
~ rovnice:
3434, x %y exy +y =0, je-li x=e .

3435, y"=2 Seldi t=n|x|.
. x3

| %436 (1-xy"-xy’'+n% =0, je-li x=cost.
m® y=0 jvf:-lix=lntgi
cosh?x” 2

3437, 3" +ytghx +

"'3438 y”+p(x) "+q(x)y=0, jedi y =ue V[P0 kde p(x)eC.
o
'3439.x y 7+ xyy -2y2=0 jelix=e' ay=ue2‘ kde w=u().

: 3441. (1-x )23'”= -y, je-li x=tght a y=-—-—-—~, kde u=u(t).
cosh¢
o 3442, 37+ (x +y)(1 +y')3=0,je-li x=wu+tay=u-t, kde u=ut).

_ 3443.ym—xgy”+xy’—y=0,je—li x=% ay=-£ti, kde u=u(f).

Ay
(x -a)’ (x - b)*

Clx-al " : Anné
Cu=_2 5 t=In a zvolenim u za funkci proménné ¢ .
. .~

- 3444. Transformujte Siokesovu rovnici y”'= pomoci substituce
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3445. UkaiZte, Ze transformujeme-li rovnici

stituce x =¢ () na rovnici

dE +P(E) 3’+Qg)y =0, pak

[2PE)QE) +Q @ QE)] ™ =[2p(x)g(x) +g'®)] [g¢)] ™.
3446. Vrovnici ®(y,y',» "y =0, kde @ je homogenni funkce proménnyjch y, y/, 3
fudx

pouiijte substituci y =e™

3447. V rovnici F(x?y”,xy’,9) =0, kde F je homogenni funkce vzhledem ke viem
/

sVym argumentim, pouZijte substituci u =x Xl
Y
3448. DokaZte, Ze rovnice 3"/(1 +y 23 y'y 2 =0 nezméni sviij tvar pii kolinesr-

a,§+b n+e, _ a,§+byn+cy

nim zobrazeni daném vztahy x = —.
4 af+bn+c »J at+bn+c
NAVOD: Vyjidfete dané zobrazeni ve formeé linedrni kombinace jednodussich zobrazeni:

Y
x=0X+pY+y, y=Y; X=XL, lr’=—X—l a X =ab+bn+ec, ¥ =a,E+bn+c,.

1 1

2
1t 1"
3449. Dokaite, ie Schwarzovo zobrazeni S[x ()] = x 0 _é[x @

1 nezméni hod-

'ty 2{x'®)
e ls . . ax(ty+b
notu pfi linearni lomené transformaci svého argumentu y = w0 +d (ad -bc=0).
. c .

Transformujte nasledujici rovnice do poldrnich soufadnic r a ¢ pomoci subst-
tuce X =rcos@, y=rsin@ : .

dy _x+y

3450, 3451. (xy'-7)2=2xy(1 +3 ™).

dx x-y
. o e xyyl
3453. Transformujte do polarnich soufadnic vyraz —.
xy -y

4

3454. Kiivost rovinné kivky K=
rag.

- vyjadfete v polirnich soufadnicich

0 :
d’y +p(x)iil +g(x)y =0 pomocf suh.
52 dx ,

§ 4. ZAMENA PROMENNYCH

3455 Preved'te do poldrnich soufadnic soustavu rovnic
dx y _

~d—-y+kx(x +37%), ~x+hy(x®+y?).
B d%y d2x ' -
3456 Transformujte vjraz w =x—= —y—zavedemmnovychihnkar-‘/x +y 2,
P, dt® "~ de?
‘ *.(p arctgl

3457 V Legendreové tmmﬂ)rma,m odpowda kazdému bodu (x,y) kiivky y=y(x)
bod (X,Y), kde X=y/, Y=xy'~y. Vypoltéte Y, ¥" a Y’”

' ZaVedenim novych nezavisle proménnych £ a n fedte nasledujici rovnice:

—~.~—3458 %—g—y,Je i E=x+y an=x-y.

oz

’*"—'3459. y——xa—=0,je-li E=xam=x?+y?,
' J

0

-':'.3460 a%f b%—l (@#0),je-li £=x a n=y-bz.

- 3461. xa—+y_a—=z,je—li E=xan =2_
3 55y ;

- Zavedenim novych nezivisle proménnych % a v transformujte nasledujici
- _TOVNiCe:

- 3462, x%{ﬂ/l +y22—z=xy,je—li u=Inx a v=In(y +y1+y?).

: x ¥ _

. 3463. (x +y)E - —y)% =0, je-li u =1n\/x2_+y—2 av =arctgl
- dx y ‘ X

3464. x%ﬂlgz =z+yxZ+y2+22 jeli u=1av =z +fx?+y? 422,
v 9% Y

3465 xﬂw%—f—dehu 9x-22ap="2.
dx ~ dy z

. 3466. (x +z)—-—- +(y +z)—=x +y+z,je-liu=x+zav=y+z.
e ox dy -

3467. Transformujte vyraz (z+e”) % +{z+e?) ? -(z%-¢*"Y) zavedenim novych
_ x y

—--nezavisle proménnych E=y+ze ™%, n=x+z¢ 7.
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| 3468, Transformujte vyraz az)? NEE 2 pomoci substituc x 7, 5 =—l—(u 5 2 ‘Transformujte r}ésledujici vyrazy do polirnich soufadnic 7 a ¢ pomocisubstituce
dx dy 2 : =7 Cosp, ¥=rsing: :
du Jdu Ju du du du  _Jdu
3469. V rovnici — +—+ 22 -0 poloit 1. —-y— 3482, —+y—.
ox 3y oz poloite £=x, n=y-x, {=2-x. 548 w::ca)l yax w=x— yay
2 2
3470. Transformujte rovnici (x - z)-—Z ~t~yE =0 tak, Ze zvolite x za funkcia y a ; ﬂ". 2 au . 3484. w _ﬂ+a___
za nezdvisle % 9 O ay ox* oy®
promeénné. ! . )
3471. Tr;insformujtc ro'vnici(y—z)E +(y +z)£z—=0 tak, Ze zvolite x za funkg .":‘"-3485. w=x2f?-ji +2x Ju 20 .
ox dy _ Ox* axay B
a u=y-z, v=y+z za nezavisle proménné. 5486 w=y2&—2xy 5% +x2i—[x2 y_‘?f.]
I 3472. TransformuﬁevyrazA [gz) [gz] tak, Ze zvolite x zafunkdia u =xz, v =yz o dx? Oxdy ay? ox " 9y
i za nezavisle proménné. Y ' et du dv du dv , -
ou 3u 3u 3487 Ve vyrazu — — -~ —— poloite x =rcos@, y=rsin@.
3473. V rovnici (y +z +u)5—+(x+z +u)a—+(x +y +u).a_=x+y+z | ax dy Jy ox
. . _ _ | MO y 9 -
poloite ef=x-u, e"=y-u, e* =z -u. ) | 3488. Reste rovnici if- =a® ﬁ zavedemm novych nezavxsle proménnych
¢ a2 dx®
) v EEx-al, n=x+al.
Nasledujici rovnice vyjadiete v proménnjch u, v, w, kde w=w(u,v): B
3474, y%_x.a__=(y %)z, je-li u=x?+y2, "y +l w=Inz-{x +y). : Zavcdemm novych nezivisle promennych wav l:ransformUJte nasledujici
¥ x rovnosn
d d - ' 2 2
3475, 225 J’E—Z=Z2§]e-1lu=x,- U=l~i,w=—l——l. S 3489. 26z+ &z —az+-a—z+a——0,_}e-hu =x+2y+2av=x-y-1.
Ox oy y X F - ox? axay 63;2 ox ay _
dz d I I 2
3476, (xy +z)—+(1 —yz)—z=x+yz,Je~Il.u=yz—x, V=XZ-y, W=Xy-Z. 3490 (1 +x ) (1+y2)a z 4 EEWE_O jeli w= ln(x+1f1+x2)
ox dy . x2 8y2 ax ° dy
3477. [x%] +(y?) 227' Zz,Je i x=ue®, y=ve™, z=we™ i av n()'+a * - . ? . . o
x 'y x 0y 3491 ax —-—2-+26 3 ; +cy2——z3=0(a,b,cjsou konstanty), je-li u=Inx
‘ | ox x0y ) ‘
5 1
3478. Transformujte vyraz (x -y): 9z 9z ziménou proménnych u =Inyx? +3%, a 7 ny2 5
ax dy ). - C gz  d%z x y
- 3492, ~——-—+—~0 sje-li w= av=- .
v=arctgz, w=x+y+z, kde w=w(u,v). dx? ay x2+y2 ) x2+y2
3479. Transformujte vyraz A =a—i:g—;’ zdmé&nou proménnych u=xe*, v=ye~, | 3493 i),a?ZE +m?z=0, je-li x=e“cosv, y=e “sinv.
w=ze*, kde w=w(u,v). ‘ : dx? dy
ou Ou Ou_  xy_ . . x ) u : 3494 Pz Sz 10z 0), je-li u=x-24y +24y.
3480. V rovnici ;»c(_}—-ky-é—ua =y +—= polofte £==, ==, {=z, w=—, kde ax? ya 5 58_ (3>0), je-li u=x- av=x
X 4 Z z 4 Z ':‘
w ='w(£,'fl, C) ! a z a?z x
. 3495 x* = -y?Z 20, jeliu=xyav==.
Ix® 7 9yt y
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2 2 2
3496. xzﬂ—(x2+ 2)—a~—z—+y28—=0 jeliu=x+ya v=l+l. _
ax? dxdy = gy? x 0y
3497, ag — —(x? +y Hh = &z +xy &z + -a—z+x2—0 je-li u-—-(x +y Hay=
ax oxdy 8y2 yax dy ] 2 xy.
2 2 2,
3498. xﬂg—z— -2xsiny i +sin2yﬂ=0,je—li u=x tgl av=x.
ax2 axay ays‘) 2
a? 8‘2
3499. x——y—=0 (x>0,9>0), je-li x=(u+v)? a y=(u-v)°.
dx? T ay?
2 3 '
3500. Iz . 1+2 yjei u=x av=y+z.
dxdy ay

3501. Pomoci linedrntho zobrazeni £=x +1,y, n=x +A,y transformujte rovnici
2 2 2 ,
6u+286u+cau=0" )
2

kde 4, B a C jsou konstanty a AC-B? <0, do tvaru J =0.

Edn
Najdéte obecny tvar funkce, kters vyhovuje rovnici (1).
2 2
3502. Dokaite, Ze se tvar Laplaceovy rovnice Az = 8_ 6_2 =0 nezménf pfi libo-
' ox?® dy

volné nedegenerované substituci proménnych x=@(u,v), y=¥(u,v), ktera
vyhovuje podminkim Se. i‘*]i, oe_ _ill_!_'
du dJdv Jdv du

2 2
3503. Transformujte rovnice a) Aus Ju +a—§ =0; b) A(Au)=0 pomoci substi-

ax? 9
tuce u =f{r), kde 'r=\/x +y . 0 ¢
d

3504. Jaky tvar bude mit rovnice

Y orew =0, poloZime-li w=f(u),

Oxdy
kde w=(x-x)(y-5,) 7 .
u  Pu  du
3505. Transformujte vyraz 4=x——+y +— pomoci rovnost{ x+y=X,
dx% ~ dxdy Ox
y=XY. )
3506. UkaZte, Ze rovnice &z, 2xy 292 2 y %k 2y2z =0 nezménf SVuJ tvar

ox 2

ik o N l
pfi ziméné proménnych x=uv a y=—.

wenl,y=08 2=En,

§ 4. ZAMENA PROMENNYCH

- 2 2 2
507. UkaZte, Ze rovnice i +2 gz + gz
' dx2  Oxdy gyt

roménnych u=x+z a v=y+z.

=0 nezméni svii) tvar pfi zdméné

2 2 2
.$508. Transformujte rovnici xy AL *yz U o, O
dxdy dydz dx0z

=0 pomoci substituce

a2 2 2 2 2 2
- 3509. Transformujte rovnici 9 22 2 22+ J ;:2 P02, 02, 2
’ ox; ox, Ox, 0% 0xy Ox Oxy 0Ox,0x,

. zavedenim ¥, =x,+X, =X, Yo =X, *X, "Xy, Y5 =X, +Xy ~X;.

- 3510. Transformujte rovnici

e 2 2., 2., 2 2 2
29 yga LA +2x9y Tt g, I8 +2yz U _g

dx? dy® az2 dx 0y dx0z dyoz

a,,,;i,.,zavedemmi-——,1]—— {=y-z.

: NAVOD Napiste rovnici ve tvaru A% -A%=0,kde A= xi +yi +z—a-
SR dx " dy dz
’ 9 2 2
; 3511 Vyrazy A u = ( au) [ Ju au) a Au= Fu Su, Fu transformuijte
‘i 9x cy 0z ox? 9y? 92°

- do sférickjch soufadnic pomoc1 substituce x=rsinfcosp, y=rsinOsing,
z=rcos@.
NivoD: Ziménu proménnych provedte postupné jako dvé é&istetné substituce x=Rcosg,
. y=Rsing, z=2z a R=rsinB, ¢=9, z=rcos0.

- 2 2 2
3512. Zaved'te do rovnice z 9z e 9z 9z % novou funkci w=z%,
ax? 8y2 ax 9y

J——Transformujte nasledujici rovnice pomoci volby # a v za nové proménné

s =u{u,v) za novou funkct:

- 2,
+ - 3513. ua +2E—~2—,3e liw=2,v=x, w=xz -y-
o 2 2 2.
- 3514, 62_2 dz +az=0,je—1iu=x+y,v=l,w=£.
' dx*  Oxdy gy? x x

2 2 2
3515, Bz+2 d°z +az

=0, je-li u=x+y, v=x-y, w=xy-z.
| an?  9xdy 6y2 J b ¥ ¥
e : \ i
3516, oz, 9z +E=z,je—li w=222 =20 yzer.
ox2 Oxdy Ox 2 2
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2 2 ¥4
3517, 929 92 [1+J’) gz

=0,je-li u=x, v=x+y, w=x+y+z.

Ax? axay X 8y2
3518 (1- x2)—+(1 )az-wz—(?i +ya—,Je li x=sinu, y=sinv, z=¢"
dx? ox ~ dy
2 2
3519. (1 —x2)ﬂ—2—2xﬂ—lz =0 (|x] <1}, jeli u—-(y+arccosx)
ax2 ayg 8x 4

4
v=%(y—arccosx), w=z y1-x%.

(2102
Pz, 8z o 0x "3y 3G+
ax.‘Z ay2 .x2_y2 (xﬂ_y2)2

(5> 1yl), jeli u=s+y, v-x-y,

2
90z +a §E+bi+cz 0 kde a, b, ¢ jsou kon-
oxdy dx Oy

stanty, je moZné zaménou proménnych z=ue® ‘P, kde « a P jsou konstanty
2

3521. Dokaite, ¥e kaZdou rovnici

ax:y +¢,u =0, kde ¢, je konstanta.
Fu _ou

3522. Dokaite, Ze rovnice — ~-a— nezméni sviij tvar pii zaméné proménnych
dx? 0y :

9

a u=u(x,y), pfevést na tvar

x/=X y’=-~1-, u’ti-e_"‘_y, kde u’jé funkce proménn)’fch x"ay’. -
y Y4

2

3523. Provedte v rovnici g(1 +q) 9z _(1 +P +Q+2pq) +P(1 +p)__0 kde
=% g =—, ziménu promennych U=x+z, v y+z w=x +y +z, vite-li, 7e
x
w=w(u,v)

; 2 ? 2
3524. Provedite v rovnici x2 Tu +y2 Ju +z? A au Hy— ou au]
O 2 ayQ 322 ax aJJ : dz

“, kde w=w(n,0).
z &z | 9%
Oxdy

zdménu proménnych x zef y=e", z et u=e

3525, Ukaite, Ze se tvar rovnice

2
=0 nezméni pfi Zadné vza-

dx? 9y®
jemné zaméné proménnych x, ¥ a z.

§ 5. GEOMETRICKE APLIKACE

$526. PovaZujte x za funkci proménnych y a z a fete rovnici
[az]232 L9920z 2 (az)ﬁi_o
Loy) ox2  Ox Oy Oxdy ay -
8527. Transformujte rovnici '

2 2
A( 0z az] 9z +23[£ Q_z_) &z +c[§*’; ?E]ﬁ:o

dx

ox 3y} 9x2 8x dy) 9xdy dx 3y} 992
| - y¥idm Legendreovy transformace X—a Y= E Z=x i:}—i-r-y-(?-zl—z kde Z=Z(X,Y).
L ax 3y dx ~ Oy

§.5. Geometrické aplikace

1. TECNA A NORMALOVA ROVINA. Rovnice teiny ke kfivce x =(t), y=¥(t), z=x () v bod& (x,3,2)

md tvar —— =—= ==~ Rovnice normdlové roviny v tomto bodé je
dt di dt
dx dy dz
— (X -x)yr==(Y-y)+—(Z-2)=0.
xSy
[

| B2 TEENA ROVINA A NORMALA. Rovnice fedné roviny k plofe z =f(x,y) v jejim bod& (x,y,z) md tvar

B {'Z—z=%(x—x) +%—(Y—y). Rovnice normdly v tomto bodé je —— =< ="~
. X y

]e-ll plocha zadana implicitné rovnici F(x,y,2)=0, pak je rovnlcc jeif te(‘fne roviny

g—F(X -x) +£(Y -y +£(Z -2)=0 a rovnice jeji normaly je S =—2=2"2

3. \OBALOVA KRIVKA PARAMETRICKE SOUSTAVY ROVINNYCH KRIVEK. Obalovd. kfivka jednopa-
s rametrické soustavy kiivek f{x,y,®) =0, kde « je parametr, vyhovuje soustavé rovnic f (x,y, o) =0,
e fie,y,0)=0.

‘4, OBALOVA PLOCHA PARAMETRICKE SOUSTAVY PLOCH. Obaloud plocha jednoparametrické
soustavy ploch F(x,y,z,0) =0 vyhovuje soustavé rovnic F (x,y,z,&}=0, F, ; x,y,z,0)=0.

V piipadé dvojparametrické soustavy ploch @ (x,y,z,0,8)=0 jejich obalovd plocha spliuje
rovnice P (x.y,2,a,B) =0, @ (x,3,2,,p)=0, (IJF;' (x,y,2,0,B)=0.
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Napiste rovnice tecen a normalovych rovin k nasledujicim kfivkim v danych
bodech:

3528, x =acos®cost, y =asinacost, z=asini v bodé t=t,.

3529, x =asin’t, y=bsinicost, z =ccos*t v bodé t==.

3530. y=x, z=x? vbodé& (1,1,1). 4

3531 x2+22=10, y2+2%=10 v bod& (1,1,3).

8532, x2+y2+2%=6, x +y+2=0 v bod& (1,-2,1).

3533. Najdéte na kiivce x=¢, 3 =2, z=¢% takovy bod, aby tefna, ktera jim
prochdzi, byla rovnobéZna s rovinou x +2y+z=4.

3534. DokaZte, 7e te¢na k Sroubovici x =acost, y=asinf, z=bt svird s osou z tihel
konstantnf velikosti.

3535. Dokaite, Ze kiivka x =ae 'cost, y=ae‘sint, z=ae’ protind viechny p¥imky
vytvatejici kuZelovou plochu x* +y? =22 pod stejnym tihlem.

3536. DokaZte, Ze loxodroma

tg( i +-ll-zl—] =¢*? (k je konstanta),

kde ¢ je tihlova délka a ¥ je uhlovi Sitka pOZlce bodu na kulove plose, protind
viechny jeji poledniky pod konstantnim dhlem.
3537. Vypoctéte tangens thlu, ktery svird te¢na v bodé (x,, 3’0) ke kiivee z =f(x,9),
X _ Y Xo
cose  sind
3538, Vypoctéte derivaci funkce u =

, kde f je diferencovatelnd funkce, s rovinou xy.

vbodé (1,2, -2) ve sméru teény
x2eyZez?

vtomtobodekekr:vcex t,y=2t%, z--2t‘1

Najdéte rovnice tecné roviny a normaly k nasledu_]lam plocham v danych
bodech::

3539. z=x2+y? v bodé (1,2,5). 3540. x2+y2+7.2=169 v bodé (3,4,12).

3541. z=arctg3_|— v bodé (1, l,%). _3542._ax2+by +cz%=1 vbodé (x,,y,2,)-

3543, —y+1n—vbode (LLD. 3544, 9%z 9% -8 v bodé (2,2,1).

3545, x = acoswCOStp 3= bcoswsmcp, z= csmtlrvbode ((po,lho)
3546. x =rcos@, y=rsing, z —rcotga v bodé (¢,,7,).

3547. x =ucosv, y =usinv, z=av v bodé (uo,vo).

§ 5. GEOMETRICKE APLIKACE

e

$548. Najdéte limitnf polohu te¢né roviny k plose x=u+v, y=u 2r0? 2=udeud,

" jestlize bod dotyku (u,v) (u#v) neomezené piiblifuje k bodu (uyu,) mezni
'_ki"ivky % =v této plochy. :
; 3549. Najdéte na plose x*+2y% +3z%+2xy +2xz +4yz =8 body, ve kterych jsou

1 éne roviny rovnobé&iné se soufadnicovymi rovinami.
20 L2 2 -
x z P g . o
3550 \ _]akem bode elipsoidu =t J R =] svira Jeho normila stejné uhly se
a* b° ¢

- v§em1 souradmcovyml osamip
5551 Sestrojte teéné roviny k ploge x 2 +2y2+32% =21, které "jsou rovnobéznés ro-
vmou x+4y+6z=0. ‘

?3552 Dokajte, Ze te¢né roviny plochy xyz =a® (a > 0) vytvéfeji se soufadnicovymi
" fovinami étyfstén konstantniho objemu. '
3553. DokaZte, Ze te¢né roviny plochy x +y +yz =y/a (a >0} vytinaji na soufad-

nicovych oséch dsecky s konstantnim souctem délek.

3554. Dokaite, Ze teCné roviny kuiele z=xf [ l] prochiézejf jeho vrcholem.
x

3555. Dokazte, Ye normily k rotadni ploge z =f(yx%+y?) (/' 0) protinaji osu jeji
 rotace. ' ' '
$556. Najdéte praméty elipsoidu x2+y% +2% -xy=1 do soufadnicovych rovin.
8557. Ctverec {0<x<1,0<y< 1} je rozdélen na koneény podet ¢isti o priméru
<8. Odhadnéte shora &islo 8, Lisi-li se sméry normil k plose z=1-x%-y2 v libo-
volnjch bodech (x,y) a (x,y,) téZe &asti o méné neZ 1°.
e ekt z=f(), kde (wyed, (1)
~ Je rovnice plochy a @(P, P) je thel mezi normalami k plose (1) v bodech

'P (x,y)eD a P, (xl,y])eD Dokaite, Ze _]esthze je mnozma D omezena

F=~auzaviend a funkce f(x,y) ma omezené derwace druhého f4du na D, pak plati

Ljapunovova nerovnost
(P(Pl,P)<CQ(P1,P),' - ' (2)
kde C je konstanta a (P, P) je vzdalenost mezi body P a P,.
3559 Pod Jakym uhlem protma valcovy plas( x+ y 22g? plochu bz= xy ve spolec-
ném bodé (xo,yo, zy)?
3560. Dokazte e soufadnicové plochy sférickych soufadnic x2+y%+z%=r2,
L ¥EXEgR, x2+y? =z tg2B JSOU vsechny navzajem kolmé.
© 3561. Dokajte, 7 sféry x2 +y? +2° 2=2ax, x* +y +z2=2by, x*+9%+2%=2¢z tvofi
ortogondlni systém.
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3562. Kazdym bodem (x,y,z) prochizeji pro A= , A =A,, A=A, tii plochy dry.
4w x?2 32 z? <
hého fidu tvaru Y + RE + Y =-1 (@a>b>c¢>0). Dokaite ortogona.

litu téchto ploch.

3563. Najdéte derivaci funkce u=x+y+z ve sméru vné&jii normily ke sféfe

x?+y%+z% =1 vjejimbodé (s 390 %) - Vjakych bodech této sféry derivace funkce 4
- ve sméru normaly riab}'fvz’l: a) svého maxima; b) svého minima; c) hodnoty ?

3564. Najdéte derivaci funkce u=x?+y®+z? ve sméru vn&j¥ normily elipsoidy
2 .2 2

o+l +Zc1vjehobodé (x,,2,)-
a® b? ¢*
3565. Necht Su a g— jsou normalové derivace funkei » a v v bodé& plochy
n n
F(x,y,z)=0. DokaZte, ¢ — (uv)= ug-zl*r v %
on dn  on

Najdéte obalové kiivky nésledujicich jednoparametrickych soustav rovinngch
kiivek:

3566. xcosa +ysina =p, kde p je konstanta.

612

3567. (x -a)’ +y 2 =—2—.

3568. y=kx +%, kde a je konstanta.

3569. y2=2px +p 2.
3570. Najdéte krlvku vytvarenou useckou delky [, jejiz konce klouZou po osich
soufadnic.

2 2

3571. Najdete obalovou krwku elips x_ 2 1 které maji konstantnl obsah §.
a? b

3572. Najdéte obalovou kiivku trajektorif n:ibOJe, ktery byl vystielen ve vakuu
s poditecni rychlosti v, pro rizné Ghly vystielu o méfené ve svislé roviné.
3573. Doka’Zte, Ze obalova kiivka normail rovinné kiivky je evolutou této kiivky.
3574. VySetfete charakter diskriminantnich kiivek nasledujicich soustav kfivek,
kde ¢ je parametr: a) kubickych parabol y =(x -¢)*; b) semikubickych parabol
3% =(x-c)*; ) parabol tvaru 33 =(x -¢)?;.d) strofoid (y -¢)%=x 287X
a+x

3575, Najdéte obalovou plochu mnoZiny sfér o poloméru 7, jejichZ stiedy jsou
umistény na kruZnici x =R cost, y=Rsint, =0, kde { je parametra R>7.

§ 6. TAYLORUV YZOREC

576. Najdéte obalovou plochu mnoziny sfér
(x-tcosa)*+(y-Lcos B)2+(z-tcosy)? =
de cos’c +cos*B +cos’y=1 at je parametr.

577. Najdéte obalovou plochu mnoziny elipsoidti

e 2 .2 _2

X _+2_ 4% -1 skonstantnim objemem V.
a® b? (?

578. Najdéte obalovou plochu mnoZiny sfér o poloméru g, jejichZ stfedy jsou
ymistény na povrchu kugele x2+yZ=z%.

579. Bodovy zdroj svétla je umistén v pocitku soufadnic. Urcete stinovy kuZzel
- yrzeny kouli (x -x )2 (-3, 24z —20)2 <R?, jeli x02 +y02 +z§>R2.

5,580 Najdéte obalovou plochu soustavy rovin z ~z, =p{(x -x0) +q(y ~y,), splhuyi-li

parametry p a g rovnost pE+g=1.

§"':§. Tayloriiv vzorec

“1. TAYLORDYV VZOREC. Ma-li funkce f(x,y) v néjakém okoli bodu (a,b) spojité viechny parcidlni
Jdcnvace do Fidu n + 1 veetné, pak v tomto okoli plati vztah

: f(x,y)—f(a,b)+2 [(x ﬂ)—+(? b)—]f(ﬂ B}y +R_(x,y), (1
;lkdc

R (x,y)=

I ] ap*! _ . _
(n.+1)![(x—a)$+(y b)a}“ fla+8 (x-a),b+8 (y-8) (0<gn<1).

2. TAYLOROVA RADA, Md-li funkee f(x,y) derivace viech Fadi a je-li imR _({x,y) =0, pak lz¢ tuto

jfunkci rozvinout do mocninné Fady

fepfah ), il ehe-afo-. @

l]r x'y?

:_a Maclaurinova fade. Podobné vaztahy plati pro funkee tif a vice promennych

3. SINGULARNI BODY ROVINNYCH KRIVEK. Bod M, =(x,,3) diferencovatelné k¥ivky F (x,5) =0 se
nazyva singuldrnim bodem, plati-li

F(xy30)=0, F/ (x5 =0, F,'{x5,3,) =0.
Necht M, =(x,,3,) je singuldrni bod kiivky tiidy C® a necht &isla A=F} (x;,3), B=F. (x,%,),

“C =FJ’;(x0,yD) nejsou viechna rovna nule. Pak, je-li
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£ 1) AC-B2>0,je M, izolovany bod,
f 2)4C-B2<0,je M, uzel;
£ 3) AC-B?=0,je M, bod vratu nebo krot.

------

ttidy C®, mohou mit smg‘ulanty takeé slofit&jii charakeer: koncové body, tiflové body a podobng,

3581, Rozvifite funkci fley)=2x%-xy-y2-6x-3 y+5 podle Taylorova vzorce
v okoli bodu (1, -2).

3582. Rozviiite funkd f{x,y,2) =x*+9*+2%~3xyz podle Taylorova vzorce v okolt

bodu (1,1, 1).

3583. Najdéte piirtistek funkce f{x,y) =x*y +xy *-2xy, ktery se ziska pfechodem

odbodu x=1, y=-1 k bodu x,=1+h,y =-1+k.

3584. Rozvifite funkci f(x +k,y +k,z +1) v pfirozenjch mocninéch veli¢in 4, k a !,

Jecli f@.9,2)=Ax*+By*+C2? +2Dxy+2Exz +2Fyz.

3585. Najdéte cleny rozvoje funkce f(x,y)=x7 v okoli bodu (1,1) do druhého

fadu véetné.. , : )

3586. Rozvitite podle Maclaurinova vzorce do &lenti étvrtého fadu véetné funkei
fley)=f1-x%-52,

3587. Odvod’ te Taylorovy vzorce druhého fidu pro nasledujici vjrazy:

*y

, Jsou-h |x| a
*y

|y| malé v porovnini s &islem 1.

3588. Zjednoduste vfrazcos(x +y +z) - cosx cosycosz za piedpokladu, e absolutni
hodnoty ¢&fsel x,9,z jsou malé,

3589. Rozviiite funkci F(x,y) = %[f(x +h,y) +f(x,y +h) +f(e - h,y)+f(x,9 -h)] - f(x,7)

v mocninach & s pfesnosti na h*.

3590. Necht f(P)=f(xy) a P,=(x,y)} (i= 1,2,3) jsou vrcholy rovnostranného
trojihelnika vepsaného do kruZnice se stfedem v bodé P =(x,y) o poloméru g,
pfiemz x =x +p, ¥, =y. Rozvifite v pfirozenych mocninich ¢ s pfesnosti na g’
funkei 1
Flo)= -?:[f(Pl) +f(Py) +f(Py)].

3591. Rozvirite v mocninich # a k funkci } -
A SGy) =flx +h,y +k) - fx +h,y) ~f(x,y +k) +(x,).

1773819, y* =sinx .

§ 6. TAYLORUV VZOREC

2n ,
3592. Rozviiite v mocninich p funkci F{g)= El_ f flx +pcosg,y+psing)de.
=
0

ozvifite do Macléurinovy fady ndsledujici funkce:

593. f(x,9) =(1 +x)"(1 +3)". 3594. f(x,3) =In(1 +x +y).

595. f(x,5)=¢ *siny. 3596. f(x,y) =¢ “cosy.

. 3597. fx,y) =sinxsinhy. 3598. f(x,y) =cosxcoshy.

- 3599. f(x,5) =sin(x®+y?). 3600. f(x,y) =In(1 +x)In(1 +v).

LT 1

f-:__3601 Najdéte prvni i éleny rozvoje funkee f(x,y) = f (1 +x) 7dt do Maclaurinovy

‘i‘gldy

| 3602. Rozvirite funkci ¢**? do mocninné fady v pnrozenych mocninich dvojélent

oamlay+l. '

e 3503 Najdete rozvoj funkce f(x,y) == X do Taylorovy fady v okoli bodu (1,1).
s y

-3604 Nechi z je implicitni funkce promennych x a y dand rovnosti

15 5 -2x2 +y=0,kterdmiprox=1ay=1hodnotu z=1. Najdete né&kolik prvnich
- “dent rozvoje funkce z v rostoucich mocnindch dvojdlent x-1a y-1.

—Vysetrete typy singularnich bodi nasledujlc:lch krwek a nadrtnéte jejich grafy:
13605, y —ax2+x3 3606. x* -I-y Sxy 0.

--‘-*:fi?--~3(607'x +y 2oyt +y ; 3608. x* +y =x5.

3609, (x2+y2=a2(x%-y?). 3610. (y-x2)% =x°.

361 (a+x)y? =@ -x)x?. |

6‘12 VySetfete typ kfivky y ?o(x - a)(x - b)(x -¢) v zavislosti na hodnotich
arametri a, b, ¢ (a<bs<c).

: :,_Yyéetl"ete singularni body nasledujicich transcendentnich kfivek:
L 8613.5%=1-¢ 7", 3614.3%=1-¢™*".
L X

73615, y =xInzx. T

3618. y2 =sin£.
x

3617. y=arctg[ .1 J .
sinx

2 3620. y* =sin’x.
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§ 7. Extrémy funkci vice proménnych

1. URCEN{ EXTREMU. Necht je funkee f(P)=f(x,, ...,
fP)= i), nebo fiP}<f(P) pro 0 <g(P,P)<&, pak fikime, Ze funkce f(F) m osiry extrey,

{maximum, respektive minimum} v bod& P.

x ) definovdna v okoli bodu P,. Jestlize byg

2. NUTNA PODMINKA EXISTENCE EXTREMU. Diferencovatelnd funkce f{P) miie nabjvat svghg
extrému pouze ve staciondrnim bodé Py, g. v takovém bodég, ve kterém df(Po} =0, Pak body
extrému funkce f(P) vyhovuji soustavé rovnic f’;‘(xl,...,xn) =0 (i=1,...,n).

£
3. PosTaCurici PODMiNxA EXISTENCE EXTREMU. Funkce f(P) md v bode P, a) maximum jeki
af(P)=0, d*f(P)<0a 2 |dx;| # 0 a b) minimum, je-li df(PO} 0,d’f(P)>0 a ):, |dx,j =0,

VySetfeni znaménka diferencidlu druhého fadu 4°f (Po) Ize provést pi"evedenim odpovidajici
kvadratické formy do kanonického tvaru,

Specidlné v ptipadé funkce f(x,y} dvou nezdvisle proménnych x a y v staciondrnim bodé (xp5)
(df(xgy,) =0) za podmmky D=AC-B*+0, kde A —f” (xﬂ,yo), B —f;; (xo,}'o). C -]3,),(10,}0),
dostaneme: ' T

1) minimum, pokud D>0, 4A>0 (C>0);

2} maximum, pokud D >0, A<0 (C<0);

3} extrém neextstufe, pokud D <0,

4. VAzaNY EXTREM. Uloha nalezeni extrému funkce f(P) =f(x,,..,x,), ktery vyhovuje

podminkdm ¢,(P)=0 (=1,..,m;m<n), vede k hledini extrému Lagrangeovy funkee

m
L{Py=f(P}+ Y )L'. d)i (P}, kde JLI. {i=1,...,m) jsou konstanty — tzv. Lagrangeovy multiplikdtory. Otdzka
i=1

existence a charakteru vizaného extrému se v nejjednodudtim piipadé rozhoduje vy3etfovinim

TR R

znaménka diferencidlu druhého Fidu d 2L(PO) ve staciondrnim bod& P, funkce L{P} :a

podminky, Ze proménné dx ,...,dx_ jsou viziny vztahy

Z—.dx =0 (z—- m).

5. GLOBALNI EXTREM. Funkce f(P}, kterd je diferencovatelnd na omezené a uzaviené mno#ing,

ni¢nim bodé této mnoZiny.

§ 7. EXTREMY FUNKCI VICE PROMENNYCH

yietfete extrémy nisledujicich funkci vice proménnych:

521, z=x2+(y - 1)2. 3622. z=x?-(y - 1)

3624, z=x%-xy+y2-2x+y,
3626. z=x7+y%-3xy.
3627.1 z=2xt+yt-x2-9y2,

-2 @>0,6>0).

_ax+by+c

@ +b%+c%20).
\fx2+y2+]_

3632. z=e ¥ " (8x% -6xy+3y?).

v ni nabyvi svjch maximélnich a minimélnich hodnot bud ve staciondrnim bodg, nebo v hra-

3'_633. z =ex2"(5 -2x+y).

3635. z =x " +xy+y%-4Inx - 10Iny.
8636. z =sinx +cosy +cos(x -y) (O<x<m/2; 0<y<m/2).
8637. z =sinxsinysin(x +y) (0sx<m; O<ysm).

3638. z=x -2y +Inyx? +y2 +3arctg 2.
- ’ X
3640. z =x +y +4sinxsiny.

3634, 2 =(5x +7y-25)e ¢ =Y

3639. z=xyln(x % +y?)
8641, z=(x2+y2)e E9),

3642. w=x?+y%+22+2x + 4y -6z,
y2 22 9
3644. u=x+<—+—+= (x>0,9y>0,2>0).
: 4x vy =z ‘
3645 u=xy°z%(@-x-2y-3z) (2>0).
_ a? x2 4% ;2
$646. u=—+——+——+— (x>0,9>0,z>0,a>0, b>0).
Z

3643, w=x>+y2+2z7+12xy+22.

x )
647. u = s1nx+smy+smz sin(x +y+z) (O<x<m; O<y<m; O<z<m).
3648 u=x x2 coxg(l =X, -2x,-...-nx ) (x, >0, x,>0,..., x >0).
X, X x
=x 2+ 30y +£(x>0 1=1,2,...,n).
X % X1t % '

850. Huygensova iloha. Vlozte mezi dvé kladnd &isla a a b n &sel Xy Xy, tak,
X Xy X

iby hodnota zlomku u =

bl imalni.
(a X)) (% +x2),“ (xW +b) Yla maximalm
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§ 7. EXTREMY FUNKCI VICE PROMENNYCH

Najdéte extremdlni hodnoty nasledujicich implicitnich funkci z proménnych
ay:

3651, x2+y2+2%-2x+2y-42-10=0.

3652. x 2 +92+2% —xz -9z +2x +2y+22-2=0.

3653, (x2+y2+2%)2=a’(x?+y%-2%).

il lx'l a? an . :
669. u "= +x_ +... +x—,Je-h Byx, *Byxy +... +B,x, =1
1 2 n

5> 0,0,>0,%,>0; i=1,2,..,).

o @ & N R
8670. u =x, Xy, jecli X, ¥xy+..vx =a @>0,0>1;1=1,2,..,n).

Najdéte body, ve kterych maji ndsledujici funkce vazany extrém: 3571 Najdete extrém kvadratlcke formy u = EG,J X, (a —aﬁ_) za podminky
3654. z=xy, je-li x+y=1. if
E x =1,

. 3672 DokaZte nerovnost i—;y—z[ %] ,jelinzlaxz0,y20. |

= NAVOD Najdéte minimum funkce z =—(x ' +3") za podminky x +y =s.

] Ilk[ i ! ] e

| 3655.z=3c—+2,je-1ix2+y2=1.
a b

3656. z =x 2 +y?, je-li LRSS
a b

| 3657. z=Ax2+2Bxy+Cy?, jedi x?+y%=1.

LRSI

\ 36570 z=x"+12xy+ 2" je-li 4x®y7 =25, | i ﬁ&aﬁé;‘nakaiteﬂammﬂu nerounost ¥ a s (z

i 3658. z =cos>x +cos’y, je-li x -y = %

Ha,20,2,205=1,2, . msk> 1,5+ 2= 1] .

;Ei 3659. u=x -2y +2z, je-li x®+y%+2%=1, | ' . 5 it kRt
il 3660. u=x"y"z? jelix+y+z=a (m>0,n>0,p>0,a>0). s Y N n
st 2 2 9 : ‘NAVOD Na_]déte minimum funkce z =| ¥ a;* Ex za podminky Y ex;=A.
_ 2102472 el X 2 2P Sy a>b>c>0). i=1 il
z 3661. u=x"+y~+z", je-il 22 p? 2 (@ ) 74 Dokazte Hadarmrdovu nerovnost pro detenninantA=|al.j| fadu n:

S 3662. u =xy2z3,je-li x+2y+3z=a _(x7>__ 0,y>0,2>0).
3663, u=xyz, jeli x2+y%+z%=1, x+y+2=0.

ggﬁ[_“ 2]

3663.1 u=xy "’J‘Z,je‘li x? "'J’E =2,y+2=2 (x>0,9> 0,2>0). VOD Vysctrcte extrém determinantu A = Ea | za podminek Ea =8, (i=1,2,..,n).

3664. » =sinxsinysinz, je-li x+y +z=-T2—[ (x>0,y>0,2>0). oo
i T S N - iUréete maximdalni a minimalni hodnoty (suprema a infima) ndsledujicich funkci
3665, i = ;_2_ + ? + .C_Q,Je-h x“+y°+z°=1, xcosa +ycosP +zcosy = 0 jJia zadanych mnofinéch:

13675, z=x - Z’y -3,je-li 0<x<1, Osysl O<x+ysl
676. z=x2+y?~12x + 16y, je-li x2+y*<25.

: .iif\! (@>b>c>0, cos?a +cos? P +cosy =1).

il 3666.u=(x—E)2+(y—n)2+(z—C)2,je-]iAx+By+Cz=0,x2+y2+22=R2, | .:"21‘3‘:'33677.z=x2-xy+y2,je-1i x| + [y <.
it £ .. n . ¢ , kde cos’a +cos?P+coscy=1. - 73678, u=x2+2y2+322 je-li x2+y_2+z25100.
Al ! cose. cosp  cosy x. x x 33679 w=x+y+z,jelix?+y2<cz<].
NS 3667.u=x2+x2+...+x2 edi L+ 24 4= (a.>0;1=1,2,...,n). B
i E i 1 9 n ,J a a 2 i ) Pt Vi . . .
ik 12 " 680. Najdéte dolni hranici (infimum) a horni hranici (supremum) funkce

3668, u=x/+xl +... rx! (p>1), jeli X +x, +..+x =a (@>0).

= (x +y+z)e " **#7*3%) na mno%in¢ dané nerovnostmi x>0, y>0, z>0.
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3681. Dokaizte, Ze funkce z=(1 +¢*)cosx -ye” nabyva maximaln{ hodnoty v neke.
nené mnoha bodech a nenabyvi Zidné minimalni hodnoty.

3682, Je postalujici podminkou existence minima funkce f(x,5) v bodg
M, =(x,,5,) existence minima na kaZdé pfimce prochézejicf bodem M ? Uvaiujte
pipad () ~(: -3 %) 2 -y,

3683. Dané kladné &islo a rozloZte na n kladnych souciniteld tak, aby soucet
jejich inverznich hodnot byl minimilni.

3684, Dané kladné d&islo a rozloZte na n séitanch tak aby soudet _]e_]l(lh druhych
mocnin byl minim4lni.

3685. Dané kladné {fslo a rozloite na n kladnych soudiniteld tak, aby soudet
jejich danych kladnych mocnin byl minimalni. '

3686. V roving je din systém n hmotnych bodd P =(x,y,), P,={x,5,),...,
P_=(x ) o hmotnostech rovnych m,m,,...,m_. Pii jaké pozici bodu (x,y) bude
moment setrvanosti systému P, ... , P, vzhledem k tomuto bodu minimalni?
3687. Pfi jakych rozmérech bude mit oteviena nadoba tvaru kvidru daného
objemu ¥ minimalni povrch? '

3688. Pri jakych rozmeérech bude mit otevieni vilcovd vana s pulkruhovym
prifezem, jejiz povrch je §, maximdlni objem?

3689. Najdéte na sféfe x* +y*+2% =1 bod, pro ktery bude soudet druhjch mocnin
Jjeho vzddlenosti od danych bodd M, =(x,y,,z) (=1,2,...,n) minimélni.

3690. Té&leso se skldd4 z rota¢niho vilce zakondeného rota¢nim kuZelem. Uréete
jeho rozméry, vite-li, Ze jeho povrch je Q a jeho objem je za této podminky
maximdlni. '

3691. Téleso sloZené z kvadru, jeho# obé& podstavy jsou zakonleny stejnymi
pravidelnymi ¢tyfbokymi pyramidami, m4 objem V. Pro jaky thel sklonu bo¢-
nich hran pyramid vzhledem k jejich podstavam bude povrch celeho télesa mi-
nimdlni? : :
3692. Najdéte obdélnik s danym obvodem 2p, ktery vytvoii rotaci kolem jedné
ze svych stran téleso s maximalnim ohjemem. :

3693, Najdéte trojihelnik s danym obvodem 2p, ktery vytvo { rotaci kolem jedné
ze svych stran téleso s maximalnim objemem. :

3694. Do polokoule o poloméru R vepiite kvadr maxlmalmho objemu.

3695. Do daného rota¢niho kuzZele vepiste kvadr maximélniho objemu.
2 .2 2

3696. Do elipsoidu % 2. 2_2 =1 vepiste kvadr maximilniho objemu

b ¢
3697. Do rota¢niho kuzele, jehoZ plast o viice t svird s podstavou thel a, vepiste
kvadr 0 max1maln1m povrchu

87 EXTF‘?MY‘FUNK_CI;WCE PROMENNYCH

2_. . ‘ ‘ -
, z=c, vepiSte kvidr

L .

X

]

&l

s 698 Do dsede ehptlckeho parabolmd = +
maxlmalm’ho objemu. ' b
3599 Vypocicte vzdilenost bodu (x,, J'o’ z,) od roviny Ax +B 3+Cz +D 0.

Ch

xxlyylzz x-x Yy 2
a

2 2

;‘i73700. Vypoctéte vzdilenost d piimek .
.,{r"prostoru m, nl_ by m o om f"z

3701 Vypottéte vzdalenost mezi parabolou y=x* a piimkou x -y-2=0.
3702 Najdéte poloosy kiivky druhého fadu bez linedrnich dené
- Ax®+2Bxy+Cy?=1,
703 Najdéte poloosy plochy druhého fidu bez linedrnich ¢lent
Ax*+By?+Cz*+2Dxy +2Eyz +2Fxz=].

2 2

x
3704 Urcete obsah vnittku elipsy ziskané protnutim valcové plochy —; +E§ =1
a®
".rovinou Ax +By +Cz=0.
B o ox? gt g
- 3705. Urcete obsah fezu elipsoidu — +2—+-—-=1
AR a2 b2 2

- rovinou xcos& +ycosp +zcosy =0, kde cos?a +cos?p+cos2y =1.

i~ 3706. Podle Fermatova principu se svétlo vychazejici z bodu A do bodu B ifi po

' :_': takové kiivce, po které projde za minimalni &as. Predpokladejte ie body AaB
.:jsouumistény v opticky riiznych prosttedich oddélenych rovinou. Odvodte zikon

... Jomu svétla, vite-li, Ze rychlost $ifent svétla v prvnim prostfedi je v, a rychlost

. §ifeni svétla v druhém prostiedi je v,

.. 3707. Pro jaky thel dopadu je odklon svetelneho paprsku (g. ihel mezi dopadaji-
' ‘dm'a vychazejicim paprskem), ktery prochéz{ optickym hranolem s ihlem lomu e

L indexem lomu n, rmmmélnl? Urcete tento mlnlmalnl uhel

: g' I:reba urdit. Vysledkem fady méfeni se stejnou pfesnosti se znskay pro pro-
. 'ménné x a y hodnoty x, ¥, i=12,..,n). Urcete nejpravdepodobnejm hodnoty
2;—;._'5'?~k0eﬁclcntu aab rnetodou nejmensmh étverch. . - .

v

;i_‘,_;,_lakove, pro ktere Jje sondet druhych mocnin chyb ): A= E (ax, +b-3,)" minimdlni.
g il

:;':-‘ 3709.V roviné Je dan systém n bodd M. =(x,, y) (i=1,2,...,n). Pro jakou polohu
B ‘prlmky xcose +ysina -p =0 je soulet druhych mocnin vzdalenostf bodii M, od
: teto piimky mmlmalm?

3710. Funkd x? apr0x1mu_]te na intervalu (1,3) linedrni funkcf ax +6 tak, aby
absolutni chyba A =sup |x?-(ax +b)| (1<x<3) byla minimaln:
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KAPITOLA VII

Integraly zavislé na parametru

§ 1. Uréité integraly zivislé na parametru

1. VETA O SPOJITOSTI INTEGRALU. Jestlife je funkce f(x,y) definovand a spojitd na omezepg
A

mnoZiné R={(x,y)|asx<d bs<ysB}, pak je funkce F(y) ff(x,y)dx spojitd na uzavieném
intervalu b<y<B.

2. VETA O ZAMENE DERIVACE A INTEGRALU. Jsou-li spinény pfedpoklady ptedchozi véty a jed
navic parcidlni derivace fy '(x,3) spojitd na mno%in& R, pak pro b <y <B plati Leibniziiv vzorec

IE: A
E;ff(x,y)dx =f];"(x,y)dx.

V obecngj§im ptipadé, jsou-li ¢(y) a Y(y) diferencovatelné funkce parametru y, pfidems
a<t(y) <4, a<{i{y)<A pro b<y<B, pak plad
*(ﬂ ¥
= f Feey)dx=fe)0¥ 0)-fe0NEG)+ [ f&yds.
¢(y) LA

3. VETA O ZAMENE PORADI INTEGRACE. Za stejnych predpokladﬁ jako v prvm vété plati nasle-
dujici rovnost:

f dy ff(x,y)dx - f dx fﬂx,y)dy-
B a b ’

1
3711. DokaZte, 7e integrdl F(y)= f f(x,y)dx nespojité funkce f(x,y) =sgn(x-3) je

spojitou funkci. SeStIOJte graf funkce u =F(y).

3712, VySetfete spojitost funkce F(y) = f o) dx kde f{x) je spoyta a kladna
x +
funkce na vzavieném intervalu [0,1]. ° ’*
3713. Najdéte nasledujici limity:
|+ . 2

a) lim L; b) llmf x2+oldx;
a-0 4 1+x%+0?

) llmfx cosmxdx

d) lim | — %

ol 1+ X "
n

308

§ 1. URCITE INTEGRALY ZAVISLE NA PARAMETRU

n2

3.1 Vypoltéte lim f e R840,
R-=
0

/14. Necht f(x) je spojita funkce na uzavieném intervalu (4, B). Dokaite, Ze

1imlfw +h) -fO)1dt =f(e) -fla) (A<a<x<B).
r-o b y

:3714.1 Necht jsou splnény nisledujici podminky: 1) ¢ ()20 (n=1,2,...) na
: 1

itervalu [-1,11; 2) ¢ _(x)=0 pro n~« na 0<e<|x|<1; 3) fcpn(x)dx~1 pro
1

kn-'°° Dokaizte, Ze jestliZe f(x)eC[-1, 1], pak lim ff(x)cp (x)dx =f(0).

e
-1

715. Lze provést limiti piechod v argumentu integralu ve vyrazu
P ; E ) . . l - PP
lim [ Ze % dx?
r0p Y
3716 Lze pomoci Leibnizova vzorce derivovat funkc F(y)= f Inyx® +yidx
vbodé y=07? 2

x

3717, Vypodtite F'(x), je-li F(x) = [e'ay.

$718. Vypoctéte derivace F'(a) nasledujicich funkei: e

. cosa b+e . , .1
2) F(w)- f e gy, b).F(a)=f5m“dx; o) F(a)=fde;
x x
.'d) F(d)= flx+a,x-o)dx; e) F(a)=[dx [ sinx®+y%-a®)dy.
f .({ ) xfu

719 Vypoctete F'(e), je-li F(x)= f (x+y)f0)dy, kde f(x) je diferencovatelni
funkce.

8720. Vypoctéte Fx), je-li F(x)=ff('y) |x-y|dy, kde a<b a f(y) je spojitd
funkce na intervalu [a,b]. a

h h

3721 Vypotitte F/(x), jeli F(x) =-‘—2 [4E ff(x+z+n>dn (h>0), kde f(x) je
8 ‘ojit;i funkee. 0 '

2. Vypotiéte F®(x), je-li F(x)= [ft) (e 1" dt.




INTEGRALY ZAVISLE NA PARAMETRU

3722.1 Dokaite, Ze plati

d” {sinx) 1 . o i o ,
dx'n[ x )—xnﬂfy cos(y+?)dy n=1,2,..). _ (1)

Pomoci vztahu (1) odvodte nisledujici odhad:
| a" ( sinx
Idx

3723. Aproximujte funkci f(x)=x® na intervalu 1<x<3 linedrni funkci tvary
3 .

a+bx tak, aby byl f (a +bx -x )de minimalni.

. .
< €(—m, +o0),
] n+lpr0x ( )

X

3724. Odvodte pfiblizny vztah tvaru y1 +x =a+bx (O<xs1) z podminky, je
stfedn{ kvadraticky rozdil funkci a +bx a \}1 +x” na daném intervalu {0,1] ; je

minimAalni.

3725. Vyjadfete derivace dipinych eliplickych integralii E (k)

n/2
=f1f1 -k*sin’pdg
0

aF(k)= 40 (0 < k£ <1) pomoci fuxjkcf E(k) a F(k). Dokaite, ze funkce

» 1 -kZ%sinZg
E (k) je fefenim diferencidlni rovnice

E"(ky+ E(k) E®
k2

3726. DokaZte, e Besselova funkee celacwelne?w indexu n
=

J. &) =%_£cos(ncp ~xsing)do

je Fedenim Besselovy rovnice x*J " (x) +x ] (®) +(x®-n?%)J (x)=0.

3727. Nechﬂ o) f 9 (x)dx ,kde @(x) a ¢ (%) jsou spojité funkce na uzavieném
J'
\/‘i x

3728. Dokaite, ze funkce u(x) =fK(x,y)v@)dy, kde K(x,y) ={;((ll :33 g;g ;C ij;
0

intervalu 0<x<a. Dokazte Zepro 0<a<a pIatl (o) = cp(O) f

NAvOD: Uzgte substituci x =af.

a 2(y) je spojitd funkce, je feSenim rovnice u’(x)= -v(x) (O<x<1).

§ 1. URCITE INTEGRALY ZAVISLE NA PARAMETAU

xy
729. Vypoltéte F gy(x,y), jeli F(x,y)= f (x-y2)f(z}dz, kde f(z) je diferenco

atelna funkce. xly

30 Necht f(x) je dvakrit diferencovatelnd funkce a F(x) je diferencova-
x+al

_tclna funkce. Dokaite, Ze funkce u(x, t)——[f(x at) +f(x +at)] +— f F(z)dz je

. x -al

25 Fu_ o 0u

rcsemm vlnove rovnice ——a — S poditecnimi podmmkaml u(x, 0) =f(x)

82 ox

o du/(x,0)=F(x).

3731 Dokaite Ze jestliZe je funkce f(x) spojitd na uzavieném intervalu [0,/]

| a(c-E)?+y*+2%20 pro 0<Exl, pakJefunkce

wley,2) = f FE)E
)

2+y +z2

Fu 8214 a2
8x2 ay az

I fe¥enim Laplaceovy rovnice
Fn

i’?;.ﬁl')'érivov.s’lnfm podle parametru vypoctéte nasledujici integraly:
BERRE L n2 n
8132, f In(a *sin®x +4%cos’x)dx. 3733. fln(l -2acosx +a*)dx.

/2 /2
L . d
3734, fmg_"_)dx. 3735. fln““"sx ¥ (la] < 1).
g tgx / 1 -acosx cosx

0

A 1 ' !

?36. Pomoc vztahu 287 f 4y - vypoététe integral f

2
x +
Dlxy 0

3!737 Pomoci véty o ziméné pofadi integrace vypoctéte integral

arctgx  dx

X l_xz

nx

b_..8
L [x X dx (e>0,6>0).

' -3738 Vypoitéte nastedujici i’ntegTély

b .xa
-a) fsm(ln ] dx, b) fcos[ln ]
Inx

dx (a>0,6>0).




INTEGRALY ZAVISLE NA PARAMETRU

3739. Necht E(k) a F(k) jsou tiplné eliptické integraly (viz tiloha 3725).

Dokazte ndsledujici vztahy:
k k

a) fF(k)kdk=E(k)—k12F(k); b) fE(k)kdk=%[(1+k2)E(k) ~kIF(R)],
0

kde k =1-k2.
3740. DokaZte vztah f xf,(x)dx =x], (x) kde f,(x) a J, (x) jsou Besselovy funkce

indexu 0 a 1 (viz uloha 3726).

§ 2, Neurdité integrily zivislé na parametru. Stejnomérné konvergence
integrald

1. DEFINICE STEJNOMERNE KONVERGENCE. Konvergentm’ nevlastni integral

ff(x,y)dx lim ff(x,y)dx (1}

b ten

kde funkce f{x,5) je spojitdi na mno¥iné asx<+w, y <y<y,, nazjvime stejnomérnd
konvergentnéim na intervalu (y,,y,}, jestlie ke kaZdému ¢> 0 existuje cislo B=B(#) tak, Ze pro
kaidé b= B plati '

rou

ff(x,y)dx <e @y <y<y,).
b

Stejnomérnd konvergence integralu (1) je ekvivalentni stejnomérné konvergenci viech fad tvarn

L[ fepd, @
n=0 a,

n+]

n-w

§ kde a=aq,<a,<a,<...<g <@ <..a Iim a, =+,

Jestlize integral (1) konverguje stejnom&rné na‘intervalu (y,,5,), pak je natomto intervalu spoji-

tou funkei parametru y.
a

2. BOLZANOVO-CAUCHYOVO KRITERIUM KONVERGENCE, Pro stejnomérnou konvergencdi integrélu
(1) na intervalu (y,,5,) je nutné a stadi, aby ke kazdému £> 0 existovalo &islo. B =B (&) tak, Ze

bff
ff(x,y)dx <gproy <y <y2-,_jcstliie b/'>Bab">B.
bl’

VUrégete obory konvergence nisledujicich integrala:

3751 Bez pouZiti negaci formulujte tvrzeni, Ze integral f Sf{x,3)dx konverguje

.3752 Dokaite, Zc jesthiZe mtegral f flx)dx konverguje a funkce ¢ (x,y) je omeze-

- ni a monotdénni v promenne x, pak integral f fx)@(x,y)dx konverguje stejno-

7 8753, Dokaite, e stejnomérné konvergentnf integral

§ 2. NEURCITE INTEGRALY ZAVISLE NA PARAMETRU. STEJNOMERNA KONVERGENGE INTEGRALU

8. WEIERSTRASSOVO KRITERIUM KONVERGENCE. Pro stejnomérnou konvergenci integrilu (1)

J1stadi, aby nezévisle na parametru y existovala funkce F(x) spliiujici podminky

1) |f@.5) | sF(x) pro a<x< += a 2) fF(x)dx< +oo,

4. Analogicka tvrzeni plati pro nevlastni integrily nespojitych funkd.

+oa

3742, f XCOSY dx.
xP+xd
k4

9 .
3744.f dx_
! )

+o0

3746. f _sinx_

xP +smx
0

dx (p>0).

* Porovnanim s konvergencdi fad vysetiete konvergenc1 nisledujicich integral:

+ 00

3747, f COSY 1x. 3748, f o xdx (n>0)
x+a _ A 1 +x "sin’x
. -+ o0 + o0 . 2
L osrae. | 92 3750, f ST g
. xﬂ

3
x x? y sin®x

“+ 00

nestejnomerne na daném 1nl:ervalu (yl, Yo) -

4o

.mérné (na odpovidajici mnoZing). a

'—E(x--;-)gdx (0 <_y <1)




INTEGRALY ZAVISLE NA PARAMETRU

+o0

3754. DokaiZte, 7e integral f ae **dx 1) konverguje stejnomérné na libovolném

intervalu 0 <a <@ <b a 2) konverguje nestejnom&rné na intervalu O<a<b.

SIN 0LX

3755. Dokazte, Ze Dirichletiv integral f dx 1) konverguje stejnomérné ny

0
ka?dém uzavieném intervalu [a,b], ktery neobsahuje hodnotu & =0; 2) konver-

guje nestegjnomeérné na kaidém uzavieném intervalu [a,6], ktery obsahuje
hodnotu a=0.

3755.1 VySetiete, zda integril f— stejnomérné konverguje na IlaSIEdUJIClCh

intervalech: a) 1 <@ << +oo; b) l<@<+eoa,

3755.2 Vy3etfete stejnomérnou konvergenci integrilu f — pro O<ag<].

3755.3 Dokaite, Ze mtegral f
<o <+,

konvergu_,e nestejnomérné na intervalu

VySetfete stejnomérnou konvergena nasledujicich integrdli na zadanych
intervalech:

+ 00 + oo

3756. J‘e'“"sinx dx(l<e <a< Q—w). 37517. fx“e Fdx (asoash).

> dx (0sa< +°°) kde p>OJe konstanta

0 A ]
3758. fcosaxdx (_w<a,_.< +o0), 3759, f__di_..__ (osa‘<*+m).
. L+’ ! (x-0)?+1 '

SINX _ge, : o Infx .
3760. { —¢ ““dx (0<a<+=).  3760.1 dx (0<p<10).
3761. f er'“* cosx
1

X

3762. fﬁe'“"gdx (Oca<+e).
]

3763. fe'("_“)zdx: a)a<u<bh;b) ~e<a<+,

§ 2. NEURCITE INTEGRALY ZAVISLE NA PARAMETRU. STEINOMERNA KONVERGENCE INTEGRALU

oo
jaf -

764, fe"‘g(“’glsinxdy (o <x < +w).

3765.1 Najdéte &islo &> 0 tak, aby platilo 0< f
© kde £=1075,

<epro L,1<n<10,
I+x™

1 _
3766. fxl’ IIn"‘ dx:a) p2p,>0;b) p>0 (g>-1).
: x

3771 Integral stejnomérné konverguje pro danow hodnotu parametru, jestlize
.—konverguje stejnomérné na né&akém okoli této hodnoty. DokaZte, fe integril

;5 Stejnomérng konverguje pro kaZdou hodnotu «#0 a konverguje, ale
1 +ax
o

nikoli stejnomérné, pro a=0.

+o0

3772 Lze provést limitni pfechod v argumentu integrilu lim f oe “dx?
’ a0

3773. Funkce f(x) je integrovatelnd na intervalu (0, +=}. Dokaite, Ze

+ 00

lim [ & **f(x)dx = ff(g)dx.'
0

a0 0




INTEGRALY ZAVISLE NA PARAMETRU

3773.1 Doka’te, Ze je-li f'(x) absolumé integrovatelnd na intervalu [a, +e], pak
existuje lim f(x) '

x— oo +oo

3'774. Dokaite, Ze lim f flx)sinnxdx =0, je-li funkce f(x) absolutmé integrova.

n-w

teln4 na intervalu (0, +°°).
3775. Dokaite, Ze jestliZe jsou spln€ny nasledujici podminky: 1) f&3)=f(x,5,) na

kaZdém omezeném intervalu (a b) a 2) [f x,y)| < F(x), kde f F (x)dx < +w, pak
llm ff(x,y Ydx = fllmf(x,y)dx

+0oo +m 2 -
3776. Vypoctéte integral f iy f lim [1 +-——] dx pomoci limitm’ho
pfechodu. n L

n-«

3776.1 Necht f(x) je spojitd a omezend funkce na intervalu [0, +°°) Dokazte ie

lim = fyf(x) dx =£(0).

y-0 Ty x+y

3776.2 Najdéte 11m f
x"+1

+oo

3777. DokaZte, Ze integral F(a) = [ “-a gy je spojitou funkci parametru a.

la |«
SN —

3777.1 Dokaite, Ze F(a)= X dx je spojitou funkef na intervalu 0 <a<1.

o . _f sin(1 -a%)x

3778. iNajdéte-body— nespojitosti- funkce - F{a) = dx. Sestrojte graf
X

funkce y=F(@). - . . - . "

Vyletiete spojitost nisledujicich funkci na zadanych intervalech:

3779. F(o) = f

pro a>2
24+x%

COSX

dx pro a>0.

3780, F(a)= f

§ 3. DERIVACE A INTEGROVANI NEVLASTNICH INTEGRALL ZAVISLYCH NA PARAMETAU

I;F(m)f sinx ———dx pro 0<a<2.
Ox *(n-x)*

-X

dx pro 0<a<l.
0

+

'3783. F(a)= fcce T pro —=<p < +.
0

|sinx|®

3. Derivacea integrovini nevlastnich integrild zavisl

ch na parametru

4

.-} 1. DERIVACE NEVLASTNIHO INTEGRALU PODLE PARAMETRU. JestliZe jsou splnény ndsledujici

. je ptirozené &slo.

- 3785. Pomoci rovnosti f

podminky- 1) funkee fix,5) a 1, ey} jsou spojité na mnofiné {(x,y);asx<+e, 3, <y<y,};

2) mtcgré] f Sl y)d= kOﬂVC[‘gU_]C, 3) integrél f = ndx konvergUJe stejnomérné na intervaiu
01:99), pak®

s -
E;ff(x,y)dx= [_;; (x,y)dx

pro ¥, <y <y, (Leibmizovo pravidlo).

2. INTEGRACE NEVLASTNIHO INTEGRALU PODLE PARAMETRU. JestliZe 1) funkce f{x,y) je spojitd

pro xza a y sysy,; 2) integral f flx,3)dx konverguje stejnomérné na omezeném uzavieném
intervalu [y,,y,], pak a

‘o

fdy [ fleydx= ]dx ff(x,y)dy | . (1)

_:.._ Je-li ftx,y)20, pak vztah (1) platf i pro neomezeny interval (y ,y,) za pfedpokladu, Ze vnitini

integrily rovnosti (1) jsou spojité a alespoil jedna jeji strana m4 smysl.

i ' "

3784. Pomoci rovnosti f x"ldx= 1 (n > 0) vypoctéte integril f x" In"xdx, kde m

+oa +

dx - (a >0) vypodtéte integral L,kde
A x2+q 2,/5

. n je pfirozené {slo.
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+ o0

3786. Dokaite, ie i1 kdyZ ma Dirichletiv integral I{«)= f SIn 0%

dx pro a#(Q

. . e, “r . . - . 0
derivaci, nelze ji ziskat pouZitim Leibnizova pravidla.

NAvOD: Pouiijte substituci ox =3.

+ 00

3787. Dokaite, Ze funkce F(a)= f 08X

dx je spojita a diferencovatelnd na
5 1+ +a) o

intervalu =< g < +co,

e-—ax_g—bx b +we-ax_e—bx
3788. Pomoci rovnosti —— = f ¢ "7 dy vypoltéte integrdl | ————dx
0

@>0,>0). ‘

3789. Dokaztelelamuv vzorec f de f(O)ln (a>0 b>0) ‘kde f{x)

je spojita funkce a i_ntegrél J‘ @dx mé smysl pro libovo_lnou hodnotu 4> 0.

Pomoci Frullaniova vzorce vypoctéte nasledujici integraly:

+oa

3790. [ cosax=cosbx ;1 0.550).
X
L] . i

+oa

3701 fsinax—sinbx
X

dx (@>0,b>0).

0
arctgax —arctgbx ‘
3792. dx (a>0,b>0).
X

. . 0 F— e o - .- . . Co

Derivaci podle parametru vypoctéte nasledujici integrily:
3793. f

; e-!!.z__g-ﬂx 2
3704, f{—] dx (&> 0, B>0)
R
0

dx (@>0, B>O)

:".:3799 f arctg ox dx.

§ 3. DERIVACE A INTEGROVANI NEVLASTNICH INTEGRALU ZAVISLYCH NA PARAMETRU

-ox -Bx

sinmxdx (>0, p>0).

-ox _ -PBx

cosmxdx (>0, [>0).

‘- __ifypoététe nasledujici integrily:

. i
1 2.2
3797, f-‘-’(l—“_)dx (lee| < 1).
x? 1_x2

2.2
3798, f___l““ ) dx (o)< 1),
2

I-x

[=]

+aa tem

2 2
3800. f——__ln(‘: ”; )dx.
G xWxt-1 o BPex?

3802, f In(l +a’x 2)1“(1 B

7 3801, farctgaxarctgﬁx dx.
0 0 X

3803 Vypoététe Euleritv-Poissontiv integril [ = f = dx pomoci rovnosti
' 0

+6a +oa

I%= fe "‘E_dxfxe 'xz_yzdy,

0 0

Pomoc1 hodnoty Eulerova-Poissonova integralu vypoététe:

+oe

_. 3804 f '(‘” P2y (@>0,ac- bg>0)

—“3805- f(alx2+2blx+cl)e'(ax2+2bx+6}dx (a>0,ac—b2>0).
e '
- 3806. fe “* coshbxdx (a>0).

+ 80

3807, o604y (a>0).

m_,. e—_ttxz_e—ﬁ:t:2 Lo
3808 (2% 4y (a>0,>0).
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+ 0

3809, fe‘“?cosbxdx @>0).
3810. fxe -ox® sinbxdx (a>0).
0

“+ea

3811. fxz"e =+ cos2bxdx (n Jje pfirozené &islo).

3811.1 Dokaite, zellm\/_f maxt? gy Jj {@a>0,6>0).
a

X tem

3812, Pomocf integralu 1 («)= f e '“"‘wdx (ee20) vypodtéte Dirichletiv integrdl
x
0

oo

D) =f'sin[5xdx.
/X
3812.1 Jaky pfiblizny tvar md graf integrdlsinu y =Six, kde Six =

Pomoci hodnot Dirichletova a Frullaniova integralu vypoctéte hodnoty nasledu-
Jjicich integrali:

s e
3813. f“"—‘fos—ﬁxdx (a>0) 3814. fsmaxsmﬁxd (|a| 1B1).
o2
0 0
3815. fsmncxcosﬂxdxi | 3816, J‘sm x
0 * 0
+00 . 9 + o
3817. f[ 5‘"“”) dx. 3818, f[sm‘”]
ot ¥ 0
+00 .4
3819. fsm X dx. 3820. fsm ax —sinPx ) (@B+0).
x2 X
0 0
T sin (x %) T ke Sing@x sinPx ,
3821, | /= Zdx. 3822, le ,"——T——dx (=0, a>0, >0).
x x
0 0

§ 3. DERIVACE A INTEGROVANI NEVLASTNICH INTEGRALU ZAVISLYCH NA PARAMETRLU

+co

§23. Najdéte mespojity Dirichletdv fakior D(x)=2- f sinlcoskxd—;’ pro rdzné
T

s 0
;}dnoty argumentu x . Sestrojte graf funkce y =D (x).
§24. Vypoctéte integraly:

+ o

it +msinax ) cosax
)v.p.f oy dx; b) v.p.f b dx.

= f e Yox Q)dy vypoctéte Laplaceiiv integrdl
D

+ oo

CcosoLx
f “dx.
1 +x?

U}

' 3825 Pomoci rovnosti
i 1+x

xsinax
dx

5826 Vypoététe integral [
PR 1+x?
s .

* Vypottgte nasledujic integraly:

; T an? #

- 3827. f 0 X s, 3828. f COSEX .
s ;1 +x? (L +x?)?
;829 f cosox
ax?+2bx +¢

dx (@>0,ac-b2>0).

+ea

3830. Pomoci vztaln 1.2 f e ™ Edy {x > 0) vypoltéte Fresnelovy integrdly
Ve my ' '

+ o2 + o0 + 0o o

fsin(xz)dx=lf Sinxdx, fcos(x2)dx=lf COSX 1x.
L T L

0 0 VX o VX

:F 'Vypoététe hodnoty nzisledujicfch integrali:

+o

3832. fsinx%os?axdx.

—oa

..... 3831 fsm ax?+2bx+c)dx (a=0).

320
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3834. Dokaite nisledujici vztahy

cosax sinax T
1) f 2dx—-——smaa 2) f dx=-—_cosan,
a®-x 2a s @ -x2

kde a#0 a integrily jsou definovany ve smyslu hlavni hodnoty.

+

3835. Najdéte Laplaceovu transformaci F(p) = f e Pf(t)dt (p>0) funkce f(7), je-li;

a) f{t)=t™ (n je pfirozené &slo); b) f(t) = \/- fty=e™; d) f(t)=te ™,
&) fl)=cost; B fO=2"2"; & f =sina,/z‘.
3836. DokaZte vztah (Lipschitziv integrdl) fe -al pbt)de = (a>0),
T3
x 0 a“+b

kde [, (x) 1 f cos(xsing)d ¢ je Besselova funkce indexu 0 (viz tiloha 3726).
T
0

3837. Najdéte Weierstrassovu transformaci F(x) = —— f e =" f(y)dy ndsledujicich

funkci:
a) f6)=1; b) f0)=y* © fo)=e>>; d) f(y)=cosay.
2 d"” 2

3838. Hermiteovy polynomy deﬁnu_jeme vztahem H (x)=(-1)"¢”" o fe™)
‘ . i

+ 00

(n=0,1,2,...). Dokaite, Ze fH (x)H (x)e - dx—{o pro m =,

2"nlyn pro m =n.
3839. Vypoctéte hodnotu mtegralu

+ a0

N
, uf 3 g (0,>0,0,>0),

Pl) = 21’1:0102

kterd ma velky v§znam v teorii pravdépodobnosti.
3840. Necht funkce f(x) je spojitd a absolutné integrovatelnd na intervalu

(-=, +). Dokazte, Ze integral
-7
u(x,t)= ff(&)e 4a? IdE

1 &%u

Je feSenim rovnice vedeni tepla %? =S potatetni podminkou limu(x, £} =f(x).
[4] a 0

3843f x -x2dx.

§ 4. EULEROVY INTEGRALY

| §4. Eulerovy integ;élx

K 1. FUNKCE GAMA. Pro x>0 definujeme I'(x)= ft"'lg ~'dt. Zakladni vlastnost funkce gama je

+oa

vyjédFena rekurentnim vatahem T(x +1)=xT'(x). °

2?1

: Je-li = pfirozené ¢islo, pak '(n}=(n - 1}!; P[n +%] =1—3-——(Mﬁ

2. VZOREC PRO KOMPLEMENT. Pro 0 <x <1 plati vetah T'(x)T'(1 -x) =— Ll
51

1

8. FUNKCE BETA. Pro x>0 a y>0 definujeme B(x,y) = ft" L1 -ep-tde.

T pak B(x,y)=TELO)

Dl+y) -

- 3841. DokaZte, Ze funkce gama I'(x) je na intervalu x>0 spojitd a mi spojité
. derivace viech F4di.

3842. Dokaite, Ze funkce beta B(x,y) je spojitd na mnoZiné x>0, y>0 a m4 na

. této mnoZiné spojité derivace viech fadi.

~Pomocf Eulerovych integral& vypoctéte nésledujici integraly:
: 1

3844, fxg\/az—x2dx (a>0)._
> ,

+o 4 +oo

3845, f vx dx. 3846. f dx
- ¢ (1+x)? ! 1+x°
___ . % de /2
3847, f . 3848. f sin®x cos*xdx .
RET 1-1-;)(;4

(1]
: 1
3849, | 9% (n>1).

n

o y1-x"

+00

3850 f 22 ' dx (n Je pfirozené &islo).
0




INTEGRALY ZAVISLE NA PARAMETRU

Urcete, pro které hodnoty parametri nisledujici integraly konverguy a pomocy
Eulerovych mtegraiu vypoctéte jejich hodnotu:

+ o

m-1
3852.[ X dx.
| (14"

b

x-a)" (b -x)"

3851, f * dx (n>0).
1+x"

3853. f—-’f—d— @>0,6>0,n>0). 3854, dx (0<a<b,c>0).
0
1

(@a+bx™P ' ()R
dx w2
3855, f - (m>0). 3856. f sin™xcos"xdx.
o fiI-x™ 0
w2 o < n-1
3857. [ ig"xdx. 3858. J‘i’-l—de O < [k] <1).
o (1 +kcosx)
3859, f e *"dx (n>0). 3860. f x™e " dx.
0 0
. _
]_ 2 + o
3861. f[ln—] dx. 3862. foe’“"lnxdx (a>0).
0 X 1]
a1 ST
3863. f x nx | 3864. f LA
1+x 1+x
0
+eo0 +ed 2
3864.1 f xlnx 3864.2 f In’% i
1+x o 1+x

AL 0<p<l).

NAvoD: Tento integril lze chdpat jako lim[B(p, ) - B(1 -p.£)].
€0

+ e

3867. f Sinhex o (0<a<B).

sinhBx
0

[
3868. flnI‘(x)dx.
0

§ 4. EULEROQVY INTEGRALY

1
3870. flnI‘(x) sinwxdx.

[} R

" DokaZte nasledujici rovnosti:
1 1

-:3872]‘ dx fxgdx T
\/l -x*t ‘/l -x 4

4o

7 .3875 hmf Fdx=1,

1

"

UZitim rovnosti
: X

I

“+ 00

- 3876. fcos‘”‘d ©<m<1).

Y X

—3878. Dokaite Eulerovy vzorce:

+00

0

+ o

. b) ft""e '“m“sin(usina)dt=%Sinax (A>0,x>0, —g<a<£

0

-1 f t™ 'e ¥ dt (x> 0) vypoltéte nasledujici integraly:
Tm) 4

+ 00

3877. f Sm‘”‘d 0<m<2).

0 x™

a) ft""e 'A‘m"cos(ltsina)dt=-P1(f—)coso:‘.x;

2

... 3879. Vypodtéte délku kiivky r " =a "cosng (a >0, n je pfirozené &islo).

~ 3880. Vypoctéte plochu, kterd je vymezena kiivkou |x|*+|y|"=a™ (n>0,a>0).
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§ 5. Integralni Fourieriiv rozvoj

1. INTEGRALNI FOURIERUV ROZVO] FUNKCE. Jestlife jsou splnény ndsledujici predpok!ady
1) funkce f(x) je definovina na celé ose -« <x < +w; 2) na ka’dém omezeném intervalu je po
¢astech spojitd spolu se svou derivaci f(x) a 3)je absolutné integrovatelnd na intervalu (-, +e)
pak ji ve viech jejich bodech spojitosti lze vyjadFit ve formé integrdlniho Fourierouva rozvoje

+m

f(x)=f[a(}\)coslx+b(l)sinlx]dl, (1)
0

kde a(l)=%ff(5)cosl£d£ a b(A):%ff(E)sinxgdz.

Pro sudou funkci f(x) ma rovnost (1) tvar

—om

flx)= fa(l)coslxdl, 2
kde a(A) =% { FE)cosAEAE. ’
Analogicky pro lichou funkci f(x}: .

f6)= [ b(Msindxda, ' {3)

[

kde b(l)=~§-ff(5)sinl£d£.
0

V bodech nespojitosi funkce f(x) musi byt levd &4st rovnosti (1) nahrazena vyrazem
% [limf(t) +timf@)|.

(A% 4 frx

E

2. INTEGRALNI FOURTER{)V ROZVO] FUNKCE NA INTERVALU (0, +=). Funkei f(x}, kteri je defino-
vand a absolutné integrovatelnd na intervalu (0, +=) a spolu s derivaci f*{x) po &stech spojita
na kafdém omezeném intervalu (a,b)<(0, +), lze rozvinout na daném intervalu jak vztahem (2)
(sudé prodiouient funkce), tak vztahem (3) (liche prodlouseni funkce).

Najdéte integralni Fourierliv rozvoj nisledujicich funkcf:

_J1lpro|x| <1,
3881. flx) _{ 0 pro |x|>1.

_Jsgnx pro |x| <1,
3882. f(x)_{() ~pro |x|>1

3883. f(x)=sgn(x -a)-sgn(x-b) (b>a).

_ ]
3884, fix) = h[l » ] pro |x| <a,
0 pro |x| >a.

__3889.

- 3890.

| 3891
| 3892,
;Lssss.
i 3894,

~. 3895,

__ 885. f(x) =

3886. fx)=

§ 5. INTEGRALNT FOURIERUY ROZVOJ

@>0).
[4) +x2
X

(a>0)

+x

sinx pro |x| <™,
0 pro|x|>m.

a?
T
cosx pro |x| S5
- fiw)= :
pro |x| >-§_T

A 2nn
sinwt pro [¢<—=,
fit) = @  (n je piirozené ¢islo).

pro |t >2mn
w

fly=e *Fl (a>0).
fx)=e “lcosPx (x> 0).
fxy=e *Flsinpx (x> 0).
flx)=e =

flx) —xe ™t

Najdé€te integralni Fourieriiv rozvoj funkce f(x)=e ™ (0 <x < +«) pomocf

..+ Jejfho a) sudého prodlouZeni; b) lichého prodlouzeni.

Najdete Fourierovu tranformaci F(x) = ....._1 i f fitye mitx gy -

+00

hrn ff(t Je THE gt

funkce [, jeli:

7 3896. fle)=e ¥ (a>0).
_.“;3397. flx)=xe *F (¢ >0).
. 3898, flx)=e =72

3899, flx)=¢ 2 eosax.

- 3900. Najdél;e funkce @(x) a ¥x), je-li:

+ 00

Ta) f @ (y)cosxydy = 1 1
o 0

+X

> b) fﬂ!(y)sinxydy=e"‘(x>0).
0

‘nl--i-oo




KAPITOLA VIl

Vicerozmérné a kiivkové integraly
$ 1. Dvojné integrily

1. PRIMY VYPOCET DVOJNEHO INTEGRALU. Duginym integrdlem spojité funkce f(x,7) pres
omezenou a uzavienou mnodinu Q se nazfvi &slo
fff(x,y)dxdy =  Hm ):Ef(xl,yJ)Ax Ay]
max |4x,| - i

max%AJJl 0
kde Ax =x,

A 2 ij =%;.1 ~; a soulet se provadi pfes viechna i a j, pro kterd (xi,yj)EQ.je-li
mnoZina (I zadina pomoci nerovnosti a<x b, y (x)<y <¥,(x), kde p, (x} a y,(x) jsou spojié

funkce na uzavieném intervalu [a,b], pak odpovidajici dvojny integral vypodteme podie vztahy

b i)
fff(x,y)dxdy fdx ff(x 7)dy.
] a5

2. ZAMENA PROMENNYCH V DVOJNEM INTEGRALU. Predstavuji-li spojité diferencovatelné funkee
x =x(u,v), ¥ =9 (,v) vzdjemné jednoznaéné zobrazen{ omezené a uzaviené mnoiny Q' vroviné uy

D(x,y)
(

na mnofinu £ v roviné xy a m4-li Jakobidn konstantni znaménko na mno#iné (& aZna

mnoZinu miry nula, pak plat vztah

J [y~ [ [fi .y D)

D(u,v)

Specidlné v piipadé prechodu k polarmm soufadnicim 7 a ¢ pomod vetahl x=rcosg
a y =rsing dostaneme

dudv.

fff(x,y)dxdynfff(rcoscp,rsimp)rdrd(p.
o o

3901. Vypoctéte integral f f xydxdy jako limitu integralniho soudtu tak, Ze rozlo-

Dsxxsgl
Osy<l

Zite oblast integrace na ctverce pomoci piimek x =i/n, y=j/n, (1,j=1,2,..,n-1)
a vyberete hodnoty integrované funkce z pravych hornich rohd téchto &verci.
3902. Sestavte dolni a horni integrilni soucet § .2 En pro funkci f(x,y)=x2+y .
na mnoZné l<x<2,l<y<3 pomoci rozkladu této mnoZiny na obdélniky
fimkami . .
P x=1+i,y=l+zl (¢,=0,1,..,n).
7 n

Cemu se rovnaji limity téchto soutli pro n—~o?

-

- grované funkce v t&ch vrcholech ¢tverai, které jsou nejvice vzddleny od poédtku
- soustavy soufadnic. Porovnejte takto ziskanou hodnotu s pfesnou hodnotou

. pfimkami x =0, y=0 a x +y=1, tak, Ze mnoZinu § rozdélite pfimkami x =const,

_ grované funkce v te21st1’ch téchto trojuhelniki.

§ 1. DVOUNE INTEGRALY

3903. Vypoctéte priblizné integril

Jl

x* +y <25
tak, Ze aproximujete oblast integrace soustavou vepsanych {tverct, jejichz vrcholy
A;; se nachézeji v bodech s celodiselnymi soufadnicemi, a vyberete hodnoty inte-

dxdy
24 +x2 +y

integrélu.
3904. Vypoctéte piiblizné integril f f yx +ydS, kde § je trojihelnik vymezeny

y=const, x+y=const na ¢tyfi shodné trojiihelniky a pouZijete hodnoty inte-

ot

3905.Mnozina $ = {x* +y? < 1} je rozdélena na koneény pocet meritelny’ch Casti AS,
(¢=1,2,...,n) o priméru men¥im neZ 3. Pro jakou hodnotu & bude splnéna ne-
rovnost

[ [sine+y)dS - ¥ sin(x,+»)AS, /< 0,001,
S i=1

kde (x,y)€AS,?

Vypottéte nésledujici integraly:
11

3906. f dx f (x +y)dy
0 0

1 x

3907. fdxfnydy.

x2

2 a
3908. fd(pfrgsingq)d'r.
4 B

3909. Dokaite rovnost f f X(x)Y(y)dxdy = f X (x)dx f Y(3)dy, je-li R obdélnik

popsany nerovnostmi a < x <A b<y<Ba funkce X (x) a Y(y) jsou spojité na odpo-
vidajicich uzavreﬂych intervalech.
B

3910. Vypoctéte fdxff(x,y)dy,je-li fle, ) =F:;(x,y).
a b




A P - :

VICEROZMERNE A KRIVKOVE INTEGRALY

3911. Necht f{x) je spojitd funkce na intervalu a <x <b. Doka’te, ¥e
b 2 b

[fl)dx

<(b~a) f f*(x)dx, p¥i¢emz rovnost nastane jen tehdy, je-li funkce f(x)

konstantni.
] b

NAvVOD: Uvalujte integril fdx f [ftx) -f(yN2dy.

3912. Jaké znaménko maji nasledujici integraly:

a) ff In(x?+y%)dxdy; b) ff 3\/1—x2-y2dxdy;

=1+ Iyls1

f f arcsin (x + y)dxdy ?

O<xx1
-lsy<l-x-

3913. Vypoltéte stfedni hodnotu funkee f(x,y) =sin®x sin’y na étverci popsaném
nerovnostmi Osxsm, O<y<m.
3914. Pomocf véty o stfedni hodnot¢ odhadnéte hodnotu integrélu

dxdy
100 + cos?x +cos?y

x2+y254

<t +Iyt<10
3915. Najdéte stfedni hodnotu druhé mocniny vzdilenosti bodu kruhu
(x -a)’ +(y-b’<R? od potitku soustavy soufadnic.

V ulohdch 3916-3922 urdete meze integrace pro vypocet f f fx,y}dxdy v obou
moznych pofadich proménnych: Q

3916. Q je trojihelnik s vrcholy (0,0), (1,0), (1,1).

3917. Q je trojihelnik s vrcholy (0,0}, (2,1), (-2,1).

3918. Q je lichob&Znik s vrcholy (0,0), (1,0), (1,2), (0,1).

3919. Q je kruh zadany vztahem x2+y2< 1.

3920. Q je kruh zadany vztahem x* +y2<y.

3921. Q je parabolickd tise¢ vymezend kiivkami y=x% a y=1.

3922. Q je mezikruzi dané vztahem 1<x2+y%<4.

3923. Dokate Dirichletiio vitah

1 x a a _
[dx [fy)dy= [dy [fex,5)dx @>0).
0 ([ 0 3

{=3939. Q je mezikruif ¢ *<x +y2552.

§ 1. DVOJUNE INTEGRALY

Zméiite pofadi integrace v nasledujicich integrélech
2 2x 2-x

3924. fdx ff(x,y)dy 3925. fdx f Sflx, y)d
o 0 6 He-1
Syl x* ' 1-x2
_ _:_ ?!;-926. fdxff(x,y)dy. 3927. fdx f Sflx, m)dy.
- s i
i 2 f2r-x? 2 Tax
- 3928. f dx f flx, y)dy. 3929. fdx f fee,v)dy @>0).
1 2-x 0 foura?
e lnx 27 sinx

"?930. fdxff(x,y)dy. 3931. fdxff(x,y)dy.
1 1] 0 4]

 Vypoctéte hodnoty ndsledujicich integrali:
3932. f f xy2dxdy, je-li mnoZina Q vymezena parabolou y?=2px a pfimkou

Q
ox=pl2 (p>0).

' 3933, f f dxdy {a>0), je-li mnoZina Q vymezena osami soufadnic a kratim
V2a-x

- kruhovym obloukem o stfedu v bodé (a,a) a poloméru a, ktery se dotyka os.
3934. f f |xy|dxdy, je-li Q kruh o poloméru a se stfedem v podtku soustavy
Q

. soufadnic.
- 3935. ff(x2 +y%)dxdy, je-li Q rovnob&inik o stranich y =x, y =x +a, y=a ay=3a

: a
‘ a>0.
. 3936. f f y2dxdy, je-li Q vymezena osou x a prvnim obloukem cykloidy

0
=a(t-sint), y=a(l -cost) (0st<2m).

Prejdéte v dvojném integrilu f f f(x,y)dxdy k poliarnim soufadnicim r a ¢
0

pomoci substituce x = rcoscp a y =rsing a urdete meze integrace, jestlize:

3937. Q je kruh x2+y%<qa? 3938. Q je kruh x2+y2<ax (a>0).
3940. Q je trojihelnfk O<x<1, O<y<l-x.
© 3941. Q je parabolickd tiseé -asxsa; xYasys<a.
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3942. V jakém piipadé budou po pfechodu k polarnim souradmcun meze
integrace konstantni?

Piejdéte k poldrnim soufadnicim r a¢ pomodi substituce x=rcos@ a y=7sing
a urlete meze integrace pro obé moind potfadi proménnych v nasledujicich
integrilech:

11 1 1-x?
3943. fdxff(x,y)dy. 3944, fdx f fix,y)dy

00 0 I-x

1 x2

3946. f dx f f(x,y)dy.
0 0

2 x/3 )

3945. fdx ff(\/xE +y9)dy.
0 x

3947. fff(x,y)dxdy, kde mnoZina Qje vymezena k¥ivkou (x?+y*)2=a%(x%-y?)
0

(x30).

Zaméiite pofadi integrace v nésledujicich integrilech za p¥edpokladu, Ze r a ¢
jsou polirni souiadnice:

/2 acosp

3948, qu; ff(cp,r)dr @>0). -
-n/2 0
2 e en2e

3949. f de f flo,ndr (a>0)
]

0
a ¢

3950. fd(pff((p,r)dr O<a<2m). .
0o o

Zamétite nisledujici dvojné integrily za jednoduché pfechodem k polirnim
soufadnicim:

3951. ff fix2+yDHdxdy.

x+_~ysl

3952, fff-,/x £y )dxdy,Q {|y| [x; |x|sl}

-3953 H f[ ]dxdy

I"‘y <X

]

|

'-J
~ 3957, fdxffxydy (0<a<b;0<a<pB),jeli u=x, v y/x

§ 1. DVOJNE INTEGRALY

i

Vypoctéte ndsledujici dvojné integrily pomoci pfechodu k poldrnim soufad-

nicim:
3954. ff yx2+yidxdy. ff sinyx 2 +y2dxdy.
n?gx? -y Toan?

2iy2cql

3955.

: '"32_"?7‘;3956. Ctverec S={a<x <a +h, b <y<b+h} (@a>0,b>0) se pomoci funkci u =y %/x,

=y/xy zobrazi na plochu S’. Najdéte pomér obsahu plochy S’ k obsahu ¢tverce

§. Cemu se rovn4 limita tohoto poméru pro h~0?

Zaved’ te misto x a y nové proménné u a v a urfete meze integrace v nasledu-

ifcich dvojnych integrilech:
b Px

a ax

2 2-x
3958 fdx ffxydy,Jehu =x+y, U=X-Yy.

. -3959. fff(x,y)dxdy, kde mnoZina Q je vymezena kfivkami x +y=y/a, x=0,
: 0

: y=0 (a>0), je-li x =ucosv, y=usin*v.

3960 Ukaite, e zdména proménnych x+y=E, y= E'r] pievede troluhelmk
0<x<1, 0<y<1-x najednotkovy &verec 0<E<1, O<n<l1.
' 3961. Phi Jaké ziméné& proménnych se kiivocary ctyitihelnik, ktery je vymezeny

- kiivkami xy=1, xy=2, x-y+1=0, x-y~1=0 (x>0,5>0), transformuje na
- obdélnik, jehoZ strany jsou rovnobéiné s osami soutadnic?

.- Prevedte néasledujici dvojné integrily na jednorozmérné uZzitim vhodné zimény
-~ promé&nnych:
~ 3962.

f flx+y)dxdy.

|*[+I3]=1

3963. ff flax+by+c)dxdy (@®+b%+0).

x+ysl

o 3964 f f flxy)dxdy, kde mnoina Q ] je vymezena kiivkami

xy—l, xy=2,y=x,y=4x (x>0,y>0).
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Vypodtéte nasledujici dvojné integrily:
3965. ff x +y)dxdy, kde mnoZina Q je vymezena kiivkou x* +y? =x +y.

3966. “‘ (|x] + |y|)dxdy

=} + 5] s 1

' x? 42
3967. ff 1- y =—dxdy, kde Q je vnitiek ehpsy — 5 2 i
A a® b? b

3968. ff (x*+yHdxdy.

x4+y*sl
3969. f f (x +y)dxdy, kde mnoZina Q je vyniezena kfivkami
n .
y2=2x, x+y=4, x+y=12.
3970. ffxydxdy, kde mnozina Q je vymezena kiivkami xy=1, x +y=5/2.

3971. ff |c05(x+y)|dxdy

Osxsm .
Osy<x

- [[k

x+j sl

3973. ff V] y‘ -x? dxdy

[xf<1
O<ys2

LR ARPE -y dxdy

Vypodtéte ndsledujfct iﬁtéérél)f néépojit)?cﬁ funkef:
3974. ‘ff;.,s_gn(x?fy_2+2)dxdy. 3975, ” [x +y]dxdy..

x%ey¥cq Osx<?2
O<ys2
3976. f f Jy -x21dxdy.
xZsysd

3977. Doka¥te, Ze f f
x? +j2sa

jedno z nich je liché.

x"y"dxdy=0, jsou-li m a n pfirozend &sla a alespori
2 ' ‘ ) '

1~3980. Vypoltéte F/(1), je-li F(t) = f f |

§ 2. VYPOCET OBSAHU ROVINNYCH PLOCH

3978 Najdéte llm— ff flx,y)dxdy, kde f(x,y) je spoyta funkce.

QOanqsg

3979, Vypotete F'(t), je-li F(t)= ff e”"fzdxdy.

Osxxt
Oxygi

yxZ+yidxdy.
-0 e(3-1)2<1

" 3981, Vypottéte F/(t), je-li F(t) (.y)dxdy (> 0).
] ydxdy

: ,5 xPry?as?
- 3982. Dokazte, Ze jestlize je funkce f(x,y) spojitd, pak funkce
e x  x+3-€
u@y) =5 [dE [ f6&

. 0 E-x+y
2 2
= splituje rovnici 2E—-‘?u——f (x,9).

dx? 0y?

3983. Necht vrstevnice funkce f{x,y) jsou prosté uzaviené kiivky a mnoZina
- 8(v,,v,) je vymezena kfivkami f(x,y)=v, a f x,y) =v,. DokaZte, e

f flx,n)dxdy = f vF(v)dv

Su,v9) ¥
kde F {v) Je obsah plochy vymezené kiivkami f(x,y)} = v, a flx,y)= v.
: NAvOD: Integrovancu mnoZinu rozdélte na &sti, které jsou ohramcene nekonedné blizkymi vrstev-
°" nicemi funkee f(x,y).

T §2. Vypocet obsahii rovinnych ploch

“ :l Obsah plochy 8, kterd je Casti roviny xy, je ddn vzorcem § = f f dxdy.
: s

Vypoctéte obsahy rovinnych ploch vymezenych nasledujicimi kiivkami:
3984. xy=a?, x +y =-2—a (@>0).

- 8985 52=2px+p?, y2=-2gx+g? (p>0, g>0).

17 3986, (x-3)2+x2=a? (@>0)..
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Pomoci pfechodu k polirnim soufadnicim vypoctéte obsahy rovmnych ploch
vymezenych ndsledujicimi kiivkami: :

3987. (x +3;2)2 2a%(x? -9%); x? +y%2a2,

3988. (x> +y*)2=x+y% %20, 520,

3989, (x2+y2)2 =a(x3—3xy2) (@>0).

3990. (x2+y2)2=8c12xy; (x—a)2+('y—a,)2sa2 (@>0).

Zavedte zobecngné polarni soufadnice 7 a ¢ podle vzorci x=arcos” @,
y=brsin“g (r=0), kde a, # a & jsou vhodné zvolené konstanty '
o Dx.y)
D, )
nasledujicimi kfivkami (jejich parametry jsou kladné):

=aabrcos® ' @sin® ! ¢, avypodtéte obsahy rovinnych ploch vymezenych

3991, X+ -%.,)

3992. X2 -

3993, (f
a

Pomoci vhodné zdmény proménnych vypoctéte obsahy ndsledujicich rovinngch
ploch, které jsou vymezeny danymi k¥ivkami:

3996. x+y=a, x+y=b, y=ax, y=Px (0 <a<b;, 0<a<p).

3997. xy=a?, xy=2a?, y=x, y=2x (x>0; y>0).

3998. y2=2px, y¥=2gx, x2=2ry, x2=25y (0 <p<gq; 0<r<s),

3998.1 x2=a,y, x2 =by, x3=cy2, ch:dy2 (O<a<b, 0<c<d).

3998.2 y=ax?, y=bx?, y=cx?, y=dx? (0<p<gq; 0<a<b; 0<c<d).

|2 (20029 23 4xl)
3999. [Z+ [2-1, |24 1220 X0 4X.3 (9<q, 0<b).
I R e T

§ 3. VYPOCET OBJEML) TELES

2/3 2/3 2/3 23
.7 i + 2 =1, i + l =4’ i:i’ Si 1(x>0 y>0)
a b a b a b a b

Pyt 1 o245 4, 5
5 =1, kde A nabyva nasledujicich hodnot: —3—6 , gc , EC '3

62

- 4001. Vypoltéte obsah vnittku elipsy (a,x+by+c )*+(a,x +byy+c,)? =1, kde
Vfl.ﬁr.-allbz -0,261#0.

: L . 2 2
iE 4002.Vyp0(":téte obsah plochy vymezené elipsami 2 =2 (w=u,uy)
e . . cosh®u  sinh’u
hyperbolarm X 1-2-—62(;0=U ) (0<u, <uy; 0<v, <vy,; x>0,5>0).
cos’v  sin?v

'_‘NAVOD PoloZte x =ccoshucosv, y=¢sinhusinv.

2

4003.Vypoétete obsah fezu plochy x +9% +z2 ~xy -2z -yz=a® rovinoux +y +2=0 .

. ;004. Vypoltéte obsah fezu plochy 1.1,1, 0 rovinou z=1-2(x +y).
_ Xy z
R ooy

:f' § 3. Vypocdet objemi téles

Objem télesa s obecnym vdlcouym pldltém, kiery Jje vymezen shora plochou z =£{x,¥}2 0, zdola plochou
~§ 2=0 a z bokd pfimou vilcovou plochou, kter4 vymezuje v roving xy méfitelnou mnoZinu Q

(v1z obr. 14), se rovnd V= fff(x,y)dxdy

rY

S 1 1-x
++:4005. Urlete tvar télesa, jeho? objem se rovnd integrilu V= f dx f (x%+y2)dy.
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4006. Uréete tvary a rozméry téles, jejichZ objemy jsou diny nasledujxcmn dvojny-
mi integraly:

a) ” (x +y)dxdy; b) ” } - -—-dxdy, ) (x‘*’;yﬁ)dxdy-,
(ls;;;:ol LI =]+ Iylsl
d) ff yx2+y dxdy, e) ff Vxydxdy; f) ff sinmyx® +y2dxdy.
xleylcx lzx<2 ' x2eptsl
xsy<2x

Vypottéte objemy téles, kterd j Jsou vymezena nasleduycnml plochami:
4007. z=1+x+y, z=0, x+y 1, x=0, y=0.

4008. x+y+z=a, x2+y?=R%, x=0, y=0, 2=0 (a>R\/_)

4009. z=x2+y® yx,yle

4010. z =cosxcosy, =0, |x+y| < /2, {x -] <m/2.
4011.z=sing%,_z=0,y=x,y;=0,,x=1r. '

4012. z=xy, x+y+z =1, z2=0.

Pomoci ptechodu k polarnim soufadnicim vypoltéte objemy téles ohramcenych
plochaml .

4013. 2* =xy, x? +y 2=q?,

4014: z=x +y, (x2+y > 2xy,z 0 x>0, y>0)

4015. 2 =x 2 +y2, =9, z= 0

4016. x*+y2+z2=a% x?+y%2a|x| (@>0).

4017. x?+y2-az=0, (x?+y")?=a%(x*-y?), 2=0 (&> 0).

4018. z=¢ & ) 220, x? +y2=R2.

%’j, z=0,y.=xtg-a_',-y=lxtg|3 (@>0, c>0, 0se<P<2m).

x+y-xx+y

4019. z=ccos

4020. z=x2+y?, z=x +y.

Vypoctéte objemy téles, kterd jsou vymezena nésledujicimi plochami (s kladnymi

parametry):
2 .2 2 2 .2 2
a021, 24X WZ o XX I 50
a? b% ¢ a? b? ¢
x2 ‘yg 2?2 C g2 42

§ 4. VYPOCET OBSAHU PROSTOROVYCH PLOGH

e 2 9

: 4024.[-"—+3’—] 221, z=0.
2 c

E 4025.[

b

L) S AP

a+b] "‘;-1,-’6—0,)'—0,7.—0.
2

4027. 2" =xy, x+y=a,x+y=b (0 <a<b).

4028. z=x*+y%, xy=a?, xy=242, y=§, y=2x, z=0.

L 4029, z=xy, x"=y, x%=2y, y2=x, y2=9x, 2=0

. Ty
7 4030. Z-CSIH-a—E, 2=0, xy=a?, y=ax, y=Px (0<a<f;c>0).

4031 z=x %y

,2=0,x+y=1,x=0,y=0.
2 9
+

2/3 2/3
+£=13(£) +[2) =1,Z=0.
bs ¢ a b

4033 z= carctgl z=0, \/x +y —aarctg (y20).

 4033.1 2 =ye ", Xy

i

-
=
o[

o

=a®, xy=2a%, y=m, y=n, 2=0 (O<m<n).
:j:.;.~4034 il iy xs 0,y=0,2=0 (n>0).
s a™ h" c®

4035(£+i] +[§] =1, x=0,y=0,z=0 (n$0,m>0).

. PRIPAD EXPLICITNE ZADANE PLOCHY. Povrch hladké kfivocaré plochy z=z{x,y} se spodits

-'pod]e vzorce § = f f \J Bz

) dxdy, kde Q je prumct dané plochy do roviny xy.
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2. PRIPAD PLOCHY V TRIROZMERNEM PROSTORU ZADANE PARAMETRICKY. Je-li plocha zaddna
parametrickymi rovnicemi x=x(u,v), y=y(u,v), z=z(n,v}, kde (u,)eQ; Q je omezeny
a uzaviend mno¥ina a funkce x, ¥ a z jsou na ni spojité diferencovatelné, pak je obsah plochy

vyjédien vzorcem §= f f JEG -F2dudv,
a

ox 3y z dx\2 (ay)? [ 9z}? dx 9x 0Oy dy 0z oz
kde E = G| SEV 9T S}, pogxOx 02 0F 0% 07
( au] ( au] [ au] { av] : dv "\ 3v du dv Judv Ju dv

4036. Vypoltéte obsah &isti plochy az=xy uzaviené uvnité vélcové plochy
2
a .

xZey?=
4037. Vypoltéte povrch télesa, které je vymezeno plochami x?+z2=42
y2ez?=al.

4038. Vypoctéte obsah &4sti sféry x2+y2+22=a?, kterd je uvnitt vilcové plochy
2 .2

X 2 -1 (b<a).
a® bt
4039. Vypoctéte obsah &sti plochy z%=2xy vymezené rovinami x+y=1, x=0,
y=0. o
4040. Vypoltéte obsah &asti plochy x*+y?+22=a®, kterd se nachdzi vn¢ vilco-
vjch ploch x? +y% = ax (Vivianiho tloha).
4041. Vypoltéte obsah &sti plochy z=yx®+y? uzavfené uvnitf valcove plochy
x%+y2=2 :

¥y o=ax. .
4042. Vypoltéte obsah &sti plochy z=yx* -y* uzaviené uvnitf vilcové plochy
(F+y%)=a”®-y").
4043. Vypoctéte obsah ¢asti plochy z =-é-.(x 2
x+y==xl. S
4044. Vypoltéte obsah &isti plochy x? +y® = 2az uzaviené uvniti vilcové plochy
(x? +y%?=2a%y. |
4045. Vypoctéte obsah ¢&sti plochy x?+y?=4" vymezené rovinami x+z=0,
x=-2=0, (x>0,y>0).
4045.1 Vypoltéte obsah &asti plochy (x* +y %)

-5?) vymezené rovinami x -y =%1,

Y2 +2=1 vymezené rovinou z=0.

2
4045.2 Vypoctéte obsah ¢dst plochy{ s %} + E = 1 vymezené rovinami x =0,y =0
az=0. ¢ o 9
4045.3 Vypoctéte obsah &asti plochy —- y—b- =2z vymezené plochou -’-6—2— +2 =)

(z20). 4 a

4046. Vypoltéte povrch a objem télesa vymezeného plochami x%+y2%=

§ 5. POUZITi DVOJNYCH INTEGRALU V MECHANICE

. 4045.4 Vypoltéte obsah &sti plochy sinz =sinhx sinhy vymezené rovinami x = 1

ax=2 (yz20).

9

1
g »
x+y+z=2a (a>0).

L. 4047 Vypoltéte obsah ¢asti sféry vymezené dvéma polednl’ky a dvéma rovno-
- bézkami.

4048. Vypoctéte obsah &asti piimkové Sroubové plochy x =rcosg, y=rsing,
z=h@,kde O0<r<a, O<@<2m.

4049. Vypoctéte obsah &isti toru x=(b+acosy)cosgp, y=(b+acosy) sing,
z=asmy (0 <a<b) vymezenou dvéma poledniky ¢=¢,, ¢=¢, a dvéma rovno-

: bézkami Y =y, y=1,. Cemu je roven povrch celého toru?

= 4oso0. Vypoctéte velikost prostorového thlu @, pod kterym je pozorovin z po-

¢atku soustavy soufadnic obdélnik x=a >0, 0<y<b, 0<z<c. Odvodte piiblizny

vziah pro w, je-li a velké.

§ 5. Pouziti dvojnych integralii v mechanice -

1. TEZISTE. Jsou-li x, &%, soufadnice L5t rovinného obrazce 0, ktery leZivroviné xy aje-li p =0 (x,y)
Jeho hustota, pak plati nasledujici vztahy '

1 1
%= af f f pedxdy, Jfﬁif@'dxdy’ (1}

kde M= f f edxdy je hmotnost obrazce.

Je-lt obrazec homogenni, pak ve vztazxch {1) miZeme polozit p=1.

"2, MOMENT SETRVAGNOSTI, Momenty sctrva(‘fnosti 1, a ! rovinného obrazce Q, ktery leZi v rovi-

n& xy , vzhledem k osim x a y, se daji vyjadFit rovnostmi

1.=[[ey*dedy, 1= [ [ox’dedy, - o (2)
a a
kde: g =g{x,y) je hustota obrazce. Gdstfedivy moment setrvacnosti se vyjadiuje vzorcem
I,=[[exydedy. . (3)
a

'§ Dosazenimp =1 do vzorad (2) a (3) ziskdme geometrické momenty setrvainosti rovinného obrazce,

_' -4051. Vypoltéte hmotnost étvercové desticky o velikosti strany a, je-li hustota
wi- desticky v kazdém jejim bodé pifmo dmérnd vzdalenosti tohoto bodu od nej-

blizsiho vreholu a je rovna g, ve stiedu Ctverce.
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ot

Najdéte soufadnice €73 homogennich desti¢ek, které jsou vymezeny nisle-

dujfcimi kifivkami:
4053. \x +\fy=yfa, x =0, y=0.

4052. ay=x2, x+y=2a (@>0).
3
4054. x 2% +y¥ =2 (x>0,y>0). 4055. (f +%) =% (smycka).
A R A O .

4056. (x2+y2)2=2a2xy (x>0,y>0). 4057. r=a(l +cos®), ¢=0.

4058. x =a(t-sint), y=a(l -cos?) (0<t<2m), y=0.

oWt

4059. Najdéte soufadnice t&Zifté kruhové desticky x%+y%<a?, je-li jejf hustota
vbodé (x,y) pfimo imérna vzdilenosti od bodu (2,0).

ot

4060. Najdéte kiivku opisovanou t€Zitém plochy, ktera je vymezena kfivkami

y—,/?px,y O,:x =X.

Najdéte geometrické momenty setrvatnosti /_a 1 plochvzhledemk osim x a y,

které jsou vymezeny nisleduji fcimi kfivkami:

4061.3:%_1 b_2+% L,y=0 (6,>0, b, >0, h>0)
4062. (x -a)* + (y -a)*
4063. r =a (1 +cos ). _
4064. x* +yt=a?(x2+y?).
4065. xy=a2

=a?, x=0,y=0 (O<x<a).

,xy=2a%, x=2y, 2x=y (x>0, y>0).

4066. Najdéte poldrni moment [ = f f (x2 +y*)dxdy plochy §, kterd je vymezena
kitvkou (x +y2) 42(x -y 3. 5

4066.1 Vypoctéte odstredlvy moment setwacnostl I homogenni plochy vyme-
(@>0).

4067. Dokaite vzorec I =1, . Sd?, kde I al l jsou momenty setrvacnosti obrazce

zené kiivkami ay =x?, ax =y?
vzhledem ke dvéma rovnob&Znym osdm ! a /, takovym, Ze [, prochizi &%i$tém
tohoto obrazce a d je jejich vzdjemn4 vzdilenost.

4068. Dokaite, Z¢ moment setrvaénosti rovinné plochy § vzhledem k piimce,
ktera pr‘och:izf Jejim t€Zi¥tém (0,0) a svird Ghel « s osou x, je roven
I=I cos?a -217 J’s.mmcosvz +I sin’e, kde/ al JsoumomentysetwaénostlplochyS
vzhledem kosim x ay a I = f f pxydxdy je jejf odstfedivy moment.

§ 6. TROJNE INTEGRALY .

4069. Vypoc(téte moment setrva¢nosti rovnostranného trojihelnika o strané délky 4
vzhledem k piimce, kterd prochézi jeho téZi3t8m a svird thel & s jeho vyskou.
4070. Vypoctéte dakovou silu vody na bocni sténu x20 vilcového sudu
x2+y2=a?% 2=0, je-li vj3ka hladiny vody rovna z =h. :

4071. Koule o poloméru ¢ je ponofena do tekutiny o konstantni hustoté & do
hloubky & (méfeno od stfedu koule), kde % >a. Vypotiéte tlakovou silu tekutiny
--* na vrchni a spodnf &sti povrchu koule.

;. 4072. Rotadni vilec o poloméru zékladny @ a viice b je cely ponofen do tekutiny
. ohustot€ & tak, Ze jeho t€Zi8t¢ je v hloubce 2 pod hladinou a osa vilce svird ihel o
se svislym smérem. Vypoctete tlakovou silu tekutiny na spodm a vrchni podstavu
vilce.

4073. Urlete piitaZlivou sflu homogenniho vélce x2+y%<a?, 0<z<h, kterou
- plisobi na hmotny bod (0, 0,5), je-li hmotnost vélce rovna. M- a hmotnost bodu
W'i'ovna m. _

: 2 2

4074 Rozdéleni tlaku télesa na plochu pritlaku % +% <1 _](:‘. dino vzorcem

a
2 : 2

XD
“’0[‘ P

. 4075. Louka, kterd m4 tvar obdéInika o stransch a a b, je rovnomérné pokryta

. Urdete sl;f'edni tiak télesa na tuto plochu.

pokosenou travou o hustoté p kg/m 2 .’Jakz’l je minimaln{ velikost price potiebna
¢ pro svoz vieho sena do sttedu louky, jestliZe price na piepravu nikladu P kg na
"~ vzdélenost 7 je dana vztahem kPr (0<k<1)? |

§ 6. Trojné integraly

1. PRIMY VYPOCET TROJNEHO INTEGRALU. Necht je funkce f{x,3,z) spojitd a mnoZina V je
omezend a definovani nerovnostmi: x,<x Sxy, jl](x)'sy sryE(x)—,' 23 s252,(x,3), kde 7, {x),
¥y (%}, 2, (x,%), z,(x,%) jsou spojité funkce, pak trojny integral funkee f{x,y,z) pfes mnoZinuV lze

spocitat podle vzorce
5 R n

ffff(x,y,z)dxdydz fdx f dy f‘f(x,yr,z)dz.
X R 4y
V nékterych pi‘lpadech Jje vhodné poufit vzorec

ffff(x,y,z)dxdydz fdxfff(x,y,z)dydz,

x, S{x)

kde §(x) je fez mnoZiny V rovinou x = const.

343
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2. ZAMENA PROMENNYCH V TROJNEM INTEGRALU, Je-li omezend a uzaviend podmno¥ing

prostoru #vw vzdjemné jednoznacné zobrazena na mnoZinu ¥ prostoru xyz pomod SPOjité di-

ferencovatelnych funkel x=x(u,v,w), y=y(u,v,2), z=2(u,v,w), jejichZ Jakobian Dixy.z)

na V' téméf viude (ve smyslu miry) konstantni znaménko, pak platf vzorec 0.v,2)
ffff(x,y,z)dxdydz ffff(x(u v w) y{w,v,2),z (4, v,w)) Dix..2) dudvdw.
Du,v,w) .
Specidlné tak ziskame: : :
1) eylindrickou soustavu soutadnic ¢, v, b, kde x =rcosg, y=rsing, z=ha M
D, ¢, fr)
2) sférickou soustavu soumdnw Q, 1]:, r,kde x= rcosq)cosw y rsm(pcosw z= rsmlp
Dix,y,z} _ :
a —— 2% =205y,
D(r, 9, %)

Vypoctéte ndsledujici. trojné integraly: :
4076. fffxygzsdxdydz, kde mnoZina V je vymezena plochami z=xy, y=x, x =1,

z=0.
dxdydz

J‘ff(l +x+y+z)3,

y=0, z=0. . :
4078. fffxyzdxdydz kde mnoZina V_]e vymezena plochaml xZ+yPezi=],

kde mnotina V je vymezena plochami x +y+z=1, x =0,

x=0,y=0,z=0. CeLn
%2 w2 52 o ‘ '
4079. L S dxdydz kde mnoZina V je vymezena plochou
/ a? b2 ¢*
2 .2 .2
LI 2
a® b? ¢?

4080. f f f yx? +y dxdydz kde mnoZina V j je vymezena plocharm xlrp?=z?,

z=1.

Najdéte meze integrace pfi rlizném pofadiintegrovani v nasledujicich vyrazech:

1 1-x =x+y 1 Jl—-x—2 1
4081. fdxfdy ff(x,y,z)dz. 4082, fdx- f dy f fley,2)dz
V] Y Y] ) -1 J1-x2 x2+y2

x2+j2

4083. ldx':{dy {f(x,y,z)dz.

- mnotina V je vymezena plochami z=x%+y?,

§ 6. TROJNE INTEGRALY

:Nahrad'te nasledujici trojné integraly jednorozmérn}’rmi
' £ I x4y

4085. fdxfd_'y ff(z

b

' Vypottéte nasledujici integrily pomoci piechodu ke sférickym soufadnicim:
. 4087. fff\/x2 +y*+2%dxdydz, kde mnoina V je vymezena plochou

x2eyZezl=z,

1 1-x2  f2-x24?

@88. fdx f dy f z%dz.
: 0

¢ xz*yz

4089. Prevedte do sférickych soufadnic integral f f f fiyx? +y2+zdxdydz, kde
4
x=y,x=1,y=0, z=0.

4090. Vypoététe nésledujfcf integral pomoci vhodné zémény proménn)?ch:

b2 62

P
]‘ffJ 1——— —dxdydz kde V je vnitiek elipsoidu x_2_+)’ ANy

4091. Vypoctéte nasledujici 1ntegral pomoci prechodu k cylindrickymi souiad-
nicim:

‘ fff(x +3%)dxdydz, kde mnozina V je vymezena plocham1 x +y2—2z z2=2.

4092. Vypoctéte integral f f f 2dxdydz kde mnoZina V je vymezena plocham1

z= by y>0 (0<a<b), z=ax, z=Px (0<a<B) z=h (h>0).

Z =ay

4093. Vypoctéte integral f f f xyzdxdydz, kde mnoZina V se naléza v oktantu
4 2,02 2, 2

x>0, y>0, 2> 0 aje vymezena plochami 2= , Xy =a®, xy=b2,

y=oax, y=Ppx (O<a<b, 0<a<fB; 0<m<n).
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4094. Vypoltéte stfedni hodnotu funkce f(x,y,z)=x2+y?+z2

x2+ytazlcx sy +z. R

F]

na mnoiing

4095. Vypoctéte stfedni hodnotu funkce f(x,y,2)=¢ a® 5% c* pa mnoZing

-’fi + y_2 + ﬁ <1.
a? b2 62
4096. Pomoci véty o stfedni hodnoté odhadnéte integril
- f” dxdydz  kde a2+b2+c?>R2,
x2+32+225R2J(x —0)2 * (y _b)2 +(Z _6)2 o
4097. Dokaite, Ze jestlife je funkce f (x5,

ffff(x,y,z)dxdydz =0 prokazdou mnoZinu wc ¥V, pak f{x,y,z)=0 pro (x,y,z) V.

4098. Vypoltéte F'(t), je-li:
a) F(t)= f f f fx?+y*+z%dxdydz, kde f je diferencovatelns funkce;

x? +3| +2%¢e?

b) F(t)= f f f flxyz)dxdydz, kde f je diferencovatelni funkce.

Dexsi
O<ys<t
Oszst

4099. Vypottéte f f f :

.," 49742t sl

4100. Vypoctete Dirichlettiv mtegml fff ’ ‘*‘z ’(1 -x-y-z)° dxdydz

x"y*2dxdydz, kde m,n a p jsou pfirdzené ¢isla.

®>0,4>0,r>0 s>0) kde mno¥ina V je vymezena rovinami x+y+z=1, x=0,

¥=0, z=0, pomoci substituce x +y+z =§, y +z=En, z=En{.

§ 7. Vypocet ob;emu pomoci tro]nych mtegalu
§ Objem mnoZiny V' lze vyjadfit vzorcem V= f f f dxdyd:z,
Vypoctéte objemy téles, kterd jsou vymezena nasledujicimi plochami:

4101. z=x?+y2, 2=2x2+2y%, y=x, y=x?,
4102, z =x+y, z=xy,x+y=1, x =0, y=0.

4103. x*+z%=a%, x+y=%a, x~y=*a.

z) spojitd na mnoZiné V a platf

§ 7. VYPOCET CBJEMU POMOCT TROJNYCH INTEGRALD

104. az =x%+y2,2=\/x%+y% (a>0).

f-4105. az=a2—x2—y z=a-x-%, x=0,y5=0, z=0 (>0).

:4106.z=6—x2-y z=yx2+yl,

Vypoctéte objemy téles vymezenych nasledujicimi plochami pomoci pfechodu ke
" sférickym nebo vilcovym soufadnicim:

4107 x?+y2+2%=2qz, x? 49222

4108. (x2+y2+29% =02 (x2+y2-22).

- 4109, (x2+y%+2%° =3xyz.

- 4110, xP4yPez2=a?, x2ey2422=02 42492222 (220) (O<a<b).

“ V nisledujicich ptikladech je vhodné poufit zobecnéné sférické soufadnice 7, @ a ¢

W[f 20; Osps2m; - 1—;- < %] , které jsou definoviny nisledujicimi vztahy:

% =ar cos*pcosPy, .

y =br sin®@cosPy, [ (a, b, ¢, &, B jsou konstanty),
r=crsinPy

e Dix,y,z)

-1 2p-1, Bl
cos ysin® .
D(r, )

=aPaber 2cos® ! gsin®

':‘.: Vypoi:'téte objemy téles, kterd jsou vymezena nisledujicimi plochami:

4111,

at b ¢ a- b
= NI 2 ©2 4?2 g2
4112.1 _..+3’_+_ =X ) E *
e b? ¢ a? b? 2
2 .2 3 72 2
a1, X 0 E oy X L) EF
a? p? (2 a® §% ¢
2 2 4
4114 x_+l_+z_=1
a? b? ¢t
9
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Vypoctéte objemy téles vymezenych nésledujicimi plochami (s kladnymi para.

metry) pomoci vhodné zimény proménnych:

X 3 z 2_ b
4116. | —+=+2]| =
[ 3 c] +k (x20,920,220).

a

2
4116.1 [i+l+-—) =£"—% (x20,920,z20).

X Jl F4
41181 |2+ |2+ [£=1
\J:+ b+\J: (x20,520,220).
3 3 3 '
x J
4118.2 J—E+ E+J‘ 1 (x20,y20,220).
2/3 3 /3
4118.3[5) +[1] +(5) -1.
a b c
Z

4119.z=x2+y2, =2(x2+y2), xy-a,2 xy-.‘Za x=2y, 2x =y (x>0,y>0)
4120. x%+z%=a2, x?+22=p2, x?-y2-22-9 (x>0)

6,2
4121, (x2+y2 42?3220
x%+y?
: 2 2 %c?
2 2 2 ——
4122, | 2 X E | CZ, stetaltaEl
a® b ¢? h -
a3 2
4123, —2 7 - Zaresin X2 L2 , E+1=1,x=0 xX=a
.02 0T @ b¢jab ’
a b ¢ X
_+%+E
4124, 2+2 0 Eop 2 ¢ x=0,z=0, 2+2-0 2. 2.2
a b ¢ .y b ¢ a b ¢
a b

4125.V jakém poméru déli objem koule x* +y2 +2% <44z plochax?+y % +az -4a 27
4126. Vypoctéte objem a povrch t&lesa, které je vymezeno plochaml x2+yl=qz,

z=2a-yx*+y? (a>0).

"— T 'x0=-ﬁfffgxdxdydz, y":H
!

§ 8. POUZITE TROJNYCH INTEGRALU V MECHANICE

4_127.Vyp0ététe objem rovnobéZnosténu vymezeného rovinami g x + by +c,z = £ h,
1 bl cl
(=1,2,8),je-li A=|ay b, c,|=0.
a, by ¢
4128, Vypoctéte objem télesa vymezeného plochou o b

EV(al:u: +b y+c 2) +(a,x + b,y +c,2) +(a,x +byy +e2)f =h Y, Je-li A=ty By %0,

' a, b, ¢
4129. Vypoctéte objem télesa vymezeného plochou R

a? b? C?n h 02 b2

n n-2
2 2 Zn 2 2
== [_x_+2__] +E___.£[x 2 ] {n>1).

| 4130. Vypoctéte objem télesa, které se nachazi v prvnim oktantu prostoru xyz

(x20,520,220) a je vymezeno ndsledujicimi plochami:
m n i
E 2 v ol m>0,n>0,p>0), x=0,y=0, 2=0.
a™ b ¢?

§ 8. Pouziti trojnych integrala v mechanice
' 1. HMOTNOST TELESA. JestliZe t&leso ma objem V a @ =g(x,5,2) je jeho hustota v bod& (x,y,z),

- pak je jeho kmotnost rovna
M= pdxdydz. (1)
1]

2. TEZISTE TELESA. Soufadnice (635t telesa (xo,yo, o) 5e vypotitaji podle nasledujicich vzoroi:
ffyf@ydxdydz, z0=ﬁf'£fgzdxdydz. (2)

Je-li téleso homogenni, pak miZeme ve vzorcich (1) a (2) poloZit p=1.

3. MOMENTY SETRVACNOSTI. Momenty setrvacnosti télesa vzhledem b soutadnicouym rovindm se
vyjadiuji nasledujlaml integraly:

fffngdxdydz [ —fffngdxdydz I, ~fff@y2dxdydz

Momentem setrvacnosti télesa vehledem k dané ose I se nazyva integral

t Il=fffgr2dx'dydz,
: v
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kde r je veddlenost bodu télesa {x,y,z) od osy [. Specidlné pro osy x, y, z plati nasleduiie;
vztahy: _
1, —Iq I, Iy =Ijx +Iyz’ I=I_ +Izj.

Momentem setrvacnosti télesa vzhledem pocithu soustavy soutadnic se nazyva integral
i, =fffg(x2 +y2+2 ) dxdydz.
v

Pfitom zfejmé plati I, =Ix3 o+

4, POTENCIAL TTHOVEHO POLE. Newtonovim potencidlem télesa v bodé (x, ¥,2) s& nazyva integral
u(x,y,2) =fffg(g,-n, C)M, kde ¥ je objem t&lesa, g =g(£,1.{) je jeho hustota
T T
v

ar=yE-x2+(n-y2+{ -2).

Hmotny bod o hmotnosti m a téleso se vzdjemné piitahuji silou F= (}“x,!‘:7 . F), jejiZ projekee na

osy %,%,Z jsou rovny: 5u :
F =km=%- 27
=k —— kmf{fe —5-dedndl,

Fy=km§-;f =kmf{'fg%d5dndc,

oy 8 _ {-:
IJ'Z—Izm:a—E kmf‘!:fg—;;didqdc,

Z

i kde % je gravita¢ni konstanta.

4131. Vypoctéte hmotnost télesa jednotkﬂdxjrého dbjému D<xcl, Os y<1,
0<z<1, jestlie hustota tohoto télesa v bodé {x,3,z) je ddna vzorcem @ =x +y +z.
4132. Vypoctéte hmotnost télesa, které vyplituje neomezenou mnoZinu
x2+y?+2221, jestlize hustota tohoto t&lesa se méni podle zikona

ki eqZe 2 .
Q=04 kyxTeyTes® kde g,>0 a k>0 jsou konstanty.

Vypoli€te soufadnice téfif¢ homogennich téles vymezenych nasledujicimi
plochami:
2 .2 2
4133, f_+y_=z_’ z=c.
a? B % L
4134. z=x%+y% x+y=a, x=0, y=0, z=0.
4135, x? =2pz,'y2=2px, x=%, z=0.

2 L2 2 : -
4186, 2+ +Z—=1, x=0,y=0,2=0.
a? b? ? R

4137. x%+2%=a% 3% +2%=a? (z20). 4138, x2492=92, x +y=z.

§ 8. POUZITI TROJNYCH INTEGRALU.V MECHANICE

2
2 2 22

41'!;39.- x_2+y_2+_2 =ibz (x20,9y20,220; 2a>0,6>0,c>0).
P a b ¢ abc

: 4140‘ Z=x2+y2, z=-;-(x2+y2), x+y;i_ 1, x—y:il.

£ n n n

_4141 _%+L+L=l, x=0,y=0,z=0 (n>0,x20,y20,120).
a®™ b" 7

il&iVypoEtéte soufadnice téZifté télesa tvaru krychle 0<x<1, 0<y<1, 0<z<1,
LN ' ‘ 2¢-1 2p-1 2y-1

-~ jestliZe je jeho hustota v bodé (x,9,z) rovna g=x "y 18217 kde O<a<]l,
- 0<P<l, 0<y<l.

Vypoctéte momenty setrvaénosti homogennich téles, kterd jsou vymezena

|~ maésledujicimi plochami (s kladnymi parametry) vzhledem k soufadnicovim

" rovinam:
i143.'£+!l+£=1,x:O,y'-_-O,‘z:O_
a b ¢
2 9 3
4]:44. i—+y—+-z_-=]_
a? b? ¢
: 2 .2 2
cq145. 2 JE Lo
a? b? (2
: 2 2 _2 2 .2 .
4146. x—+y—+—z—=1, x_+l..=£_
62 b2 c al b a
o ox? y2 . x Yy z
ar47. 2 +Y -9 Z.)_Z
al B2 ¢ a b ¢
2
— g 2 2 s 2 9
g1a7 | 2GR CX L) LA
o a? b2 ¢?] a? b? ?
4147-2[5]7!*(%]“{5]:1, x=0,9=0,2=0 (n>0;x20,920,220).
a I'n - :

Vypoctéte momenty setrvacnosti- homogennich téles, kterd jsou vymezena nésle-
dujicimi plochami vzhledem k ose z:
;1148. z=x2+y2, x+y== I, x-y=x1, z=O.

4149, x2+y2 422 52,x2+y2 =22 (z>0).

© 4149.1 Y =ab

(xZ+y?ez?¥ =ab2.
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4150. Vypoctéte moment setrvaCnosti nehomogenni koule x?+y%+;2cpe
o hmotnosti M vzhledem k jejimu priméru, je-li hustota koule v bodé (x, ¥,2)
pfimo imérnd vzdalenosti tohoto bodu od stfedu koule.

4151. DokaZte rovnost I,=I, +M d?, kde I , Je moment setrvacnosti télesa vzhle-
dem k néjaké ose [, /;, je moment setrva¢nosti t&lesa vzhledem k ose 7 , kters je
rovnobé&ind s { a prochézi t€Ziitém télesa, d je vzdilenost mezi osami a M je
hmotnost télesa.

4152. Doka’te, ¢ moment setrvacnosti t€lesa o objemu V vzhledem k ose { , kters
prochizi jeho t&¢Zidtém (0,0,0) akeerd svird thly e, B,y s 0osami soufadnic , je roven
1= Ixcos o +chos p +Izcos Y- 2Kx,cosacos|3 -2K cosacosy —2Kyzcos|3cosy,

kde 7 , 1,1, Jjsou momenty setrvacnosti télesa vzhledem k osdm soufadnic a

Kxj=f.£fgxydxdydz, K =f{fgxzdxdy-dz, Kyz=f£f?yzdxdydz

Jsou odstiedivé momenty setrvaénosti tohoto t¢lesa.
4153. Vypoltéte moment setrvacnosti homogenniho vilce x%+y2<a?,z=%p
o hustoté g, vzhledem k pfimce x =y =z.

~4154. Vypoctéte moment setrvacnosti homogenniho télesa vzhledem k pocatku,
mé-li t€leso hustotu g, a je-li vymezeno plochou (x2+y2+z%)* =a*(x? +y?).

4155. Vypoététe Newtonlv potencidl homogenni koule &2 +1% +{? < R? o hustots e,

v bodé (x,y,2).

NAvob: Pfedpoklidejte, Ze osa { prochdzi bodem (x,3,z).

4156, Vypottete Newtonilv potencidl duté koule R; <E2+n2+{2<R; v bodé
(x,3,2), jestlize hustota t€lesa je @ =f(R), kde f je znimd funkcea R =yE? +1*+ %,

4157. Vypodtéte Newtonliv potenciil valce E2+n%sa?, 0<{<h o konstantni

hustoté g, v bodé (0,0,z). _

4158. Jakou silou pfitahuje homogenni koule £2+12+{2<R? o hmotnosti M

hmotny bod (0,0,4) o hmotnosti m?

4159. Vypoltéte pfitaZlivou silu mezi bodem (0,0,z) o jednotkové hmotnosti

a homogennim vilcem E* +n?<a?, 0<{ <k o hustoté 0,

4160. Vypoltéte pfitaZlivou silu homogenni kulové viseée o hustot& g, kterou
plisobi na hmotny bod o Jednotkové hmotnosti, ktery je umistén v jejim vrcholu,

Jestlize je polomér koule roven R a tihel osového fezu visede je 2a.

§ 9. NEVLASTNI DVOJNE A TROJNE INTEGRALY

§9. Nevlastni dvojné a trojné integraly

1. PRIPAD NEOMEZENE OBLASTI INTEGRACE. JestliZe dvojrozmérnd mnoZina Q neni omezend
a funkce f(x,y) je spojitd na Q, pak se definuje

fff(x,y)dxdy hmfff(x,y)dxdy, (1)

kde Q Je libovolng posloupnost omezenych a uzaVi‘enych mnofin, které limitné pokryvaji
mnoZinu {. JestliZe limita na pravé strané rovnosti (1) existuje a nezdvisi na vibéru posloupnosti
€1 , pak se odpovidajici integral nazyva konvergenini, v opainém piipadé divergentni. Analogicky
se definuje nevlastni trojny-integrél spojité funkce na neomezené trojrozmérné mnoZiné.

2. PRIPAD NESPOJITE FUNKCE. Je-li funkce f{x,y) spojitd na omezené a uzaviené mnoziné Q
viude mimo bod P={(a,b), pak poloZime

| j’ff(x,y)dxdy =li'm' 'fff(x,y}dxdy. @

kde U_ je oteviend mnoZina o pruméru £, kterd obsahule bod P.V piipadé existence této limity

4161 ff _owy) dxdy- 4162, ff dxdy
R (eI
4163, ” __ Py dxdy. 4164, ” _dxdy (p>0,4>0).
Ocysl 1+x +y hilﬂzlllp |y“ :

4165, .” sinxsing ;. dy.
@+yy .

mnoZinu §, pak fff(x,y)dxdy =1imfff(x,y)dxdy, pri¢emi vyraz na levé strané
, ! e

se zkoumany integril nazyvd konvergentni, v opalném piipad€ divergentni.
Predpoklidejme, e v blizkosti bodu (a, b) plati rovnost

B - flxy) =yt

kde 0 <m < |P(x,7)| <M ar=y(x —a'.)2 +{y -b). Pakjepro o < 2 integral (2) konvergentnia pro ¢ = 2
je divergentni,

Analogicky se definuje nevlastni integral (2) funkce f{x,y) nespojité na néjaké kiivee.

Pojem nevlastntho integrilu nespojité funkce se snadno rozfif na piipad trojnych integral.

Vysetfete konvergenci nasledujicich nevlastnich integrélﬁ s neomezenou oblasti
integrace (0 <# < |d(x;y)| M <+e):

+00 400

x+yzl

4166. Dokaite, Ze jestliZe je spojitd funkce f(x,y) nezdpornia § (n=1,2,..) je

libovolna posloupnost omezenych a uzavienjch mnoZin, které limitné pokryvaji

mad smysl, pravé kdyZ mi smysl vyraz na pravé strane.
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4167. Ukaite, Ze lim

=00

f sinfx® +yYydxdy=mn, jestlize
|x| <m

) |3 <m
lim f f sin(x?+y%)dxdy =0 (n je prlrozene CISio)

oo

x* +¥ *c2nn

4168. UkaZte, Ze integral f f ~—y—dxdy je dwergentm ackoliv ndsobné

(x®+y )2

leyzl
+to

integraly fdx f y d a f dy f

oy ——~—dx jsou konvergenml
1 (x* +y

x+y)

Vypodtéte nasledujici integrdly s kladnymi parametry:

4169. ff dxdy 4170. f dxdy
xyzl, xﬁy ! : . z4yzd, (x +JF)P
xz1 Osgxs1l
4171. ff ﬂ. 4172. ff dxd); .
x*y 51 x —y ' *} zl(x +_')’)P
4173. ff dxdy , .4174..ffe‘(‘+7)dxdy;'
y2x? +1x *9*  Osxsy

Vypoctéte nésledﬁjfcf integrly pomoci ptechodu k polérnim sour"adhicim:
4175, f f PRl )dxdy 4176, f fe 1M cos (x 2 +y dxdy.

- -8 - 00 =00

4177. ffe'{"Efyg’sin(xhy?)dxdy.

Vypoctéte nésledujici integraly:

+00 +oo

4178, [ [¢o7 20" 220 g3y, kde <0, ac-b?> 0.

-0 =00

are. [ eIy

x%a? +y2/bgzl

2 2
w 4o x¥y.y
+ oo + (_“QE-F*_;

4180, ffxye

)dxdy (0<|e| < 1)

- -0

§ 9. NEVLASTNI DVOJNE A TROJNE INTEGRALY

Vysetiete konvergenci nisledujicich dvojnych nevlastnich integrald nespojitych
funkci {(O<m< | (p(x,y l <M< +no)

4181. f dxdy » kde mnoZina Q je uréena podminkami: |y|<x? x? +yi<l,
x%+y?

LI (x Xy ty )p
< 4188 _Axdy (550,45 0).

Ix]+|y|sj lxlﬁ.} Iqu

...u. 41M':}a dedy.
T g P
IS 00

"'”4185 ff ‘P(,J’) xdy-'
(1-x2 -y

x+_)vsl

" 4186. Doka’te, Ze Je-liz 1) funkce @(x,y) spojitd na omezené mnoZiné a<x<A,

b <y<8;2) funkce f(x) spojitd na intervalu a<x<A; 8) p<1, pak je integril
A B

f " f 0@y 4
AR ARl

- Vypoltéte néisledujici integraly:
- 4187, ff In

.~ konvergentni.

dxdy-
x2+y?'sl *y

©4188. fdxf——dy— (@>0).
o o vE@-x)x-y)

4189. f f Insin (x -y)dxdy, kde mnoZina Q je vymezena pffmkami- y=0, y=x,
i . n

X=T.

- 4190. ff _dxdy
== 7.3
P RET" Xy




i
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Vysetfete konvergenci nisledujicich trojnych integralt:

4191. fff ¢ (x.3.2) — L2227 dxdydzs kde 0 <m< |(p(£,y,z)l SM< +m,
ey?az?y :
xteyez?a
P (x,y,2)

o ]

x+y +z¥<1

— D" dxdydz kde 0<m<|@(x,y,2)| <M< 4o,
(x +9 +22)" :

dxdydz

4193. e
[P+ e+ [z

@>0’?>0’T>0)'

eyl + 2=t
aaa

o f f f fepndedyds e o fry,)] <M< v, 066) 2 (o)
{ly -9 )P +[z- Y (x)*}* |

000
jsou spojité funkce na uzavieném intervalu [0,a].

4195. fff dxdydz .
|x +y -z]?

%] 1,
lyisl
(S

Vypoctéte nisledujici integrily:

LI
ase, [ [ [ 2222
(LN xpyqz
as |||

x2+y2+122l

ol

PR LETLrY

dxdydz
(x2ey?sz?)}
dxdydz
(1-x?~y?-22

+m bt

4199. f f f N xdyds.

—0 — 00 — 80

e 0 em

4200. Vypoctéte integral f f f €

~P(xl,x2

dx dx,dx,,

1Xg) = Z; agx‘xj i —aﬁ) je pozitivné definitnf kvadraticka forma.
i=1j=

kde P(x,,x,

§ 10. VICEROZMERNE INTEGRALY

§ 10. Vicerozmérné integraly

1. PRIMY VYPOCET VICEROZMERNEHO INTEGRALU. JestliZe je funkee f{x ,x,.....x,) spojitd na
omezené mnoZing {Q uréené nerovnostmi
X

sx sx

154 l’
2l )ex, <x(x,)
EAS Uit Tlal At U

/ "
X (XXX, FSX, €X (X X, X, ()

i ! "
kde x ax’ JSOU konstanty a x (xl), X (X)) ey X, (X Xgsenn X, )y X0 (X)X, 000X

funkce, pak odpovidajici vicerozmérny integril vypocteme podle vztahu

-1} jsou spojité

"" ”[x) x (r,,x!,....xn_l)
ff ff(xl,x2, o )dx dx,. dx —fdx] f dx f f(;u:l,::2

x EHEN)

. ...,xﬂ)dxﬂ .

(xl,xz.....xl_l) .-

2. TRANSFORMACE PROMENNYCH VE VICEROZMERNEM INTEGRALU. ]esthie jsou splnény
nésledujici podmmky :
1) funkee f(x,x,,...,x,) je stejnomérné spoyté na omezené mentelnc mnoziné Q

2) spojité diferencovatelne funkce x,=¢,(,E,,....E) (=1,2,...,n) V)gadruﬁ vzdjemné jedno-
znalné zobrazeni mnoZiny Q' v prostoru £ ,...£ naomezenoumno#inu Q v prostoru x, x,...x_;
D(xl,xz,...,xn}

D(E], EE, sy Eﬂ)
} miry nula}, pak plati ndsledujici vztah

[[ - [fenpx )z dxy . dx, = [ [ [ {0y, ,)
+] o

Specidlné pro transformaci
X, =TCOSP,,

3) Jakobidn

m4 na mnofiné Q' skoro viude stejné znaménko (a¥ na mnofinu

D (xllxg’ )

dE dE,...d
D(E‘,EQ,...,E“) Gdby-dt,

X, =TSINQ, oS P,,

X, | “TSILQ sing,... sing, _,cos@, _,

X, =rsing sing,..sme, _sing _,

na polarni soutadnice re,...9, ) plati _
D(xl,xz,...,xﬂ)

D(Ty(pls---; rl.-l)

—pn-1la:

n-2 103 H
sin ¢, 510 ([:)2 .- S0P g

356

357
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4201. Necht K(x,y) je spojita funkce na mnoziné {|(x,y)|s <x <b; a <y<b} anecht
bbb

Koy =[ [ [K@L)Kt). K@, y)dtdt,..dt .

b
Dokaite, 7e K (x,9)= f K (x,0)K (t,y)dt.

4202. Necht f(x,x,,....x) je spojitd funkce na mno#in€ 0s<x;<x (=1,2,..,n).

Dokaite rovnost

o o

4203. Dokaite, Ze fdt fdt ff(t M @t,) ... f(t )dt =— ff(‘c)dt , Je-li f spo-

jitd funkce.

...ff(xl,x2,...,x")dxl (n=2).

Vypoctete n:isleduyc: vicerozmérné integrily:
4204. a). ff f(x, +x2 +,xn)dxldx2...da_cn;

l 1 1

b) ff...f(xl +x2+...+xh)2dxldx2...dxn.

4205. dx dx,....d
X 20x£!}‘f xl x2 x"
xl+.\:.,+ +x 24
4206. j‘dx fdx Tx Kyt dx_.
4207. ff f X Hxg o rx dxdx

%, 20,2,20,..,%,20
xl+12+...+xnsl

4208. Vypoctéte objem n-rozmérného rovnobéZznosténu vymezeného rovinami

G X A Xyt ta x =+h (1=1,2,..,n),jeli A= laij| +0.

4209. Vypoctéte objem n-rozmérné pyramidy
x, % x _ - )
—+—=+.+—<1, %20 (1=1,2,.,n) (@>0,i=1,2,...,n).
a, a a '

3 2 n

§ 10. VICEROZMERNE INTEGRALY

- 4210. Vypoctéte objem n-rozmérného kuzZele vymezeného plochami

2 2 2 2
XL X9 Apoy Xy
e =, x =a_.
2 2 2" n n
a’l o a1 G,
y . . ] 2 2 2
.. 4211. Vypoctéte objem n-rozmé&rné koule x; +x, +... +x_ <a’.

4212. Vypottéte integral f f f xf dx dx,...dx , kde mnoZina Q je definovina
Q

Nerovnostmi x12+x22+...+xf_lsa2, —%sxﬂsg.
: dx dx,...dx
© 4213. Vypoctéte integral f f f —
2 2
xlexde. L, WP Jl xl TXg T TX,
x xl X
< ' _ (x u)"”
4214. DokaZte rovnost .!;dxlfdx ff(x Ydx_ ff U) ——— 1 du.
: X x, ' . o
4215. DokaZte rovnost fx dx [x,dx,.. ff(x +1)d =Lf(x2—u2)"f(u)du.
o 2'nly

4216. Dokazte Dirichletiiv vzorec

pr-l py-1 p-1 F{p )L (py).-T'(p,)
“’f X xy .k dxdxy..dx, = 172 = (Botpt,>0).
X1 Xgp e, 20 (Pl +p2 to.. +Pn * ) i
x|+x2+...+:¢;|sl‘
4217. Dokaite Liowvilledtv vzorec
fff flx +x,+ . +xn)xf'-1x§2_l...xf"_ldxldxg wdx =
x].x2,...,xnzﬂ
X txgto.cx sl
AR F(P) poss
2 ff( f’] Pa Pu- du @1’P2""’Pn>0)’

P(pl +P 2
Je-li f(u) spojita funkce
NAvoD: PouZijte metodu matematické indukce.

4218. Pfevodem na jednorozmérny integril vypoltéte n-rozmérny integral

(n>2) ffff(qfxf +x22 +... +xf) dx dx,..dx definovany na mno%iné
o

x; +%; +..+x <R2, kde f(u) je spojits funkce.
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4219. Vypoctéte potencidl homogenni koule s polomérem R a hustotou g,

j‘j"”'ff dx dyldz dx dyﬂdz
tj. vypoctéte integral u =—

x, +y, +21 TeR?

xg 43 423 sRY

"'(}’1 —3'2)2 +(Z -z )2-

kde r, =,/(x -x )2

a4 x gyt QEbI.xI.h:} .
Nt dx dx,...dx

ﬂ.

4220. Vypoctéte n-rozmérny integral f f f {

-t =00

kde Z axx, (a;=a ) je pozitivné deﬁmr.m kvadratick4 forma.
fi=1

§ 11. Kiivkové integraly

L. KRIVKOVY INTEGRAL PRVNIHO DRUHU. Jestlife f{x,y,z) je funkce definovani a spojit
v bodech hladké kFivky C: -

x=x(), y=y(@), z=z(@) @, <t<Ty : ()
a ds je diferencidl délky kiivky, pak kiivkovy integril prvniho druhu dcﬁnu_]erne: vztahem

4
[feey,nds= ff(x 0.5 0.ONx 0Oy O+ War.
c { i ’

Hodnota tohoto integrélu nezdvisi na grientaci kiivky C.

2. VYUZITI KRIVKOVEHO INTEGRALU PRVNIHO DRUHU V MECHANICE. Je-li p=p(x, y,i) hustota
v daném bodé (x,y,z) kiivky C, pak hmotnost kitvky C je rovna M= f o(x,y,zids. o
c

Soufadnice t&Zisté (x,7,,%,) této kitvky vypotteme pomoci integrali

1 1 1
x0=3-4—fxg(x,y,z)ds, }'0=nyg(x,y,z)ds, z0=-ﬂ—dfzg(x,y,z)ds.
[ ol . - c

3. KRIVKOVY INTEGRAL DRUHEHO DRUHU. Jestlize jsdu funkce P=P(x,3,z), Q=0(x.52),
g R =R (x,y,z)} spojité ve viech bodech kiivky (1), kterd m4 orientaci ve sméru rilistu parametru ¢,
# pak kiivkovy integrdl druhého druhu definujeme vztahem
i

fP(x,y,z)dx +Q(x,5,2)dy +R(x,y, z)dz =

f {Pl@.y@.2(0x 1)+ Qx @), y(t) 2y B + Ry Oz )2 'O} e, (2)
Kdy? zménime orientaci kfivky (', zméni tento integral znaménko. V mechanice kiivkovy inte-
grél druhého druhu vyjadiuje praci sily {P, Q,R} plsobici postupne ve viech bodech kfivky C.

S

§ 11. KRIVKOVE INTEGRALY-

4. TOTALN{ DIFERENCIAL. Je-li P{x,y,2)dx+Q(x,y,2)dy +R(x,y,2}dz=du, kde u=u(x,y,z) je
jednoznaénd funkce na mnoZiné V, pak nezdvisle na tvaru kiivky C, kterd leii celd v mnoZiné
V, plati

dex +Qdy+Rdz=uix,,y,2,) ~u(x,,3,,2,),
rh

-——- kde (x,3,,2,) je poditetnibod a {x,,¥,.2,) koncovy bod kiivky. V nejjednodud¥im pipadé, kdy V
"{ je souvisld mnoZina a funkce P, ( a R maiji spojité pardiilnf derivace prvniho fadu, pak k tomu,
aby platila vy¥e uvedend rovnost, je nutné a stadi, aby byly splnény nésledujici podminky:

Je-li ¥ standardni rovnob&inostén, lze funkei « vyjidfit vzorcem

w(x,3,2) = f Pley. s f Qepy2)dy + f RG22 v,
Xy Y

kde (xp,302,) je néjaky pevny bod mnoZiny V a ¢ je llbovolnz‘s konstanta. V mechanice md tento

|... ¥ integral vjznam price potencidlni sily.

Vypoltéte nasledujici integrily prvniho druhu:
4221. f(x +y)ds, kde C je obvod trojihelnika s vrcholy (0,0), (1,0) a (0,1).
c

4222, f;v 2ds, kde € je oblouk cykloidy x =a (¢ -sint), y=a(l -cost) (0<t<2m).
4223, f(x +y%)ds, kde CJekrwkax a{cost +tsint), y=a(sint - tcost) {(0<t<2n).
4224, fxyds kde C je oblouk hyperholy x =acosht, y= =asinht (0stst ).

4225. f(x‘”‘s’ +y‘”3)ds kde C je oblouk astroxdy x® +y . =g

4226, f V=15 s, kde C je sjednoceni kivek r=a, ¢=0, (p—— (1‘ a ¢ jsou

polarm soufadnice).
4227. f[y|ds, kde C je lemniskata (x+y%)’ =a®(x?-y%).

4228, f xds, kde C j Je &ast logaritmické spirdly » =ae*® (£>0), kterd se nachiz{

uvnlt:r kruhu r<a.
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4229, f\/x2 +y%ds, kde C je kruznice % +y%=ax.

4230. f , kde C je fetézovka y= =acosh .
a

Vypottéte délky nésledujicich prostorovych kiivek (s kladnymi parametry):
4231. x =3¢, y =317, z=2¢> od bodu (0,0,0) k bodu (3,3,2). '

4232. x =¢ ‘cost, y=e”‘sint, z=e ™' pro 0 <t <+,

wYo %)

1

a+

4234, (x y)2 =a(x+y), :':E—y2 gz2 od bodu (0,0,0) k bodu (x

Yoo

4285. x 2 +y2=cz, 2 =tgE od bodu (0,0,0) k bodu (x,5,.%,)-
x ¢

4236, x 2 +y% 427 =% |/x? +y2cosh[arctgl) =a od bodu (g,0,0) k bodu (x,y,z).
x .

Vypoctéte nasledujicf kfivkové integraly prvm’ho druhu podél prostorovych
kiivek:

4237. f(x. +y%+z%ds, kde C je &st Sroubovice x=acost, y=.asmt, z=bt

(Ost<2‘n:) : _ :
4238. f x2%ds, kde C je kruzmcex +y2+22=42 x+y +z=0.

4239. zds kde C je kuZelovi Sroubovice x =tcost, y=tsint, z=t (0<t<t 0)-
J =

4240. fzds kde CJC oblouk kfivky x? +y%=22%, % =ax od bodu (0,0, 0) k bodu

(a a a\/_ ).’
4241. Vypoctéte hmotnost kiivky x =acosé, y =bsin¢ (g 26 >0;0 <t < 2n), kterd ma
v bodé (x,y) hustotu g = |y|.

4241.1 Vypoctéte hmomost oblouku paraboly y 2.9 px (0 X< p/?) JestliZe se jeji
hustota v bodé (x,y) rovna |y|. 5
a

4242. Vypoctéte hmotnost kiivky x =ai, y = %t 2 z= gzt ? (0<t<1) ohustotd, kterd

se ménf podle zivislosti o =y/2y/a.

§ 11. KRIVKGVE INTEGRALY

ot

4248, Vypodtéte soufadnice t&Zisté oblouku homogenni kiivky y=acoshZ od

* bodu (0,a) k bodu (b,4).

. 4244. Najdéte t€7i3té oblouku cykloidy x =a(t -sin¢), y=a(l -cost) (0<i< ).

.. 4244.1 Vypoltéte statické momenty Sj,— f xds, S = f yds oblouku C astroidy

#-g?8 (x>0,y>0) vzhledem k soufadnicovym osdm.

28 4.y
4244.2 Vypottéte moment setrva¢nosti kruznice x%+y%=a? vzhledem k jejimu
. priméru.

- 4244.3 Vypodt€te poldrni momenty setrvacnosti /= f (x2+y?)ds vzhledem k bo-

=-du (0,0) ndsledujicich kfivek: a) obvodu C ¢&tverce max{|x| |y|} =a; b) obvo-
du C rovnostranného trojihelniku s vrcholy v poldrnich soufadnicich (g,0),

5 )

4244.4 Vypoftéte primérny polomér astroidy x*?+y*3=42® v polarnich
soufadnicich, tj. &slo 7, (r,>0) uréené vztahem I, =s>'r(,2 » kde I, je polirni
moiment setrvaénosti astroidy vzhledem k poditku (viz iloha 4244.3) a 5 je jeji
~ délka. :
4245. Vypoctéte soufadnice t&Zi3té obvodu sférického tro_]uheim’ka x2+y4z%=42;
- x20,920,220.
- 4246, Vypoctete soufadnice t&Zisté homogennl krivky x=e'cost, y=e'sint, z=¢’
(et <0). |

4247, Vypocltéte momenty setrva¢nosti jednoho zivitu Sroubovice x=acost,

y=asint, z= Eh;-t (0<t<2m) vzhledem k soui‘adnicov;‘rm osam.
: n

| 4248, Vypoctéte krlvkovy mtegral druheho druhu f xdy ydx kde 0 je podatek

soustavy soufadnic a bod A mai souradmce (1, 2) je-li: a) OA usecka; b) 0A
parabola, kterd méd osu soumémnosti 3; ¢) OA4 lomend kiivka tvofend tseckou
OB letici v ose x a Gseckou BA, ktera Je rovnobézna s osou y-
4249, Vypottéte integral '
f xdy+ydx
04
- podél kiivek a), b) a ¢) z pfedchozi dlohy.
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Vypoctéte nasledujici kifivkové integrély druhého druhu podél krlvek oriento-
vanych ve sméru ristu _]e_}l(‘,h parametru:

4250. f(x -2xy)dx +(y* -2xy)dy, kde C je parabola y=x* (~1sx<1).
c

4251, f(x2+y2)dx +(x*-y%dy, kde C je kivka y=1-|1-x| (0sx<2).
C

2 2 .
4252, é(x +y)dx +(x -y}dy, kde C je elipsa x_2 +y—2‘ =1 s orientaci proti sméry

c ' a* b —
hodinovych rudicek.

4253. f(?a -y)dx +xdy, kde C je oblouk cykloidy x=a(t-sint),y=a(l -cost)
c

(O<t<2m).

4254, 9S(x+y)dx (:-5)dy

x2 ey

, kde C je kruznice x*+y?=q? orientovani proti

sméru hodmovych rudidek.

255. 95 4%*4) |\ de ABCDA je obvod &verce s vrcholy A =(1,0), B=(0, 1),
ascoa 21D S o
C=(-1,0), D=(0,-1).

4256. f dxsiny +dysinx, kde A B je tsecka spojujici body A =(0,m) a B '=’(1t,0).

4257. § dy arcl:g2 -dx, kde 04 je &st paraboly y =x22 A0 ] je &ast prlmky y=x.
040

Ovéite, Ze integrovany vyraz je totdlnim diferencidlem n&jaké ﬁmkce, avypoctéte
nasledujici krlvkove mtegraly

@.3) : : : R :
4258. fxdy+ydx. 4259 fxdx+ydy
(1,2 ’ N (X))

(2.3) , , »(‘*'rl.l .
4260. f(x+y)dx+(x~y)dy 4261. f(x—y)(dx-dy).
(0,1} (1,-1}

(a,b)
4262, f flx+y)dx+dy), kde f(u) je spojita funkce.
0,0)

364

prony

4267.

. 2.m . . o
. 4268. f [1 ) cosy] dx +[s1n 2+ 2eosd
2 X x

4272, dz=

§ 11. KRIVKOVE INTEGRALY

(1.2)

4263, f ﬁx—?ﬂ?— podél kiivek, které neprotinaji osu y.
: .

&1
5.8
xdx +ydy

podél kiivek, které neprochizeji potitkem soustavy
2

3
(1,0 ¥x *¥

- soufadnic.

(xgvj'g)

 4265. f px)dx +Y(y)dy, kde @ a ¥ jsou spojité funkce.

(xpy]J
3.0

" 4266. f (! +4xy3)dx+ (62292 -5y Y dy.

(-2.-1
(.h
[_ xdy-ydx

podél kifivek, které neprotinaji pfimku y =x.
oy E

]dy podél kiivek, které neprotinaji
x) - - .

x X
(1, =)
osu y.

{a,b)

4269, f *(cosydx ~sinydy).

0,0
4270, Dokazte Ze je-li f(u) SpOJlta funkce a C je po &istech hladka uzaviend

~ kiivka, pak é;f(x +y) (xdx +ydy) =0.

Najdéte primitivnf funkdi z, je-li:
4271, dz=(x 2 +2xy -y dx +(x2 - 2xy —y2)dy.
ydx -xdy

3x2-2xy+3y2.
(x? +2xy+5y2)dx+(x —2xy+y )dy
(¢ +y)°
4274. dz=¢"[e? (x -y +2) +yldx+e*[e?(x -y) + 1]dy.

4273, dz =

365
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6n+m+|u an+m+lu

4275. dz = dx + —dy.
axn+laym axnaym-rl

4276. dz:il[lnl]dx-—‘fl int dy, kde 7=/ e
axrff?aym—l r axu'—layme

4277. Dokatte, Ze pro kfivkovy integral plati nisledujici odhad:

ldex +Qdy|< LM,

kde L je délka kiivky a M =maxyP*+Q? na kiivce C.

4278. Odhadnéte integral 1, = ——M Dokaite, Ze lim 1, =0.
gme (6 ry ey

Vypoctéte nisledujici kfivkové integraly podél prostorovych kiivek (soustava
soufadnic je pravotociva) :

4279. f(y -2%)dx +2yzdy-x2dz, kde C je kiivka x=t, y=t*z=¢ (0si<l)
C ‘ . . TR . - &

orientovani ve sméru riistu parametru.

4280. f ydx +zdy +xdz, kde C je jeden zavit Sroubovice x =acost, y=asint, z =bt

(0<£<2m) orientovany ve sméru rlistu parametru. -

4281 f(y z)dx+(z x)dy+(x y)dz kde CJe kruzmcex +y2+z%=a? y=xtgq

(0 <@ <) orientovand proti sméru hodmovych rudicek pfi pohledu ze strany
kladnych hodnot x.

4282, fy2dx +z%dy+x*dz, kde C je st Vivianiho kiivky x2+y2+z2=42,
x +y?=ax (z>0,a>0) orientovani proti sméru hodmovych rucifek pfi pohledu
ze strany kladnych hodnot x (x>a).

4283, f(y2 ~z2%dx + (2% ~xDdy + (x 2 -y%dz, kde C je hranice &sti sféry

x2ey%422=1, x20, 920,220 orientovani tak, Ze vnéjii strana plochy zfstiva
nalevo od oblouku kiivky.

L4284,

4987,
- &z

§ 11. KRIVKOVE INTEGRALY

Vypoctéte nasledujici kiivkové integraly totdlnich diferenciald:
' 2.3.-4)
xdx +y2dy -z3dz.
(L1
6 1,1)
f. yzdx +xzdy +xydz.
(1,2,3)
(ar¥grty)
4286. xdx +ydy +zdz
- ':("1»71"-1)
abod (x4,99:Z,) Da sféfe xZ+y%+22=b% (@>0,6>0).

, kde bod (x,5,,2,) leZi na sféfe x? +y2 +z%2=42

’x2+y2+z2

(“‘2'3’2"-2)
@(x)dx + Y (y)dy + 1 (2)dz, kde @, ¥, jsou qu]lte funkce.

(*g:)9:25)
f f(x ty+2 (dx +dy +dz) kde f je sp0_|1ta funkce.
(x), ,7|=-7-1)

4288,

. (%, ¥g:%5) .
4289. fiyx2+y2+2 ) (xdx+ +ydy +2dz), kde f je spojitd funkee.

{(xyyzp)

Najdéte primitivni funkd », je-li: -

4290. du=(x2-2yz)dx +(y2 - 2xz)dy +(z2—2xy)dz.

4291. du=[l-—l—+2)dx'+ dy—xydz
y z z y? z?

{(x+y-z)dx +(x +y z)dy +(x +y+z)dz

4292. du =
x2+y24z +2xy _

4293. Vypoététe prici, krerou vykoné grawtaém sila pfi premlstem t€lesa o hmot-

nosti m z bodu (x,,,,2,) do bodu (x,,¥,,z,) (0sa z mi smér kolmo vzhiiru).

4294. Vypoctéte prici sily pruinosti sméiujici k pocatku soustavy soufadnic

o velikosti imérné vzdilenosti hmotného bodu od. poditku, jestliZe tento bod
2 2
P - . - . . P ~ . . X
opiSe ve sméru proti hodinov§m ru¢ickam c¢ivrtinu elipsy —*
kvadrantu. ¢

4295. Vypodtéte prici ptitazlivé sfly F=k/r?, kde r=y/x % +y*+z*, plisobici na bod
o jednotkové hmotnosti, ktery je pfemistén z bodu (x,3,,z,) do bodu (x4, 2,) -

J?_z =1 v prvnim
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§ 12. Greenova véta

1. SOUVISLOST KRIVKOVEHO INTEGRALU S DVOJNYM INTEGRALEM. Necht C jejuzavfené a po
&stech hladkd kifivka, kterd je hranid omezené souvislé mnoZiny § a md orientaci takovou, fe¢
mnofina § je po levé strané pii obihdni kiivky, a nechf funkce P=(x,y) a Q =(x,y) jsou spolu se
svymi parcidlnimi derivacemi P (x,y) a Q/(x,3) spojité na mnozing § i na jejf hranici. Pak plati
Greenova véta:

i 95P(x,y)dx+:2(x,y)dy ” [ B ] dy. 1)

Rovnost (1} platf i pro omezenou mnoZinu§ vymezenou konetnym poctem jcd:noduch)?ch
smydek, jestliZe za jeji hranici C budeme povaZovat viechny hraniéni krwky orientované tak, aby
pfi jejich obfhani mnoZina § ztistala po levé strang,

2. OBSAH PLOCHY V TRIROZMERNEM PROSTORU., Obsah plochy § vymezené Jednoduchou apo
¢astech hladkou smyckou C je roven

S=§xdy=— §ydx=i§(xdy ~-ydx).
¢ c 2%

V tomto paragrafu, jestlife nenf stanéveno jinak, ptedpoklidame, e uzaviens kiivka integrace
je jednoduchi (neprotind sebe sama) a e md orientaci takovou, aby mnoZina, kterou vymezuje
a kterd neobsahuje Zidny nckoneéné vzddleny bod, ziistala pfi jejim obfhdni nalevo (obihdni
v kladném sméru).

4296. Pomoci Greenovy véty transformujte kivkovy integral

I= 56\/.1: +y dx+y[xy+1n X +yx +y ]dy,-,

kde smycka C je hran1c1 omezené plochy S.
4297. Pomoci Greenovy véty vypoctéte krwkovy integral -
(x+5)* dx - (x? +y2)dy, |
& .
kde K je obvod trojihelnika ABC a kfivka mtegrace probfha vrchoiy A=(L1),
B=(3,2), C= 2,5) v kladnem smeru Vysledek dv te pom0c1 pruneho vypoctu
krwkoveho mtegralu

Pomoci Green'ovy véty vypoitéte nasledujici kiivkové integraly:

4298. &xfdy -x*ydx, kde C je kruznice x* +y2=a%..
c

4299. (ﬁ(xw)dx (x-y)dy kde Cje ellpsa —-+; =1.
a o

§ 12. GREENOVA VETA

4300. 95 e *[(1 - cosy)dx - (y - siny)dy}, kde C je smycka s kladnou orientacf, ktera
C

. vymezuje mnoZinu 0 <x <m, 0 <y <sinx.

- 4301. é;

9% (cos 2xydx +sin2xydy).

x24y2-R?

4302. O kolik se li3i hodnoty kiivkovych integrald

I= f(x oyfide-(e-p)dy aly= [ (e+y)ide-(x-9)dy,
pUB)
kde 4B je usefka, kterd spojuje body 4 =(1,1) a B=(2,6), a p(4B) je parabola se
svislou osou soumérnosti, kterd prochdzi body 4 a B a pocitkem soustavy
soufadnic?
4303. Vypoctéte kiivkovy integral
f (e *siny - my)dx +(e cosy -m)dy,
PO}
kde p(40) je horni ptilkruznice x° +y =ax, vedoudi z bodu A=(a,0) do bodu
0=(0,0).
NAvob: Dopliite kiivku p(40) do uzaviené smy¢ky tiseckou OA na ose x.
4304. Vypoctéte kiivkovy mtegral
[ [oG)e ™ -mylde+ (o’ o
pAB)
kde @{) a ¢'(y) jsou spojité funkce a p(4B) je libovolnd driha spojujici body
A=(x,5,) a B=(x,Y,), kterd spole¢né s tiseckou BA vymezuje plochu o obsahu S .
4305. Najdéte dvakriat spojité diferencovatelné funkce P =(x,y) a Q = (x,y) tak, aby

-m}dy,

7 krlvkovy mtegral I= ﬁP(x o,y +B)dx+ Q(x +o,y +B)dy pro libovolnou uzavie-

nou krlvku C nczawsel na konstantich a: a B
4306. Jakou podminku musi spliiovat diferencovatelni funkce F(x,y), aby

krwkovy integril f Fx,y)(ydx +xdy) nezivisel na varu drahy p(4B) z bodu 4
dobodu B? P49

4307. Vypoététe integral [ = 9Sxdy_y¢§x kde C je jednoduchd uzaviena kiivka

x+y

. 5 kladnou orientact, kterd neprocha21 poditkem soustavy souiadnic.
NAvoD: UvaZujte dva ptipady: 1) poditek soustavy souFadnic se nachdzi vné uzaviené kiivky;
2) poditek soutadnic leZi uvnité plochy vymezené kfivkou C.
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Uzitim kiivkovych integrilli vypoctéte obsahy ploch vymezenjch nasleduycmu
uzavienymi kiivkami:

4308. Elipsou x =acost, y=bsint (0<f<2m).

4309. Astroidou x =acos’t, y=bsin’t (0<t<2m).

4310. Parabolou (x +y)*
4311. Smy¢kou Descartesova listu x” +y* =3axy (2>0).
NAvOD: UvaZujte parametrizaci y =tx.

4312. Lemniskatou (x2+ ¥ 2) =g (x -3 %,

NAvoD: Poloite y=xtg@.

=ax (a>0) a osou x.

4313. Kiivkou x® +9=x? +y? a osami soutadnic.

4314. Vypoctéte obsah plochy vymezené kfivkou
(x +j;)"”"”l =ax"y" (@a>0,n>0,m>0).
4315. Vypoctéte obsah plochy ohranic¢ené kiivkou

[i)nq-[i)n:l (a>0,b>0,n$0)
a b _

a osami soufadnic. . e
NAvOD: PouZijte parametrizaci ;=c052"“tp a &=sin .

4316. Vypoctéte obsah plochy vymezené kiivkou

[i]ﬂ(l]l(i)”'ﬂ[l]"‘l @>0,b>0,n>1)
a b) la b o

a osami soufadnic. .
4317. Vypoctéte obsah plochy vymezené smyckou kfivky

[5]21”1 _{_(1]2”” =C(f_] n[l)n (a>b’b>0,c>0.n>0)_
[4) b W a b :

4318. Epicykloidou nazveme kiivku, kterou opisuje bod na kruZnici o poloméru r

W,

valici se po vnéjsi &asti nehybné kruZnice o polomeru R. Vypoliéte obsah plochy,

kterou vymezuje epicykloida, za predpokladu Ze pomér i:- =n je pnrozene Cislo.
Vysetete specialni piipad r =R (kardioida).

4319. Hypocykloidow nazveme kiivku, kterou opisuje bod na kru#nici o poloméru r
valic{ se po vnitfni ¢asti nehybné kruZnice o poloméru R. Vypoci€te obsa'h
plochy, kterou vymezuje hypocykloida, za piedpokladu, Ze pomér Rfr=n je
piirozené &islo (n 2 2). VySetfete specidlni pffpad r=R/4 (astroida).

4320 Vypoctete obsah &4sti vilcové plochy x® +y =ax, kterou vymezuje plocha

x +y +Z.2_a2

§ 13, VYUZITi KRIVKOVYCH INTEGRALU VE FYZICE

4320.1 Dokaite, Ze objem télesa, které vznlkne rotaci jednoduché uzaviené kiivky
C umisténé v horni polovme yz 0 kolem osy x, je roven V=-x é yidx.

1 9SXdY YdX

X?+y?
ducha uzaviena kiivka C obihd pocatek soustavy soufadnic (ad -bc+0).
4322. Vypoctéte integrl I z ptedchozi tlohy, jestize X = (p(x,y) Y=y{x,y)
a jednoduchd uzaviens kfivka C obihi. po&itek soustavy soufadnic, pficem?
kiivky ¢(x,9)=0 a Y¥(x,5)=0 se n&kolikrat protinaji uvnitf plochy vymezené
kivkou C.
'51 4323. DokalZte, Ze je-li C uzavieni krlvka al hbovolny smerovy vektor, pak

w oty

gﬁcos (.n)ds=0, kde n je vnép3f normalovy vektor ke kiivce C.
C

= 4324, Vypoltéte hodnotu integrilu é[xcos(n x) +ycos(n,y)]ds, kde C je jedno-

C

4321.Vyp0c”:téte integrzil I= ykde X =ax +by Y=cx+dy a jedno-

c
ducha uzaviend krlvka kter4 je hranici omezené plochy §, a n je jejf vnéjsi
normélovy vektor.

‘_;" 4325. Najdéte lim 3 Eﬁ(F ‘n)ds, kde § je plocha vymezend kiivkou C, ktera
' ds)-0 3

-~ obfh4 bod xyp3y), d(S) je primeér plochy S, » je Jednotkov)’r vektor vnéj3{

normily ke kfivce C a F je spojité diferencovatelny vektor na SuC.

- 4326. Jakou silou pfitahuje hmotnost M rovnomérné rozlo¥ena na horni
- pilkru¥nici x2+y%=4?2
= soustavy soufadnic?

_ 4327. Vypoctéte [ogamtmzcky potencml ]ednoduche vrstvy u(x,y) = &xln ds, kde

# =const je jeji hustota, r =/ -x)* +(n -9) a C je kruZnice 2 +'q =R
- 4328, Vyjadrfete v polarnich souradmcu:h gae@ logarmmcke potenciily jedno-
2x 2x

» 920, bod o hmotnosti m, ktery je umistén v potitku

~ duchévrstvy I, = f cosmln — dlpa 12 f sinmyln— dlIJ kde r _]evzdalenost mezi
A : 0

| bedy (,¢) a (1,¥) a m je piirozené cnslo.

370
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4329. Vypoctéte Gaussiv tntegral u(x,y) = 95 &S(:ﬁ)-ds, kde r=4/( -x)%+ (M -yp
C

je délka vektoru r, ktery spojuje bod (x,5) s bodem M=(,n) jednoduché
uzaviené kiivky C, a (r,n) je tGhel mezi vektorem r a vnésim normalovym
vektorem n ke kiivce C v jejim bodé M.

4330, Vyjidtete v poldrnich soutadnicich ¢ a ¢ logaritmické potencidly dvofité vrstuy

2% 2
Kl=fcosm\|1g3§~gr’—n)d¢, K2=fsinml|1-(ﬂs—g—r’—n—)dl|l,
T .

0 0

kde r je vzdilenost mezi bodem 4 = (g, 9) a proménnym bodem M = (1,4}, (r,n)
jethel mezi smérovim vektorem AM =r avektorem privodi‘e OM =n zbodu 0 =(0,0)
a m je pfirozené islo. - o
4331. Dvakrat diferencovatelnou funkci u =u(x,y) nazveme harmonickou, jestlize
2 2,
vyhovuje rovnici Au = —aﬁ + 6—2 =0. DokaZte, Ze u je harmonickou funkci tehdy
ox2 9y : '

. . du T . tend kiivk ou .
a jen tehdy, kdyz 5;;ds=0, kde C je libovolnd uzavieni kivka a 5, Je
C :

derivace podle vnéjsi normily k této kiivce.
4332. DokaiZte, Ze

[Tl (oo oz

kde hladka uzaviend kiivka C je hranici omezené plochy §.

4333. Dokaite, Je funkce, kterd je harmonickd uvnitf omezené mnoZiny § a na
jejf branici C, je jednoznaén& uréend sviymi hodnotami na kfivee C (viz tloha
4332). o

4334, Dokazte dmhou Greenovu vétu v roviné

I

kde hladka kiivka C je hranici omezené plochy S a Ea- je derivace ve sméru
vné&j§i normdly ke kitvee C.

du av
dxdy = Sﬁan an ds,

v

Au Av

4335, UZitim druhé Greenovy véty dokaZte, Ze jestlize u =u(x,y) je harmonicka

funkce na uzaviené omezené mnoziné §, pak

§ 13. VYUZITi KRIVKOVYCH INTEGRALLU VE FYZICE

u(x,y)———é( dlnr Inr au]ds’

kde C je hranice mno#iny §, n je vnéjsi normalovy vektor ke kfivee C, (x,y) je

vnitfni bod mnoZiny § a r=y({E-x)*+(m-y)? je vzddlenost mezi bodem (x,9)
" abodem (£,1) na kiivce C.

" NAvop: Uvazujte bod (x,y) mnoZiny S spolu s jeho nekoneéné malym kruhovym ckolim a poutijte
‘- drubou Greenovi: vétu na zbylé &4sti mnoziny §.

‘ - 4336. Dokaite vétu o stfedni hodnoté pro harmonickou funkci « (M) =u(x,y) ve tvaru
w(M)=—— é & m)ds

= kde C je kruinice o poloméru R se stredem vbodé M.
4337. DokaZte, Ze funkce u (x,y), kterd je harmonicka a nekonstantni na omezené

~— uzaviené mnoZiné, nenabyva své maximalnf ani minimdln{ hodnoty ve vnitinim
" bodé¢ této mnoZiny (princip maxima).
4338. DokaZte Riemannovu rovnost

Lu] M[v]
dxdy =Y Pdx +Qdy,
” .
c
2 2
kde L[u]= Ju +a -a—u+b——+cu M[v]= gu -a— v —ba—+w {(a,b,¢ jsou kon-
xdy O oxdy dx Oy

© stanty), Pa Q jsou funkce a kfivka C je hranicf omezené mnoeZiny §.

4339, Necht u=u(xy) a v=v(x,y) jsou sloZky rychlosti staciondrniho toku

tekutiny. Vypoctéte mnoZstvi tekutiny, které vytede za jednotku &asu plochou S
vymezenou kiivkou C (4. rozdil mezi mnoZstvim kapaliny, kter4 vytede a pfitede
danou plochou) Jakou rovnici spliiji funkce u a v, jestlize je tekutina nestla-

. Ctelndav ploSe § nejsou Zadné zdroje ani odioky kapaliny?
7 4340. Podle Biotova-Savartova-Laplaceova zikona indukuje elektricky proud 7 ,

~ ktery protékd vodicem délky ds, v bodé M =(x,y,z) magnetické pole o intenzité

dH =ki (rxds)

T
kde r je vektor, ktery spojuje element ds s bodem M a k je piisluiny koeficient
Umérnosti. Najdéte jednotivé projekce H, H H, intenzity H v bodé M
v pfipadé vodice tvaru smycky C.
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14. Plosné integral

1. PLOSNY INTEGRAL PRVNIHO DRUHU. JestliZe § je po &istech hladkd oboustranna plocha

g x=x(w, v}, y=y{1,v), z=2{n,2) ((u,v)eld) (H
a f(x,3,2) je funkce definovand a spojitd ve viech bodech plochy §, pak definujeme plony integrdl
prumiko druhu pFedpisem

fff(x,y,z)ds=fff(x(u,v),y(u,v),z(u,v))\fEG—deudv, (2)

om0 ()02 ool 2t 2 (22)? pudxds B0y 22
deE-[E) [au] (au] G {Bv] (Bv EF) 3% v du dv  du dv

Speciding, jestlize md rovnice plochy § wvar z=z(x,) ({x,y)€0), kde z(x,y) je jednoznaéni spo-
jité diferencovatelni funkce, pak plati

FeydS=[ [foogz@md 14 Z) o 22 dxay.

2 | - {f ,JT, {f ,)’- J ax ay N .

Tento integral nezdvisi na volbé€ strany-plochy . JestliZe budeme funkci- f(x,y,z) povaZovat za
hustotu plochy S v bodé (x,3,z), pak m4 integrél (2) viznam hmotnosti této plochy.

2. PLOSNY INTEGRAL DRUHEHO DRUHU. Necht § je hladk4 oboustrannd plocha, § * je jeji strana,
kterou charakterizuje smér normdlovéhe vektoru = {cosa,cos B.cosy} a nechf P=P{x,5.z),
Q=0(x,9:2) a R=R(x,y,2) jsou tii funkce definované a spojité na plode 5. Ploiny integrdl druhého
druhu definujeme jako
| fdeydz +Qdzdx +Rdxdy= ff(Pcos @ +Qcosp +Rcosy)dS. €))
s 5
g Jestlize je plocha § zadédnav parametrickém tvaru (1), pak smérové kosiny normalového vektoru n
maji tvar A ' B c

cosx= =, cosfr———  cosy F—m———,
+1f,42+B-2+C2

+JAT+BE+C? +JA+B+C?

-90.2) ,B= 9(ex) ,C= 9(x)) a znaménko pied vyrazcm se urluje zpusobem odpovida-
z alu,v) . . 0{u,v). alu,v)
g icim zvolenému sméru normidlového vektoru Vphpadc piechodu na druhou stranu § ™ plochy §
g se méni znaménko mtegralu (3).

4341. Jak se li${ hodnoty plo§n)'rch_imegrélﬁ
I =ff(x2+y2+zz)d8 a 12=ff(x2+y2+z2)dP,
s P

je-li § sféra x?+y2+2%=a* a P povrch osmisténu |x| +|y| +|z| =a vepsaného do

této sféry?

4342. Vypoltéte f f 2dS, kde S je &ist plochy x®+2%=2az (a>0) vymezend
s

plochou z=yx%+y2.

-~ 4352, Vypodtéte hmotnost &sti ‘paraboloidu z=
. ktera se méni podle zévislosti p=z.

4352.1 Vypoctéte hmotnost polosféry x? +y2
v kaZdém jejim bod& (x,y,z) rovna z/a.

4353 Vypoctéte moment setrvacnosti homogenni sféry x?+92+z%=42
- 0 hustoté g, vzhledem k ose z.

§ 14, PLOSNE INTEGRALY

Vypoltéte ndsledujici plo¥né integraly prvniho druhu:

" 4343, [[@+y+2dS, kde S je plocha x2+y? +2% =42, 220,
A}

4344, ff(x2+y %)dS, kde S je povrch télesa yx2+y%<z<1.

4345. f f

4346. ff |xyz|dS, kde § je é4st plochy z=x%+y2, kterou vymezuje rovina z=1.

, kde § je povrch étyfsténu x+y+z<1, £20, 20, 22 0.
(1+x+y)

. 4347 f f — kde § je elipsoid a % je vzdilenost jeho sttedu od te¢né roviny

f_ﬂ,,v,bode dS$ elipsoidu.

4348. f f zdS, kde § je ¢ist 3roubové plochy x =ucosv, y=usinv, z =v
((_)<us<a;0<v<21t). | | :

4349, ffzgdS, kde S je &st povrchu kuzele x =rcos@sine, y=rsin@sina,
z=rcose (0<r<a; 0<@<2m) a o je konstanta [O < a<—;—) . |

4350. f f (xy +yz +zx)dS, kde SI Je cdst kuZelové plochy z = \/962_-!-)'2 , kterou
vymenfie plocha x?+y2=24x.

- 4351. Dokaite Poissontiv vzorec

fffax+by+cz )dS = 2nff(u\/a +b%+¢? )

kde S je sféra x2+y2+22=1.

1
—2-(x2+y2) (0<z<1) o hustotg,
+z2=4? (220) o hustotg, kter j je

- 4352.2 Vypociéte statické momenty homogenni trojdhelnikové desticky x+y +z=a
(x >0,y20,220) vzhledem k soufadnicovym rovinim.

(z20)
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4354. Vypoctéte moment setrva¢nosti homogenniho kuzelového plasté '
2 .2 2

X Y _E
;'E"'E b2 O(OSZSb)

o hustoté g, vzhledem k pfimce y=0, z=b.

4355. Vypoctéte soui"adnice t&Zi%te &sti homogenni plochy z=yx?+y?, kterou
vymezuje plocha x? +y* =ax. '

4356, Vypocltéte soutadnice t€Zisté homogenni plochy z =ya?-x7-y*
(x20;520;x +y<a).

4356.1 Vypoctéte polarni momenty setrvaénosti

I, ff(x +5 +z2)dS

nasledujlcmh ploch S:a) povrchu krychle max {|x|, |y, |z|}=a;b) celeho povrchu
vilce x2+y?<R?%; Osz<H.

4356.2 Vypodtéte momenty setrvacnosti trojihelnikové desl:lcky X+ y +z=1
(x20,y20,220) vzhledem k soufadnicovym rovinim.

4357. Jakou silou pfitahuje homogenni komoli kuzelovd plocha x=7cose,
y=rsing, z=r (0<¢p<2mn,0<bsr<a) o hustot¢ g, bod o hmotnosti m, ktery se
nachdzi ve vrcholu odpovidajiciho kuzele?

4358. Vypoctéte potenc1al homogenni stérické plochy §: x%+y*+2%=a ? 0 hustoté
@, vzhledem k bodu (x,5,.2 ) 4. vypoctete mtegral

[
kde r=‘/(x —x0)2+(y—y0)2+(z 7-0) .
4%&WmdémFm=ffju%@£Jde

I+Jl+z:!

222 pro x2+y=2+z2s 1,

. pro_;c2 +y2+z2> 1,

_{1-x%-y
‘ f(x!yyz) _{ 0
Sestrojte graf funkce u =F(t).

4360. Vypoctéte integrdl F(f) = f f b (x,y,z)dS kde

x +y +z” —[

f(x,y’z): x2+y2_ pro ZZW,
0 pro z<yxZ+y%

" 4365. ff dydz |
% X

§ 15. STOKESOVA VETA

4361. Vypoltéte integril F(x,y,z,t) = f f fE,.0)dS, kde S je stéra
E-x)+(n-9"+(C

S
-2)?=t* o proménném poloméru a

_J1 pro B2 +n?+¥<a?
f(E,ﬂ,C) {0 pl'O E2+n2+‘:22a2’

za predpokladu, e r=yx? +y2+22>a>0.

Vypodtéte nisledujici ploiné integraly druhého druhu: -
4362. ff(xdydz +ydzdx +zdxdy), kde S je vn&j3i strana sféry x2+y? +z%=a*.
s

4waﬁﬁm@aqwmmMﬁ@m@¢®fm4wxm@pmw@mmmm

e

a'$S je vnéjif strana povrchu rovnob&Znosténu O <x<a; 0sys<h; O<zse.

4364. f f (y-2)dydz + (z -x)dzdx + (x -y)dxdy, kde § je vné&jii strana kuZelové
S

plochy x*+y*=2% (O<z<h).

dzdx  dxdy
+
y Z
4366. ffx 2dydz +y2dzdx +z2dxdy, kde S je vn&j3i strana sféry
s :

2 2 2

) , kde S je vnéjii strana elipsoidu ¥ .l

7
a? b? e

x-a) +(y-b)’+(z-c’=R2.

§ 15. Stokésova véta

i Jestlize P=P{x,y,z), Q=0(x,y.2), R=R{x,y,z) jsou spojité diferencovatelné funkce a C je
chnoduché uzaviend a po &dstech hladk4 kiivka, kterd je hranici omezené a po &istech hladke
oboustranné plochy §, pak plati Stokesoua véta

ose. cosﬁ cosy
d
N A
. _ P Q R ,
kde cosa, cosP, cosy jsou smérové kosiny normalového vekioru k ploZeS orientované tak, aby
kiivka C obihala proti sméru hodinovjich rutidek (pro pravotodivou soustavu soufadnic).

§de +Qdy +Rdz= ff

FR R O
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4367. UZitim Stokesovy véty vypoctéte kiivkovy integrél

ydx +zdy +xdz,
c
kde C je kruznice x*+y®+z%=a?, x+y+2=0 orientovan4 proti sméru hodino-
vych rucicek pfi pohledu z kladné &sti osy x . Vysledek ovéfte pifmym vipoctem,
4368. Vypoctéte integril
f (?-yz)dx + (32 -xz)dy + (22 -xy)dz
p(AB)
podel ¢asti $roubovice x =acosg, y =asing, z= —it—(p odbodu 4= (a 0,0) k bodu
B=(a,0,h). 2
NAvop: Dopliite knvku p(AB} tiseckou a poufijte Stokesovu vétu,
4369. Necht C j je uzaviens kiivka, ktera le{ v roving xcosa + ycosP + zcosy =0

(cosa, cosP, cosy jsou smérové kosiny normilového vektoru rovmy) a ktera
vymezuje plochu §. Vypoctete

e dy da
Eﬁcosa cosP cosy|,
€| x y z

pfi¢em? kfivka C je kladné& orientovéna.

UZitim Stokesovy véty vypoctéte nasledujici integraly:

4370, é (y +2)dx +{z +x)dy +(x +y)dz, kde C je elipsa x=asin’t, y=2asintcost,
v .
z=acos’t (0<¢< ) orientovan4 ve sméru ristu parametru £ .
4371. Y (3 ~z)dx +(z -x)dy + (x -y)dz, kde C je elipsa x2 +y2 =a?, hd +%’= 1
c Co e

@>0,h> ()) orientovani proti sméru hodinovych rudicek vzhledem ke kladné
casti osy X '

4372, (y +z B +(x® +z2)dy+(x +y2)dz kde C_|e krwka x +y +z —QRx
¢

x?+ ¥ 2-9rx (O <r< R, 2> 0), kterou orientujeme tak, Ze nejmensi &dst vnejsf sfé-
rické plochy x? +y% +22=2Rx, kterou tato kfivka vymezuje, zistdva po levé strané.

4373. 4;(3; —zﬂ)dxi-(z -x2dy + (x? —y2)dz kde CJerezpovrchukrychle 05x<a,

3
O<y<a, 0<z<a rovinou x +y+z==q s orientaci proti sméru hodinovych ruc:cek
vzhledem ke kladné &sti osy x.

§ 16. GAUSSOVA-OSTROGRADSKEHO VETA

4374. §y222dx +x%z2dy +x?y%dz, kde C je uzaviend kiivka x =acost, y =acos21,

z=acos3t s orientaci ve sméru ristu parametru ¢ .

4375. Dokaite, 7e funkce W(x,y, ;z) =ki f f VEOS_(:’ﬂdS (k =const), kde S je plocha
, , , . .

vymezena kiivkou C, n je normalovy vektor plochy § a r je vektor prilvodice,
ktery spojuje bod prostoru (x,y,z) s proménnym bodem (§,n,{) kiivky C, je
potencidlem magnetického pole H, které indukuje elektrlcky proud ¢ protékajici
kiivkou C (viz Gloha 4340).

~ § 16. Gaussova-Ostrogradského véta

Necht § je po &stech hladkd plocha, kterd je hranidi télesa V, a P=P(x,y,z), Q=0(x.y,z},
R =R (x,y,z) jsou funkce spojité spolu se sv¥mi parcidlnimi derivacemi prvniho fidu na mnozing
Vu §. Pak plati Gaussova-Ostrogradskéhe véta

ff(Pcosa +QcosP +Rcosy)dS = fff[ or, % + E-E—] dxdydz,

ox dz

kde cosa, cosP, cosy jsou sm&rové kosiny vnéjiitho normilového vektoru plochy §.

Pomoci Gaussovy-Ostrogradského véty transformujte ndsledujici plo3né integraly
(pfedpoklidime, Ze hladkd plocha § vymezuje téleso V' konedného objemu

a cose, cosP, cosy jsou smérové kosiny vnéjstho normilového vektoru plo-
chy §):

4376. ffx Sdydz +y3dzdx +23dxdy.
s

43717. ffyzdydz +zxdzdx +xydxdy.

4378, ffxcosoz +ycosfd +zcosy S

YxZrytez?

4379. ff %cosoc +§t~£cosﬁ +—aﬁcos‘\{) ds-
| e & oz

4380. j‘[ -(?E -
5 %

g cos @ + E_ﬁ cosp + E"ﬁ cosy|dS-
oz oz ox) - ox oy :
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4381. Dokaite, Ze je-li § uzavfeni jednoducha plocha a I libovolny konstantni
vektor, pak f f cos(n,f)dS=0, kde n je vnéjéi normilovy vektor plochy §.

4382 Dokazte Ze objem télesa, které vymezuje plocha $, je roven

V= 3 f f (xcosa +ycosP +zcosy)dS, kde cosa, cosP, cosy Jsou smérové Kosiny
5

vn&jstho normalového vektoru plochy §.
4383. DokaZte, Ze objem kuZele vymezeného hladkou kuZelovou plochou

F(x,y,2) =0 arovinou Ax +By +Cz +D =0 je roven V=-;TSH, kde § je obsah pod-
stavy kuZele, kterd leZi v dané roving, a H je jeho vyika.

4384. Vypoctéte objem télesa vymezeného plochami z=+¢ a

X =a COsu cos v +bsinu sinv, y=a cosu sinv ~b sin# cosv, z =c siny.

4385. Vypodtéte objem télesa vymezeného plochou x =ucosv, y =usinv,
z=-~u+acosv (u20)arovinami x=0, z=0 (a>0).

4385.1 Vypodtéte objém télesa, jehoi hranici je torus x=(b+acosy)cosey,
y=(b+acosy)sing, z=asiny (0<axbh).

4386. DokaZte platnost vzorce
ff flx,3,2,6)dS + '”‘f fdxdydz {t=0).

{ [[] S t)dxdydz}
x? *y +r2y?

2
wyfertst PR RET R TE

Pomoci Gaussovy-Ostrogradského véty vypoététe nasledujici plosné integraly:
4387. ffx *dydz +y*dzdx +zdxdy, kde § je vn&ji{ strana plasté krychle O <x<a,
s

O<yz<a, Ozz<a. |
4388. [ [ dydz +y°dzdx +2°dxdy, kde S je vn&jsi strana sféry x2+y2+2%=a”.
s

4389. ff(x =y +z)dydz +{y -z +x)dzdx +(z -x +y)dxdy, kde § je vnéj¥i strana plochy
s

|x=y+z] +|y-z+x| +|z-x+y| =1.

4390. Vypoctéte f f (x*cosa +y*cosP +z%cosy)dS, kde § je dast kuzelové plochy

x2+y%=2% (0<z<h) a cosa, cosB cosy jsou smérové kosiny normilového
vektoru této plochy. :
NAvop: UvaZujte navic &ist roviny z=h, 2% +y sh 2,

......

§ 16. GAUSSOVA-OSTROGRADSKEHO VETA
4391. Doka¥te rovnost

fffMg:lffcos(r,n)dS,
v ’ 2 S

kde § je uzavieni plocha, kterd vymezuje téleso V, n je vné&ji normdlovy vektor
plochy § vjejimbodé (€,n,{), r= \/(TE -x)2+ {1 -y»? +({ -2)* a r je vektor privodice
spojujiciho bod (x,%,2) s bodem (§,7,{).

4392. Vypocltéte Gaussiv integrdl

Ix,9,2) = ff cos(r,n)ds

kde § je jednoduchi uzaviena hladka plocha, ktera vymezuje téleso V, n je
vnéj¥ normélovy vektor plochy § v bodé (§,n,{), r je vektor priivodice
spojujiciho bod (x,y,z) s bodem (€, n,{)a r =3/ (€ -x)? +(n-y)% +({ -2)*. Uvaiujte
dva pfipady: a) t€leso vymezené plochou S neobsahuje bod (x,%,2); b) téleso
vymezene plochou § bod (x,y,z) obsahuje.
d%u 62u a u
dx? 8y2 9z°

4393. Dokaite, Ze je-li Au= a § je hladka plocha, kterd vymezuje

“téleso V o kone¢ném objemu, pak plati nasledujfci vztahy:

”_ds f”Audxdydz;
b) ”u—ds f”[[ ax} [ ]2+[%u;)2}dxdydz+fffulludxdydz,

kde u je funkce spojitd na mnoziné vus spolu se svymi parcidlnimi derivacemi

do druhého fidu véetné a > je jeji derivace podle vnéjsi normily k plose S.

4394. DokaZte druhou Greenovu vétu v prostoru:
' ' du &
Au Av

f” dxdydp”a anlds,
u v
V 5 u U

kde téleso V je vymezeno plochou S, n je smérovy vektor vnéj3i normdly plochy §
a funkce u =u(x,y,z), v =v (x,y,2) jsou dvakrit diferencovatelné na mnoziné V'u §.

4395. Funkce u=u(x,y,z), kterd md na néjaké mnoZiné spojité derivace do
druhého fadu véetné, se nazyva harmonickon na této mnoZing, jestlize
Fu Fu Su
Au= + +
dx? ay? az°
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Dokaite, Ze jestlife je « harmonickd funkce na omezené uzaviené mnozing ¥,
kterd je vymezena hladkou plochou §, pak plati nasledujici vztahy:

)”—ds 0; bf”[%‘]g (5“ | ]dxdydz Hu—ds

kde n je vnéjif normdlovy vektor plochy §. Pomoci vztahu b) dokaZte, Ze harmo-
nickd funkce na mnoZiné V je jednozna¢né urdena hodnotami na jeji hranici §.
4396. Dokaite, Ze je-li funkce wu=u(x,y,z) harmonicki na omezené uza-
viené mnoZiné V, kterd je vymezena hladkou plochou S, pak

u(x,y,2) = '—“Lff uM+l% ds
. 41‘:8 L an

kde r je vektor priivodice spojujiciho vnitfnf bod (x,y,z) mnofiny ¥ s bodem
€. n.¢) plochy §, r =,/(E 2P+ (-2t a n _je vnéjsi normélov;’; vektor
plochy S v jejim bodé (£,1,{).

4397. Dokazte, Ze je-li funkce u =u (x,y,z) harmomcka uvnit sféry S o poloméru R
a stiedu v bode (xo, Vo2 o) » pak

(XY 2g) = u(x,y,2)dS (véta o stiedni hodnoté).

4398. DokaZte, Ze funkce u=u(x,y,z), ktera je spojitd’ na omezené uzaviené
mnoZiné V' a harmonicki uvnitf této mnoZiny, nenabyvd své maximalni ani
minimdlni hodnoty ve vnitfnim bodé, pokud nenf identicky konstantni funkcf
(princip maxima).

4399. Téleso V bylo ponoteno do kapaliny. Pomoci Pascalova zakona dokazte, Ze
téleso je nadlehéovino silou orientovanou vzhiiru, jejf? velikost je rovna tize
kapaliny stejného objemu, jako je objem télesa (Archimedtiv zikon).

4400. Necht §, je koule (£-x)?+(n y)2+(C 2?=t* o proménném poloméru
a necht f (£,n,{) je spojitd funkce. Doka’te, e funkce

(’y’zt)— fff(EnC)dS

S Lo u tu 62u &%u
Je TeSenim winové rovnice s = s podatecnimi podminkami
8x° 9y* 9z ar?

=0, —f(x,y,_z).

(20 at

U

NAvOD: Vyjidiete derivaci aa—? pomoci trgjného integrdlu.

§ 17. ZAKLADY VEKTOROVE ANALYZY A TEQRIE POLE

§ 17. Zaklady vektorové analyzy a teorie pole

T LA Lo R e e R U

1. GRADIENT. JestliZe u(r) =u(x,y,z), kde r =xi +3f +zk, je spojité diferencovatelné skalarni pole,
pak jeho gradientem nazveme vektor

j neboli gradu =Vu, kde V =£56; +j‘% +k§£. Gradient pole u m#vbodé (x,v,z} smér normalového

E vektoru ekvipotencidind plochy u(x,y,z) =C, kterd timto bodem prochdzi. Velikost tohoto vekioru je

et 25 (5]

¥ 2 jeho smér je smérem ncjvétﬁho spadu pole .
# Derivace pole u ve sméru I{cosa,cosf,cosy} mé tvar

i?)i—gr dul——cosa +a—cosﬁ +a—cosy
el dx 9y gz

| 2. DIVERGENCE A ROTAGE VEKTOROVEHO POLE. Je-lia(r)=a_(x,y,2}i +a, (x;y, z)j+a (x.9,2)k
® spojité diferencovatelné vekiorovd pole, pak skaldr

da_ da. Oda
diva=Va= LA z
dx dy Oz
¢ nazyvame divergenci tohoto pole. Vektor
i j ok
g 4 @

rote =Vxa=|3- Iy 9z
a a @
x ¥ z
nazyvame rofaci vektorového pole a.

3. TOK VEKTORU PLOCHOU. JestliZe vektor a {r) urfuje n&jaké vektorové pole na mnoZiné Q, pak
tokem vektoru danou plochon S leZici v mnoziné 0 danym smérem, ktcry charakterizu_]e normdlovy
vektor n{cosa,cosP,cosy), nazjvime integral s

ffands=ff(axcosa +aJc05|3 +a,cosY)dS,

. kde a_=a-n je projekce vektoru do sméru normilového vektoru. Gaussova-Ostrogradského véta md
ve vektorovém zdpisu tvar .
a,dS= divadxdydz,
1l

kde § je plocha, kterd vymezuje téleso V' a n je jednotkovy vnéjsi normalovy vektor plochy §.

4. CIRKULACE VEKTORU, Kftvkovym integrdlem vektoru a(r) na n&jaké kfivece C (prdce pole),
nazgvame hodnotu
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fadr =faxdx +ajdy +a,dz.
C

E JestliZe je kiivka € uzaviend, pak tento kiivkovy integral nazgvime cirkulaci vektoru @ na kiivee
i C. Ve vektorovém zdpisu ma Stokesove véta tvar

€
kde C je uzaviend kiivka, kterd vymemije plochu §, pfitem? smér normilového vektoru n
plochy je tieba zvolit tak, aby pro pozorovatele siojictho na plose S s hlavou ve sméru norma-
lového vektoru byla kiivka C orientovina proti sméru hodinovych rutiéek (pro pravotodivy sou-
Fadnicovy systém).

9Sadr=ff(rota)nd8,
L

5. POTENCIALNI POLE. Vektorové pole a(r), které je gradientem né&jakého skalirniho pole %,
gradu =a, nazyvime potencidlnim polem a veli¥ina u se nazyvi potencidlem pole. Je-li potendil »
jednoznacnou funkci, pak plati

fadr=u(B)-—u(A).
AR

Specilné je v tomto piipadé cirkulace vekioru @ rovna nule. Nutnou a postacujici podminkou
k tomu, aby vektorové pole a, které je definovino na souvislé oblasti, bylo potencidlnim polem,
je rovnost rota=0.

4401. Urcete velikost a smér gradientu skaldrniho pole
u=x2+29%+322+xy+3x-2y -6z v nésledujicich bodech:
a) (0,0,0); b) (1,1,1); ¢) (2,0,1). Ve kterém bodé je tento gradient nulovy?

4401.1 Necht u=xy -z°. Uréete velikost a smér gradientu skalirntho pole u

v bod& (-9,12,10). Cemu se rovna derivace % ve sméru osy soumernosti sou-
fadnicového kvadrantu xy?

4402. Ve kterjch bodech prostoru xyz je gradient skalarntho pole
w=x? +y? +z 3”--3x-yz a) kolmy na osu z; b) rovnobéZny s osou z; ¢) nulovy?

4403. Necht u =lnl je skaldrni pole, kde r =‘/(x -a)? +{y-b)? +(z -¢)*. Pro které
r .

body prostoru xyz plati rovnost |grad u| =

4404. Sestrojte ekvipotenciilni plochy skaldrniho pole

u= \/x Zayte(z+8) +fx?+y e (z-8)2. Najdéte- ekvipotencidlni plochu, kterd

prochézi bodem (9, 12,28). Cemu se rovnd max « na mnoZiné x> +y2422<367
4405. Vypoctéte. ihel ¢ mezi gradienty pole u = v bodech (1,2,2)

x2+y2+z
a(-3,10).

§ 17. ZAKLADY VEKTOROVE ANALYZY A TEORIE POLE

4406, Necht « = Je skaldrni pole. Sestrojte ekvippténciélnf plochy

PR

a plochy se stejnou velikosti gradientu. Uréete infu, supu, inf |grad u],
sup |grad | na mno¥iné 1<z<2.

4407. S pfesnosti na nekone¢né malou velidinu vy%$tho fadu uréete vzdilenost
mezi dvéma nekonetné blizkymi ekvipotencidlnimi plochami w(x, 1) =¢

a u(x,9,z) =c +Ac v bodé (xp:¥ge2g)» kde wx,y,2,) =¢ (grad U (X, ¥oeZ,) # 0).
4408. DokaZte platnost nasledujicich vztahi:
a} grad (u +c)=grad (¢ je konstanta);
b) grad cu=c grad u (¢ je konstanta); ¢ grad (u+v)=grad u +grad v;
d) grad uv=vgrad u +ugrad v; e) grad (1% =2u grad u;

f) grad f'tu) =f'(u) grad u.
4409. Vypodt€te: a) grad r; b) grad r?; ) grad —i-, kde r=xi+yj+zk.

4410. Vypottéte grad f(r), kde r=yx2+y2+27,
4411. Vypoltéte grad (cr), kde ¢ je konstantni vektor a 7 je vektor privodide
z:pocatku soustavy soutadnic.

4412. Vypoététe grad {|c X r|*} (¢ je konstantni vektor).

4413. Doka’te rovnost grad f(u,v) = f grad %+ :f grad v.
v

4414. DokaZte rovnost V*(uv) =uv2v +vV2u +2VuVuy,
kde V=ii +_;_a_ +k_a-, Vogy= & " & + ‘_32 )

dx "oy oz ox? 3y? 822
4415. Dokaite, 7e jestlize je funkce u=u(x,y,z) diferencovatelnd na konvexnf
mnoZiné Q a | grad | <M, kde M je konstanta, pak pro libovolné dva body A4, B
z mnoZiny Q je |u(A)-u(B)| <Mg(A,B), kde g(4,B) je vzdalenost mezi body
AaB.
4415.1 Vyjidfete gradient funkce u=u(x,y,z) a) v cyhndnckych soufadnicich;
b) ve sférickych soutadnicich.

2 .2 2

4416. Najdéte derivaci skaldrniho pole u =% +y—2 + 5—2 v daném bodé¢ (x,y,z) ve
a® b° ¢

sméru vektoru jeho privodice r. V jakém pfipadé bude tato derivace rovna

velikosti gradientu?

4417. Najdéte derivaci skalirniho pole u=1/r, kde r=yx2+y?+22, ve sméru
I=(cosa,cosP,cosy). V jakém piipadé je tato derivace nulova?
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4418, Najdéte derivaci pole u=u(x,y,z) ve sméru jeho gradientu v=v(x,y,z).
V jakém piipadé bude tato derivace rovna nule?
4419. Urcete tvar vektorového pole @ =¢ X grad u, jestlize

w=arceg

ac=i+j+k.
vy
4420. Urcete silocary vektorového pole a=xi +yj +2zk.
4421. Dokazte pfimym vypoctem, Ze divergence pole a nezdvisf na volbé soustavy
soufadnic.
4422. DokazZie, Ze

diva(M)= lim — [ [a,ds,

(5)~0 |

kde § je uzaviend plocha, kterd vymezuje téleso o objemu V obsahujicibod M, n
je vnéjii normalovy vektor plochy S a d(S) Je prumer plochy S
4422.1 Vypodtéte divergenci pole
-ix +jy +hz

Vx +y

v bodé (3 4, 5) Cemu se piiblizné rovna tok Il vektoru a nekone¢né& malou
sférou (x-3)°+(y -4)2 +(z-5)?=¢??

a-=

i j k

Jd d g
4423. Vypoctéte div EM _8; Ent

0@

4424. Dokaite nasledujici vztahy:

a) div (@ +b) =div a +div b; -

b) div (ue)=c gradu (c je konstantni vektor a u je skalarni pole); -
¢) div (za)=udiv e +agrad u.

4425. Vypociéte div (grad u).

4426. Vypoctéte div [grad f(r)], kde r=yx?+y?+z?
div [grad f('r)] 0r

4427. Vypoiiéte: a) div r; b) div r/r.

4428. Vypoctéte div [f(r)c], kde ¢ je konstantni vektor.

4429. Vypodtéte div [f(r)r]. V jakém pfipad¢ je divergence tohoto vektoru rovna
nule? '

4430. Vypoctéte: a) le (u grad u); b) div (u grad 7).

. Pro kieré funkce f je

§ 17. ZAKLADY VEKTOROVE ANALYZY A TEGRIE POLE

4431. Tekutina, kterd vypliiuje prostor, rotuje kolem osy z proti sméru hodi-
novych rucifek s konstantni ihlovou rychlosti . Vypoététe divergenci vektoru

rychlosti v a vektoru zrychleni w v bodé (x,9,z) v uréitém ¢asovém okams3iku.
.~ 4432, Urlete divergenci gravitatniho silového pole indukovaného koneénym

poctem hmotnych bodi.

- 4433. Vyjidrete divergenci rovinného vektoru a =a (r, ) v polarnich soufadnicich

raeg. .
4434. Vyjidfete diva(x,y,z) v ortogondlnich kiivodarych soufadnicich w,v,w,

JestliZe x =f(u,v,w), y =g (u,v,w), z =h(u,v,w). Jako speciilni ptipad odvod'te vyraz

pro diva v cylindrickych a sférickych soufadnicich.

NAvOD: UvaZujte tok vektoru & nekoneéné malym rovnobéZnosténem, ktery jevymezen plochami
¥ =COoNst, U =const, w=const.

4435. Doka’Zte platnost ndsledujicich vztahi:

-a) rot{a +b) =rota +roth; b) rot(ua)=urota +grad (xxa).

4436. Vypociéte: a) rot r; b) rot [f(r)r].
4436.1 Vypodtéte velikost a smér vektoru rot a v bodé (1,2, -2), je-li
a=2i+Zj+Zp
: z X y
4437 Vypoctéte: a) rot cf(r); b) rot[e X f(r)r] (c je konstantm vektor).
4438. Dokaite, 7e div (a X b) =brota -aroth. :
4439. Vypoctéte: a) rot(grad u); b) div (rota).

- 4440. Tekutina, kterd vypliiuje prostor, rotuje kolem bsy {=(cosa,cosP, cosy)

konstantni Ghlovou rychlostfl @. Vypoctéte rotaci vektoru obvodové rychlosti
v v bodé€ (x,3,z) v uréitém casovém okamziku.

- 4440.1 Najdéte vyjadieni rotace rovinného vektoru @ =a (r, @) v polarnich soufad-

nicich r a ¢.

- 4440.2 Vyjadiete rota (x,7,2): a) v cylindrickych soufadpicfch'; b) ire sférickych
- soufadnicich.

Vypoctéte tok vektoru r:
b) podstavou tohoto kuzele.

a) plastém kuZele x?+y2<z? (0<z<h);

. 4442, Vypoliite tok vektoru a= iyz+jxz +kxy: a) plastem vilce x*+y%<q?

(0<z<h); b) celym povrchem tohoto vilce.

4443, Vypoctéte tok vektoru pruvodlce r plochou 2=1-yx2+y? (0<z<1).
4444 Vypottéte tok vektoru a=x’i+y%j+z’k kladnym oktantem sféry
2245242221, %20, 320, 22 0.




VICEROZMERNE A KRIVKOVE INTEGRALY

4445. Vypoctéte tok vektoru a =yi+zj +xk celym povrchem pyramidy vymezené
rovinami x =0, y=0, z=0, x+y+z2=a (@ >0). Vysledek ovéfte pomoci Gaussovy.
Ostrogradského véty.

4445.1 Vypoctéte tok vektoru @ =x>i+y’j+2z%k sférou x2+y% +22=x.
4446. Dokaizte, Ze tok vektoru rot a plochou § zadanou rovnici

r=ru,v) ((u,v) EQ)Jerovenffa ds ff( 22]a‘! udv,

kde a¢,=a-n a n je jednotkovy normélovy vektor plochy S.

4447. Vypoliéte tok vektoru @ =mr/r® (m je konstanta) uzaviénou u plochou §,
ktera obklopuje poditek soustavy soufadnic.

4448. Vypoctéte tok vektoru

a(r)=2g‘rad[—'4j:r],

kde ¢; jsou konstanty a 7; je vzdédlenost bodu M; (udroje) od pohybujictho se
bodu M(r), uzavienou plochou §, kteri body M=(G=12,.

4449. Dokaite, Ze
ff —dS= fffvgudxdydz

jestlize plocha § vymezuje teleso V.

4450. MnoZstvi tepla, které vt¢ka do tepelného pole # za jednotku &asu elemen-
tem plochy dS, serovni dQ = -kngrad uds$, kde % je koeficient tepelné vodivosti
a n je jednotkovy normalovy vektor plochy $. Vypoltéte celkové mnozstvi tepla,
které absorbuje téleso V' za jednotku €asu. Pomoc{ vztahu pro rychlost zvy$ovini
teploty odvodte rovnici pro teplotu télesa (rovnici vedeni tepla).

4451. Nestlacitelnd tekutina, kterd vypliiuje prostor V, je v pohybu‘ Za pied-
poldadu Ze v t€lese V nejsou 2idné zdroje ani odtoky, odvod te rounict kontmmty

-fd—+d1v (ov)=0,

.»n) obklopyje.

kde g =0(x,y,z) je hustota kapalmy, v vektor rychlosti.a ¢ ¢as.

NAvoD: Uvafujte tok tekutiny libovolnym t&lesem w, které je &asti V.

4452. Vypoctéte praci vektoru a =r podél casu Sroubovice r =iacost +jasint + kbt
(O<t<2m).

4452.1 Vypociéte praci vektorového pole a —%z +l] +lk podel usecky, kterd

spojuje body (1,1,1) a (2,4,8). *

§ 17. ZAKLADY VEKTOROVE ANALYZY A TEORIE POLE

T 4452.2 Vypoététe prici vektorového pole a=ie? *+je* ¥ +ke™ ™ podél tisecky
. s krajnimi body (0,0,0) a (1,3,5).
- 4452.3 Vypoltéte prici vektoroveho pole a=(y +2)i +(z +x)j + (x +y)k podél kratsi
. ¢sti poledniku sféry x% +y% +22=25, ktery spojuje body (3,4,0) a (0,0,5).
.. 4453. Vypoctéte pric vektoru a =f(r)r, kde f je spojitd funkce, na drize AB.
‘ 4454. Vypoctéte cirkulaci vektoru a = -yi +xj +ck (¢ je konstanta): a) na kruinici
x2+y?=1, z=0; b) na kruznici (x-2)%+y%=1, z=0.
4455. Vypoctéte cirkulaci I' vektoru
a=grad [ arctg %)
na kiivce C ve dvou piipadech: a) C neobklopuje osu z; b) C obklopuje osu z.

= 4455.1 Je zaddno vektorové pole a=-2-i __x‘/:’. +/xyk. Pomoci vipoltu rota v bodé
Tz

(L 1, 1) vyjadrete piibliZné cirkulaci I" vektorového pole nekoneéné malé kruznice

-1+ -1 +-1)? =€, (x-1)cosa+(y-1)cosf +(z - 1)cosy =0,
¢ kde cos?o +cos?P +cos?y=1.
i 4456. Rovinné staciondrni proudéni tekutiny se popisuje vektorem rychlosti
o w=u(x,y)i +v(x,y)f. Vypoctéte: 1) mnoZstvi Q tekutiny, kterd protékd uzavienou
:* kiivkou C, jeZ vymezuje plochu § (prifez vytoku tekutiny); 2) cirkulaci T' vektoru
" rychlosti na kfivce C. Jaké rovnice spliiuji funkee u a v, jestlie je tekutina
nestlacitelna a jeji tok md nulovou rotaci?
;. 4457. Dokaite, Z¢ vektorové pole a =yz (2x +y +z)i +xz(x + 2y +2)j +xy (x +y + 22)k je
. potencidlni, a najdéte jeho potencial.
o 4457.1 Pfesvédcete se, Ze pole

2 \ X . x
a:= i- 7= k
\_ R (y +Z)U2 (y +Z)3/2 (y+z)3/2

je potencidlni, a vypoctéte prici pole na draze, ktera spojuje v kladném oktantu

» body (1,1,3) a (2,4,5).
4458. Urcete potencidl gravitaéniho pole a = - %r, které je indukované bodem
T

o hmotnosti m umisténym v pocatku soustavy soufadnic.

4459. Urlete potencidl gravitaéniho pole, které je indukované soustavou téles
0 hmotnostech m (i =1,2,...,n) umisténych v bodech M, (i=1,2,...,n).

4460. DokaZte, Ze vektorové pole a=f{r}r, kde f(r) je jednozna¢nd spojitd
funkce, je polem potencidlnim. Najdéte potencidl tohoto pole.
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16.0; 1. 17. —ﬂ; JZ. 22, -1,01 <x<-0,99. 23.x<-8;x212. 24.x<~%. 25.0<x<§. 26, |x|s6.

27, x> -, 28 -Lax<l 29 3- '/_< <3 \/_, 520 <530 - 5y Dyruhe. 32, Due dislice.
P 2 2 10 10 10

33. Neni vétif neZ 0,41%. 34. 9,9102cm 2¢5<10,0902cm?; A<0,0902cm?; 5<0,91%.

35, 3,93g/cm®+0,27g/em?; 5<7,5%. 36. 5<3,06%. 37. 172,480m*<V<213,642m?;

V= 192660m3*20982m 6=12%. 38. A<0,17mm. 39. A<0,0005m. 42. d)Nz— by Nz 2
\Js
log—

£ .d) Nz loge logFE
og2 log 0,999

log?2
48.0. 49, i 50. l—b 51. l 52 -l— 53. i 54. 2. 55.3. 56.1. 57.2. 67. a) druhy; b) prvni;
3 1- 2 2 3 3
cdruhy. 72.¢ =2,7IB28... 92. Je rovna 1 pro 2+#0; je z uzaviencho intervalu [-1,1] nebo neexistuje pro
_ 1000'™
100010001

101.0; 15 1; 1. 101.1 —3%; 5 -2;2, 102, -1; l%; 01 103.G; 2;0; 2. 104. -4; 6; -4; 6. 105. -é

11, 106, ~e0; ooy —oo; +eo, 107, —eo; =15 ~eo; —m, 108. 0; 4o, 0; 4=, 109, —eo; o —o0r oo, F10, -5

=2330|ogl. 43.a]N2E;b)N2[ ]';c)sz"’. 46, 0. 47.0.
A

3 1 5
ax0. 96. =1z 97.x5=on. 9B.x =2,49-10%%. 99, x =x,=-120. 100.x,,=20.

HH

5,0;0. 11L -l; 1. 112, —£'+l se+l. 113.0;1. 114.1;2. 115.0;1. 116.0;1. 117. l;l; —1—;
S 2 2 2° 3
«; 0. 118.V3echna redlnd &isla mezi 0 a 1, véetné. 119. 1; 5. 120. a; b. 127. a) diverguje; b) mize jak

divergovat, Lékikonvergova[. 128. a) nelze; b) nelze, 129, Ne. 130.Ne. 144.a)(; b) 0. 147. In2.

1
2
1,2

l48.%(a+2b). 151, -y < +oo, x= -1, 152, -w<x<-/Fa 0sx<y3. 153, -1sx<l. 154.a) |x|>2;

by x>2. 155, 4hn<x s (2k+ 1)%n? (£=0,1,2,..). 156. |¢|s< Jja —(4k—l)s|x| ’—(4k+1]

(k=1,2,.. Lo (£=0,1,2,..}. 158. x>0, x#n {a=1,2,.

cx<ta =t _cxe-
Qk 1 2k 2k +1 2k+
159, —-;Tsxsl. 160. |xfkn|s% (h=0,%1,22,.3, 161. HF@ ey 0™ ¥ (=0 +1,+2, ).

162. x=-1,-2,-3, ..ax=0.163. x<0,xz-n (n=1,2,...). 164, 1<x<2. 165. x=%, 1, % 9, ..
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7 200. f(x})=10+5-2%, 203.a) Zhkn<x<m+2km (k:O,il,-_f-2

165.1 ¥> 4. 165.2 hﬂ+-:—sx<k1t+-121 (k=0,%1,..). lGSSOsxS%aﬁsxss—;. 166. -1sx52;

3

Osysl%. 167. 2kn+%<x<2k1‘:+% (E=0,+1,£2,..); -w<y<log3. 168, -=<x< +=; Oxysm,

169. 1 <x< 100;

—%sysg. 170. x= 2qp+1’ kde p a g jsou celd &isla; y =1, 171. P=2 +2[1 -%]x

0 <x<kh); S=bx[l-%) O<x<h). 172.2=/I00-96cosx (0<x<m); §=24sinx {(0<x<m),
- — )2 +

a-b . a+b; _yletb _(@-x) ,proa—bsxsa.
2 2 2 - a-b 2

174. m(x) =0 pro —=<x<0; m{x)=2x pro 0<x<1; m(x)=2 pro 1 <x<2; m{x)=3 pro 2<x<3; m(x)=4

173. S-be pro Osxs--2—b §= h(x—a4b]

pro3<x<+=. 178. £ ={0<ys4}. 179.'E,,={1<y<3}_;_-180.'E’=.{0<y<1}.

182. E’={lsy52}". 183.a<y<b. jelia<ba b<y-<a,je-l'ia.>'b. 184, 1 <y<+e, 185.0>y> = °

a +ta>y>1. 186. 0<ys%. 187, +eo>y> - 188, 0<}'<%a %sy<2. 189. 0; 0; 0; 0; 24. 190. ¢; -6;
4 19111152 192.-1;0;1;2; 4. 198 1; A0, X 2 x-1 Lax g, fx)=0 pro
T-x' 2+x” l4x’ x+1° 1-x

x=-l,x=0ax=1; fE>0pro -»<x<-la0<x<l; fix})<0 pro-1<x<0a l<x<-+e; b) flx)=0

1 a-—1-<x< —._(k 0,1,2,..); fiy=<0 pro

1 CX L —
k-1 2k Zhel %+

pro x=i%; f@)>0 pro

i < 1 1

1
2k_+§<x ma 'ﬁ{'x{'m *-=0,1,2,...); ) f(x)=0 prox<0ax=1; fx)>0 pro D<x<1;

a*-1 ] 1 9
f@)<0pro 1<x<sm. 195.2)a;b) 2x+hi ) a* e 197, f(x)= -2 f(l) =55 f@) =22
198. f(x)-—x“l—gx*l ft l)—*- f0,5)= 2£. 199. f()-_ -%xf_iﬁ?“z

205.2) z=x+y; b 2= y =2 s dy 2= 20 906, lelx))=xt; VOPE) =22 @(P(x)=22;
x+y - l-xy 1+xy N
Yip@)=2-. 207. @) =sgnx; Y(f@))=x {x+0); @x))=tr(p(x))=sgnx (x+0). 208. ¢(9{x)) =9(x);

lI’(IP(I) Yix); b)) =e(P)=0. 209. - . 211 x*-5x+6.

,x {x=0,x+1). 210.f (x)=

1 +nx?

. 1;‘ 2 - 2 TN
212. x2-2 [|x| 22%]. g3, 1VL*%" 9154 f(x)=[T"__] . 221.3) Je rostouci pro a >0 2 klesajicf
x ~X
pre a<0; h)proa>0 Je klesajici na intervalu | e, —% a rostouci na intervalu -—2-—a-, +ea )3 €) je rostouct;

. . d d C .
d) pro ad -bc > 0 je rostouci na intervalech [WW, —;—] a (—? +oo] } €) je rostouci pro a>1 aKlesajici pro

O<a<l. 222. MiZeme, je-li ziklad logaritmd vét3i net 1. 224. y_;'r_ (~=<y<+=), 225,a) *Jf
(Dsy<+m); b) fy (Dsy< o), 226. % (}'*—i}. 227.a) ~f1-3? (Ozys1); by y1-y® (Dcysl).
¥

228. Argsinhy=Inly «/T+y3) (-w<y< ). 229. Argrghy =%m% (-1<y<l). 230.x=5 pro
-y

—my<l;

8L E ={ls]y| < éx}.

Jiby l<x<e; x>0, x+k (£=0,1,2,...).

x=yy pro 1<ys16; x =log,y pro 16<y < +w. 231, a) Lichd ; b) sud4; c) sudd; d) lich4 ; e) licha.

KAPITOLA |

233. a} Periodickd, T=2n/); b) periodickd, T=2n, c} pcriodic_ké, T=61, d) periodicki, T=%; e) neperio-

dickd; f) periodicka, T=1t.; g) néperioé{ickﬁ; h) neperiodickd. 241. t= 1% s, x= —3% m. 2438 x = ——-b—

1

2a
4ac-b? %2 : d a #y a
= 24 yex-— _0km;36km. 25L.x --%:y -2 252 v=v T0 hn0) 263 2-2
A Y yx36000 m m. 2 x06y0622 OP(pO) 263.?:@l
- b b
m=a‘b ab, n=i-—1-(alb—abl), xy=——. 264.37--12. 287. A=ya?+b7?; 5inx0‘=—f‘—, cosx0=£.
ol ! @, af a1 x? A A
1

5n

356. y=2sinx pro [x-nk|sﬁay=(~l pro—€<|x mh| <% k=0, +1,29,..). 357, a)y-—(x+|x|)

b)ac)y—x proxx0; y=0 prox<0; d} y=x prox <0; y=x prosz 358.a) y=1;
b)y=1prolsfz|<y3;y=0 pro |x| <1 a || >y3: ¢ y=1pro ]x|sl,y 2 pro |x| > 1; d)y=—2 pra
|«|>2; J’=2'(2'-"2F pro |x|<2. 1359, Pro x <0 dostaneme a) 1) fix)=1+x, 2) f(x)=-(1 +x);

by D) flx)=-2x-x% 2) fix}=2x+x% O 1) flxy=y==x, 2) fx)=-/=x; d) 1) fix)=-sinx, 2) f{x) =sinx;
e) 1) f(x')'=e", 2)f(§c)=— =B f= ln(—x} 2) f(x)——ln{-x) 360.a) x= ba

,c)x-—,

LI
3a M ** 2

Cdyx=km (k=0,%1,%2,..)). 361.a) (x,8x,+8), kde x, je libovolné &fslo; b) [——, —]; ) (xg,3), kde
. £ ¢

%)= -3% a yy=axs +bxg +cxy+d; d) (2,0); €) (2,1). 372. Kofeny rovnice jsou - 1,88; 0,35; 1,53. 373.2,11;

-0,25; -1,86. 374.0,25, 1,49. 375.0,64. 376.1,37; 10. 377.-0,54. 378.0;4,49. 379. x =-0,57,
¥ =-L26; x,=-0,42, 3,=1,19; x,=0,45, y,=0,74; x,=0,54, y,=-0,68. 380.x,=-1,30, y =9,91;

%,=2,30, 3,=9,73; x, =-0,62, ¥,=-998; x,=1,62, y,=-9,87. 382. a) Obecné nemusi byt, b) je. 385, Je

omezend shora a neomezend zdola. -387.,}?(:;) a f(b). 388.0; 25 389.0; 1. 390. 0; 1. 391 2; +=,

392.-1; 1. 398. -/2; ﬂ 394, %; 4. 395.a)0; 1;b) 0; 2. 396.0; 1. 397.2a) 8; b) 0,8; ) 0,08; d) 0,008.

398.a)m; by m; o) my d) . 411.3) 1;b) -g—;;c) % 412. ‘6. 413.10. 414. %ﬂm(ﬂ —ﬁ). 415. 5%,

3\ %0 Al 1 1 .. 1 1 3y 10 nin+1)
416. | —| . 417. 418 -—, 419, =, 420.1. 421. - 422, —_ 423.|2|" . 424, .
[2) " 2 3 ¥ 4 3 (2] 2

. . - " - B . 2
4241 2L 495. e} 498 PR 499, xa . 430, xTegxe
431.1. 432, % 133.3. 434, ‘;—b 435.1, 436, —. 437. 1 438.-2. 430, L 440 - L

_ : . = 487

3' 1’_2& 16.
12 1 1 2 3 4
L. 444 445.-2. 446, —. 447.- 448. = 449. 4. 450.
5 n 1 27" 9 27
Logne CB yss 2B yss m oassa Louse L. dsn La-p. 458 L 5.
2 n o n m on m 2 n! 2 2
460.1. 460. 2 462.2. 463. % aps, -1 465.—1-(a1+a2+
3 5 4 n

™ oage, PO ae gon
n 2 o

I
441, —— . 442,
4 3
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-9
o

451.

'4-‘-]—' ‘5,“'-1

.ta ). 466. 2% 467. 2n,

468. limx, ==, limx, = -~

a-0 Vlr e-0 b
T | 1 i 1 1 9

473, (-1 "2, 474, —. AT40 1. 4742 —. 475, —. 476.2. 477.4. 478, —. 479. ~. 480. Z.
- m 2 3 "y _ P 2" =

482. cosa. 483. -sina. 484. sec’a {m@kﬂ)f,k:o, :1,...]. 485, -

. 469.a=1,b=-1. 470. a..=*_?1;b,.=;% (i=1,2). #71.5. 472.0.

{azkm, kde k je celé ).
sin*d

486, 02 (a*(?lnl)—— kde & je celé), 487. -2

cos’a o sinfa

(arkm, kde £ je celé). 488. -sina. 4B9. -cosa,




VYSLEDKY

‘ 2sina

b . .
490. [’”Qk*”? kde chcele). 491, 29058 (L hx, kde k je celé). 492. Esmza 493.-3.

os™a Sll’l T

1 .
494. 14. 495. -1 496.-24. 497, -S05%¢ [a*(?hl)-’z, kde kjecelé |. 498. 2. 490, 1.
V3 cosia 2 4 4

4 1
500. 7. 501 -—. 502. V2. 503.0. 504.3. 505.0. 506. a)— b) J—v,c)l 507.0. 508. 0.
509.0. 510.0. 511 0. 512. %

o ooV

513.1. 5ld. e %, 515, ¢™. 516.0,je-li a <ay; *w, jeli a, >a,;

"jelia =a,. 517.e. 518.¢7'. 519.1. 519.1 2. 520. <% (arkm, kde k jecelé). 521.¢™
1

522..°'. 523.1. 524..2 525.¢. 526. —. 527.¢%''. 538, *7X. 529.1. 530.1. 531 l. 532.0.
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€

1 3 8 2
533. <. 534.-2. 535. . 536. - 587. -1"%‘. 538, % 539. (%] . 540.0. 5401 n. 541 Ina,

X

.3 a’ a N .
542, 2 In;. 543, a°Infee). 544. ¢2. 545. % 5451 ¢F2° 459 -E 5453 -2. 546.¢%, 547. 1.

o - x -fa+ *
548. B-a“ B 549.a"ln¢f. 550. a*In®a. 551 ¢ 553 Inx. 553.Inx. 554.°B. 555. Jab.

s B -
556. Jabe. 857. (a®blc?)Vet 9 pgs, L ss. (lnfi] . 560. " Ina. 561.a)0;b) ]“—3. 562. In8.
- Jab b
1
563. -In2. Sﬁﬁ.a)-E;b} % 567.1. 568.0. 569.lna2. 570, %. 571. % 572.-2.573. 2. 574. £ %",

o 1 L. 2 s '
575. B 576.a) 1; b) -é—; <)l 576.1_ 3 577. 25inh-il;. 577.1 a) cosha; b) sinha. 577.2 -1.

yep

578.In2. 579.1. 580..7. 581 -~ 582. X 583 -™ 584 3™ a5 b gm0
2 3 2 4 1ex?

,er

1
587, . 588, —. 589.1. 590.¢7". 59L.0. 592.0. 593.a) +=;b) ~. 594.a)-1;b) 1.
121-[ 2 .7 2 ’
5941 In 2. L T
n=. 595.2) 3ib) -o. 596.2) ib)0. 597.2)0;b) 1. 600.2; ;2. 60L.0; (-1)*"'; (1),
G

602.0. 603.1. 604.0. 605.1. 606.0. 613.b)y=1 pro [x|<l y=0pro |x]=1. 614.b) y=0 pro

05x<l,y—5prox I;y=lpro 1 <x<+=. 615.3=-1 pro 0<|x|<1;y=0 pro [x|=1;y=1 pro |x|>1.

616. y=|x|. 617.y=l pro Osx<l;y=x prox>1. 618.y=1pro Osxsl; y=% pro"l<x<2;ijr=£;-pro
%22, 619.3=0pro 0sx<2;y-2,2 pro'x=2;y=x" prox>2. 620.h)y=0 pmx#(?k*»l)%;yﬂ pro
x=(2k+l)%(k=0,il,:2,...). 621. y=In2 pro 0<x<2; y=Inx pro x>2. 622. y=0 pro -1 <xs1;
y=12':-(x—1)prox>1. 625. y=lproxs<-l;y=¢*"' prox>-1. 624.y=xprox<0;y,=-;—prox=0;y=l
prox>0. 625, % 625.1 y=/x pro ()sx<la4k—1<x<4k+l;y:xpro4k—3<x<4k—é
a4&—2<x<4k—1;y=-;-(ﬁ+x)prox=2k—l (;k=1,2,3,...). 625.2 y =0 pro x raciondlnf; y=x pro x
iraciondlnf. 625.3 Ohvod &verce max {|xj,{|y|} =1. 627. a.) x=1;x=-2, y=x—1;b)y=x.+-%. pro J;-+°°,

1 1
y=—x—-2— pro x—-o; ) y=§-—-x; d} y=x pro x~+=, y=0 pro x—-w;e) y=0 pro x~-w=, y=x pro x—~+=;

T 1 i 2
h y=x+-§. 628. 0. 629, s 630. ﬂxﬂ 632, -;3— 633, -g—- 634. -;—]na.635. ‘/E. 636, 08

TTTTETIi
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1 2 b J5-1
637. E(] +/1+4a). 637.1 3 637.2 i . 6373 7 638. yl+x-1. 639. 1-41-x. 641.a)2;
-

by +e; ¢} 0;d) 1; €} 2, f) 1; g) 2sinhl. 643.a)I=-1, L=2;b)1=-2,L=2;¢){=2, L=¢. 644.2){=-1I,
L=1;b){=0, L=+m; ) l=%,'L=‘2;d)t=0.L=+m. 645. a) Pryniho stupné; by druhého; ¢) prvntho;

) e 3 . (1-x)"
d) tiettho; €) tfettho; ) tfettho. 653.2a) 2x: by x: ) ?; d) 3 655.a) 3(x-1)*; ) — ;O x-1;

g
dyex-1;e)x-1. 656.3.)1:2;]3) 2x2. ) x¥; d) x ', 657.a) [l]ﬂ;b) _1.[1)”2; <} 'l(l]mid) (l]2
x 2 x 4ix x
658, )_ DY EALY 9L W11 gy L 668.2) 9,95 <x < 10,05
ﬁ 1-% ®l-x x-1

b) 9,995 <x <10,005; c} 9,9995 <x<10,0005; d) 100 -e<x< /100 +e. 664. A<2—Z; a) A<3,7mm;

b) A<0,37mm; ¢) A<0,037mm. 665. 100{1 - 10 VF <x <1001 +10°"" !, 2) 81 <x < 121;

b) 98,01 <x < 102,01; ¢} 99,8001 <x < 100,2001 ; d) 99,980001 <x< 100,020001. 666. 3 =min[—ﬁ, 1) .
2

£x
667. &= #0,001::02; a) 8=10"%;b) §=10"7; ¢) 8=10". Neexistuje. 669. a) NemiZeme; b) mizeme.

+EX

671. Ne; omezenost v bodé %,. 672.Ne. Je-li funkce f{x) definovina na omezeném intervalu {g,b), pak

jsou tyto nerovnosti splnény vidy. Je-li alespoii jedno z &isel ¢ nebo # rovno nevlastnimu symbolu =, pak
plati lim|f(x)| = +==. 673. Ne; jednoznatnost a spojitost inverzn{ funkce. 675. Spojitd. 676. Spojitd, je-li

Fty

A=4, anespojiti v bodé =2, je-lid+4. 677. Nespojitd v x=-1. 678. a) Spojitd; b) nespojitd v x =0.
679. Nespojiti v x=0. 680. Spojitd. 681. Spojitd. 682. Nespojitiv x=1. 683. Spojitd, je-li a=0,

a nespojit, je-li a #0. 684. Nespojitd v £ =0. 685. Nespojitd v bodech x =&, kde k je celé.

686. Nespojitd v bodech x=k? (k=1,2,...). 687. x=-1 je bod nekone&né nespojitosti. 688, x=-1 je bod
odstraniteiné nespojitosti. 689. x=-2 a x=1 - body nekoneéné nespajitosti. 690. x=0 a x=1 - body
odstranitelné nespaojitosti; x=-1 je bod nekonefné nespojitosti. 691, x=0 - bod odstranitelné nespojitosti;

x=kn (k=%1,%2, ) - body nekonecné nespojitosti. 692. x=+2 ~ body odstranitelné nespojitosti.
693. x =0 — bod nespojitosti druhého druhu. 694. x =% (k=%x1,x2,..)) - body nespajitosti prvntho

(k=0,%1,...) — body odstraniielné

drubu; x =0 -~ bed nespojitosti druhého druhu. 695, x=0 a x = 2k2+ i
nespojitosti. 696. x =0 — bod nespojitosti prvnfho druhu.  697. x =0 — bod odstranitelné nespojitosti.
698.x =0 - bod nespojitosti druliého druhu.  699. x =0 - bod odstranitelné nespojitosti; x =1 - bod
nekonedné nespojitosti.  700. x =0 — bod nekonedné nespojitosti; x =1 — bod nespojitosti druhého druhu.
701 x=kx (k=0, £1, +2)- body nespojitosti prvniho drubu, 702, x=k (£=0,*1,%2,..) - body
ncspojitoéii prvntho druhu, 703, x =k (k==1,%+2,...) - body nespojitosti prvniho drubu. 704, Funkee je

spojitd. 705. x= tﬁ (n=1,2,...) —body nespojitosti prvniho druhu. 706. x =% (k==x1,%2,...}) —body

nespojitosti prvntho druhu; x =0 - bod nekoneéné nespojitosti. 707. x =-’-1‘- (k=%1,%2....) - body nespo-

2

jitosti prvniho druhu; x =0 - bod odstranitelné nespojitosti. 708, x =m

(k=0,x1,%2, ) -body

nespojitosti prvniho druhu; x =0 — bod nespojitosti druhého druhu 709, x = t-}-ll— ax=*t— {=1,2,.) -

body nespaojitosti prvnfho druhu, x =0- bod nespojitosti druhého druhu. 710. x =%
nekonefné nespojitosti; x =0 — bod nespojitosti druhého drubu.  711. x =T2k2—l)‘n: (k=0,£1,22,..) -

s
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body nekoneéné nespojitosti; x =0 — bod nespojitosti druhého druhu, 712, x=%/n (2=1,2,...) - body
nespojitosti prvniho druhu. 713, ¥ =0, x=1 a x =2 — body nespajitosti pryniho druhu. 714. x =kT
{(k=0,x1,x2,...) - body nekoneiné nespojitosti. 715. x=+/kn (¢=0,1,2,...) — body nekoneéné nespo-
Jitosti. 716. x=-1 a x =3 — body nekonefné nespojitosti. 717, x =0 - bod nespajitosti druhého druhu.
718. x =0 — bod odstranitelné nespojitosti. 719, x==x1 —body nespojitosti prvniho druhu. 720. y=1 pro
0sx<l; y:% pro x=1;y=0 pro x> 1; x=1 —bod nespojitosti prvnfho drubu. 721, y=sgnx; x=0 —bod
nespojitosti prvntho druhu. 722. y=1 pro [x[s1; y=x2 pro |x| > 1. Funkee je spojitd. 728. y=0 pro
x#=km; y=1 pro x=kn (k=0, +1, *2,..); x=k 7 - body nespojitosti prvniho druhu. *724. y=x pro

x-km| <E y—E pro x= knxl ,y 0 pro E< |x-kn| <-—6£ =0,%1,...); x=kni% — body nespoji-
tosti prvntho druhu. 725. ¥ =-2-x pro kn<x<km +E' ¥y= Ex pro kn +-1-2t-<x <hkn+m;y=0 pro x=kxn +-g-;

=k—21-t- - body nespojitosti prvnfho druhu. ~726. y=x pro x<0; y=x? pro x> 0. Funkce je spbjitﬁ..
727.y=0 pro x<0 a'y=x pro x> 0. Funkce je spojitd. 728. y=-(l +x) prox<0; y=0O prox=0ay=1+x
pro x> 0; x=0 - bod nespojitosti prvnfho druhu. 729, Neni. 730. ¢ =1. 731. a) Funkce je spojita;
b) x=-1 - bod nespojitosti prvnfho drubu; ¢) x=-1 - bod nespojitosti prvnfho druhu; d) x =4
(k=0,%1,%9,...) - body nekonefné nespojitosti; €) x#k (k=0,+1,%2,...) — body nespojitosti druhého
druhu; 732, d=-x pro ~w<x<0;d=0 pro Osx<l;d=x-1 pro 1 <xs%; d=2-x pro %<x<2; d=0

pro 22x<3; d=x-3 pro 3 <x < +»_ Funkece je spojict. 733. S=3y—y—; pro Osy<l; S=%+2y pro
l<y=2; S=%+y'pro 2<ys3; S=-£2l'pro 3 <y < +w; funkee je spojitd, =3 -y pro Osysl; #=2 pro
l<y=2; b=1pro 2<y<3; b=0 pro 3<y<+w; x=2 a x=3 - body nespojitosti prvniho druhu.

735. Nespojitd pro x #( a spojitd pro x=0. 737. Nespojitd pro viechny zidpomé a pro viechny kladné
racionilnf hodnoty argumentu. 738. f{0)=0,5. 740.2) 1,5;b) 2; ¢} 0; d) £; €) 0; f) 1; g} 0. 741. a} Ano;
byne. 742.a) Ne; b)ne. 743.Ne. Piiklad: f(x)=1 pro x raciondlnia f(x}=-1pro x iracionaln.

744. a) f(g () je spojitd, g(f(x)) je nespojitd v x=0;'b) flg{xh je nespojitdv x=-1,x=0ax=1,
g{f () =0 je spojitd; ©) flg®) a g(f(x)jsou spojité. 745. flg()=x. 759, x= dy ab a+d=0 nebo
a-d=0ab=c=0(ad-bc#0) 760.x=y-kpro 2h<y<2k+1 (k=0,%1,2 ), 764 f(f(x))sx

T67. x=—fy (0Sy<+o); x=fy (D<y<+e). T68.x=)~ /Ty (-ow<ys1); x=1 +\/1_“ (-m<ys 1y,

769.x——E( lsysl),x-——E {O<|y|<1). 770.x=(-1arcsing+kn (k=0,%x1,%2,..)

(-lsyel), 77_1.x =Zkwxtarccosy (k= 0,:‘:1,-.*:2,...)( lsys1)., 772, x=arcigy+kn (k= 0,£1,%2,..)

{-m<y<+x). 776.€=0,jelixy<1; e=sgnx, je-lixy>1. 779. a}j=-—;- pro -lsx<0; y=23rcsinx—%
1

pro 0z<xs1;b) y=-(w+4arcsinx) pro -l sxx< ——1-. =0 pro ——]- LS} §=T —4arcsinl:_r pro _isxs 1.
780. ¥ =-g— -x [--:—_:- <—x<-g-] . 7B y=yx®-1 (lsx<+=);y=—yx%-1 (1 <x+e). 782.Proviechna £, pro
kierd @(t)=x, kde x je libovolnd hodnota funkee (), must mit funkce ¥{f) stdle stejnou hodnotu.

783. MnoZina hodnot (%) pro &<t <[ musi bt intervalem (a, b) 784. Pro viechna x takovd, e ¢ (x)=u,
kde u je libovolna hodnota z intervatu {4, B) musf mit funkce () stile stejnou hodnotu.

785. iﬁls—cm a) 0,5mm; b) 0,005mm; ¢) 0,00005mm. 786.a) 6<_ b) §<2,5- 10",c) é‘;<E 1077
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1
d) 5< % {€<1). 793.a) Ano; b) ne. 794. Stejnomérné spojits. 795. Nenf stejnomérné spojita.

796. Stejnomérné spojicd.  797. Nenf stejnomérné spojita. 798, Stejnomérné spojitd.  799. Stejnomérné
spojitd. B00. Neni stejnomérné spojitd. 802.a) & =-§; by & =—;—; ) 6=0,0le;d) 6= (e<1);e) & =§;

I - 3
f ﬁ—mm[—g, m] - 803. 5> 1800000. 808.a) w{8)}<38;b) g)f(é)s\[g; wf(b)sﬁ; <) wf(é)sﬁﬁ.

818. fix}=cosax a f(x)=coshax (a=const). 819. f(x)=cosax; g(x)==*sinax (a=const).

KAPITOLA |1

821. Ax=899; Ay=3. 822. Ax=-0,009; Ay=090000. 823.a) Ay=aAx;b) Ay=(2ax fb]Ax +a{Ax)?;
o Ay=a*@™-1). 825.2)5b)4,1;0)4,01;d) 4+Ax; 4. B26.3+3h+h% 2)3,31;3,b) 3,0301;
c)3003001 3, 327 a) 7=215m/s; b)u 210,5m/s; c)v 210,05m/s; 210m/s; 828.a) 2x;b) 3x?;

o —— (x#O) d) — (x>0) €) (x¢0); f) [x#(?k l)—, k—O,iI,...];g) S
x 3 (—x os?x .2 L sin’x
(x#k'n,ksﬂ,il,...);h) (¥ < D);i) - (=l <1); j) ;2 829.-8;0; 0. 8§30, 4.
’ ‘ 1-x%2 -~ ° 1-x 1+x

831. 1+§. 832, fia). 834.y'=1-2x;1,0,-1,21. 835.y'=xZ+x-2;2)-2; 1;b)-1;0; ¢) -4; 3.
836, 10a%x-5x%. 337._“-3. 838. 2x - (a+b). B39, 2(x+2)(x+3)2B3x2+11x+9). 840. xsin2a +cos2a,
. a+

B4L ma(x™ " x G em)x Y] 842, (1 -02(1 - (1 -x (1 +6x4 1527+ 14xY).

8421 -20(17 +12x)(5 - 2x)°(3 ~42)"°. 843, - i+i+— (x0). 2“” L (x| <1y
: x? x% xt 2)2
846, 2(1_21). . 1-x+4x2 (x| #1). 848. 12—6x'_—6x2‘+2x’+5x -3x° e 1)
(1-xex?? Q-2 (let L) -
_Q —xp! [(P*f}):(f’ g)x] (x=-1). 850. & - (q+l)x (p;q—l)xg] (x*-1).
(1+x)“ (1 x)
851 1+ (z>0). 852, -1 ®>0). 858 2+ L @>0). gsa 122X
2/x 3\/_ % 2"7/- 3xf SJ_ xyfx y1+x2
g5, 0 3x+8x% 4x? 4 9¢t 3 [e«3/73). ss6. ("'f.} ~(ntm)x 857. 2“: x| <[a]).
2o B mem Y1 x}"(1+x)' et

W s _ f
858, 2% . I “"5 (x| +1). 859 ~-—-l-2-§2.. s60, L2+ Aeix 1k ( x>0).
1-x 1-x L {1+x%) Bﬁa/;:+_xfx+ x+
1 1

861. — = (x#0,x#-1,x= -8).

27 2
R e
862. -2cosx(l +2sinx). 863, x’sinx. 864. -sin2xcos{cos2x). 865. nsin* 'x cosn +1}x.

"2sinx{cosxsinx? -xsinxcosx?)

866. cosxcos(sinx)cos[sin (sinx)]. 867. (cP2hm; k=1,2..).




VYSLEDKY

1 2 H _ 2
868. ~— X (eakm; k=0,%1,22,.). 869, 1SNE (x# 2k ln:,kjecclé). 870. ud .
2sin’x cos"'x 2 {cosx +xsinx)?
871, _22‘ (eehm; £=0,+1,+2_), 872, 1+1g5x (xt(2k+1)— k=0,%x ) 873. s
sin’x infx
6cos ._21 3sin'x feotgx
(x#kT; kjecelé). 874. ( #—-— kje ceiéJ 875. —Stgzxsecﬂxsin@tg’x}cos[cosz(tg’x)]
asin®Z2

{x*%*'kﬂrkje C‘ﬂé] . 876. -2xe™". BT *-—2“‘”"5&2 ln2 878. x2e*. 879. x% “sinx.

x?

ggo, £ (sinx-cost) ek, hje celér_).f 881, -

1+'1n?3
- 2sin?% ¥

884. J[lnz‘wx—] (x>0). 885 a%x° '+2x° 'a* Ing+a*-a* In®z. 886. E!oge logzx2 (x+0).
%

6 1
e (x>¢). 888, S
Xinslngng &7 Aineingn 0 B T D 890 (|x|>1).

1 i 2
891, —— _ (x=0). 892, (|x|> 3}, 898, — = (|z|<1). 894 e
x(1+xh? 3x {1- x’)(} ~kx? (=] <1) 2(1+,/x+“‘1)

{(x>-1). 895.

. 896. ln(xw‘x +1). 897, In(x yx? +1} 898. \xTra®. 899, !

x?+1 a-bx?

8
[|x|< %] 900. ~———— (0<x<1). 901. —— (O<x-2kn<n, kjecelé). 902, 1
xﬁ l_xE . Sinx COsX

(|x—2kn|<£, kjccclé). 903. -cotg®x (D<x-2kn<r, kijecelé), 904. - ! .[x¢ 2k2_1

®, kjecelé|.
cosx i

{0<x -2kn<m, kJeccfé) 906. —C 907. -l—n-f (x>0). 908.%lnx (x>0).
x

sindx a+bcosx
1 1
l+x+= +ln—
2x x X L n
909, —_— 910. - 1 T T 911, 2sin(lnx) (x>0). 912, sinxIntgx
1+4f1+x2 (1 +xln——] [l +.tln[— +ln-—ﬂ
) x| X x . '

[0<x-2k_n<§, kjecelé].f)ls. (ix] <2). 914.-——(f1 1]<y3). 015, _2¢% - (a+0).
. 1ia

4—x 1+2x- -x?

(x#O) 9!7 -—L (x20), 918, garccosx {lx| <1). 919. arcsin, IL (x20).
Jl -x . X

2sgnsinx) cosx

y1+cosx

[o<x-kn<%,kjecelé],. 924, “BIY (0<|x|<]) 925, !
1+x

916.

1 -
920. ——— (|x|>1}. 921. sgn(cosx) [x*2k 1
frfya?-1 .

SinX + Cosx

nk je celé) . 922,

923. 5 (x#l)..

sin2x 1-x2
926.1 [xtﬁﬁm,kjece]é]. 927. 1 ESEDX (i0). op9.
4 a +bcosx 1ex? Mt e arccos’ () (Jef<1).

1+xt o
930. l”‘s. 931. -2cosx-arctg(sing). 982 — 1 (x>1). 933. —”‘_*”— x> -a).
Tx ’ 2xy/x - larccos% (x+a)(x? b7

sina. 38? a +b’ "smbx 883. ¢ [1+e (l+e j

{x+kn, k jecelé).

S
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934, yz?-x?. 935. (x=-1). 936. {[x]#l). 937, (arcsin®x) (x| <1). 938, -=20°%
x +
xlnx xarcsinx x3 1 128
©O<xl<1). 939, 5 (x> 1). 940. ZEO8 (Js| <1). 94, el e—|. 942, 55
: x2-1" Q- 1 2 (1 +x'22
2
943. - (e<1). 944 — L (jx|<1). 945. — L (O<x<a). 946. (lx+1] <)
{1-x}yx 2y1-x2 ax-x? 1-2x-x?
. ) — -
9g7. 1 _ gqg _ SN2 (xszk L kjecelé]. gg9, Y177 x4y (12X ey
Mg sin'x +cos'x 2 ST gt 1+x
2 x
950, =~ Sarctgx. 951 —° . 952. 1 —. 953. $N4 SEN(COSX ~C084) (o 0s 4 cosal.
1+x Fre® 2(1+x% | =cosacosx
4
954, — . (0<|x|<]). 955. E’: (x| #1). 956. 4. (x| < 1).

(x‘-lwx +2 (L+x?21 -x2 .

2x{cosx? +5inx?) [ 2 .

957, ———— > " " |fin<|x| < I(IH—)R k=0,1,.. ] 958, 2x[sgn(cosx )+sg‘n(smx 1
fsm(?x 2

2m e™-1
2x ’

[|x| t%, k=0, 1,2....] . 959, -e™@resintteacm (arcsing) (|x] <1).

1-x2

3
960.1 d . 960.2 !

21V |n9 -sin(2l‘ﬁ)'lﬂ(sec 23&)
33{_"c0s2(2!ﬁ)

962, x* 'x*"(1 +alnx) +a "x* (1
X

960.3

. 961 1+x*(1 +Inx) +x*x* (—+lnx+in x] x>0).

= +lna lmc] +x*a* Ina{l +Inx) (x> 0}. 963. x ¥ *(1 -Inx) (x>0).
964. (sinx)' ' “**(cotg ’x - Insinx) - (cosx)! ****(tg *x - Incosx) [0 <x-2kn< -121, k je celé] .
-1
965. —(lnli)i]—[x -2ln’x +xlnx-ln(lnx)] (x> 1).
x nx

965.1 y'= 2}Jarctgx arcsin (sin*x)

+arcig x[ sinx sgn {cosx) cosx sgn(sinx) l}

larcsm(sm x)Jl +sinx arccos(cos x)fl +cos’%

[l +:c2 arccos {cos?x)

(n%" k=0,%1,, ] 966. --—!—(Iogxe}z >0,x41). 967. tgh’x.. 968. - = (x>0). 969. 1112 .

X sin x €Os X
a7 sgn(smhx) a +bcoshx  sin2x -

0, =2———=< (x#0). 971, ———_ 972, ———. 973. - arccosx- In (arccosx)
b +acoshx i l+cos's 1-x2

-1 «** " —.::2 .2x

(|x1<l) 974. —"—-. 975. -2“(-- ‘“;51;2 (x#0). 976. ‘{‘1“ ';“arccmga” @>0).
1+xh I -g™=¥ ta :

977. a) sgnx (x«0);.b) 2|x|; c) (x*O) 978.2a) (e~ 1) (x + D¥(Bx- Dsgnix +1}; b) %sian-|sinx|;

c)

{lx]=1); d) ﬂ[x]sm?ﬂx. 979.y'=-1 pro -~ <x<1; y'=2x-3 pro 15x52; y'=1 pro
xyx?-1

Z<x <+, 980.y'=2(x-a)(x-b)(2x -a ~b) pro x€a,bl; 3/-0 pro x€[a,b]. 981. =1 prox<0;




il

|
|
i
i
i
i

VYSLEDKY

1 ' 2
y'= T prodsx <+, 982, y's " ! Z Pro -1 <x<1;y/=1/2 pro |x| > 1. 983.y'=2xe ™ (1-x% pro
x
Cy-x? -
[x]<1;y'=0 pro|x|>1. $84.a) L x2 ;b b4-36x+dx?+2x’ (x#0, 221, x»£3);
x(l-x% Sx(l-x)}(9-x% iix-a
t
Q2 _ 9s5.a) Q') + P Yx) (026 + ¥2()» 0)s by tp’(x)ti;(x)—rpix)l#’(x) (62 v »0);
J1+x . ,/cp {£) + 92 (%) P+ x)

L2 Inye)
plx) I g x)

el 1 v e Ve, 1
d
""’”{m(x; TR "'”} ' ¥® To®

by sin2x{f(sin’x) - icos?5)]; &) /e *Fle D +f ) fle s &) FLOf U EN LA, 9861 10001
988. 3x”+15. 989. 6x%. 992.2) n>0;b)n>1;)n>2. 998.a)nam+1; 5) l<n<m+1. 994, ¢(a).
E-1

986. a) 2xf'(x?);

995. f'(a)=-@(a); f(a)=pie). 999, a) Nediferencovatelns pro x=1; b} nediferencovatelnd pro x = 2
% je celé ; ©) viude diferencovatelns; d) nediferencovatelns pro ;t—ktt k je celé; e) nediferencovatelni pro
x=-1. 1000. f'{x)=fl(x)=sgnxz pro x=0a f/(0}=-1, f’ = 1 1001. f/(x)=f'(x}=m[x]cosnx pro
x#celé &islo; fik)=mc(k-1)(~1)*, fi(k)=nk (-1)* pro & celé.

1002, f'(x)=f"(x) =[cos— + X sin£] -sgn[cos—) pro x=
x  x x

Tt’

- (kjecelé); f’[ ) =-(2k+ 1}3;

o+ 1
ff(zk 1) =(2k+ l)—. 1003, f/{x)=fltx) = 25X xcosz? == pro \/_2kﬁ<|x|<|/7(2k+l)rc *=0,1,2,..); fi®)=-1,

smx

FO=1; fL{RFTIm) =2, f[/2F) %= (k=1,2,...).

prox=0; fi{0)=-1, ff(0)=]-l.

T EPANT

X
(1 e In’x)2

1006. f/) - (x) =<, kde

1004, f/6x) =f'(x) =

pro x=0;

1005. f(x)=f"(x) =—2e
-7
e=-lpro0<|x)<lace=1prol<|x|<+=, fixl)=-1, flix1)=1. 1007. f’(x)—f"(x) 25;{;'(1_"1 ro

+x2
x+x1; fi=21)=51, fiix1)=51. 1008, [ =fi@-arcig—— - —* "2 1o ye0; f1@) =2,

Fim=1, flo)=(0).

x-2 (,'5_2)?.»,1
1009.1a) f/(0)=-1/2, f1(0}=1/2;b) fi{1)=f'(1)=1/2; c) F0)=f'(0)=0. 1010.a=2x a: b=x5.
k +hk
1011 a=f/xy): b=f(xy)- ng(xo} 1012, 4= 5% c=ak2 iy lOlS.a— , b= Lz.
(b-a) kl*k: 2c ; 9.3

1014, a} Mﬁieme, b) nemﬁzeme 1015. a) Nemfieme; b) nemdzeme.
mit i nemusf mit derivaci F* (). 1017 x=kn (k=0,%1,+2,..)). 1018.a) NemiZe; b) miiZe. 1019. 1) Ne
nuing; 2) nutng. 1020, Ne nutné.  E021. Nevyplyvd. 1022. Nevyplyvd. - 1023. Obecné nezachovivi.

' 1o Dxmene™! o Lex-@uelyx"+(@n®e2n -1y nlen?

1016. aj,.b), ©) Funkce F(x) miZe

1024. P, = ; s
(1-xp? (1-x)
n 1 . .
sin 2 sin 220 -.ms]n-;ismg?l lx- in? 2% nsinhisinh[n*rl)x—sinh"’E
1025. § = —— T,=— . 1025.1 S = 2
sinE 95in2 X B 2sinh? ¥
2

1029. 40ncm¥s. 1030, 25m3s; 0,4m/s.

1026. sn=§;cotg-g;ico:gx. 1031, 50km/h.

H
1032, S(x)=-x— pro Osx<2; S(x) =x®-2x+2 prox>2; §'(x) =x p{-o 0<x<2; §'x)=2x-2 pro x>2,

1033. S(x)-l |\/

ar('_sm— 8'x) =yfa-x%sgnx (0 <x|sa). 1034, yi= .
a 3(y2+1)

400
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© 1056. a) [%,2

. 1086.2) =<y < tm; x/ =t b) cm<y< 4w, x! -
* 1 -ecosy Fox+l Fol-x+y

;c) -oo(y<+m’

x\= id) -l<y<l, x)= ! -- 1037.a) &, = -y1+yl-y (-=<ys 1); x,=-f1-y/T-y (0sy=<1);

1+y2

s=¥E-y1-y (Osy<); x, =f1+ 1=y (m=<y<l); x ( )(t 1,2,3,4):b) %, = - ljy (0sy<l);
=¥ . A=
xy= ]Ly ©sy<l); x§=2i2- (i=1,2); ) x,=-In{1 +yT53) (= <ys< 1); x2=|n-1-*--- Y17 o<ys);
- 3

3 9 | (i -¢f

x!=- (=1,2). 1038,y =-S(14s); -3 -2 a -2; (-4,4). 1038, ¢>0,2#1).
: * 9 2 2 ( fr
1042.ji=£cotght {|e| > 0).

a

1
2& E_, *2::)
1040. y/ =1 (O<x<1).

2k+1
i+
2

l04l._yi=-.b.cor.gt O<|t]<n). lMS.yi:-[gt
a

Tc.kjeceié] . 1044, yi=cotg-;— (t#2km, kjecelé). 1045, yi=tgi-[g[!+;]

(H%+kn,t¢-g-+k1t. k celé). 1046. y’ =sgni (0<|t] < +=). 1048, y'= 1727y, .g.; L 1049, 2.
¥

x-y 2

bex 5 *y x+y 3¢
—. 1051, - |<. 1052. -,|<. 1053. —=. 1054.a) tg{g+arctg¢); b) -cotg—
aly x x x-y 2

1050. -

[rpr() q)*+23] c} tg{rp+arctg ) 1055.a)y=i/1(x+l); ‘/"(x+1) b)y=3,x=2;c)x=3, y=0.

Z] D) (0,2). 1058. lx| <% a 2Tﬂ‘\<|x| ST 1059. max |y} -y =10w=31,4. 1060. -12

1061. =, arctg—3-= 37°. 1064. 2) 2arcig——; b) .
2 2 la| 2

. 1069, ﬁ
2x+3y =0;b) 3x-y-1=0,x+3y-7=0.

1062. arctg2y/2=70°30". 1063. n>57,3.

1066.

1071. b2-4ac=0. 1072. [%)3+(.%]2=0. 1075. a=%. 1077. 2) 3x-2y=0,
1078.a) y=x, y=-2;b) 3x-y-4=0, x+3y-3=0;c) y=-x, y=x.
1079. y-2a={x —a![))cotg—téo—. Tedna cykloidy je kolmd k tsedce, ktera spojuje bod dotyku te¢ny s bodem
dotyku kutilejici se kruZnice. 1081. 3x+5y-50=0, 5x-3y-10,8=0, 1082. x+2y-3=0, 2x-y-1=0,
1083. Af(1)=Ax +3(AxP + (Ax)*; df (1) =Ax. a) 5,1; b) 0,131, 0,1; ¢) 0,010301, 0,01.

1084. Ax =20At+5(At % dx =20A¢; a) 25m, 20m; b) 2,05 m, 2m; ¢) 0 ,020005m, 0,02m. 1085. —% (x#0).

1086, 2% 1087. <75 Uellal. 1088 1089, B2 gy (jx| <la)).
a~+x X +aq a —x
1090. ) (1 +x)e *dx; by xsinxdsc; ) ~—2% (x#0); d) 2% gy > 0); &) 2% = (vl <
i xt X% aex? 2)3"

2xdx

g - (| j<1¥: hy (x]>1); i) dx [x#-’-tdk'rt,kjecelé). 1091. vwdyu +uwdey +uvdw.
cos’x 2

x’—l

vdu - 2udv

109z, 294-2udv L), 1093, pdu zudy
'U

_‘“1"_”’@_ @iro?>0). 1094, (@ eu?>0),

(u +U2)5I2 u2+,u

1095, Mdurvdy ?+v?>0). 1096.2) 1 -4x>-3x°; b} —l—;(cosx-ﬂl—i];c) -cotgx (x+km, kje celé);
2x X

wZ+o

d) -tg?x [x#%dﬂ,kjecelé];e) -1{|%|<1). 1097.a)Zvétiise o 104,7 cm?; b) zmensi se 0 48,6 cm ™.




VYSLEDKY

1098. Zvédsit 0 2,23 cm. 1099, 1,007 (podle tabulek: 1,0066). 1100. 0,4819 {pedie tabulek: 0,4848),
1101. -0,8747 (podle 1abulek: -0,8746). 1102, 0,8104 = 46° 26’ (podle mbulek: 46°24'). 1103, 1,043
(podle tabulek: 1,041). 1104. a} 2,25 (podle tabulek: 2,24); b) 5,833 {podle tabulek: 5,831); ¢} 10,9546
(podle tabulek: 10,9545), 1105, a) 2,083 (podie tabulek: 2,080); b) 2, 9907 {podle tabulek: 2,9907); ¢) 1,938
(podle tabulek: 1,931); ) 1,9954 (podle tabulek: 1,9953). 1106. 0,24 m?; 4,2%. 1107. 8, 50,33%.

. + 2
1108.2) 8,=8,;b) § =26,. 1108. 0,435, 1111 5(%22;‘7;. 2. W (x| <

1113, 2¢ %" (222-1). 1114 1t.lz=0,tl,...]. 1115,

2sinx [ 2k+1
x#

2x
+2arctgx.
cos®x 2 &

I+x
B3x +2x?)arcsinx
(l _x2)2 (l _x2)5.’2

1116. (lxj <1). 1117, 1 (x>0), 1118. M {fx)>0).
x i

1119, —%5in(lnx} x>0). 1120.3(0)=1,5'(0)=1, y“0)=0. 1121. 2(un"+u").

H_, 12 n_ 12 I
ez BE WV pn0). 1123, Wiy @l u' g
u u? (v
! 2 w_ R I
"”_ u n un'-u"  qu'y
1124. 5 -u‘-’i[v—;w ir_lu] +v—T+. +uInu|. 1125, y¥=4x?f"(x %) « 2fe?);

y!ﬂ=8x3fﬂf(x 2) i_l?xf”(xz). 1126 fﬂ[ ] _Q_Sf![l] iy " __:I:Bf.'ﬂ[l) __Ggfl!(l] __%f-'[l] A
127 _'y YR e e fle )i 3 e e )13 ¥ ey vt fe¥). 1128, y =—[f”(1nx) f (Inx0)l;
[f’”(lnx) 3f"(Inx)+2fInx)]. 1129, 3= 0" (x) fg (x)) + 0"(x) o (0));

Y=g (x)f”’(¢(x))+3tp’(x ”(x)f”(lp(x))+€p”"(x)f"(cp(x)). 1130, a) e *dx2; b) ¢ *{dx 2 +d 2.

dx? . 1 : :
1131, -—-”2_3 1138, 2“" 344 >0). 1133, £* cLlae? 1134 ud + 2dridv +vd .
(1+x%7 x
. 2, _ 2 _ .
1135, (vd “u -ud*v) ~ 2dv (vdu - udy) (w>0).

3
v

1136, u™ %"" 2 [m(m 1) 2du? +2mnududs +n (n - l)u2d02]+uv(mﬁ2u+nud2v)}

1137. a “Ina(du®lna-+d ). 1138. [(v —u?)du? - duvdudy + (42 -0 do? + (12 +v"')(ud2u+vd2u] (ulev?

(u?+v?>0). 1139.[ uodu® +2u? - v Ydudy + Quvde? +(u +U2)(vd2u—ud2v)](u o8 (wlep?>0),

3 3 i 3cost
1140, y” = sy™= D @e1). 1141 p7=- s 9o 2% ek bje celd).
A(1 ‘f_) 8(1-n° asin’t a’sin’t 3
- | cos—z— ' ' 4
1142, "=~ =iy - 42k kjecelé). 1148, 5"=— ;
4gsin*= 4a2sin’ = Hg I
" a“sin 3 . ﬁcos t+4
4 *@sint +cos) [¢=E+kn,k=0,':1,...]_ 1144, gLyl O Ly 1145, -l-
ﬁcosﬁ{u% : f'e 0 ¥
e y_ﬂ o _yiv”’-?:y”"';x(4)=_y’y“’-103=’3;”,\w”’+15y”’ @f,eo) 1146‘ X V_E _ﬂ- _E _E
"’ fi NG ‘ . Ty 5 4T 64
¥ ¥ ¥ Yoy
5 2 3 =
_ 122:) . 1147, ﬂ: _P_s" _?_)PT ll4«3.y"= 2x—y’jn= 6 , ym= 541’ . 1149.},;: 2"3};
024. ¥yt oy x-2y (1"2})3 (x~2j)5 1*)’2'

2x 2 2
2L [3(l+y P 2at(1-yY)]. 1150, 7= 210, yu 2674 1151.q=%f”(x0);b=f’(x0);c=f(x0).

(1+y x-y (x -y
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“1172. -

1152, 20-10¢, - 10; 0, -10. 1153, v=-22%5in 2Ty ;-
T T

2
y=votsina—%—, U=,/U§—2vog£sina +g¥? jg; yaxtgu-

1155, x2+37=25; 5lw|, 5u?. 1156, y@=4-61;yP=0. 1157, y¥= 20O D@D (g

1158, yo_ 17! . S
S e — (x>0}, kde n!! oznaduje soudin pfiroze

nxgﬁ

a kterd jsou stejné parity jako n. Napfiklad: 1711=1-3-5...17.

llﬁo.y“m‘ m.x__ (X<I) 1161'1(20};220e2x(x
21%(1 x)l()(] ,‘] x
kde A},=10-9...(11 - aAl=1. 1153,,(5)=_ - (x>0). 1

L1165, y & =25°(-xé§in22+50xcos2x . 1225 sian) .

m_ 27(1-3x)*-36 27(1-3x)"-28

1166. y~ sin3x -
(1-32)"" {1-3x)!0

cosdx [x %

x5 x3 x

1170. 3= -Z

60 [144 160 96 60 180 120
r sin2x +
x

X I4 X

de? (x>0). 1173, —1024(xc052x+551n2x)dx

Sx"’f

1175, 8sinxsinhxdx®, 1176, 2ud'°u+20dud9u+90d2ud By +240d Yud T +420d Yud u+252{d5u)2

2dn?

/3

1177, e “{du*+6du’d%u +4dudu +3d%u+d %), 1178.

d’y =y .’lld‘x5+3ylfdxd2x +y’d3x; d(d)y =y[4'dx4+6y }tldx2d2x+4y ”dxdaxd—?ry”dﬂ 2 )' d

2. 42 dxdf' d); ‘3d2xd§ dJ; UMPLE
1180,y X Ay W 2y 2> ) 1igr. PO =g 1188, L) {ad-bc)
d3 dx’ (Cx*'d)"'l
11

a. 2x 47s2a on

2 2 2 2
gx Uy sin‘a 1,

2oy wosta 26 &

An
2.90x+95), 1162. V=g * E( 1y —

1
Ak
1167, 3 1% = -2%5in2x - 2'¥5in 42 + 28.35in6x. 1168. y!'® =xsinhx + 100coshx. 1168. y® = -4¢ *cosx.

> +32lnx] cos2x. 1171, 120dx5.

cos—1{. 1154, x =yylcost;
T

; —sin2a,

xm!S

nych ¢isel, kierd nejsou ve8i3{ nez &islo

!
1159. 3 -8
(1-%°

(x+1).

il u!.

274 120

164. 38 = = Inx (x>0).

X X

s

4

01174 6" 1nx+i—£+_8;_ et
X

x2 x

2
-3dudu A 179, dY =y ity

I u

meg. afC L} g0, (—l}"n!{
U (L-xyl -2t e

nel, .
1192, G L4 BnB)G 28 oy igs e ‘cos[2x+"_2“]. 1194, 2"*'cos(2x+125].

3“(1 +x)n /3
1195. isin x+ 2L —E-sm 3x+ 2% 1196. E':()s x+—
4 2 4 2 4

(a-by"

1197. 2 ———cos|{a-b)x nn] (a by, cos[(a+b)x+_]

(a-b)"

1198. -——-—2-—cos {a-b)x + 2

-———cos{(a +B)x + —]

‘nTI:

1199.. wsin[(ﬂ -B)x +£E}+ LGRSO PN 2.
2 2 2 2

nrl:] _(2aby

1200. ﬂcos by BT LRa-by cos|(2a -b)x +—
2 2 4 2

C11en, 2322 1) [x<—J.
t (1 -2 12 2

+_cos[ ]

cos[(?a +h)x




VYSLEDKY

1201. 4""1cos(4x+’;—ﬂJ . 1202, a"xcos[ax+%n-] +m""5in[ax +ﬂ] .
2

_ni{n-1)
)

1203, o *|x?
a

- nmT
]sm[ax+?) -2na"” xcos[ax+?J 1204. (-1)"e ’”[x2-2(n-I)x+(n-l)(n-2)].

1+ nin-1}...(n -
1205, e 3+ Y (p 2O Dok DL o g0 om0 PT)  la07, e romginle s BT
X k=] xt'l 4 4 ’

n-1)1p"
(2b22n

1208. [( a +bxy +{-1)"" 1(a+b::)](|x[<

%D . 1209. e"‘[a "P(x)+( "1‘] a* Pz +...+P""(x)]'
1210. E{[(x +7) = (-1)(x ~n)]coshx +[(x +n) + (~1)" (x -n)]sinhx}.

nim-1)° .. -1 ¢
Lot el 1212, 4 ”]”'{ nx- E%}dx"(x:-()).

1211. d"y=e’[x"+ﬂ2x“" +
x i=1

1214. 2) (a® +5 22 cos[nrp- ;] cosha:ccos[bx+-’-12£] —sin[n(p—ﬂ) sinhaxsin{bx+ﬂ]"
2 2

2

b} ta®+b )“'E[cos[n @- ?) coshaxsm(bx + -?nJ +sm(mp - ;J smhaxcos[bx + T)J kde cosg =

a N

sing =

-1
. 1215, FO) =3 (—1yprkon-2eel g | 2P _ AT
7 [ g( yrrg p-k) (k]cos[(i’p 2hyx+ T2,

a®+b

ek 202k +10( 2541
l216.a)§;( 13 _227_[ Pk ]51n[(2p—2k+1)x+%

-
b) Z 2n-2pol(;b-k)n[ szJ cos{(?p—?k)xhﬂ?—n]; c} g {(21’__22;::&[ 2Pk+1] cos[(?ﬁ‘w”l)x +P§J}
1218, £ -1y

(1+x 2
1220.a) nn - 1e" % b) £ (0)=0, 2 D0y =(-1¥ @A) *=0,12,..); ¢) F R0y =0,
FERDO) =[1-8...2k- 1) *,=0,1,2,...). 1221. a) fOR0) =(- 1) mm? -2 .. [m?- (2k-2)7),
[P =0;b) =0, LO)=m, £ 0) = (-1 mm?-13)...[n2 - 2k- 1] h=1,2,..).

RN 1 1 .
1222.a) FE9(0)=(-1)* ‘2(2k-1)!(1+§¢...+2k_1] L FERD0)=0 (k=1,2,..0;b) £ ®N0) =221 [ - 1)1,

sinnarccotgx) (x=0). 1219.a) %![2”%(-1)"]; b) ﬂ"'l—?’)" r>1).
97"

w1y
1-2

f-(ik-ll(o):O *h=1,2,...}. 1'223-.71[‘0(&)-

1228.. L (x)=(—l)”’[ Mom ™ '2+...+(—1}"m!.

1231, H_ (9@ n) gyt PN 08 s

Y 1236. Pro x =0 neexistuje koneéna

xlexAx +-?{-(a£\:c}2 -x

derivace f’(x). 1244, (-1,-1), (1,1). 1245.Neplati. 1246, a) 8=1/2; b) B=\

Ax ; Ax
(x20,Ax>0); 0 B-_x_[ l+__-1] EE+Ax)>0): d) O= P, e¥-1
Ax 1‘ . 1= 0); &) Axln i

1261. f(x) =cu+clx+...+c"_lx"'l, kde ¢, (i=0,1,..

Ax
1243, c=% a 2. 1250, Obecns

nelze. - n-1) jsou konstanty. 1268, Pro —w<x<% je

) 1 . oo
funkee rostouci, pro §<x<+=m Je Klesajici, 1269. Pro -=<x-1 je funkce klesajici, pro ~1<x<1 je rostouci;

pro 1 <x<+= je klesajici. 1270. Pro -e~<x-1 je funkee klesajici, pro -1<x<1 je rostouct; pro l<x< oo ie

Klesajici. 1271. Pro 0 <x < 100 je funkce rostouc; pro 100 <x < += je klesajicf. 1272. Funkee je rostouct.

R

<< +ea,

KAPITOLA |
1273. Na intervalech k—“ k_n+£ je funkee rostouct; na intervalech —ﬂ:*rE k_n+_1£ je klesajici
22 3 2 32 2
(=0, =1, £2,..)). 1274. Na intervalech [2!: T 2lk) [ —27:-:1-, —#2-) je funkce rostouct; na intervalech

1 LY.t
2k+2' 2k +1 %’

D<x=< % je rostouct; pro -1-2—2 <x <+ je klesajici.
n

je klesajict.

le 3 ] je Klesajici (¢=0,1,2,...). 1275. Pro ~= <x <0 je funkce klesajici; pro
+

1276. Pro 0 <x<n je funkee rostouci; pro n <x < +=

1277, Funkee je klesajici pro ~w<x<-1 a 0<x<1; je rostouci pro -1 <x <0 a ] <x <+,
1278. Na intervalech (¢ 7¥12'2kx 130121245 1o finkee rostouct; na intervalech (g 13712 25 o 1TRIZ 247 30
klesajici (k=0, 21, %2,...). 1283, Nemusi to platit. 1298.V bodé (-1,0) je funkce konvexni; v bodé {1, 2)
e konkdvni; (0,0) je inflexni bod. 1299, Pro -=<x <1 je funkce konvexni; pro 1 <x < +e je konkdvni;

x=1 je inflexni bod. 1300. Pro |x| < £ je funkce konkavnf; pro |x|> 2 je konvexni; x=* £ jsou
3 3 3

inflexni body. 1301. Pro x <0 je funkce konkdvni; pro x>0 je konvexnf; x =0 je inflexni bod.

1302, Funkce je konvexni. 1303. Pro 2kn <x <(2k + 1)x je funkce konkdvni; pro (2k+ N a<x<(2k+2)7 je
konvexni;x =7 jsou inflexni body (k=0,%1,%2,...). 1304. Pro. |x| <{/1/2 je funkce konkdvni; pro

|x| >1/2 je konvexni; x = +/T/7 jsou inflexni body. 1305. Pro |x| <1 je funkce konvexni; pro |x|>1 je
konkavni, x=*1 jsou inflexnf body. 1306. Pro 27 3™ <y < 7™ je funkee konvexnf; pro

g 2hm i o 2hnaGnid je konkdvnf; x =ghmrmi4 jsou inflexni body (¢ =0,%1,+2, ).

1309. h=— 1318. 2. 13101
o2 b

1307. Je konvexni pro

1310. Je konkdvni (pro a>0). 1320.2. 1331, -2.

1 1 1 a-b
1324. —_ 1325. —. 1326. —, 1327.1. 1328, —.
3 6 2 3ab

1331. 1. 1332, [E] . 1333, % 1334, % 1336.0. 1337.0. 1338.0. 1339.0. 1340.0.

b
1341. 0. 1342. 1.

| —

1322..%. 1323, - 1329. %Ina. 1330, -2,

[CILE

1335. 1.

1346. ¢ ', 1347. %", 1348. 7', 1349. 1. 1350. 1.

L, 3 o
. ~{In“a -1n=4)
1351. 1. 1352, g ¥inde [as%", kje celé] . 1353.¢° . 1354. é 1355, % 1556. 0. 1357, —%.

1343.1. 1344. -1, 1345.¢%,

l i

1360. —. 136l.¢ 1363.1 ¢ /5. 1%63.2 ¢'°
/1

1358. ¢ *(Ina-1). 1359, --%. 1362. 1. 1368. ¢ 6,

11367, 22
n-m

1373.2 y =..1.[x %] . 1874, a) 'Hospitalovo
e

13633 ¢ '3, 1363.4 ¢7°. 1364. ¢ . 1365. ¢ ", 1366.¢" 1368. Je. 1368.140.

1369, -%. ‘1370. 2. 1371 tga. 1378.1 f/(0)= i

12
pravidlo nelze pouiit; limita je rovna nule; b) I'Hospitalovo pravidlo nelze pouZit; limita je rovna jedné;
¢} formalni pouZiti I Hospitalova pravidla vede k patnému vysledku §; limita ovem neexistuje;

d) 'Hospitalovo pravidlo, které by vedlo k 3patnému vysledku 0, nelze pouZit; limita oviem neexistuje.

1375. -g-. 1376, 5130+ 1)+ 11(e+ 12 -2¢c+ )2, 1377, 1+2x+ 227 -2x*+0(x™); -

(m-x?

2
U - 1+0(x >

1379. a +—j

1378, 1 +60x +1950x2 +a (x ™.
) ma 2ma

1380. %x2+x3+o{x3).

. 3 4
—x“—ixﬁm(x!’) 1382, 1-%.% _ %

_ﬂ,_D
6 15 2 12 720

!S)'

1381. ca(x?). 1388, x-2 +o{x

l+2x+x2-3x —-
N 3 18 3240

5

3
1386, x+ %+ 2%
3 15

2 1'4 xﬁ 3
1384, -2 -2 X 5%, 1385. x——+0(x3)
2 12 45 3

+ofx?).
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xz x‘ xs
1387, -——-——-——._+p(x%). 1388. l+-—(x 1)- (x 12 +o(Gx-1)%).

6 180 2835
1
1389. (- 1)+ (- e o= 1 va(le- 1)), 1890, y=a =X vox?. 1381, -1 of L],
2 2a 2x 8;(5 x3
kR wt BT
1392, Inx+—- 2«*...+(—1) LPRLAN A ™). 1394.a) Je mensine} ; b) neni veti nez H
X 2x nx”® fm+1)! 3840

. M . . . [ |
c) je menii nez 2+ 10°°; d) je men3i nez T3 1395, |2]| <0,222=12°30'. 1396.a) 3,1072; b) 3,0171,
c) 1,9961; d) 1,64872; ) 0,309017; ) 0,182321; g) 0,67474 = 38°39'35"; h) 0,46676 = 26°44'37"; i) 1,12117.
1397, a) 2,718281828; b) 0,01745241; c) 0,98769; d) 2,2361; €) 1,04139, 1398, -1—12. 1399, l
3

'S

1 b .
1400, -—. 1401. —. 1402. —!- 1403. In®z. 1404. l 1405. 0. 1406. —!- 1406.1 E 1406.2 l
3 6 2 3 90 2

—

1410. a=—; b=- 1410.1 A= § B=—-l—.

7
1406.3 —. 1407. 2. 1408. x2. 1409, X
2 30 2

S
o | —
—_
o

1 1 1 1 A 70 2 1
14102 4=5, B=—5, C=-g, D= 1411.2) =2 L A =z Bem
R T M T a) 30 379 1o Too' ¥ 5 MR etgibeg

4
1413. F kde « je polovina stfédového ihlu kruhového oblouku, 1414, Maximum ¥y= 21 v bodég x=—1-

1415. Nemd lokilnf extrémy. 1416. Minimum y=0 vbod& x=1. 1417. Lokilni minimum ¥=0 vbodé

N}

m*n "

(m+py™*®
: lokélni minimum y=0 v bodZ x=1 pro n sudé, nems loka[nf extrém v bodé x=1 proliché n.

x=0 pro m sudé, nemé lokalni extrém v bodé x =0 pro m liché; lokdlni maximum y= v bodé

x=
mn

1418, Lokdlni minimum ¥ =2 v bod& x=0. 1419. Lokalm minimum y=0 v bodé& x = -1; lokdlri maximum
§=10"% 921234000 v bodé x=9. 1420. Lokiln{ maximum ¥=1 v bod¥ x=0 pro n liché, nem4 lok4lni
exlrém v bode x= 0 pro sude n. 1421. Lokalnl mm:mum y=0 vbodé x=0. 1422‘ Lokalm maxlmum

y== \/— 0,529 v ' bodé x = —E lokaln{ minimumy = =0y bodé x = 1; v bod¢ x =0 nemad lokilnf extrém.
1425. Loklnf minimum f(x)=0 pro P)>0an su_de; lokalni maximum fx)=0 pro @fx) <0 a n sudé;
[ nenti lokilnim extrémem-pro n liché.. 1425. NemiZeme.. 1427, a) Lokilni minimum f(0)=0;
b) lokalni minimum F(0)=0. 1428. Lokilni minimum f{0)=0. 1429. Lokiin{ maximum y =0 v bodé x=1;
lokilni minimum y=-4 v bodé x=3. 1430. Lokalnf minimum ¥=0 v bod& x =0; lokdlni maximum y=1
5-y13 . ‘

vhodech x=x1. 1431.V bodé& « =—-—(;/_ =0,23 je lokdlni minimum y= -0,76; v bodé& x =1 je lokilni

. . 5+413 . . L .
maximum y =0; v bodé x =—£= 1,43 je lokdlnf minimum ¥=-0,05; v bodé x=2 funkce nemi extrém.
1432,V bode x=-1je !okalnf maximum y=-2; v bode x=1 je tokilni minimum y=2. 1433.Vbodé x=-1
je lokilni minimum y=-1;v bodc x=1je lokalnf maximum y=1. 1434. V bodé x I Je lokdlni minimum
¥y= TS 1435, Funkce m v hrani¢nich bodech x=0 a x= 2 svého defini¢niho oboru minimum y=0; v bodé

3

x=1 md maximum y=1. 1436.V bodé x =z ma funkee lokalnf minimum ¥y= —E J_= -0,46; vhodé x=1
funkce nemd extrém. 1437. V bod& x =1 m4 funkee lokilni maximum y=e ‘10,368, 1438.V hrani(’fnimr

bodé svého definiéniho oboru x =0 mi funkce maximum; v bodé x=¢ *= -0,135 m4 funkce lokalni

. 2
minimum y=—?=-0,736. 1439. V bod# x=1 ma funkce lokdlni minimum 3=0; v bodé x=¢2=7,380 m4

4 - .
lokdlni maximum y=—=0,54], 1440.Vbodech x=kn (k=0,%1, *2,...) mi funkce lokdlni maximum
e?

KAPITOLA I

¥ =(-1 +%; v bodech x= igf: +2kn (k=0,+1,%2,...) mid lokdlni minimum y = —%. 1441. V bodech
x=km (k=0,%1,%2,..) mai funkce lokalni maximum y=10; v bodech x=r:[k+é] (k=0,£1,%£2,...) mi

lokdlni minimum y=5. 1442.V bodé x =1 md funkce lokilni maximum y= % - %ln2 =0,439.

I,
1443,V bodech %= —-*21tk (k=0,%1,%2,...) ma funkce lokilni minimum .7=--—‘/2:-.g BT, | o dech

x_sT+2kn k=0, +I,:2 .} mi lokilni maximum y-£ SW4 2T 1444 V bodé x=-1 mi funkee

lokilni maximum y=e 220,135; v bod# x= 0 md lokdlni minimum y=0 (hrot); v bod& x=1 m4 maximum
¥=1 (hrot). 1445, -%; 32, 1446.2;66. 1447.0; 132, 1448. 2, 100,01. 1449.1; 3. 1450.0; m-36 8.
e

1451.0; 1. 1452, 0;_%(1+,/§)=1,2. 1453, —.‘/Q_Ee’”‘:-o,osn 1. 1454, m(x)=—% pra —=<xs -§;

m(x}= L= pro -3<x<-1; mix}=0 pro -1<x<+m; M(:n:)=l pro ~e<xs<l; M{x)= Lox pro 1 <x<+eo,
+x? 2 3 eyl
10 n . .
1455. a)-lf—~177107 b —-—--,c) VB=1,44. 1457.976‘5:4.85. 1458.q=—%. 1459, %.

1460. g(x) =(x‘ +_x2)x—_(x, +x4 +6xlx2); A =—@c, —xz)?. 1461. 2. 1462. Jeden kofen v intervalu (3, +=).

1463. Jeden koten -w<x —1 pro h>27; i kofeny —w<x ~1, -1<x,<3 a 3<x <+ pro -5<h < 27;jeden

kofen 3 t;’.x3< +o pro A< -5. 1464. Dva kofeny -~<x, <-1 a 1 <z, < +=, 1465. Jeden kofen

—e<x, < -1 pro —w<ag<-4; koi'-eﬁy —m<x, <-1, -1 <:x5< 1 al <x, < +w pro -4<e <4; jeden kofen

1 <x, <+ pro 4<a < +=. l466.jedéh kofen 0 <x, < 1 pro —wi<_l_t<0; dva kofeny 0 <x, <%

a—’}; <."t'2' < +w pro G <k <'-1—' nemi kbfeny-pro k> l 1467. Nemi kofeny pro & < 0; jeden kofen -w <x, <{

e . :

pro 0<a<-z tii kofeny -=<x <0 0<x,<2a 2<x3< +60 Pro %—<a< 400, 1468 Dva kofeny pro

|a] <3/3/16; nemi kofeny pro |a| > 3/3/16. 1469. Dva kofeny 0< |x | <§a E< A [ <+, kde £21,2 je

kladny komn rovnice cotghx =x, pro [k > sth 1,50; nem4 koteny pro |k} <sinhf. 1470.2) 2—7 q4 >0
IJ +—‘i- <0. 1471.% Symetrle vzhledem k potitku soustavy soufadnic. Nulové body funkce: x =0

ax= t\/_~ +1,73. Lokilnf minimum y= -2y bodé x=-1; ; lokilni maximum y=2 v bod€ x=1. Inflexni bod

x=0,y=0. 1472. Symetrie vzhledem & ose y. Nulové body: funkee x =241 +/3= +1,65. Lokalni minimum

- 5

y=1 v bodé€ x=0; lokilni maximym y = l-é—— v bodech x=%1, Inflexni body x=+—=*0,58; y = 1—1'—)5.

1473. Symetrie vzhledem k bodu (1,2). Nulové body funkce x = -1 a x =2, Lokélal minimusm y=0 v bodé

x=2; lokdini maximum y =4 v bodé x=0. Inflexni bod x=1,.y=2. §474. Symetrie vzhledem k ose y. Nulové

»/_h

body funkee x = tﬁ= +1,41. Lokidlni maximum y=2 v bodé x =0; lokdlni minimum y=1 -1==-0,12 v ho-
dech x=%y2 +/5=+2,06, Inflexnf body x, ,=%0,77, y,,= 1.04: x, = £2,67, 3, ;=-0,010. Asymptutay=0.
(10-486)=-0,20

v bodé x =¥=D,42; lokdln{ maximum y=-(10+/06)=-19,80 v bodé x=—C=2,38. Inflexni bod

1475. Body nespojitosti x=2 a x= 3 Nulové body funkee x==1. Lokalnf minimum y=-

x=-0,58, y=-0,07. Asymptoty x=2, x=3 a y=1. 1476. Body nequ]ltosu x, = -1 a x,=1. Nulovy bod

D yysied

ttoh na sestrojenl grafii funkei nemus{ byt vidy dping,
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funkce x=0. Nema lokdlni extrémy. Inflexni bod x = -0,22, y= ~0,19, Asymptoty x=-1,x=12a y=0.
1477. Nulovy bod funkee x =0. Bod nespojitosti x = -1, Lokdlnf minimum y=0 v bod2 x =0; lokélnf maxi-

mum y = —QE- v bod¢ x=-4. Nemd inflexni body. Asymptoty x=-1 a y=x-3. 1478. Lokdlni minimum
y=0v bode x=-1; inflexni bod x=-4, y -8t - Asymptoty x=1 ay=1. 1479. Lokilnf maxima

625
- ﬁfy~ -8,82 v bod x= -2 17 \/_ =-8,56 a y=0 v bodé x =0; lok4ln{ minimum
~142

33 ~0,06 v bodé x=3/}_;—=0,56. Inflexni bod x=g, y= --:F. Asymptoty x=-1 a y=x-3.
5

1480. Symetrie vzhledem k pofdtku soustavy soufadnic. Nemi lokilnf extrémy; inflexni bod x =0, y=0,
Asymptoty x=-1, x=1 ay=0. 1481. Lokln{ minimum y= 13% v bods x=5; inflexnf bod x= -1, y=0.
Asymptoty x=1 a y=x +5. 1482. Lokilni minimum y =2§ v bodé x=2; lokalni maximum y=-3,2 v bodé
x=-2.4; inflexnf bod x =0, y=8. Asymptoty x=-1 a y=x. 1483. Symetrie vzhledem k ose ¥. Nulové body
funkce x = i—'/;—_()_ = *0,79. Nemd lokilnf extrémy. Inflexni body x = 1J—%z 0,71, y= —2%. Asymptoty
¥=-1,%=0,x=12y=0. 1484. Definiéni obor 0 5x < +=_ Nulové body funkee % =0 a ¥ =3_ Lokaln(
minimum y=-2 v bodé x=1; maximum y =0 v hrani¢nim bodé defini¢niho oboru x=0. Konvexnf funkce.
1485. Definitni obor |x| <2y/2~2,83. Symetrie vzhledem k potitku soustavy soufadnic a vzhledem k soufad-
nicovym osdm. Nulové body funkee x =0 a x=£2/2. Lokiln# maximum [y| =4 v bodech x = %2, lokalni

minimum y=0 v bodé x =0; minimum y =0 v hraniénich bodech defini¢niho oboru x = =27, Nemi inflexnt
body. 1485.1 Nulovy bod funkece x =2. Lokalnf minimum y = -J-- -2,24 v bodé x =-0,5. Inflexni body

X, = 3+’/_~-l 18; y,=-2,06 a x, -£—3~0 42; y,= ~1,46. Asymptotyy——l prox--~ay=l pro

X+, 1486 Defini¢ni obor l<x<2a 3$x< +eo. Nulové body funkee %= 1, x=2 a x=3. Lokilni maxi-

mum |y| =— \[_ 0,62 v bodé x = ‘/_ =1,42; minimum y=0 v hramén[ch bodech defini¢niho oboru
x=1,2a 3 1487. Lokdlni minimum y =0 v bodé x =1 lokdlni maximum y== \/_ 1,06 vbodé x = -;
inflexni bod x=~1, y=0. Asymptota y =x - ; 1488. Symetrie vzhledem k ose__y - Lokdlni rmmmum y=-1
v bod€ x =0. Konkdvni funkce. Asymptota y=0. 1489. Symetrie vzhledem k poditku soustavy soufadnic.

Nulovy bod funkce x =0. Lokdlni minimum y = -g;/ﬁz -2,52 v bodé x = -2; lokalni mﬁximumj =Vﬁ-v bod&
x=2. Inflexni bod x=0, y=0. Asympiota y =0. 1490, Symetrie vzhledem k ose 7. LokaIni minimum -

y =:V‘T= 1,59 v bodech x=x1"lokdlni maximum =2 v bodé x =0. Konkdvnl funkce. 1491. Symetrie
vzhledem k potdtku soustavy soufadnic. Body nespojitosti x=%1. Nulovy bod funkee x =0, Lokilnf

minimum y =-;—/_z= 1,38 v bodé x=y/3; lokalni maximum y= —3‘/—5 v bodé x = ~/3. Inflexni body x, =0, y =0
2

A%y =E3, §, =% l%. 1492, Definiéni obor funkce [x| > 1. Symetrie vzh!edém k ose y. Minimum y =0
v hrani¢nich bodech defini¢ntho oboru x =+ 1. Konkdvni funkee. Asymptoty == pro xe4way: =2 pro

X~ o, 7 1493. Defini¢ni obor funkce x > 0. Lokdilni minimum ¥ ——-J— 2,60 v bodé x —l Konvexn[ funkce.

Asymptoty y=x +% ax=0. 1494. Defini¢ni obor x>0 a x < -3. Nu]ovy bod funkce x= f— =4,30,

Lokilni minimum y = 13 v bodé x=-4; maximum y=1 v hranicnim bodé deﬁmcntho oboru x=0, Konvexni

funkce. Asymptoty y =—2- -2x pro x—-w; y= -% Pro x—+=; x=-3 pro x--3. 1495, Lokdlni minimum ¥ =0

o
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v bodé x =0; lokilnl maximum y = —?V_z -1,59 v bodé x=-2. Inflexnf body x, = (2 -/3) = -0,27,

3 3
¥ = -@=0,46{x2=-'{2+\/§)=—3,73,y2=* %2_1=-1,72.Asymptotax=—l. 1496. Symetrie

vzhledem k ose y. Funkee s kladnjmi hodnotami. Lokini maximum y =y3=1,73 v bod& x =0, lokalni
minimum y =‘f§== 1,41 vbodech x=%1. Inflexni body x| .= +{,47; F1a™ 1,14 a Xy ® +4,58, Pya® 4,85,
Asymptoty y=%x. 1497. Perioda funkce T=2r; zikladni interval funkce 0 sx<927. Nulové body funkce

X =m +arcsin%z 1,21 a x,=2mn-arcsin ‘/52-1

=1,79x. Lokdlni minima y=1 v bodé x=% ay=-1

v bodé x =3Tn; lokaln{ maxima y = l-}{- v badech x=% ax =3—6n. Inflexni body X, =arcsin ! :‘3/?3 =0,32x,

. /331
]=__]9;32\/ﬁ= 1,13; x,= T —arcsin 1_."%/3—3:0‘58“, ¥o = 19*332\/%; X, =T +arcsin ‘F; =1,20m,

L= 19 35;‘/_'-0 055 a x,=2m -arcsin ‘/3_:_1 =1,80m, yi--l—?%m. 1498. Perioda funkce 2n; zikladni

interval funkce -m<xsm. Symetrie vihledem k po&itku soustavy soufadnic. Nulové body funkee x, =0

a x, ,=*n. Lokilni niinimum y= —1—83-\[1—'= -7.3 vbodé x = —arccos%= -0,42 1; lokdlni maximum

=—5-Jﬁ=7,3 v bodé x=arccosi=042n. Inflexni body x, =0, y =0; x —"-arccos(—;J +0,84m,

2,3 —
Yo" t—;% "+2 54 a x“.’ +1, y‘ ;=0. 1499. Perioda funkce T=2m, zékl_adni interval funkce -msx< .

Symetrie vchledem k pocatku soustavy soufadnic. Nulové body funkee x; =0 a x, ;=*n . Lokiln{ minima
' n

. . y 1 _ . 2 .
g= -%ﬁ: -0,94 v bodech .x= _%’c a xz&if_, )'=§ v bodé x=—2-; lokalni maxima y——g v bodé x—~5-,

y =§-ﬁ v bodech x=i£ a x=§4—n. Inrﬂexnf body x,=0, 3 =0; x2'3=iarcsin %z:O,?ﬂﬁ,

. I 5 ; 4 _ ’
- =% - =x—f30, - =
: 77 [11: arcsin 6] (3,637, Fas 77 Xon=ET, By =0

1500. Perioda funkce T'=2r; zkladni interval funkece[-=, 7], Symetrie vzhlcdem k vse y. Nulové body

y23=;— 30 = +081 X,

funkee x| 2—1arccos r" +0,62 7. Lokdlni minimum y—% v bodé x=0, ¥ =-1-é v bodech x=%m;

1+/33

lokdIni maximum y =% v bodech x= i%. Inflexni body *) o= 2ANCCOS =+0,18x, yllgzO,GS;

Ky W= _Iarcéosl—_8@= =0,70m, y, = -0,44. 1501, Perioda funkce T=-121; zakladni interval funkce

[-g,;]. Symetrie vzhledem k ose y. Funkce s kladnymi hodnotami. Lokdln{ maximum y=1vbodé x=0;

lokdlni minimum y—-;— v bodech x= -4— Inflexni body x, I-f:-, ymzi. 1502. Perioda funkce T =x;

8

zakladni .imewal funkce [ g 5] Symetrie vzhledem k ose y. Nulové body funkee x, =0 a x, 3=

ml;:l

Lokdini minima y=0 v bod& x =0 a y=~1 v bodech x= i%; lokdlni maximum ¥y =-% v bodech

X = *arccos L +0,21 &, Inflexni body xl,,—i;arccos1 1"'612 =x0,11m, ¥, ,=0,29,

4
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Xy =i-%arccosl—1— ‘.6129: £0,367; 3, ,=-0,24. 1505. Perioda funkce T =, zdkladnf interval funkce

O<x <. Bod nespojitosti x =37:. Nulové body funkce x, =0 a x, =n. Nemd lokilni extrémy, funkce je

rostouct. Inflexni bod x = ;, y= g Asymptota x = STJE 1504. Perioda funkce T =21, zikladni interval

funkee [-7, 7], Symetrie vzhledem Kk ose y. Nulové body funkee x, == L

L=t - Lokalni minimum y =1 v bodé

n
x =0; lokdlni maximum y=-1 v bodech x = x . Inflexni body ® =k I, ¥1.2=0. Asymptoty x= +I

2
ax= iéf-. 1504.1 Perioda funkce T =2n, zdkladni interval funkce ~m<x <. Lichd funkce. Lokdln{

minimum y = -—J—_- =-0,58 v bodé x = —%; lokdln{ maximum y= £ =0,58 v bodé x =2T:t. Inflexni body
x,=0,5,=0a :4:2 s =X7. ¥, ,=0. 1505, Stfedy symetrie (R, Qk'r:). Nulové body funkce x =0,

¥y ,=£0,37 ... Lokdlni maxima y =; ~1+2kn v bodech x =2 +k7; lokilni minima y = {% -1 +2k1t)

7 (k je celé islo).

v bodech x = -(g +k1't] - Inflexni body x =k m, y=2kn. Asymptoty x= 2k+1
1506. Symetrie vzhiedem k pfimce x =1. Funkce s kladnymi hodnotami. Lokiln{ maximum ¥ =¢ v bodé& x=1.

]
Inflexni body x ,=1+ \[-, Y2 =ye=1,65. Asymptora y=0. 1507, Symetrie vzhledem ko;e ¥ . Funkce

2
kladnymi hodnotami. Lokdlni maximum y=1 v bodé& x =0. Inflexni body % .= thJ +1,22,

Yia =%e H=0,56. Asymptota y =0. 1508. Funkce s kladnymi hodnotami. Lokilni minimum y=1 v bodé
x =0. Konvexnf{ funkce. Asyrﬁptota y=x pro x— +e, 1509, Funkce s nezdpornymi hodnotami; milovj' bod

3
} 2
funkce x =0, Lokdln{ minimum y=0 v bod& x =0; lokilni maximum y= %e “23:0,39 v bodé x= 3

‘/g= 1,48, y,=0,30. Asymptota y=-0 Pro x— +e,

Inflexnf body x, =L5‘/6= -0,15, ¥ =(,34 a X, = 2+
1509.1 Funkee s nezipornyjmi hodnotami. Lokdlni minimum y =0 v bodech x=kx (k=0,=1, 2, .}; lokdlni

maxima y =%e AT g hodech x =% k. Inflexni body x, =(- 1)‘% +hm, y ‘=—};e Bk m'(_'l)"".
£510. Funkce s kladnymi hodnotami pro x > -1 a se zApornymi hodnotami pro x < -1. Lokdlni minimum
y=1 vbodé x =0. Konvexni funkce pro x > -1 a konkdvn!{ funkce pro x < -1. 1511. Symetrie vzhledem

k ose y. Funkce s nezipornymi hodnotami, nulovy bod x =0. Minimum y=0 (hrot) v bodé x=0. Konkdvni
funkce. 1512. Defini¢ni obor funkce x> 0. Nulovy bod funkee x =1. Lokalni maximum y —g—-() 74 v bodg

=7,39. Inflexni bod x=¢**= 14,35, y=€e"“5~0 70. Asymptoty x =0 pro x~0 a y=0 pro &= +=.
1513. Symetrie vzhledem k poéitku soustavy soufadnic. Nulovy bod funkce x =0. Nemi lokdlni extrémy;
funkee je rostouct. Inflexnibod x=0, y=0. 1514. Symetrie vzhledem k potitku soustavy soufadnic. Nulovy
bod funkce x =0. Funkee je rostouci. Funkee je konvexnf pro x>0 a konkivni pro x<0; (0,0} je inflexnim
bodem. 1515. Definitnf obor funkce |x[ < 1. Symetrie vzhledem k poitku soustavy soufadnic. Funkee je
ostfe rostoudi. Funkce je konvexni pro x>0 a konkdvni pro x <0; x =0, y=0 je inflexnim bodem. Asymptoty
x=%1. 1516. Symetrie vzhledem k poditku soustavy soufadnic. Nulovy bod funkee x =0. Funkce nemi

b

lokalni extrémy; je rostouci. Inflexni bod x=0, y=0. Mympmty y=x --;-t- prox--=ay=x +-§ pro x— +e,
1517. Nulovy bod funkee x=-5,95. Lokidln{ minimum y= —-§ + 221,285 v bodé x = 1; lokilni maximum
y= —;+BT:E- 1,856 v bodé x = -1. Funkee je konvexni pro x>0 a konkdvni pro x<0; x=0 y—-—-—Jc
inflexnim bodem. Asymptoty y —% +T Pro x~-w a y= —5 pro x- +=, 1518, Symetrie vzhledem k ose y.

Funkce s nezdpornymi hodnotami; nulovy bod funkce x =0. Lokalni minimum y=0 v bodé x =0. Funkce je
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konvexni. Asymptoty y= f-g-x— l prox--eay =gx -1 pro x~ +=, 1519. Symetrie vzhledem k poitku
soustavy soufadaic. Nulovy bod funkce x=0. Minimum y = —g v bodé x=1 (hrot), maximum =g v bodé
x=1; throy) . Inflexni bed x =0, ¥=0. Asymptota y=0. 1520, Symetrie vzhledem k ose ¥ . Funkce s nezi-
pornymi hodnotami; nulovy bod funkee x=0. Minimum ¥=0.vbodé x=0 (hrot). Funkee je konkdvni,
Asymptota 3 =w. 1521, Bod nespojitosti funkce x*O. Nulovy bod funkce x = -2. Lokdlni minimum
¥=4/2=6,59 v bodé x =2; lokilni maximum y-—~0 37 vbodé x = -1, Inflexni bod x=~§.

=§¢ 220,13, Asymptoty x=0 a y=x+3. 1522. Defini¢ni obor funkee |#| 2 1. Symetrie vzhledem k ose y.
Maximum y =2¥%2,67 v hrani¢nich bodech definiénho oboru x =#1. Funkce je konvexni. Asymptola y=1.
1523. Defini¢ni obor funkce x <1 a :;> 2. Funkce protind osy soufadnic v bodech (0,1n2) a (1/5,0).
Lokilni maximum y=1,12 v bodé x = IL—S-‘/T(_)‘ =-0,72. Asymptoty x=1, x=2 a y=0. 1524. Definic¢ni obor
funkce |x[<a. Fur_lkce protind osy soufadnic piblizné v bodech (0, -a) a {0,674,0). Funkce je ostie rostouci.

Minimum y= —ga v hraniénfm bodé definiéntho oboru x = -¢ a maximum y = ga v hrani¢nim bodé defini¢-

niho oboru x=a. Funkce je konvexni, - 1525. Defini¢ni obor funkce x<0 a xz%. Minimum y=0 v hrani¢nim
bodé definiéniho oboru x =0 a maximum y = v hraniénim bodé defini¢niho oboru x = % Funkee je
konkavnf pro x <0 a konvexni pro xz%. Asymptota y =%. 1526. Definicni obor funkce x2 0. Funkce

b
s Kladnjmi hodnotami. Lokalnf minimum y =[i) =0,692 v bod& x = =0,368; maximum y= 1
[ 4

‘v hrani¢nim bodé defini¢niho oboru x=0. Funkce je konvexni. 1527. Defini¢ni obor funkce x> 0. Infimum

0 pro x- 0, lokdlnf maximum y=¢ %= 1,44 v bodé x =e. Asymptota y=1. 1528. Definicni obor funkce
x> -1, x#0. Funkee s kladngmi hodnotami. Bod odstranitelng nespojitosti x =0. Nema lokaln extrémy, je

klesajicf. Funkee je konvexni. Asyptoty x=-1a y=1. 1529. Funkce je monoténni pro x>0, Infimum y-(

pro x~0. Asymptota'y =e[x —-;— 1530. Funkee 5 kladnymi hednotami. Symetrie vzhledem k ose 3. Body

nespojitosti x =* 1. Lokiln{ minimum y=¢ v bodé x =0; lokdlni maximumn ¥ —L\/_-(} 15 v bodech x==,/3,
4fe

Cryfi inflexni body Asymptoty x=-1 pro x~-1;x=1 prox-1 a y=0 pro x~=. 1531. Funkee x a y maji

neziporné hodnoty; x

=0 prot=-1;3 . =0 pro ¢=1.Kfivka je konvexni pro £> -1 a konkdvni pro

ml min

£<-1. 1532, Kfivka protini osy soufadnic.v bodech (0,0) pro ¢=0; (12J§—3,0) pro £=*3 a (0, -2) pro
(=2;x ~lay =2 prog=1 (bog:l obratu)_; Yin =2 pro t=-1. Kfivka je kenvexni pro ¢ <1 a konkdvni

prot>1. 1533, Kﬁvka protind osy soui-adnic v bodé (0,0) pro ¢=0;x =0 prot=0,x =4prot=2;

min
¥ klesd pro rostoua ¢ . Inflexnf bod prlbhiné (-0,08;0,3) pro £=-0,32. Asymptoty y=0, x = l ay 3 -—i-

1534. Kfivka protind osu y v bodé (0.1) pro £=0; bliZi se k bodu (-1,0) osy x pro {=c. Extrema]m bady
Xun=0ay, =1 pro t=0;x =-la ymm =0 pro { =e. Nemi inflexn{ body. Asymptota y—-— Kfivka je

konvexnf pro {2} > 1 a kenkivni pm [t} <1. 1535, Funkee x a ¥ maji neziporné hodnoty; x . =1ay

min min

pro ¢=0 (bod obratu). Kfivka je konvexni pro ¢ <0 a konkavni pro £ >0 -Asymptota ¥=2x pro -+,
1536. Zikladni interval [0, n]. Kfivka protind osy soufadnic v bodech [ ,0f pro t—g- 0, —i] pro l=—:-;

" =a pro t=0;

4

{-a,0) pro t=E; [0, %) pro t=3— a [%, 0] pro t=_36£. Extremdlni body: X @AY
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Fmia = "8 PTO l=%; X n =€ PTO t=%; Y =% PTO t=-2—;£; x .=aay . =-aprot=n. Kfivka je konvexni

pro G<t< %; a konkavaf pro 121-<t< n. 1537, Funkee x a ¥ maji nezaporné hodnoty a jsou periodické;
ikladnf interval 03 ¢< 3. Extremdlnf body: %,,=0 a 3,,,,=1 pro =7 2 %,,=) @ 3y, =0 pro ¢-0. Keivka
je konvexni. 1538, Definitni obor £ . Symetrie vzhledem k pfimce x +y=0. Extremilni body:
=, ¥ = pro t=¢. Inflexni body: x, = —\[‘Ze V20,34,

e

min AX

¥ = -y2e v _5 82 pro t=e 220,24 a x2=\/§e‘/§, Ya =2 2 pro t=2¥2=4,10. Zména znaménka kiivosti

x =-l=—0,37, y=-¢=-2,72 pro t:l ax,
€ [4

v bodé t=-—l-. Asymptoty x=0 a y=0. 1539. Funkce x a y jsou periodické s periodou T =27, zikladn{
€ . .
interval -n<t< 7. Symetrie kfivky vzhledem k osdm soufadnic. Kiivka m4 dvé vétve. Extremalni body:
x . =a,y=0prot=0;x__=-a,y=0prot=*n. Kfivka je konvexni pro -m<{< -n/2 a 0<t<m/2;je
konkdvni pro ~w2<t<0 a W2<t<7. 1540. Symetrie vzhledem'k ose y;'y,,, =0, x=0 pro ¢=0. Kfivka je
2
konkdvni. 1541. Parametrické rovnice x = 3al ¥ =£t—
[T ETL
o . - X - 3 . 3 3
Kiivka pls'oumi osy soufadnic ¥ bodé (0,0) (dvojny bod); x__ =4 ¥4=1,59a proy=a ﬁz 12a; 5 =a ﬁ
pro x=a 2. Asymptota x +y +&=0.. 1542, Symetrie vzhledem k po&itku soustavy soutadnic, vzhledem.
k osdm soufadnic a osdm kvadrantd; (¢,0) je izolovany bod. Kfivka protind osy soufadnic v bodech (+1,0)

a (0,%1); |x| ,,=1 proy=0; lximx=‘\ ]_tgﬂ” 1,10 pro 9] =y1/2=0,71; 5], =1 pro £=0;
: _43 _s3 :
bl = 1*2\/§ pro [¢| =/T7Z. 1543, Parametricke rovnice x=—t ,y=]+,kde;=l (-0 <t < +w).
* p .

x
: 3
Kfivka ma dvé vwve, Symetrie vzhledem k pfimce x +y=0. Extremdlni body x . =% ﬁ= 1,80,

y =”%3ﬁ= ~2,38 pro £=-yZ=-1,26; yms%’\/i ’C%VZ'PW t=-\T/2=-0,79. Inflexnf body x,=2,18,

y,= 4,14 pro =~ ';‘(7+3»/5)= -1,90; x,54,14, y,= -2,18 pro ‘='\| %{7 -8y/5)= -0,53; zména znamén-

ka kfivosti pro t=-V§. 1544. Kfivka je sloiena z pHimky y =x a vétve hyperbaly x={1+)", y=(1+5"

(-1 <t < +); bod{e,e) je dvojny. Kfivka je konvexni pro x=y. Asymptoty x=1a y=1. 1545, Defini¢nf obor
|%] 2In{1 +/%)= 0,88, Symetrie vzhledem k osim soufadnic. Minimum y=0 v hrani¢nich bodech defini¢niho
oboru x = +in(1 +/2). Kiivka je konkdwni pro y>0 a konvexni pro y<0. Asymptoty y=x a y= ~x.

{-e= <t < +m}. Symetrie vzhledem k pfimce y =x.

1546. Definiéni obor r>0, |¢|sa, kde & =arccos( --:-) . Kiivka je uzaviend. Symetrie vzhledem k polirni

ose. Maximum r=a+b pro ¢ =0; minimum =0 v hraniénich bodech definiéniho oboru p= *a.

1547. Definiéni obor (<< % %Tﬂ <Pp<T, 4?“ £@s STK Funkee 7 je periodicks s periodou % Kfivka je
[ e 51 3n

uzaviend a md i1 shodné Zsti. Osjf symetrie ¢ =-g-, @ =-B— ap= 5 Po&itkem soustavy soufadnic prochdzi

kfivka tFikrat. Pro Oz sg'éxistuje maximum ¥ =g pro ¢ =l{;- a minimum 7=0 pro ¢=0a @ =%_
1548. Defini¢ni obor funkce || <% a %< || <%n, perioda 2—; Minimum 7 =a pro ¢ =0 a (p=t2§n-.

Asymptoty <P=i%. ¢= i-;—t agp= 15—6“:. 1549, Spirdla, pro kterou je poddtek soustavy soufadnic asympto-
‘/52‘ L.oge. -

tickjm bodem; r ostfe klesa pii rostoucim . Asymptota @=1. 1550. Definiénf obor 2

Maximum @ =7 pro r= ‘/;2—1 v hrani¢nim bodé defini¢niho obory; minimum ¢ =arcc0s% =75°30' pro

AL
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r=2. Asymptota rcos@ =1 pro #~+e. 1551, Systém parabol s vrcholy (1,4 - 1} (ve vrecholech minima).
Paraboly protinaji osy soufadnic v bodech (0,a) a (1%/1-a,0) (proa<l}. Funkce jsou konvexni.
1552. Systém hyperbol pro a 0 a pfimka y=x pro ¢=0. Minima y=2 || v bodech x=|a| a maxima
¥=-2|a| vbodech x=~[a| {a+0). Asymptoty y=x a x=0. 1553. Systém elips pro 0 <a < +oo; systém
hyperbol pro ~w<a <0; pfimka y=x pro a =0. Viechny kfivky systému prochdzeji body (-1,-1) a (1, 13.
Pro yzx platt: 1) maximum y =/T+a v bod& x = »je-lt > 0; maximum y=-y/T+a v bodé x = -

l+a JT~a ,

Jje-lt -1 <a<0; minimay=x1 v krajnich bodech defini¢niho oboru x= %1 (220); 2) kfivky jsou konkdvni.

Pro y<x plati: 1) minimum y=-/T +a v bodé& x=- ! je-li > 0; minimum y =T +a v bodé x =
o 1+a yl+a
Jedi -1 <a<0; maxima y=+1 v krajnich bodech definiéniho oboru £ = =1 ; 2) kiivky jsou konvexni.

Asymptoty y =(1 +y/~a)x a ¥=(1-/~a)x pro a<0. 1554. Systém exponencidlnich kfivek pro a+0; pfimka

>

x
y=1+ g proas 0. V3echny kiivky systému prochizejf spolecnym bodem (0, 1). Minima y =-—21—{1 +1n24)

1 s . ¢
v bodech » =Eln 2a, je-li a>0; y je ostie rostouct pro a<0. Asymptota y= % 1555. Systém kfivek, kieré

prochizeji spolecnym bodem (0,0) se spolenou teénou ¥=x vtomto bodé. Maximum y=ae "'=0,374
v bodé x =g, je-li a>0; minimum y=ae 1y bodé x =a, je-li 6 <0. Inflexni bod x =24, y=2ae 2-0,27a.

Asymptota y=0. 1558, 2™ %" Uil
ymptota y=0. 8. ————. 1559. (m+n) . 1560, Ziklad logaritmd nesmf byt véisi
(m+n)='" m"n

3 U1 s
nez ¢ *=1,445. 1561. Civerec o délce strany /S, 1562. Ostré dhly trojithelnika jsou 30° a 60°.
3
P _ ' 4 o . - ¥
. 1563. Vyka nidoby H=2 2g s byt rovna pritméru podstavy; povrch jejiho celého plasie je P=yf54m i,

1564, cos;tp _cose +yfcos’ e +B

4
vymezené stranou obdelnfka. 1565. Délky stran obdelnika jsou ay2 a 4/2. 1566. Pro &> b jeobvod P
vepsan¢ho obdelnika o zikladné x a viice ¥ maximaini v hrani¢nim bodé y=k; pro A <b je £ minimalnf

» kde 2 je dhel odpovidajici dané tisetia 2¢ je iihel odpovidajici iisei

v hrani¢nfm pfipadé y=0; pro h =4 Je obved P konstantni. 1567. b =i, h=dJE. 1568. Rozmeéry kvidru
¥ 3

—_—, —a — 1 ——R 15 . 1 \f = P . . ]
> . . .
569 70 ":}E ( + 5) 81 g{) OVI'ChI.l koule 1571. Objem kuzele 5

d\fojnéschkem_quemu kqﬁle. 1572, ;—;;l 3 .1_573._]e-li Iga< %, povrch celého pladie véice je maximilni

isou
J

pro r-—-E(l—iga—), kde 7 je polomér zikladny vilce. Je-li tgoz -%, pak je povrch celého plastd maximalni
v hraniénim pifpadé r=R. 1574. pﬁﬁ— l)\J Ei—ﬁ 1575.1; 3. 1576. Je-li b< -‘}—I_z—,je maximaln{ délka
secny GTQ, kde ¢ =m, maximum se nabjva v bodech x = ia—jm; y =b—z;je-li b>%, pak je

c ¢ 2
maximdlnt délka secny rovna 25 v hrani¢aim piipadé x =0, y=b. 1577. x =i2, y =i; ab. 1578. Povrch
Jje minimdlni pro r=h =3\Jg, kde 7 je polomér vilce a & je jeho viska, 1579. p=60° . 1580. Lichobé&inik

opsany krufnici. Délka boénich stran je aseczg. 1581, o= 211:\J'§= 204°, kde o je stfedovy tihel zhyvajici

Cisti. 1582, @ =arcc05%,je-li arccos% z arctg%; ¢~ arctg%,je—li arccos 4 < arclgi.
P b
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lavzbu|sind

\/u2+vz -2uvcosO

vét3i koule je rovna xz—a-—-ﬁ proazr+R R ajerovnax=a-r pror+R<a<r+R E, kde @ je
J ¥ \J r

1
3
hY
1583, 1584. AM=a}l+ s—? . 1585. Vzdilenost bodového zdroje svétla od stiedu
1

3
vzdilenost stfed kouli. 1586. 7“_—. 1587, (az"er?’S)m_ 1588. v = _25%, kde % je koeficient dmérnosti.
5 ‘\’ .

T z
1589. arcighk. 1590. Pro ! <4a je vhel sklonu koliku dan vztahem cosa = beyt ];1280 iprol>4a
a

rovnoviZng stav nenastane. 1591.k=-3;b=3; y=53(1-x). 1592, a=%e’°; b=e™(1 -x);
2
x
. =exo[] X+ ?"] . 1593, a) Prvai; b) druhy; ¢) druby.  1595. a) 2, (2,2); b) 300 000, (150, 500 D00}

2 2.3 7T 12
(ptiblizné!). 1596. p[u%’i] . 1597. & be Y kde o4t je excentricita elipsy.
a [/

2.2, B2 [T, 52 2
1598. (ex ba ) ,kde =12 i Je excentricita hyperboly. 1599. 3 [axy|"®. 1600. %(1 -efcos?f¥?,
a

2 .
EC 2, NI
kde & je excentricitz elipsy, 1601. 2y/2qy. 1602.azf. 1604, (" 1) - 1605, a_+r’) .
|72+ 272 —rr"| 2at+r?
2
1606. ryf1 +m?. 1607. E,/?a 1608. ;—-. 1609, [% -l—l;?- . 1610. x,=680m. 1611. Polokubicki
T 2

parabola 27pn?=8( -p)}. 1612, Astroida (@B} +(hn)¥¥=¢ " kde cZ=a2-b7. 1613. Astroida
E+mPP+ -1 =2 1614. Retdzovka 1) ~acosh &, 1615. Logaritmicks spirdla p=mae=® %2
1616. E=na+a({z-sint); n=-2a+a(l -cos1), kde r=?ﬂt. 1617. x, = -2,602; x,=0,340; x, =2,262.
1618, x, =~0,724; x,=1,221. 1619. x=2,087~ 119°35". 1620. =0,824. 1621, x,=0,472; x,=9,999.
1622. x,=2,5062. 1623. x,=4,730; x,=7,853. 1624. x=-0,56715. 1625.x=+1,199678.

1626. x, =4,493; x,=7,725; x,=10,904. 1627, x, =2,081; x,=5,940. '
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Ve vysledcich této kapitoly z dspornfch diivodit neuvddime integraeni konstannr’C.’

1628. 27x-9x%+ 25 - 1x7 1620, 25,5 195y0.30x5-10,6. 1.7 1630, x-3x? +”x 3
5% 7 3 3 7 )

2 3 12 4
1631, x-— ~21nix| 1632. aln|x]-ix--2i2-. 1633. -x\/f+2‘/' 1634. _xV'-Ex Jx_ 4\/::—3.
X

’ 2 6 3
1635. —si[] +-Z—x -gxh%xs]. 1636. M. 1637. 2x—£\/72x5+%{9xz. 1638. In|x| -
= ° hs ’
1639. x -arctgx. 1640. SR L 1641. x+2In %‘ 1642. arcsinx +1n(t+\f +:cz).
-x x+ o

1643. In

2_ x £ x x
TR PPN + 2 1645 ——2:[1) +—,-l--[-1—). 1646, Lo -e%rz.
JU In4  In6 In% In515 5ln2{2 2

1647, x -cosx +sinx. 1648. (cosx +sinx)sgn(cosx -sinx). 1649. -x -cotgx. 1650, —x +tgx.

1651. acoshx +bsinhx. 1652, x-tghx. 1653. ¥-cotghx. 1655. Injx+a|. 1656. %(2#3)”

B e

B GRA T Y g

R
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1657. ~l(1—3x)"-". 1658, 3‘/2—5::. 1659, -—2--_. 1660. -2 (1-x)°.
4 15({5x ~2)¥* 2

1661. %arc:g[x\lg]. 1662. 2’/_ln %ﬂ 1663. —arcsm[ (] 1664. —lnlx\/_ \/&chvl

I . 1 i
1665. e *+—¢ 2| 1666. - -— . —|. . g, . —cotg
( +2e ) ) xsinbe 5(:055: 1667 5 cotg[2x+4] 1668 th 1669 cotgg.

1670. —lg(%:-——;-]. 1671.-;—[cosh(2x+])1:sinh(2x—l)]. 1672. 2tgh§. 1673. —thgh%.

2
1674, 127 1675, (1 +x®%, 1676 -Lin|3-2c%). 1677. ~—1 1678, Larcig®’.
4 4 2(1 +x2) 4 2
1 4_ - 2
1679. —In X oy? . 1680. 2arctgyx. 1681. cosl. 1682, -In|L7¥* 1 . 1683, -arcsin—L.
x4+,/§ x x x
1684, —* 1685 -— L 1686, -\st +27. 1687. 2 sgnxIn{/TaT +JTT+7]). (x(1 +x)>0).
ka1 -1

1692 ~lnL +1fl+e 2’}

. 1697, —ln|cosx|. 1698. In|sinx|.

1688. Qarcsm\/- 1689. ; "2. 1690. ln(2+e‘). 1691. arctge

1

1693. ZIn%x. 1694 ln|1n(lnx)| 1695, ésinﬁx. 1696, —2

CO5X%

R ¥ J— ya®sinx +b6%cos’x
1699. = /T=sinZx. _1700. e (78, 17001 -J:m|f Teosx +ycos2a.

- 1700.2 —arcsm{‘/—smx) 1700.3 -—ln(fcoshxq}cosh?x) 1701 - \)cotg x. 1702, -l—arct Bx
z 2 3 &E)

1703. In 1705. In

tg%‘. 1704. In

X M

tgh%‘. 1706. 2arcige *.

1
1707, —in[ SO xS oy | . 1708. 3%/ghE. 1709, —l-(arctgx)z. 1710, —— 1
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2438, a]n%. 2439, 4a[1+ﬁln1+—;]. 2440. 6a. 2441, M 2442, 1+ M 2443. 8a.
J_cosh-2-+m
T
2446. nam+%ln(2u+m). 2447. -@a 2448, 8a. 2449, p[yZ +In{1+/3)]. 2450. 3;“

2451. a(2n-1ghm)., 2452.2+llns. 2452.1 6—;:. 2452.2 sinhR. 2452.3 T. 2455. > ~0,73.

5y3
2456, ﬁ@m ). 2457. -—[(2A +a)B+{4+2a)b]. 2458. “_"[(2A +a)B + (4 +2a)b]. 2459. lSH_.

2444, 2na. 2445, 2(cosh —yfcosh T 1] -/2In

. 24451 %(cosh"’z? T- 1).

2 8mabe 16 2 4 16 o
62. Zabc. 2463. ~mabe. 2464 25200 2465 10,3 9466, 20¥n-2). 2467. 10225,
2462. 5 abe 3 3 34 341" 73 5

3
2468. % 2469. 1;"5. 2470. 4"3‘/§a’. 2472, 3n:a62 2473. )ﬂ by 2 5 ML) —2-;b)2n’.

4 9 ngb
ab’; .

3
2475.3) — e
15

. 'é479.

T [ I

—:b) 2n. 2477. 22%a 2. 2478. .

2 5(1-¢27)

5.0 7n2a®. 2481.2) %mb?;b) %mzb. PITIR P Ly
2 ..

35 7 105
Ll Lo 220 £

,/§

2480.a) 5nla?; b) 6n’a

2483. a) -?;rras;b) 17‘3112(13. 2484, 2) 22

2484.1 = (1: -6n%a’.

. 2 nlg3 4ma { 3+/13
24842 Zm. 2485, i 2486. 50 l21,/_3+21n ]
2487. Ea‘fﬂ2a2+4b2+8::21n[ﬂ .@] 2488, “(V,_ ‘/_)-rln(‘/_ 1}(!3 1)]

25
2489. ) —[(2x )2y p* p -b) [ 4x,} 2x “2x, —p 1n‘f§_ V P25
2n

arcsine

T2 ,
2490.2) 2n6*+2mab ;b) 2ma’+ ln -_(1 +g}, kde = b je excentricita elipsy.
a

2491. 472ab. 2492 E mal, 2493.a) rta[?b +asinhﬁ] ) 2na(a +bsinh£—acosh£) . 2494. 4ma?
a a

2495. ) ?nag;h) 167% ,c)??:m 2496, 2Za{4y7-1). 2497, Enaz 2498. a) 2na2(2 -3

—[14\/5+17In(2+ JAll=1.013. 2500, V--—-p'

128@

p-2np?2+y3)+In(1 +y2). 2501. M, =2a% M, -—‘2‘_5. 2501.1

b) 2na%y2; c) 4ra?. 2499

[ 5+51n(1 +y2)). 2502 M -b—g—-

M,=P gs09a 1 -840 1 -2,
2 R

3
4,7, =ayB35, v =0 f6/5. 2503 M;f”=1“:—b; MP - “‘; .

2504. M, = sina

2 9
mrh . M,=r%h% 2504.1 I=ZMR?. 2507. %,=a
5

9 9
=0. 2508.
12 30 Yo [ 20 ]
4a 4b

2509, (m —] 2510. [0,0,%a]. 2511. ¢, ¢~ , kde cc=arctg2—;"r S
m

R " e

, T, —%a 2513. x,=1a, yu——a 2514. xo—?—a 3,=0

. Logaritmickou

am mip, 1 a)
==

spirdlu 7, =
1+4m*?

- 2512. ¢, =0

TR S Fox e
428

P

I S o B 23

TR i

Y
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2515. [0,0,%) - 2516. 75 kg . 2517. 4, =ngR—h], kde R je polomér Zemé; A_=mgR. 2518. 0,5W.
+h

25]9. 1740W. 2520. 2,5, 9521, 708LT. 25235 T LT2 2593, -4__75503“’33. 2524, Projekee
3 3 e 15

gravitani sily na osy soufadnic jsou X=0, ¥=-2kmy /o, kde & je gravitadni konstanta.

2525, En&mBU[I ~ , kde £ je gravitaéni konstanta. 2526. PfibliZné za 3 hodiny. 2527. Nadoba
aZ+h?
musi.mit povrch, ktery je vywvefen rotaci kiivky y =Cz* kolem vertikdlni osy ¥. 2528, Q=Q, 971600

2
2529. 99,92 %. 2530. Y;:; . Ve vysledeich pro piibliiny vipodet uréitych integrild byly pouzity tabulkové

hodnoty. 2531.-6,2832. 2532, 0,69315. 2533. 0,83566. 2534.1,4675, 2535. 17,333, 2536. 54024,
2537.1,37039. 2538.0,2288. 2539 0,915966. 2540. 3,14150. 2541. 1,463, 2542.0,5179.
2543. 0,8862. 2544. 51,04.

2545. x 0 /3 2n/3 n 4n/3 513 o

¥ 0 0,99 1,65 1,85 1,72 1,52 1,42

KAPITOLA V

2546. %. 2547, %. 2548. 3. 2549.1. 2550, % 2551, a) gamna

p) _gcos -¢*
1-2gcosa+q° 1 -2qcose+g®

2552. 1-/2. 2553. Konverguje pouze pro x=k= (k je celé cislo). 2556. Diverguje. 2557, Diverguje.
2558. Konverguje. 2559, Diverguje. 2560. Diverguje. 2561. Diverguje. 2562, Konverguje.

2563. Konverguje. 2564. Diverguje. 2566. MiiZe jak konvergovat, tak divergovat. 2567. a) MfiZe jak
konvergovat, tak divergovat; b) diverguje. 2578. Konverguje. 2579. Konverguje. 2580. Konverguje.
2581. a) Kanverguje; b) diverguje. 2582, Konverguje. 2583. Konverguje. 2584. Konverguje.

2585. Konverguje. 2585.1 Konverguje. 2585.2 Konverguje pro libovolnd &isla & a x. 2586. Konverguje.

2587. Diverguje. 2588. Diverguje. 2589. Konverguje. 2589.1 Konverguje. 2589.2 Konverguje.
2590. Konverguje, 2591.2 n>13. 2595. Konverguje. 2596. Konverguje. 2597. Konverguije.

- 2597.1 Konverguje. 2598. Konverguje pro p>2. 2599, Konverguje pro % > 1. 2600. Konverguje pro

>§ 2601. Konverguje. 2602. Konverguje pro p+¢>1. 2603. Konverguje pro ¢>p. 2604. Konverguje
p2. B guje pro p+4 gwe pro ¢>p gu

“pro % +g>1. 2605. Konverguje pro a(g-p)>1. 2607. Konverguje pro g>p+1. 2608. Konverguje pro

$>0. 2609. Konverguje pro p>0. 2610. Konverguje pro p>é. 2611. Konverguje pro b+ 1.

2612. Konverguje pro p>1. 2613, Diverguje. 2614. Diverguje. 2614.2 Konverguje pro p+x>1.

2616. Konverguje pro x < l 2617, Konverguje. 2618, Diverguje. 2619, Konverguje pro p> 1.

2620. Konverguje pro p > le, libovolné g apro p=1, g>1. 2620.1 Diverguje. 2620.2 Konverguje.

2620.3 Konverguje. 2621. Diverguje. 2623. [,20. 2626. Konverguje pro > % 2627. Konverguje pro
=%. 2628. Diverguje. 2629, Konverguje. 2630. Konverguje pro 2 >2. 2631. Konverguje.

2632. Konverguje. 2633, Konverguje. 2634. Konverguje pro ¢=0, %< -1. 2635. Diverguje.

2636. Konverguje pro ¢+ 0. 2637. Konverguje. 2638. Diverguje. 2639. Konverguje. 2640. Konverguje
pro a=ybc. 2641. Konverguje pro a < -1. 2642, Konverguje pro o> % 2643. Konverguje pro a*>e,

o
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c=0aproa®>1. 2644. Konverguje pro a+b> 1'. 2645. Konverguje. 2646, Konverguje.
2647. Konverguje. 2648. Diverguje. 2649. Konverguje. 2650. Konverguje. 2651. Konverguje.
2652. Konverguje pro o>2. 2653, Konverguje. 2654. Konverguje. 2655.a) N> 100000; b) N2 12;

) N>4. 2659. % 2660. 1%. 2661. In2. 2662. a) %ln‘z;b) —;-lni. 2664. Konverguje.

2665. Konverguje. 2666. Konverguje. 2666.1 Nevyplyva. 2667. Konverguje. 2668. Konverguje.
2669. Konverguje. 2670. Diverguje. 2671. Konverguje. 2672, Konverguje. 2673. Diverguje.
2673.1 Konverguje. 2675. Konverguje absolutné pro p > 1; konverguje neabsolutné pro 0 <ps<1.

2676. Konverguje absolutné pro #> 1; konverguje neabsolutné pro 0 <p<1. 2677. Kenverguje absolutné
LT
pro > |; konverguje neabsoluné pro 3 <p<l. 2678. Konverguje absolutné pro [x-mk| < 1 (% je celé

&islo); konverguje neabsolutné pro x =nk ii‘—. 2679. Konverguje neabsolutng pro libovolné x, které nenf

celym zipornym &islem. 2680. Konverguje absohuné pro p > 1; konverguje neabsolutn pro 0<ps1l.
2681. Konverguje absolutné pro > 2; konverguje neabsolutné pro 1 <p<2. 2682, Konverguje absolutng
pro f > 1 ; konverguje neabsoluiné pro 1/2<p<1. 2683. Konverguje neabsolutné. 2684. Konverguje
absolutné. 2685. Diverguje. 2686. Konverguje neabsolutné. 2687. Konverguje absolutné pro > 1;
konverguje neabsoluné pro 1/2<p<1. 2688. Diverguje.  2688. Konvérguje absolutné pro p>2;°
konverguje neabsolutné pro 0 <p<2. 2690. Konverguje. 2691. Diverguje. 2692. Konvergujf._? absolutné
prog>p+l; konv_érguje neabsolutné pro p<gq sp+ 1. 2693. Kohvérgll;ie_ :ibsol'mné prop >1 ?','q > 1. : _
konverguje neabsolutné pro 0<p<g< 1, 2694, Konverguje absolutné pro p > 1 ; kqmergﬁj'g' pébsblqué "
pro p=1. 2695. Konverguje absolutné pro > 1} konverguje neabsolutné pro p =1. 2696. Konvergujé
absolutné pro p>1, g> 1, konverguje neabsolutné pro 0 <p=g<1. 2698.a) p>1,b) 0<p<1.

2698.1 a) Konverguje; b) konverguje; ©) konverguje. 2699.a) g>p+1;b) p<g<p+1. 2700. Konverguje
absolutné pro 12 0; konverguje neabsolutné pro -1 <m <0. 2703.1 a) 2 1000000; b) n>1,52 106, -
2706. a) Divcrguje; b) miiZe konvergovat i divergovar, 2707. —§- 2708. % 2709. --5—. 2710. ]];3-?.
2716. Konverguje absolutné pro {x| > 1. 2717. Konverguje absolutné pro x> 0; konverguje neabsolutné .

pro x=0. 2718. Konverguje absolutng pro x > —% apro x<-1. 2719.Konverguje absolutné pro |x| 1

17-3 1 -
a konverguje neabsolutné pro x = -1. 2720. Konverguje absolutné pro —‘/_T <x< 3 apro

§<x< -—’/T—Z:—?’- 2721. Konverguje absolutné pro |x-nk|< % =0,x1,%2,..). 2722, Konverguje | 4
absolutné pro p>1 a x#k (k= -1,-2,...) a konverguje neabsolutné pro 0 <;’J'§ 1, x+k. 2725. Konverguje

absolutné pro ¢>§ + 1, konverguje neabsolutné pro p<gsp+1. 2724. Konverguje absoluné pro [x| <1.
2725. Konverguje absolutng pro || <1. 2726. Konverguje absolutné pro fx|#1. 2727. Konverguje
absolutn& pro x = -}, 2728. Konverguje absolutné pro x> 0. 2729. Konverguje ahsolutné pro 0 < |x| < +o,
je-li |al = 1: diverguje. je-ki {a{ <1 nebo x=0. 2730. Konverguje absolutné pro x =2 a pro x >e. -

2731. Konverguje absolutné pro x >1. 2732. Konverguje pro 0 <min{x,y)<1. 2733. Konverguje -
absolutné pro x| <1, 0<y< +=apro |x[> I, ¥>jx|; konverguje neabsolutng pro x=-1, O<y<1.

2734, Konverguje absolutné pro max(|x|, [y[)<1. 2735. Konverguje absolutné pro: 1) 0<x<1,

~m<y<iw;2) x=1,y>1;8) x>1,y>2. 2736. Konvergujc absolutné pro |x -k=| < -E- kde k je celé éislo. i
2_ . M
1 M 2739. 1) Konverguje absolutné pro x 2 0, konverguje neabsolutné pro
2738, —2—<|x|<2; (2 -x)2(2x - 1)2 o
-1<x<0; b) konverguje absolutné pro 1 +x>1 a pro x=0,1,2,..., konverguje neabsolutné pro ¢<p+xxl;
) konverguje absolutné pra: 1) x| <,  libovolné; 2) x==%1, P> %; 3) = libovolné, =0,1,2,...;

konverguje neabsolutné pro x=1, -é <y <%. 2743. Pro £=0,001 a x =m‘/0,1 musi byt Nz3m. Neni.
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2744. n >:l. 2745. n>26. 2746. a) Konverguje stejnomérné; b) konverguje nestejnomeérné.

2747. Konverguje stejnomérné, 2748, Konverguje nestejnomérné. 2749. Konverguije stejnomérné.

2750. Konverguje stejnomérng. 2751, a) Konverguje stejnomeérné; b) konverguje nestejnomémneé;

<) konverguje stejnomémné. 2752, a) Konverguje nestejnomérné; by konverguje stejnomérné.

2753. Konverguje siejnomérné. 2754. Konverguje nestejnomérné, 2755, a) Konverguje stejnomérné;

b) konverguje nestejrnomérné, 2756. a) Kenverguje nestejnomérné; b) konverguje stejnomeérné.

2757. Konverguje nestejnomeme. 2758, a) Konverguje stejnomérné; b) konverguje nestejnomérné.

2759. Konverguje stejnomérné.  2760. a) Konverguje stejnromémé; b) konverguje nestejnomérné.

2761. Konverguje stefnomérne, 2762. Konverguje stejnomérné. 2763. Konverguje nestejnoméms,

2767. a) Konverguje stejnomérné;  b) konverguje nestejnomérné. 2768. Konverguje stejnomérné.

2768.1 Konverguje nestejnomérné.  2769. Konverguje nestejnomérné.  2770. Konverguje siejnomémé,
2771. Konverguje nestejnomémé. 2772, Konverguje stejnomérné. 2773. a) Konverguje nestejnomérné;
b) konverguje stejnomémé. 2775, a) Konverguje stejnomérné; b) konverguje nestejnomérné,

2776. Konverguje nestejnomérné, 2777, Konverguje stejnomérmé.  2778. Konverguje stejnomérn.

2779. Konverguje stejnomérné. 2780. Konverguje stejnomérné. 2781. Konverguje stejnomérné,

2782. Konverguje stejnomérné. 2783, MliZe. 2785. Neplatl. 2795, a) Je definovani a spojits pro jx| <1;
b) je definovand a spajitd pro [x| < +«; ¢) je definovand pro |x]| < e, neni spojitd v bod€ x=0. 2799, a) Je
definovand a diferencovatelna pro x# -k (k=1,2,3,...}; b) je definovana pro |x| < +=, je diferencovatelns

viude s vjjimkou bodu x=0. 2802, a) libovolné o; b) a<1;c) e<2. 2805, Nemiifeme. 2806. -él-ln2.
2
2807.1. 2808.1. 2808.1 % 2809. Miifeme. 2810. Miiieme. 2812. R=1; (-1,1}. Pro x = -1

konverguje absolutné, je-li p> 1, a konverguje neabsolutné, je-li 0 <psl;prox=1 konverguje absolutné,

Jedi p> 1, a diverguje, je-li p<1. 2813. R =%; (—%, ~§J .Prox= —% konverguje neabsolutné; pro x = -2
diverguje.” 2814, R=4; (-4,4). Pro x=*4 diverguje. 2815. R =+w; (-, +=}. 2816, R=l; [—l,-l-) . Pro
e e ¢

x =1'-l- diverguje, 2817. R=-+w; (-=, +=). 2818. R=2; {~1,3). Prox=-1 konverguje absolutné, je-li
e

p>2, a konverguje neabsolutnz, je-li 0<p<2; pro x=3 konverguje absolutng, je-li p> 2, a diverguje, je-li
bs2. 2819. R=2; (-2/,20). Pro x = -2" konverguje absolutng, je-li p>2 a diverguje, je-li p<2; pro x =2
kanverguje absolutné, je-li p> 2, a konverguje neabsolutng, Jelit<p<2, 2820. R=1;(-1,1). Prox=-1
konverguje absolutng, je-li m2 0, a diverguje, je-li m<0; pro x =1 konverguje absolutné, je-li m> 0, a kon-
verguje neabsolutné, je-li -1 <m<0. 2821, R - m'm[ %,%
Jje-li a2, a konverguje absolutné, je-li e <b; pro x=R diverguje, je-li a 2 b, a konverguje absolutné,
Je-lia<b. 2822, R=-max({a,b); (-R,R). Pro x=+R diverguje. 2823. R=1; (-1,1). Pro x==1 konverguje
absolutné, je-li ¢ > 1, a diverguje, je-li a< 1. 2824. R=1; (-1,1). Pro x==1 konverguje absolutné.

2825. B=1; (-1,1}. Prox=-1 kanverguje neabsolutng; pro x=1 diverguje. 2826. R=1;{-1,1).

Pro x = -1 diverguje; pro x =1 a konverguje neabsolutné. 2827, R=1; (-1,1). Prox=21 diverguje.

2828, R=-‘%; [—%,—}:] .Prox-= i& diverguje. 2829. R =-;-; [--:?, %) . Prox= i«;—. diverguje. 2830. R=1;

] ; (-R,R}. Pro x=-R konverguje neabsolutné,

(-1,1}. Pro x =1 konverguje absolutné. 2831. R=1; (-1,1). Pro x==%1 konverguje neabsolutné.
2831.1 Pro 0 <x <2 konverguje absolutné; pro x=2 konverguje neabsolutné. 2831.2 Konverguje jeding
prox=0. 2832, R=1; (-1,1). Prox=-1 konverguje absolutng, je-li y - - B >0, a konverguje neabsolut-
né, je-li -1<y-a-P<0;prox=1 konverguje absolutné, je-li y -~ >0, a diverguje, je-li y-a-B<0.

2833. x>0. 2834, ]x[>é. 2835. 0< [x| <+, 2836, x>-1. 2837. |x-k=| <;,kde k je celé cislo.

2838. -1+3(x+1}-3(x+1)*+(x+1)*. 2839.a) )_: "—I (x| <[al}; b) }: L) (lx-b] <]a -b});
n=0 a’“ n<0 ((Lfb}”'l

R S AP
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~ a” - l ) < oo
<) —E——-(|x]>]a[). 2840. E( 1} - 0<x<2); In2. 2841, E—— {lx]| < +).

3!

wrl 2 X2 In"a ,
2842, ):—(lx1<+w 284, E( D g (el < o). 2808 5 10 () <
3_ g _ 2 2log g
2845, px + ul1 ) Ty "‘) +o{|xl<]). 2848, 1—“_x2~“_(2_"‘)x4-...(|x|<1).
30 Al 21 2
133
2847, 1+(x—1)+(x-1)2+%+ . (0<x<). 2848,8[1—%+—é~‘]¥x2—1—2x ] (x| <1).

2 s
2849. sin{x +/)=sinx +hcosx—1;—lsinx-—;—'-1-cosx+... (JA] < +o9);

2 3 :
cos (x + k) = cosx -hsinx —J;—'cosx*’;—sinx *o- (b < +). 2850.a) (-2,2); (3,7). 2850.1 Neni.

En+ I)1

271'[

2851. En( ')." (x| < +=). 2852. 1+E}( 1)"(2 _)1 0 (|xf < +m). 2853, _E( 3

{Ix] < +=). 2854, E x* (J¢|<1). 2B55. 2 (n+l)x™ (x| <1).

2856. x+Eig"_1_ ""( lsx<1). 2857, E

2

2859. El]+( 1) ]_' (|x| <1). 2860." ;E[nhu]x {Ixf<1). 2861. Zax kde

n=]

R 00 1 AR -0 ) L D L 2V .. 2+l
a, ﬁ[[T) (-1 {——2 ] ](Flbomcmhoclsla). 2862. —3”21' sm-—s- (Jx| <1).

2862.1 Ecnx",kdec =l,_je-lin=4k; ¢, =-1,jeli n=2k+]-c =0 Je-lx n=2k+2 nebo n-= 2k+3
u=0

(|xf<l) 2858. —E[l (2)]x (Ixi< ]

(k=0,x1,%2,.), fO%0)=1000]. 2863. Ex cosne (|x|<1), 2864. }jx sinna {|x|<1)
n={
bl i . 1yt 1y - 12t
2865. 3 x*sinhna (x| <el). 2866. -(g(-’;*%:x‘" (Ix{<1). 2867. E e oyt
u=D n=l n
cosne o n
1<xs1). 2868. 2" (|%] < +). 2869, " <1y X
(1<xe). ED e (x| E() (sl 1)
Y (20 - 111 x 200 z @n- 1) x2!
70 x+ y ERTH 1). 2871, x+ } q(-qyrl2n- i 220
2870. x L@ 2as 27 (Kl 2871 4 O ey D
2872, 22“’5”:: {[x]<1). 2873.a) x+):( Iy (-lcx<]);

n=l n=t n(ﬂ )

o o 1yeofn-| =
) arcg? + E (—;21-1—%1—_1‘2"’1 [—%<xs%) id) E

"rl

=l n=0
) .+ 3 (2n-11 k¥ gy 1250 E (2n-1)1 x22
(lx’SI)'Mlxl{ Ls @ny 2n+1](|x'S e g (@2 2n 1 (el <1

L (2n )I1 xq".g

h - 1+-—+E( 1y - (x<1)

= (2n +2)1 2n+

1)

—pywn_r x* nll__—
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¥

2874. a) e”z[(ﬁx)" +@(2x}“'2 +3%M(2x)"'4 +,_,};

by f‘”“w[ 2O e e D@-2) L s ]
28 ‘ 11 21 r

c (—l)“"n![x,,-l n-1)(n-2) N m-1)in-2)n-3)(n-4) )

R
(]+x2)n EY] 51 -..}- 2875. E—n—(x ].) (-25x50).

x +-(2n—l)!! x =
1+x Ho@n | 1+x

2876, E—(|x]>l) 2377E ( ]Js""aw). 2878.
X+

aslX ?1+l
1 11 | D e
[x>-§]. 2881 1 -2 hxt o (he| <1). 2;32.“2%(—);: (I < +=).
- n=2
1 9 1
2888 'E[@n)! T (2n—4)']x" (] < +=), kde 01 =1, (-1}l ==, (-2)! = ard.
w =0 : .
= n+l
2884, 2E[1+§+ %]i_( lsx<1). 2885. x+2E( 1) #10 (|x] < 1).
r=1
- 2""2cos-2£ - 2m5inn7:t_
2886. E_ (|x| < +=).  2887. —‘T—x" (lx] < +).
. nl vy
_u T 2n
2888, E[{—l)""(l+%+...+l]x"}(-l<x<l). 2889. E(—l)"-'[1+l+...+ 1 )f_,(Msl).
o n For 3 2n-1 ‘ n
2890, --wx’" (ix[sl) 2891 xle3+£x5+- [ <X 2892, x- 143, 2 x5+
L @2y '_ DR I A 2] YT
CmYy 1.1 2 . . E,.
<—|. 2898, ——x-—x3-_Z 5. . X =1,E ) ) f— L ——
[M 2J 55 %5 oasr o (l<m). 2894, {( Y et om0

k=0

2895, f(x)=z-: P @)x" (x| <1), kde P 1) =1;

.P (f) (2n - I)I‘I'rl_ ’ﬂ{‘n‘l) !"72+n(nfl)(n_2)(n_3)f"_4‘---] (nzl) (l.tgendreo_vy polynomy).

wt | 2@n-1) 2:4{2n-1)(2n -3)

- 2n-1
2896. ¥ s x", kde s -Zja 2897.2) Rxmin(R,,R)); b) R:R, R,. 2901 E( -
n=0 ﬂ'(?ﬂ"‘l)
{lx| < +e). 2502, x+ ' @n- Ly = (Jx]<1). 2903 E( 1)"-————"’i {|x] < +e)
R = (@2at 4n+1 : @n+1){(2n+1) )

n=0

gl 2 .1 4
1. 1+x
2904, E 1" x[<1). 2905, x+2.. 5 X _ ou<1y. 2006 LinltE 1.
(-1) 2(|| ) x 4 36f96 (|| <1) 51T {Jx[<1)
2907. arctgx ([xlsl). 2908, coshx (jx| < +=). 2909. 1+ 1V”‘:ln(l—x) {Ix| <1). 2910. L
. x , 1-%

(-lsx<l). 2010 —Z— (x| <1}. 2012, X822 (11 < 1), 2913, 25 (lx] <1). 2916. R=2;
(1l -x {1 +x)? : Co(l-x)p?
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-1+ fy-1F <4. 2917.R=l;x2+y2<%. 2918, R=1;x%+y% <1, 2919. R=1; x%+y2<1,
2 -

2920, R = 2sin§ : (x-cosa)? «(y -sin a)2<4sin2%. 2921.2,080. 2922.a) 0,87606=50°11'40";

b} 1,99527; ¢) 0,60653; d) 0,22314. 2923, 0,30002. 2924, 0 999848 2925. 0,158. 2926, 2,718282.
2927.0,1823. 2928. 3,1416. 2929. 3,142, 2930. 3,141592654. 2931. In2=0,60315; In3 =1,09861.

2932.2) 0,747 1) 2,835; ¢} 1,605; d) 0,905; &) 1,057; 1) 0,119, 8) 0,337; h) 0,927; i) 8,041; j) 0,488; k) 0,507;
1) 0,783, 2933, 3,82. 2934. 4,84. 2935. 20,02 m. 2936. %—%cos 2x +—é—cos4x 2937. Fourierova fada je

identicky rovna polynomu P_(x). 2038, EEE"‘(Q-—LI)E- T 2039 A_24Y 1

e 2k-1 ’4' 2

2040, 22( l}nﬂ smnx. 2941, Esmnx. 2643, c05(2k+l)x.
@k+1)2

2k 1 ——sin{2k+ I)---

2 1:“)

fa-b)m _ 2(a b) cos(2k+1)x

2k+1

- Bt
2943. c@a+b) ¥ (-1t SIBRE pg0, 2 2+4E('} sx.
1 A aen )L( S 3" LT
’ H - R ELER! :
9945, 2sinma 1 E( l)n‘,acosnx 9946, 25inma | (-1 nsinny
L3 n?-a? LI s
= = ahcos 25 _ gy sin 2TX
- _jymtl H — T
goq7, ZMRG } (I msinnx 40 oinhahl )+ ¥ (-1y h h
T nf+g? 2ah (ah)® +(nn)?
2949. a+£+—-E {m Mﬂc n—;u-—cosn—:t-ﬁsin-ri?—] fa<x<a+2).
rn] nel
2950. | - ;cosx+22( cosnx. 2951. 5 —(_”_smznx 2952 42{( 1)*M}.
= 12 :
n=2

. < (4n?-1

2953, £ ip_ﬂsin(ﬂhl)x. 2954.1295ﬂ+t,’i. 2055, 1 ’Efﬁ‘.’ﬁu nen ceé 2o
T2k TG QR+
» » k]
2956, 12} cos2r@nrDx o4, 2 4\ cos2hx oo N cosZhzx.
4 g (apa)? T omA 4kt el ‘H: 4k7-1
! do BV (I mr
2959, —"_+2 —cosnz. 2960, —ln 1+/2 ) ( 2oz ) SLosinT R cos Bk + s +
Tl: m
Y ] ,

k=

iyt
by 2
) “); @k

2
. 2962,x2=f_+4E(_1).. cosnz,

A:O n=1 =1

-9q? E( 1y lsmanQE( l),,sum.\: '
n?

n=t =1

!ul
x? ]n +87? E{ n,,cosnx 482( 1y cosnx, 2963, ol Ul u) s 3na+3a
5 n? - nt 2 6

T b

12° 8

n=1

2m—lk:l m

= _1ye 2 = _1\n
+E (-1 %ln(l +J§)+l§.2%sin(2m—l)% cos8kx. 2961, a) %-H}Z:l ("12) cosnx (-REX<®);

n'l 3 - . R .
sinns - 2 E sin(2é - L {Bsx<x};c) H—ﬂE cosnx —41:2 SORY o<x<2m); =,
3 nz 7 6

2nax _I_;Ec_oi?.’m_x(osxsg) 92965, 2m] 1 E 2m)cos?kx.
3 g n r\m -k
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2966. }_ ¢ "sinnx (jg]<1). 2967. 1 +22 gicosnx (fg] <1). 2968. ) ¢"cosax.
net 2=0
-yt ) B+l
. 2970. -In2- Ecosnx‘ 2971. —ln2+£( 1y ncosnx‘ 2979, _22‘305(2 * )-’C.
£70

2k+1
2973, Esm(zkn)x_ *ﬂz (-)f sin(2k+1)m;
2@kt w2k 1) 2q

. 2975, f(-0)=f(x); fin-x)=-f(x)

n=l

2974. x()—£~i‘32 L cos2ErDms
(2;:»«1)2 2a
y()_g_gﬂ N1 @kDrs 42§

(-1 sin {2k + ms
2 (2k+1)ﬂ 2a

7 2k + 1) 2a

= ik
2876, f(-x)=f(x); fn-x)=f(x). 2977.a) -E{L?ki = _% (;k 1)1)3]“)5 (2k+ l)x] (0 sxs%} :
hyer)

)E{{f;kl):); nml I)"l sin(2k + 1)x (Osxs-;—t). 2978. g, =b, =0 (2=0,1,2,...).

2979. 4y, =by, ;=0 (1=1,2,3,...). 2980.2)a,=0, by, =0;b)a, =0, b, =0. 2981 a =a_, P, =-b

- . innh
2982.(: =-a_ B,fb,,- 2983. an=a”cosnh+bnsinnh,5“=b"cosnk—a"smnh.-2984.A0=a0,A"=an%,

k 1 I
Bﬂ=bns’“" m=1,2,. ). 2985:A0=a"2,Aﬂ=af+b:, 8,0 (n=1,2,..). 2986. . 2987. T
2988. 2In2-1. 2989, 1. 9990, L1 1. . 1] gg0r. ln2——1-. 2002. 2. 2903, 1.
4 m 2 m 4
2 n? n? 39 1 .

2994. 2(1-1n2). 2995, 2:. 2996. S¢2. 2997 —~~3 2008, - -Tx. 2999, o (cosl -sinl).

+.. o), kde koeficienty o, (k=0,1,...,m) splfiuji rovnici

3000, %(‘HnE -1). 300L.e*(a x "+, x"!

2
P(n)=aﬂn(n-1)...(n4m+1)+an_[n(n—1)...(ﬂ—m+2)+...+a|n+a0 3002. ¢ [—Z+%+l]

2
3003, [x2+1+ 1] o= L 3004 [1-X0 cosx-Esinx. 3005, L usmh\/a_c—cosh,/a? proxz0;
E X x 2 2 4 Jx

dyx-l siny[x] -cosyJx] | pro x<0. 3006. ln—l—. 3007, 2x arcegx-In(1+x?) (|x|<1).
4 m 1-x

-8 1+
3008. Sarcgx+ L n17F (v <1y, 3000, (1-x) 1 (x| <1). 3010. 1—5) -1, 301 ——
2 4 l-x 2 (1 -xy
(=1 <1). 3012, X822 (1) 3013, (1+2x%e*". 3014, e+ Lino. s015. . s016. L.
(1 - 343 3 4 V2

3017. g 3018. % ©<x<2m). 3019, —ln’ﬂsin%‘ 0<x<2m). . 3021 % pro

0<x<2e;0pro a<x<2n-2q; —; pro 2w -2e<x<2mw. 3022. Esgmc (|x] <=).

2 . X
3023. %(1—‘“’”] f%sinx (x| <m). 3024. %-—j-;—|x| (Ix[<m). 3025, %(1+c05x)—smx!n[2cos§]
{|x] <m). 3026. ¢ cosisiny) (Jxf < +=). 3027. x =i, y=j‘n: (ij*() +1,%2,..)). 3028, 2(arcsinx)’
Vix ‘f[ \ffl-
(Ix| < 1). 3029, A4k arcsin£ pro x20; —mm - 4 xprox<0.
4-x (452 2 4 -x (4 x)“fi‘
a 2
3080, —— . 3031 2. 3032, 2) T=5h) ——. 3083.3) by —%—. 3034, 1.
x-1 x | -x (1 -x)? 12
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= —130 2 - 2
3035. 1+E(-1)"M—1_. 3036. 3037, -E L _ 30382 3039, L.
for @l (gp+1y? 12 & npeng) 6 24

2 n E(2nﬁ1)u n) V@En-nuE k2
3040. —. S04L FR)=—ql+ ) |28 7 27 powy 3042.12}::_1-2(”_)_-; LI
12 *) 2 1[ @2 *) 21 L @w | 2n-1
I 2 9 . 7 gt . n
3043, 2na[l -[ E) z'-[%} f——...], kde & je excentricita elipsy. 3047. 2“? . 3048. In{l +a) pro
N

3

1 1
x| <1a —In l+; pro |e[>1. 3049.0 pro |a[<1 2 nlne? pro ja]>1. 3050. 210°° 3061. %
o

3 -
3062. 2. 3063. =. 3064. 272 3065, a} Ne; b) ane; ) ano; d) ano. 3066. Diverguje k nule.
3067. Konverguje. 3068. Konverguje pro p>1. 3069. Diverguje k nule, 3070. Konverguje pro fibovolné p.

3071. Konverguje pro ¢, =a. 3072. Konverguije, je-1i a.i=i: b,. 3073. Diverguje k nule.
i 1

i=1 iz
3074. Konverguje. 3075. Konverguje. 3076. Konverguje. 3077. Konverguje pro libovolné x.
3078. Konverguje pro libovolné x. 3079, Konverguje pro x| <1. 3080. Konverguje pro |x] <2,
3081. Konverguje pro |v| >¢. 3082. Konverguje pro libovolné x. 3083, Konverguje pro Jx| <1

alibovolné p, gaprox=xl, p>1, g> 3 3034. Konverguje pro libovolng x a p. 3085. Diverguje.
3088. Konverguje neabsolutng, 3089 Diverguje. 3090, Konverguje absolutné pro p> 1; konverguje ne-
absolutné pro —;-<j1 <1. 3081. Diverguje. 3092. Diverguje. 3093, Diverguje. 3094. Konverguje neabso-
lutn€. 3095. Konverguje neabsolutné. 3096, Diverguje. 3097. Konverguje absolutné pro o> 1 ; konver-

. 1 WG
bsolutné —<asl. 3109, Fix)=F Z . oo, [ =
gix_]enea solutné pro = < s (x) (:c)n:1 T w nzz:l lj‘;(x)|< , ’_}""(x)l<crr (n=1,2,..), kde
3¢, <+o. 3111, 157,970+6-0,0004 (0<8<1). 3112. 102“5-7,7-[“ 12'300] (18] <1).
n=|
] 8 g
3113. 0,0798) I+ —| {[8]<1). 3114. 10%1,378]1+——| (18(< 1. . 1g#. .
( 300] {|8]<1) (+2ss) {|8ls1). 3115.10%2.4,792 1+120
i} a
Bl <1}, 3116, 0,124|1+—| (|8] <1). 3117.0,355{]+_2_ ,
1l <1) (1+305) o< (1+305) der<n
“H* H In Iy
3118. (20 - 1)1 =y2@ny"e ™ ¥ (18 | <1). 3119, Q—e“-’“”(|e"|<1). 3120.3) ;b e; ) g;d) L.
1}11:11
.55 L_g 5 o e ag. ;
3121. Ps(x)-l—ﬁx——l—zx tqg% 0 Pa-11=3,43; Py(1)=-L57; P,(6)=8,43.

- T
3122, y:yn+%y;l(x—xﬂ)fﬁ_M
(]

. Hx x \?
8124, sinxos 25|y f X
o 288[ (150)

3126. 7x. 3127. B (x)=x; B ()=x2+ 20 %) p (x)=(l -l] (1 -3)x“+§(1 -l]xhlx.
3 n " n n 7 7 n?

e o -x, 3123, y=0,808+0,195x-0,00101 22, N

; $in20°=0,341; sin40°=0,645; sinB0°=0,994, 3125. P(x)=

(7x I_4x 4). )

o —

_ n +i_ n (x—ﬂ)i(b*x)"—i o _l 1
3128. B (x) iEﬂ[{a nl] ("i) —T——, kde [=b-g. 3129, B”(x)—g(l -x)(! +x)3+1—6(l +x)*,

I 1-x2"NV o 20 Y [f 1) f1-x}i —al o
3130, B, (x)=—| —— =1 . zete|] afphin_ )22 =b-
0 () 4[ - ] El(n_—iJ[[l—x] +[hx]} 131, B (x)=¢ [l+(e 1) t J,kdet b-a.
i=

1 T 2x . m ™ L 2x . omyn|
3132. B =— — i ——Sin— — i sin— 2o
(%) 3 cosgﬂﬂ - sin EnJ +[o:0521’z H - Smﬂn) ),kdez l.
n-l
3135. 0, (=22 ) nok cos@h-Dx
: 2 wH 2n-1 (2h-1)°

R

P R T
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3136. Polorovina y20. 3137. |x|s1; [y|21. 3138. Kruh x?+y?<1. 3139, Vn&jek kruhu x?+y?> 1.
3140. Mezikruif 1sx®+y2<4. 3141. Obrazec ve tvaru mésicku x<x?+y?<2x, 3142. -1 cx¥+yel,

3143. Polorovina x +y<0. 3144. Dvajice dhlii |y| < [¢| (x+0). 3145. Dvojice tupych Ghls, kieré jsou vyme-
zeny piimkami y=0 a y=-2x, véetné hranice, kromé vrcholu (9,0). 3146. Kiivodary trojihelnik vymezeny
parabolami y* =x, 3% = —¢ a pfimkou ¥=2, kromé& vrcholu (0,0). 3147, Mnofina soustfednych mezikruzf
2rksx®iyiem (2k+1) (h=0,1,2,...). 3148. VnéjSek kuzele x*+3%-22=0 véetné jeho hranice s vylouéenim
vrcholu. 3149, Sjednoceni &tyF oktanti prostoru.  3150. Vnitfek dvoudilného hyperboloidu x% +y%-z%=-1,
3151. Rovnobéiné ptimky. 3152. Soustfedné krunice. 3153. Mnofina hyperbol se spole¢njmi asymptota-
miy=xx. 3154. Rovnohéiné pfimky. 3155. Svazek ptimek s vrcholem v poditky soustavy soufadnic s vy-
lougenim tohoto vrcholu. 3156, Mnosina pedobnfch elips. 3157, MnoZina rovnoosych hyperbol, je se
asymptaticky pfiblifuji soufadnicovym osdm a jsou umistény v I. a 1. kvadraniu. 3158. Mno¥ina dvojdil-
nych lomenych Car s vrcholy na ose ¥. 3159. I. a IIL. kvadrant pro z=0; mnoZina dvojdilnych lomenych éar,
jejichZ dseky jsou rovnobéiné se soufadnicovymi osami a jejich# vrcholy jsou umistény na pfimee x +y=0 pro
z>0. 3159.1 Ramena ihli, kterd jsou rovnobéins s kladnymi sméry os x a ¥, s vrcholy na piimce y =x.
3159.2 Obvody &vercil se spolecnfm sitedem {0,0), jejichz strany jsou rovnob&ingé s osami x a ¥, pro z>0;
bod (0,0) pro z=0. 3159.3 PEimky rovnobéiné s osou x pro z<0; dvojice poloptimek, z nichZ jedna je
rovnob&ind s osou x a druhd s kladnou poloosou ¥, s pofdtky na parabole y=x2 pro z>0; kladn4 poloosa ¥
pro z=0. 3160. MnoZina krunic, které prochizeji potitkem soustavy soufadnic (kromé tohoto poditka!),
se stfedy na ose ¥ pro z>0, z+1; 0sa y bez badu(0,0) pro z=1. 3161. Kfivky y =]—:ix-. 3162. Krivky
y=%§. 3163. MnoZina krugnic se stfedy na ose x, kolmych na kruZnici x2+y2=a2 pro z#{}; 0sa y pro z=0,
3164. MnoZina kruinic se stfedy na ose y prochazejicich body (-a,0) a (a,0), kromé téchto bodit pro z+{Q;
osa x bez bodd (-, 0} a (g, 0) pro z=0. 3165. PFimky x=mn a y=n=nt (mn=0,%1,%2, . ) pro z=0;
mnofina &vercl mu <z <(m+D)m, nu<y<(n+1in pro (~1)"""=z. 3166. MnoZina rovnobéznych rovin,
3167. Mnotina soustrednych sfér se stfedem v poditku. 3168. Mnoiina dvojdilnjch hyperboloidii pro u<(;
mnoZina jednodilngch hyperboloidd pro «>0; dvajity kuZel pro #=0. 3169. MnoZina eliptickych vilch se
spoletnou osou x +3=0, z=0. 3170. MnoZina soustfednych sfér x2+y%+z2=nn (n=0,1,2,...) pro u=0;
mnofina kulovych vrstev tn<xZ+y®+zl<n(m+1), kde(-1)"=u. 3171. Vilcovd plocha s fidici kfivkou z =f{y),
x =0, tvoiend pfimkami rovnobéZnymi s pffmkou y=ax, z=0. 3172. Plocha vytvofend rotaci kiivky z=f{x},
¥=0 kolem osy z. 3173. KuZelovd plocha s vrcholem v positky s Fidfcf kivkou x =1, z =f(». 3174.Konoid

s fidici kfivkou x =1, 2z =f(y} tvofeny pifmkami rovnob&inymi s rovinou xy. 3176. f[l,lJ =f(x.¥).
_ x

. _ 2

BL77. YL +x®. 3178, f{=20+(% z=x- 1+ (x>0). 3179 f(x)=x?-x; 272y +{x -y,

3180.f(x,y)=x2—1 ~J . 3183.1 Neexistuje. 3183.2 0; neni. 3184.a)0, 1; b) -é-, L0, 1;d)0, 1; €)1, o,
ty

8185.0. 3186.0. 3187.4. 3188.0. 3189.0. 3190.1. 3191.¢. 3192.In2. 3193.a) -g-stps-?i;

- - 2
b) % <p< -i—ﬂ a :;—n< p< % 3194. Bod nespojitosti je x=0, y=0. 3195, Viechny body pHimky x +3=0.
3196. {0,0) je bod nekonecné nespojitosti a body primky x +y=0 (x=0) jsou body odstranitelné nespojitosti.
3197. Viechny body na osich soufadnic. 3198. Mnozina bodd piimek x=mm ay=nn (mn=0,%1,%£2 ),
5199. Body kruinice x* +y*=1. 3200. Body soufadnicovych rovin x =0, y=0 a z=0. 3201, (a,5,¢).

3203.1 Stejnomérné spojitd. 3203.2 Stejnomérmns spojitd.  3203.3 Nestejnomérné spojitd. 3203.4 Funkce

je spojitd na E, ale neni zde stejnomérné spojitd. 3212, fi(x, D=1. 32121 {/(0,0)=0, £7(0,0)=0; funkce
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nenf diferencovatelnd v bod€ (0,0}. 3212.2 Funkce neni diferencovatelns v bod& (0,0). 3212.3 Funkee je

du

2
diferencovateln:i\' bodé {0,0). 3213. 6——4x -va s i——‘l) -8%2 ¥, 2_.=[2 2 Sy2 5_=—16xy,
. y X

62 1 du
3y? | - bx y . by

bu_ 2 B Su_ 2 Bu_bx
3

By y% ax T BxBy  y¥ )%
u _y@x* -y Fu_ _xix?-2yY
dxdy (x2+y2)5"2’ byz (xz,fye)m

22 -igyt-8x. 8214, bu o4 3w  x

) bxdy
&5 B 1 &%y 2« bu 1
y =0, ——=l-—, =1 15, —=—,
2" px? ﬁxay .yz 6_)'2 ys 3-2 ax - y2

2

a916. D% ___ 3 du xy 5%y 3xy?

8%  (x2epfpt’ E}‘-=-(x2+y2)”’2, E;"E__(x2+y2)§f2’

217. Su =sin{x +y) +xcos(x +y), k =xcos{x +y},
ox oy

2 2 2 .
Ei:?cos(xw)—xsin(x*—y), & =cos{x +y) —xsin{x +y), E_u——xsm(xw) 3218. E M_,
bx? dxdy By? Ba b
du__cosx® &u __ 2sinx®+4x’cosx? . 2xsinx® 8w _2cosx? 3219 bu 2x cgﬁ
&y ex? b] Thxby  y7 gyt g3 3y y

Su_ x¥ Lx? §u 2 2x? Bx?

Platia s —— =Tsect—+

B 3ty bkt g Yy

7 s2 2
. x &%u 2x x? 443 x?
sin = sec® LY L L 5cc"'

y Bby Ty sy oy

2 2 2 4 2 o

_r5_u=-2_x_sech +-g—smx sec’x— 3220. ﬂ=yx-"", ﬁ=x’ln.7:, 2=y(;;r- 13?2,

5,72 ys ¥ y-; ox 6}, 2

2 2 2 :

B 1 (Ueytnyy, 2 oooints >0y, 3221 .1 Bu_ 2y Fu_ 1

dx 3y2 dx x+y? 5_-, x+y? Bx? (x+y 2

5% 2y &=2(x-y2) 3299 Ou__ 9 Su_ x 52 2xy LEN __ x?-y?
bx by (x+y2)2, 6)72 (x+y2)2 x2+y 6)‘ x2 +y (x +y ) ﬁxﬁy (x2+j2)2
8%u 2%y du_ 1 bu 8%u 2x 62:1, Fu
Ju_._22 3.—-=—,——-—-—,—-=--__,__0,__,= 2 ey
5y2 (x2+y2)2 ox l+x2 5)' l*yQ 5y (1 +x2)2 axﬁy 6y2 - (1 +y2)2

. 82 - 2 .
sp2e S0 DL du_ xsgny au_  eh| 8w yhsgny Fu_ 2xp| (440).
8x x2iy? By xPey? Bx?  (x +y2)2 Bxby  (xZeyly? 6y2 (2 +y P
3995, d%__ d Bu 25772 8w 3y bu_zfx}:
* By (cZeylezt)¥’ iyt eyl 5,,5), (xZeylez Pt Tox xly

ﬂ=_£(£]‘ ﬁ;(i]‘l ¥ Bu_z6D
by a\y) e L) Ty a2

]‘ 8 z(z+1)[ Jz & -'[xJ‘ ox - By zﬂ(x-]‘
= s == IS, —— ==,
By* 92 Ay 82y ¥ dxdy  xply

du 1fx}* x} &u _ 1fx): S du_yu du _ulnx du_ yu
s—|of [1rzln=|, ——=-—{=| [1+zlnZ=| [2>0}. 3227. __3’_ xax Inx,
Bxdz x[y] ( ¢ n}] oydz }‘[J’] [ +Z nJ) (j ] ox by z bz g2 nx

Bu 35 S u]nx ﬁu Julnx
22 PR

ox? xiz ’Gy 22 82 it

3u _ ulnx(z+ylnx) 5

=- 0. 3228, —
Sybz z? w2 0) dx
8%u 52
o7 —zy ufz-1 +zyfInx) Inx, — =y *u(l +y21nx)lnxlny
Y
Fu _y’ulny

1+y7l

Bx8z X (1+y7loz), 6y6

3235. du=x""'y" Ymydx +nxdy), d*u=x""

ydx—gxdy, 4=
b

3236. du=

3938 du:xdxﬂwdy d2u=(y -x%dx? -dy Y- 4xydxdy 3239,

(2z+ylnx),

T
xu, %‘-:zy "ulnux, -g—--y fuinxlny, 6:’ .J il ’)

= +ylnx)u 62 __yufz +ylnx)
xzz 6x61 sz

%2
&u y (l +y %Inx),

=y* ulnx[l +zlny(l +y‘lnx)] {x>0,y>0). 3230.1 f";j(D,O) néexismje.
3" A n - 1)y2dx? + 2mn xydudy +n i - Ixdy?].
. _ 2
=-Zdy(ydx -xdy). 3287, du- XX g2, pdx-xdy)
A

yeley? &2 y?y*? '

x2+y2 (x +y

du=e™(ydx +xdy);
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d2u=e3 |y dx2+2 (1 +xy) dxdy+x 2dy?]. 3240. du =y +z)dx+(z +x)dy+(x +y)dz; d%u =2 (dxdy +dydz +dzdx).

3241, dy < &3 )z -22(xdx +ydy), 21[(3x -y dx 2+ 8xydxdy+{3y ToxdyT-afe2ey )(xdwydy)dz.
5 £

3242, dx-dy, -2(dx -dy}({dy+dz). 3244.2a) 1 +mx +ny; b) 235 c) x+y. 3245, a) 108,972; b) 1,055; c) 2,95,

d) 0,502; €} 0,97. 3246. Uhlopficka se zmen3i pribli#né o 3 mm; plocha se zmen3{ pfiblizné o 140 cm 2,

3247.0 1.7 mm. 3249. A=10,2m*; 8-13 %. 3250. A=7.6 m. 3251 fl(x3) a [’ (x) jsou

] R
neomezené v okoli bodu (0,0). 3256, L% <94, T8 o S __jo gonn Fu o
Ix1 ax-"ay 9x2oy? dx%ay
Pu Pu Fu 2,9
3258. =-6 . 59. ={}, 60. e +3 N
PREPNE {cosx +cosy). 32 330z 0. 32 axayaz ( xyz+xly?y )
3'u 6  48(x-E)(-n) 7 2 &'y
3261. =-— =Jdlx - -l 3262. _11
dxayotan o4 5 Hhde =y By eG o) 3262 o sply
-1y -1y .
3263. 2(-1) (:{n«*n) 1).Enx+my)' 3264. e“’[xzﬂ\?!+2(mx+n:f)+m(m—1)+n(n—1)].
MNIT

3265. (x +£) (y +¢) (z +D)e*" 7T, 3266. sin%. 3267, F{t) =f"(t)+ 34f" (1) + 3 11).

3268. d*u =24{dx* -2dxdy - 2dxdy* +dy?), —-2 Tu g, T o Tu g ﬂ—%
ax* dxoy dxidy?  axay? Ay
3269. d u—ﬁ(dx -3dx¥dy+3dxdy? +dy5).

‘ 1
3270. d7u = -8 (xdx +ydy)’cos(12 ryY)-12 (2dx +ydyyldx? +dy Ysinfx 2 " 2. 8271.d" - Stdxrdy)”

fe+y)®
3272. d®u= (dx ~15dx‘dy +15dx2dy dyﬁ)cosxcoshy dedy(?)dx *lOd.t?dy +3dy )smxsmhy
4
3275, d*u-6dxdydz. 3274.d%u-2]9% “L! 420) | 3995. drusem b udx by,
5276. 4 u=Y, (:] XORey®oydx® tdyt, 3277. d u=f" (x+y+2) (dx +dy +dz)".
k=D !

3278. d "u ="' ' (gdx +bdy+cdz). 3280.2) Au=-u, A%u=u;b) Au=1, A%u=0. 3281.a) Au=0;
by Au=0. 3282.a) 4‘311‘¢=!]'[(:t2—5'z)2 +{yzﬂxz)2+(22—xy)2], A2u=6(5r+y+z); b) A|u=—l4-, kde r=yx+y®+ 22

Aju=0.3283. ——-2xf'(x2+y +z% 32“!2f’(v2+y sx%)rdxtf et y? 2, aazay*4 xyf et ey,
o ) ) ) 2ok 20 S
ey e3) S ]-—zﬁ’(*’ o Zeosliles) 2l

Fu
3285. —-f. 3 fatazfy; ——xf o —xﬂé, — 1” 13 o922 g+ 29f 11+ 2ynf s + 2y 2 fy;

32u 2_ N 2. 9 6211 22 62u

il ¥ o
; =x? 22 +2x z2fperxtz ss- F =X 33» -ﬁ --"J’fzz xﬂzfss +xf1a +xzﬁ3 *2xyzfos */;"zfsli

3u / ] i ; Fu p y
3%z =x3fis +33*fas +23 2fyp 43 Foay =% Was*x"yahy +xfy.

~ e Df ofa sy 3287, Au=3ffl +dix ey e fhralt o3P+l 6,

3288. du=/"()(dx +dy); 4 u=f"(dx +dy)’. 3289. du=f{) DI,
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atu=f ELIEY o Dby I 5390, gy =7 2AEDDY g2, o (e cydy), o (dxxdy)”
X x x2+y2 %24y (x2+y2)m

8291, du=fde, d?u=fU0de? +Fi)d 2, kde di=yzdx+zxdy+xydza d*t=2(zdxdy +ydxdz +xdydz).

3292. du=2f"(xdx +ydy +zdz}; d®u =4f" (xdx +ydy +zdz)2+2f’(dx2+dy2+dz2}.

3293. du=af|dx +bf;dy; d%u=a*f" dx?+2ab Tadxdy+b2fl dy?. 3204, du =f (dx +dy)+fi (dx-dy);

a2 =j{':(dx+dy)2 +2j]’;(dx2~dy2)+f;§ {dx-dy)*. 3285. du :ff(ydxmdy}*rj;y—dﬁ-?ﬂ;
¥

2.2 2, 2 _ 2 -
Ausfi dxrxdy)t 2 TETED ) OB g, o e wdydy
b) y y
3296. du=f, ({dx+dy)+fydz; d*u=f]| (dx vdy)? + 2% (dx +dy)dz tfandz?.

3297. du=f] dx+dy+dz)+ 2f; (xdx+ydy+zdz); d*u =fi1 x+dy+dzy+ 4, (dx+dy+dz)(xdx+ydy+zdz)+

+4 2;(xdx+ydy+zdz)2+2f2"01x2+dy2+d22). 3298. du =f{ydx ;xdy +f;zdy —zydz; :
¥ z

dx -xdy)® dx -xdy)(zdy-ydz zdy -ydz)® dx -xdvy)d zdy ~ydz)dz
d2u=f1-'l;-(y X : )') +2f{;()’ X Fg( Y-y )+f;;( yz‘_")l Z) _2fl.f@ xys }') y_2f;’( J'ZJ;“Z) .

22

3299, du=(f{+ 24+ ts d2u={fl +aaf! 4 462 6177 1243 1 +98 s 2f +6f] a2,

3300. du=aﬁdx+bf;dy+cf;dz; d*u=a?fdx 2eb2f) dyle? Az 2abﬁédxdy+2acﬁ;dxdz+ 2bcfy dydz.
3301, du=2ﬂ(xdx+ydy)+2f; (xdx-ydy)+2f; (dx=xdy); d*u=4f], (xdx+ydy)*+ 417 (edx-ydy)+

+dfyy (ydx+xdyP -8 e 2dx? -y2dy?)+8 1s (xdx +3dy) (ydx +xdy) +8 os (xdx -ydy) (yex +xdy) +

+ 2}‘]"(:112 +dy2)+2f;(dx 2 -dy 2)+ 4_G'dxdy. 3302. d "u="Ngx +by +g;)(aa"!x +bdy +cdz)*.

3303. d"u=[adxé% +bdy-‘% +cdza—ac'] "f(E,r],(), kde £=ax, n=by, {=cz. .

. ) 3 a 3 3 F) a3  a\lF,..
3304. d u=[dx[alaﬁ-+ag—a-ﬁ-+a56—c] +dy[bla—E+b2-ﬁ+bs-a—c)+dz[c]a—E+c2.é;+c3—aE”f(E,Tl,f)~
7 2 9z 3z dz  dz_
. = - . 3316.1. 3319. - 333l x—-y—Z=x, 3332, 2x 22y ZE g,
3305, Firy=f"{r)+ rf(r) 3 xyz xax yay x. 3332 xax +yay z
gz Oz du du du du  Ju du &z
“ Y ox—=0, 3334 —+—— -+ =0, 3335, X, 0%, —=0. 3336. =0,
3333 yay xay dx +6y iEr ax ) dy zaz © Oxdy
03 9 2 2 2
3887, 22 =92 9% gagg T2 Bz 4 gigg 3 L 3340, 2 T2 2%, 02 %z,
dxdy JOx dy Bx? ay? dx " dy. ax? - 3yt dx 3y
3341. 1-/3. 3342, %=cosa+sinm, a) a=§;b) 0=28 0 =3T3 5o IF gags 2

4 4 4 Tz
}}xo*)'u

X
3344, ib 2k%+b%. 3345, %;i=cosa+cosﬁ+cosy; [gradu|=/3. 3346. ]gradu|=iz; cos{(gradu,x)=-—r-2,
a

T, 0
Jo % _ 7.1z n i
cos<{(gradu«,y) = —T—O, cos<d(grad u,z) = ~a, kde r =yx; +y, +75. 3347, 3 3348, =3142.
2 2 2 2 2
3350, gﬁ=-ﬁcusza+a uc052B+a—Ecos:'y+2 ou cosgcosp+ 9 Fu cosacosy +2 Iu cosPcosy.
T ax? 2 dz? dx0y dxdz dydz

3352, % =-0.5. 3853, u(x 26) =u, (6, 2x) = 4/3x, 4 (x,22)=5/3%. 3354, 1-x0 () Y ().

3355. z=@{x)+ W (y). 3356.z =@ %) 3o, )+ +y"’]tpn_] {x). 3357. u=g(x,3) +y(x,z) +%(.2).

3358. u=1+x%y+y?-2x' 3359.z=1+xy+y?. 3360.z-x +920,5xy(e +y). 3562, Nulové body funkce
f{x) nemohou zcela vyplnit #adny interval (e, P)c(a,b). 3865. MnoZina nulovych bodii funkce f{x} nesmi

440

I e ey e

i —_—

T AT g P

KAPITOLA VI

bt hustd na #idném intervalu (a.b), pticems kazdy nulovy bod § funkee f(x) je ziroveit i nulovym bodem
funkce g(x) a kromé toho existuje konedns limita lim g}/ fix)] 3364.1) Nespodetné mnoho; 2) dvé;
x-f

3)a) jedna; b) dvé. 3365. 1) Nespocerné mnoho; 2) Eyfi: y=x, y=-x, y=|x| a y=—|x|; 3) dvé; 4} a) dvé;

b) Styii; 5) jedna. 3366. 1} Na Zadnych; 2) 0< [x] <1, (x| = 1 ;ﬁ, B x=0, |x|=1;4) 1< [x] < I ;ﬁ,

A
jednoznaEnévétve_jsouy=aJ—;-+ %fo?—xd[lxls\jl;ﬁj;y:s‘%_ %+x2—x4[ls|x|'s ,l;_\r@]

kde e=-1,1. 3367. Body vétveni: (~1,0), 9,0), (L,0); y=¢(x) M (lx] < 1), kde

e(®)=-1, 1, sgnx a -sgnx. 3368, Obor hodnot funkee @y} musf mit neprﬁzdﬁi priinik s oborem hodnot
funkee f(x). 3371.y/=-X"F. 3=

2 2,2
2a” 5372_y’=ﬂ;yﬂ=M, 3378, 5/=_ 1

-y -y X-y x-y° l—scosy;
i -esiny N 3374'y,=y2(1—]nx);y,,aﬁb(l-lnx)2—2(x-y)(l»lnx)(l—]ny)—x(l-lny)i’].
(1 -£cosy)’ x%(1-1ny) *(I-lny)® .

3375, y'-=%; y7=0. 3378. 3((0)=-1; 3/, =1. 3879, y/(0)=0: 7200) = -y33; 34(0) = /3.

3380, y/=-2X0. yu_ 18 pytte - 1625 3381.y’=0;y”='3;}”’=—z. 3388, O2. %,
2y T (xe2g) (x+ 2y 3 3 3x  z
L M N S S T oL s VRO M R S (P 2%
Oy .z gx? 2} Oxdy 37 5yt P 9 z%-xy’ 3y i2oxy 3x? =2-xyp
Fz_ 2y 9% ozt -2xyz?-x %Y 3385 E;E; !
ay? (x*-xyP Oxdy (Zﬂ;xy)ﬂ ) " Bx 3y x+y+z-1’
62 62 z 2 2
'—:=a;=£'z§=_ x+2+z_3. 3386.§£= :22;6_7_:_ 3:2:113=_ ¥y z . a%z xyz .
6: ”2 9% (x+yez-1) ax: PO xtoyt oxt [y 0xdy (27
E] 2 k4 2
T 8 B P O 0 aiby -1, ssse. 2,
ay (\._y dx Jy dx® Oxdy gyt ox? B
Fz 1 Pz 394 3390, dz--C_[ Xdx  ydy
9xdy 57 gy? 125 e 2\ g )]’
42 et x_2+1_2 ii_x_2+ 2xy dxdy+ ﬁ+£ LZJ_E 3391, gz < (Loyzldx+(1 —kz)dy_
2 al o2 g2 alp? . B2 2] 2 L-xy ’
d2z=—£&(l —yz)dx2+[x+y—z(l +xy)}dxdy+x(l -xz)dyz}‘ 3302, dz:z(ydxudy);ng?_zz(ydx—xdy)gl
: (1-xy)? b T e
3393, de=de-— DG go, 206 o2 o pgy 0 wldredy) s
-2 ryla1y [(x—z)2+y(y+l}]3 — w[2{x+y) -ul
o _ _ 2Ff 2 Fn’ Fl’ 2 F.f ! f_ £
s B My o] Al s
% {F{-2:5f (/225 "= Rw
Fy-F/ . FwF) Fy
E:J,__'l 3397, 9. ), Fithe N P .
9 . Ff-F! ax Rl oy F]

3t = y .
P o TRET Y X Y e Fg|{F R Pl
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N B PR AL A RN BT i
X

F R\ -2FF Fly 1 FlFy FR | - 2F{FFy+F Fyy

[F ] bF{+yF,f

1 2 2 2 o 2 dx _y-z dy _z-x dx
== -dy); =-——(2dx*-5dxdy +2dy%). 3401 = 2 222 7 3402, —Z =0,
3399.1 4z 9(2dx dy); d°z 348 (2dx*-5dxdy+2dy®) oy 5 d xy ’h

3399.2) 4%z= (@dx-dy)*; b) d3z= {ydx -xdy)?.

ﬂ:_l'iz_{= d? 1 a0 0% xu+yv 3v yu xv, Ju xv—yu v _ u+yv c2+y?>0).
dz d;_z d12 4 dx x +y ax x +y a)l x +y ay x +J‘

3403.1 du=-Ldy; dv=-dx+Ldy. 3404, du - Y FXCOSVNx - (sinu -xcosu)dy
3 3 XCOSU +JCOS %

-(sinv -ycosu)dx _ (sinw +ycosu)dy diu=-d%= (2dxcosv -xdvsinv)dv _ (2dycosu —ydusinu)du
XCOSU +JCOs® XCOSU +yCOSU XCOSY +yCOSH XCOSU HYCOsSU

3405. du=%(dx+d:f); dv=Edy~i(dx-dy); d%u-dx?; d’v=%(dx—dy)2. 3406. %:2[“7’) ;

du=

2 2
fz g2, ) oy -ﬂ-Q g—ﬁ~61+i]. 3407.y2"—.;ﬂ=-3uu-§i=3(u+u) ().
t2 ; 2 ax

dx dx® dx*® dy
¥4 o2 2 2 H
saora 323,00 L gugrp B2 26 g To . singrcosgoosy gy &z _sindy
gx 2° 9y 2 dxdy 121 ax? sin’g dx u
oty Fa_ _sin2Y g, dze0, dzz——(dx —df) san, 4226750,
dxdy u? ayﬂ u? dx  x- 2y
4’2 _4x-2y  6x g du_ 1 | (DO x) o dw_ x4z +'_@+])(y—x)28,_,
de? x-23  (x-2y)° dx y+z (z+1)fy+z)? 9y g+ (z+1)y+2)
saus, 2. L(OWIL 20 x), 35 1(3x30 3000) 1, ;2028 240w
dx du ov  Bv ou I\ 0u dv ovdu du dv Jdu dv

ax I o Gy Tow Ax? dv au? Jv g}l ov v dudv dv dudv) du dv

aw@ a_q:ﬂ ) ! _Llow e 305w | dedy
dv gy dv gp2fldu axay I 9v gy Fu dul ‘3v Gu

(ot 22 002y ][a_wwzga_w] +[6_wﬂ-a_wgw aww]

sare, 2,100 3u_ 130 i L{ awﬂ_ﬂiﬂ]—[ﬂ] oo 20 20 aﬂw)awa_h

dv dudv Jdv dudvj\du dv Jdv du 3v gy? dv.gp?) Ju du

u 8!]1620:p 39 Py 2_ o ¢ 3¢ Py _q)_lp oy o acpaqu[ ]2
ﬁ_ g Em gu? Ov gyt v oudw dv dudv| du dv a-u av dv gyt \du

i . d Y
kde I= dg oy If Iy 3415, a)——cov du v Jv v v v v

== —-—"—— Zasins; X< sinT -Zeos 2], &2 =g0s— +—Sin—;
du dv Jdv du dy u ox w ou wuw) dy uou o u
du _ siny ~ duw_ ° -cosy 0¥ -(e" -cosw) . 9v_ e ¥ +siny )
0% ¢ "(sinv-cosvy+ | ’ &y (smv cosv)+ 1 ax wle " (sinv -cosv) + 1] ay ule *(sinv -cosv) + 1]

' 3\2
saz6. 42 L. i__{acgf»[ a2 i)*f a(ﬁf)[ 2 i) -
I, Vax Yax

dx dx? a{y,z) oy gz afy,z) 23y &z
gy, @ ., &, 9) J2eh o 3gh) gk, Difigh) du_9f.
. 1=+l — 41, = | &y, kd al= . 3417, :
a(y,z}[ oy 3 M D e e ey D) x ox
1 I
6u=a_f+fgag kde1=a(‘g'h)al=a(k’f) 3418 6u=_;;. 31&:-_2_ du _ 3 kd I=6(g,h)

3 oy 1,9y ' Ay * ek " I3y 10 %z 1 3w

KAPITOLA Vi
Idc+I,d
1,220 4 308, ; DEEM gy 4, D 1,-208 a(fg), -3
dvw)’ v, w) Dy, v, w I, .y’ h Ayt f= Hz,t)
2
3431 x"exx /S =0, 3432, x¥o0. 3433, TX (E)Sm. 3434 L0400,
. dt* \dt di®

3435, L7 3 4% ody -6y=0. 3436. ﬂm 2y=0. 3437. d'3’+m2y=0.

di® de? dt de? de? .

1
3438.u”+[q{x)—zp2(x)— —p (x)]u =0. 3439. = +3)—+2u 0. 3440, i;_“-o 3441. d—”=0
2 de?

2
3442, 2 “+8u[ﬂ) =0. 3443, 5872 +(3e4 1)" LYV "

de? dt de’ d (a -b*
3446. &1, u,u’+u2)=0. 3447.F(xu +u?-u,u, 1)=0. 3450, 27 -, 3451, p2- 175020 5

de sin2¢
8452. rlr?+2r?—rr=r® 3453, T 3454 K- |’”—+2—r'—"| 3455, o pps, 20
(r2 e r 22 dt dt

3456. w=i r? 240 . 3457, Y'=x; y”=i; y”&-ﬂ. 3458. z=9(x +y), kde ¢ je libovolnd diferencova-

telnd funkce. 3459. 2= 2452, 3460.1=ﬁ+cp(y-bz). 3461.z=mp(1). 3462. : +-g—z-—c sinho.
X % v

3463, S2 02 5454 92 1 gaer 82 _z2%tu
3% a0 2

du dv v,y

. 3466. (2u+v’—z)E +{u+2v —Z)E=ﬂ- U -1,
du dv

!67_]2 [62]2

x4y _ 2 .

3467. e 7t . 8463, ASU NV ggq O o gmg X X2 g 8% 3x u
1-6%9%_, 92 . uey 3E Ay y dy ov v

— R
3479, A= Ju dv 3473, &% Su du Jdu
x4{uax+ ax)-2 9 om 9L

+Bu+ltren+e=0. 3474, %‘ﬂ-o

(3 of3 2 e —@coszv
3475. S¥ -0, 3476. Z¥ -0, 3477 2[00\ Loy 0w}t 20w Bw 400 9y

du 6u dv du dv dw
Jw du

2 2
3479. 4= 3450, F0_EN g4 O 3482. w=r3%. 3483, < 24|, L{3u}?
Sw T < de ar" ar 2\ dp

-
3484, w=——_+__+_.1..§2_ 3485, w= 1-22“_' 3486. w__a_u_ 3487, [__l. du aTJ' Bu dv
ar? T Or y2g¢? ar? eyt ‘ar dp atp or

3488. 1 =@(x ~at)+ Y(x +at), kde ¢ a § jsou libovolné funkee. 3489. 3 Fr oz,

dudv Ju
2

3ag0, T2, P2 of T2 _02) gy & Fi 9| g geq Sz, O,
au2 dy? au2 du dudv  |gp? dv au2 dv?

agz Loz &'Zz 2 2y

2 2
smie?z=0. 3494, O3 g 495, 02 . 192 g0 Pz 2 &

au? go? dudy dudy 2u dv’ Budy w(d-uv) ov
2 2 9
3497. (‘u”'vz)‘—a—?—g—wﬁ. a9, T2 28 8 o4 &z 1 [ oz 31] -0,
u

34935,

—_ + v—-u——

on  dv

ou du? ul+p?ou dudv 42 _y?

ss00. [1-92) ¥z 2 &y
Buds avav

o 350L. u=p(c+h y) +Wx +4,), kde A, a &, jsou kofeny rovnice
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2 4 L] S
d‘u 1 du )A(Au)_du+2du Ld%u 1du

BA+CA®=0. 3503, 2) Au- ekt N S —in
AvaBhs Y dr* T dr dr* rgr? P2gr? yidr
4w duw Fu Fu  du
LB — =0. 3505. 4=X 4 —_—
3504. u — + - oW 3 X BX6Y+ 3%

3, ou 8 { du g (,ou)_ &u Lir Ou oy S
3508. 5?5(‘53—.5)*”5("33] CEE[Ca_c] 'Q[E"a&an “aEe "Canac]'

2 2 2 2
ss09. 22, &2 T2 g 3510.%"220. 8511. Alu=(a—u) +l(ﬂ‘.J N (g‘-‘-) -.
2 ¢

aylg a)'; &y: or r? L] fzsiﬂgﬁ
9 2 2 2
Azu :_1.. i(rg@.J +_..] _a_[su]a_a_u.J — 1 iﬁ . 3512, w .g?_w+_a_w =[_a£) +[a_w] R
r2larl dr) sinB 36l 28] gn’e g’ ax2 5,‘}'2 dx ay
2 2 2 2 2 2
3513, 2% -0, 3514. T -0. 3515 S .1 g5 P 22U ou g1z, S0 [u_ ) Fw
du? av? au? 2 du? dudv du? \u av?

2 H 2 2 2 2
3518. _az_w+ﬂ’.+[a_w] +(8_wJ -0, 3519, 2% . w 3520, iaz_w+a_‘”,=0, 3523_%:0,
£

du® sv? {0u dv auav_4sin2(u—y). du? gt
Fu Pw Fw dw dw Juw [[Bw)ﬂ (aw]2 (aw H
3524, —— +—— o+ — = — e[| 22 ) [ ZR 22 3526. x =y {z)+ Y (z).
9E? an® o Q€ om L ag) \an) \&¢ el
#z Fz 2z x-x, b -z,
AR ——-2BXY)———+C(X,N—==0. 3528. = - ;
3527. A (X.1) ar? *.1) BX6Y+ ¢ Y)axﬂ -cosasing, -sinasing, cost,

. . . X z
-z, ={x -xg)cose tgt, + (y -y hsina gL, kde x, SCOSXCOSL,, 3, =asinecosty, z,=asint,. 3529, E+E=1'

y=%; ax—cz=%(a2—c2). 3530, E;—l=¥=z—;l; x+y+2z=4 . 353].':‘—;:2;—‘&{_—?; 3x+3y-z=3,

3532, x+z=2; y+2=0; x-2z=0. 3533.(-1,1,-1); (-—;-, %, —51) . 3537. g =fi(x0,j0)COS€€ +f;(x0.y0)sina.

du__ 16

x-1_y-2 z-5
3l 243

. x y z
=L Z-2"2 3540, Jx+4y+122=160; Z-F. %
g & o1 oAk drrdyiz 3 4 12

3538. 3539. Zx+dy-z-5-0;

m

n_1 x-1_y-1 4 x-x, ¥y, z-%,
RS (XY —— = — =, 3542 gx x+hy 4+ =l ==
3541. z 1 2(1' ¥} N 3 5 XX +byoy rergz v, By, @

3543. x+y-22=0; %J'_:]‘l_:z_;_l_. 3544, x +y -4z =0; %—-—=—,

x sectltoseccpo -a  ysecy cosecy, -b oz cosec, -c

x b] i z.
.- = Cos neg,+=siny_=1;
3545 ac05¢0c05(p0+b P sing, . W, i — —
i X-T,COS@, Y-7,8inQ, z-v cotge
3546, xcosp, +ysing, -ztga=0; 0o 7% L 0n Ve 27708

cos @, sing, -tge

X —uﬂcosvo _ ¥ —uosmvo _ Z-aw

2. 3548, ﬂ-iffi;z.
Uy By ouy g
2 b3 2
3549, (0, 22,52 /3); (22,74, 9); (x4,%2,0). 3550.x=i%-,y=t—bd—,z=:%, kde d=yaZrblict.
3551 x+4y+6z=%21. 3556.x%+y%-xy=1,2=0; 3y%+42%=4, x=0; Sx2+4z%=4, y=0.

bz,

3547, axsinv, -aycosv_ +u z=qu.v.: -
0 AYCOST Ty P asiny, -acosy,

1

3557. 6<0,003. 3559. cosp-= 63, —g—lﬁ =XoT¥g t2 a) X, =y, =z, =L; b) x, =¥, =z, =-—;

a ,‘a2+b2. 1 - ﬁ 7 ﬁ
. 3566, x%+y%=p?. 3567, y-xx.

) ma kruZnici x+y+2=0, x?+y%+72=1. 3564. Z% -

KAPITOLA VI

3568, y* =42czx. 3569. Obalovd kfivka neexistuje . 3570. x23.+y23-/%5 357y, [xy] =2—S—.
n

k) 2

3572. 9 =-§-Z—r - gx2' 3574. a) y =0 je obalovi kfivka (geometrické misto inflexnich bodd}; b} y =0 je cbalovd
2u,

kfivka; ¢) y =0 je geometrické misto singulirnich bodid (bodf ndvratu); d) x =0 Jje geometrické misto
dvojnych bodd, x =a je obalovd kiivka. 3575, Torus ( x%ayt -R)2 +zl=p?

3576. xsin o +y2sin®p + 2 2sinly ~2xycosecosP -2xzcosacosy -2yzcosPeosy=1. 3577. |xyz| -

v

) 4ﬂﬁ

3578, Li\/x2+y*[=g,/§. 3579.]: yr+Ly z“; xrsﬁﬂ(:hyhz?). 3680, (x-x)+ (-3 ) = (z -2,)2.

a Yol Do %o o %

3581, fle,y)=5+2(x-1)*-(x-1)(y+2) - (y + 212

3582. f(x,y.z)=3[{x-1)2+(y-1)2+(z—1)2—(x—1)(y—l)-(x—l)(z—1)—(7-]){z-1)]+(x—l)3+()'-1)3+

-1 -3(x-1){y-1){z-1). 3583. Af(L -1y =h-3k+(-h®~2hk +R*) + (R %k +hk?).

3584. flx+hy +k,z+[)=f(x,y,z)+2[h(Ax+Dy+E)+k(Dx+By+F)+l(Ex+Fy+Cz)]+ (k0.

8585 x7 =1 +(x-1)+(x=1) ()~ 1)+ Ry (1 +B(x- 1), 1 +B(y- 1)) (0<B<1), kde

Rz(x,y)=ix ’[[ldx +lnxdj]3+3[ldx +1nxdy] [—ldx2+3dxdyJ +[ﬁdx3——3-dx zdy]] adx=x-1,
5 x Y] 2 3 22

x X
dy=y-1. 3586. 1 '%(\f: +y 2)—%-(?2 +y2}7. 3587.a) 1 ~%(x2 —y“’); b) %*—x -xy. B5B8. -(xy+xz+yz).
wo B e o R LR z
3589. F(x'y)'T xx +f}!)+1§(/:m+ m;)""' 3590. F(o) =f(va‘)+T[(fxx(x-)7) +f”(x,y))].

m-lpRr-m- 1 - A
Eh k i 3’f(xs)') ] 3592, F(Q)=f(x,y)+z_l_[g]2 A"f(x,y),

il
3591. Aqf(x,y) —hk(—é:a;

n=3m=1 m!(n*m)! axmayn-n n=1 (ﬂr)z 2
A mim-1) o ain-1) 5
kde A—ax2+ay2. 3593, l+1fgx+ny+-—2! x +mnxy+Ty +o (lxl <1y <1y
(17" +m -~ 1)1 ‘ o x oyl A
3594, ) Ay <1). 3595. P EDTT e, )
LTy el bl <y 20):0( P oy (5l < eyl <

- - i nx,,,y"_m = - xﬂmq}'ﬁnq
3596. EﬂEﬂ( D (Kl <omlyl < ). ss0m. Z,‘Og](-l) Gy (K< bl <.

Ry Im, 20 = o B
. —l’“._x—y_. o oo X B n {x +5 %) 202 o
908 1 L Gty (1 < bl < oo, s5m0 P

Y R+ h My " . ] ;
3600. E} EI(-I) % (Ix] <Ly <1). 3601.f(x,j)=1+§[x—x—2-J3..

" u -

s602. }' ("—%Lg;” (] <o ly) <+, 3608 T (-17[1+(e- D]g-1)" (-m<x< v, 0 <y<),
m=0n-0 s =<0

3604. z=1-[2(¢-1) =y -1)]-[BGe- 12 - 10 - 1)y - 1) +3 (3 - 1¥]+... 3605, (0,0) je izolovany bod pro

a <0, bad vratu pro ¢ =0, uzel pro o> 0. 3606. (0,0) je uzel. 3607. (0,0) je izolovany bod, 3608. (0,0)

Jje izolovany bod. 3609, (0,0) Jjeuzel. 3610. (0,0} je bod vratu {(drubého druhu). 3611, (0,0) je uzel.

3612. le-li a <b <¢, pak je kfivka tvofena ovilem a nekonednon véwvi; je-li a =b <¢, je (2,0) izolovany bed;

Je-li a<b=c, pak (§,0) je uzel; je-li @=b=c pak {z,0) je bod vratu. 3613. (0.0 je uzel. " 3614, (0,0} je bod

vratu. ' 3615. (0,0) Jje koncovi bod.  3616. (0.0} je hrot. 3617. x=kn (£=0,=], *+2,...) jsou body

nespojitosti prvniho druhu. 3618, x =0 Je bodem nespojitosti druhého drubu. 3619, x=0 Je uzel.

3620. x=kw (k=0,£1,%2,...) je bod vraru, 3621. Zn-0 prox=0ay=1. 3622, Neexistujf extremalnf

body. 3623. Neostré minimum z=0 v bodech pfimky x-y+1=0. 3624,z =-1prox=1a y=0.

445
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3625. zm=108 pro x =2, y=3; neostré minimum z =0 pro x=0, 0 <y<6; neostré maximum z =0 pro
x=0, —o<y<0ab<y<+w, 3626.z, =-1prox=1ay=1. 3627 =2 prox =-1,y=-1Tax,=1,

¥, =1, extrém neexistuje pro x =0, y=0. 3627.1 Maximum z=0 pro x=0, y=0; minimum z=-l% pro

x::%,y:tl;sed]ovybodz=*l pro x=0, y==%1, sedlov} bod z-—-—l prox=i%,y=0.

- _ _ _ ab i: 1: L-z =__ab pro
3628. Minimum z=30 pro x=5 ay=2. 3629. zm.m-—g_ pro 777 —ﬁ, i 53

3630,z =ya’+b%+c? pro x=%. y=-i1,je-!i c>0;z . =—fa’+b*+c? pro x=%, y=%,j6-li

& |r

Yol

OGS
¢ <0; extrém neexistuje pro =0, a?+b?+0. 3631. z .=l prox=0ay=0._ 3632. Minimum z=0 pro
x=0, y=0; sedlovy bod z=—;-e’2 pro x=—l y=—é. 3633. Sedlovy bod z=¢¥ pro x=1, y=-2 :
3

3634. Maximum z=¢ =226 10® pro x= l »¥=3; minimum z=-26¢ "% = -25 51 pro x"_gﬁ’ Y= 5%
3635. Minimum z+=7-101n2=0,0685 pro x=1, y=2. 3636, zmx=§\/_ pro x=§ ay=—;—.

33 2 33 R ) N -
3637. zmm=—T pro x=y=-—; zm-——s- pro x=y 5 3633. Sedlovy bod z-—l_+-2-1n2+1-‘n:'.- 1,70

- 1 1
prox=1,y=1. 363% Minimum z=-—=-0,184 prox=y=*___=
2e J2e
x=-y=% ‘/]_ + extrém nenl ve staciondrnich bodech x=0, y=*1 ax==>1, y=0. 3640. Staciondrni body
2¢

+0,43; maximum z = 2—1- pro

x=1_2(~1)"*'+(m+n)2, y——( Bt om - n)2 (m,n =0, £1,£3,.. ).

Extrém z=mr +(% +,/?_>J (-1 te2g-1y, nejsou-li m an soucasné sudd nebo lichg (maximum pro m liché
a n sudé a minimum pro m sudé a # liché); extrém neexistuje, jsou-1i m an soudasné sudi nebo lich4.
3641. Zin =0 pro x=0 a y=0; neostré maximum z =¢ -1 pro xﬂ+y2— 1. 3642. u min = 14 pro x=-1,y=

z=3. 3643. Minimum 2 =-6913 pro x=24, y=-144, z=-1. 3644, Minimum u = =4 pro x—-—-,y 1,z=1.
a’
3645. u ax—7— pro x=y= z-% neostry extrém u = Dproy 0, x=0, z#0, x+2y+31*a 3646. Mmunum

8 ¥
-15e ql T prox——— Vlﬁa” J’""VIGG b, Z-—.\ 4b 3647, Maximum u =4 pro x=y=z -27-:-

minimum # =0 v hramcmm bodé definiéntho oboru prox=y=z=0a x=y=z=m.

nTene
3648, umx=[—2—] pro x =x,=...=x =—-2—. 3649. Minimum u=(n + 1okl b

nlin+2 n¥+n+2

x,=2Y0 0w xl,Lx =x". 3650, Cisla e, X5 %y, .oy X, b tvoli geometrickou posloupnost s kvocientem
n+l b . .
q= =. 3651. Minimum z, = -2 a maximum z,=6 prox=1, y=-1. 3652. z i = -(4+2‘/(_5) pro
a
' 1) 9 g 3&2
x=y=-(3_ +\/§); ztm=2\/€—4 pro x=y= -(3—\/(_5). 3653. Neostré minimum z=-- pro x” +y =.—8—,
. S
3a® 1l prox=— -1
2<0; neostré maximum z =2 pro x¥+ 2228 150, 3654z =P 72,5' 2’
] Y 8 i
7,52 . fT.7:
3655.z . = a—bprox=— be Ly=- s B = “ ”?, pro x= bE_ ,y-—2% . kde
lebl " Tt faTee? abl JaTeb? | faTeh?
a3h? ab?t alb: .
e=sgnab=0. 3656.: = 53 Pro x= ,)'=a2+b2. 3657z . =,z JL kde A alEJSOU

a“+bh a’+h?

KAPITOLA VI

koteny rovnice (4-A)NC-3)-B%=0a A <X, 3657.1 Maximum z= 1061- pro x= +I-l, ¥==4; minimum

k
- )prox-g id y-—£+-1-t-}i(k 0,£1,%2,..)

(maximum, je-li £ sudé¢, a minimum,_je-!i k liché), 3659. #,. =-3 prox= -é-, y=§, z=—§; % . =3 pro

2=~b0 prox=+2, y=+3, 3658. Extrém z=1+

1 mensp M mp B
x=—,y=—-2-,z=g. 3660, u -2 MR PT pro A L A T =c2 pro x=0,
3 3 3 max {m +m +p)nnd m.n p min+p min
7=0,z=xc =" prox=%a,y=0,z=0. 3662.u -[—) prox-y-—z=%. 3663. Rmin=——-1——-p
36
x=y=-1—az=——2~ x=z=*l- ay=--2—y=z=lax="l'u =L pro x=y= BIS—,x=z=- —
V6 V6 V6 V8 Vo TG ) \/_ J"' V6
2 1 2 1
Ay=—y=z=-~—ax=—, 3663.1 Podminény exirém 4=2 pro x=1,y=1,z=1. 3664 = =- pro
£wE me mgF

8
sinztz+ sin2B sin? y
a? b?
_ R*(Acose +Bcosp +Ccosy)?
A2+Bi+c2

x=y=z =%. 3665. u . =X awu_ =i, .kded a 4, jsou kofeny rovnice 12—[

= 1 Y =p2
3 i 2b2 =0 (Ald?). 3666. 1 = g =R

2 2 2
L gosTe  cos B cos"y
a‘c

[ S

3667. u

{
min E 12 pro x. =— 1,2,...,1’1). 3668, u

PRI Jla,

3669, U= E,j(xj_ﬁj] _pro xiéJ, E‘/—B_ F=1,2,...,m.
J=i ) 1 I

{ oot x

_ a 110 g a, . x, a

3670, 2 T a— o'ty ..., pro —==.. _—
PRyt o L AN

’ 4
prox.=— (i=1,2,,..n).
-1 i n

3671. Extrémy u =1 se urdf z rovnice Ial.j—léif.|=0, kde b,=0 proi#ja b, =1. 3675, inf z=-5, supz=-2.
3676. inf z=-75; supz=125. 3677. inf 2=0; supz=1. 3678. inf u=0; supu=300, 3679. inf u=-%;
supu 1+f 3680 mfu 0 supu € ~0 37. 3682. Nenl 3683. Minimum s¢ rovnd —. s

- Ve ’VE

’ l'_‘ = JLE
. aeagt T
3684. Stitance se musi rovnat. 3685, Cinitelé Jsou x,=

i=12,...,n), kde o,
()"

(=12,...,n) jsou odpovidajfci exponenty; nejmens( hodnota souctu je
) t

1 ] i H
1 1 1 ( Ve, Ve, mz);'“—'"-.,— 12 ]2 E
—_—— L, —— s " 1% " L X=— x. = — 'R =
(a p a) Qo oy o, 7| 3686, x M lmlxl,y 7 ]m.yl,kdeM _ lml..
] P= i= i=

. s :
3687. Rozméry nidoby jsou 27, 3‘/2 v, %:}2 V. 3688. H=2R=2 %S—' kde R je polomér vilcové plochy
T

n 1 B [ 9
L 1 1 1
a H je jejl wrofici pfimka. 3689, x = —. " =--E " =—-E . kde N = 1.
Jejei P R LS R L g L e D ZJ’ - E]Z

Minimaln{ soudet &tvercl vedalenost je n - 2N + E{r? y +z,-2). 3690. Uhel sklonu woricich primek kuZele
i1 .
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KaPITOLA VII

vzhledem k jeho zdkladné je arcsin%. 3691. Uhel sklonu boénich hran pyramid k jejich podstavim se

—, =

rovnd arcsin-?%. 3692. Strany obdélnika maji délky -23—‘0 a —};1 3693. Strany trojihelnika maji délky b 2

3 . 1. 2R
a _fJ 3694. Rozméry kvidru jsou —2—-—, 2R a —R- 3695. Vy3ka kvidru je l'ovnal vysky kuZele.
1 BB 3
3696. Rozméry kvidru jsou -?-E,ﬂ a —g-i 3697. Vyika kvidru je ki ={sina M.j&-li a2arctg,/?,
33 B 2uge -2

|Axy+ B3, +Czy+D|
fA2+BE+CE ’

17% Y17V B2 '

n.p m

! ’r-ft" 'r. 3701, —7— 3702. Ctverce velikosti
442

ah=0,je-li 0<a<arctgy2. 3698. Rozméry kvidru jsou 2, b a g- 3699,
1
3700.d=;—A- ml nl pl ,kde -A=J

m n,
.
Mytty
my My hy

poloos a®=4 a b%=1, jsou koFeny rovnice (1 - A4)(1 -A0)-A2B%=p.

Paby| [Py

A-1 DA FA
3703. Crverce velikosti poloos a’=4, b* =4, ac?=1, jsou kofeny rovnice | DA Bi-1 EA j=0,
Fr  EAL Ci-1

nab - . . Lo
. 3707, Uhel dopadu je -arcsm(nsmg] ;

3704, 5 A% +BT:CT. 3705, nabe
€| Ja2c052a'+b2coszﬂ+c2coszy

ihel odklonu vychizejiciho paprsku se rovna Earcsin(n sin -g-J -&. 3708, Hledané koeficienty @ a b se uréf

ze soustavy rovnic e[xx] +b[x1]1=[xy], a[x1]+bn = [¥11, kde [xy] =Z x.y; atd.. Regenf je definovino pro
i=1 '

ofsy-x7 _ - _ —
E(r'.-xj)z*(). 3709, 320 = ——-LJ ") » p=Xxcose +ysine, kde ::=-1-z:::c1 xy=l£x,y. atd. jsou. .
iaf 1:2—&)2— 2-6)2 e il e

stfednf hodnoty. 3710, 4x-7/2; A =1/2.

KAPITOLA VII

8711. F(y)=1 pro -=<y<0; F(y)=1-2y pro 0<ys1; Fy)=-1 pro 1 <y< +w. 3712..F(y) je nespojits

vhodé y=0. 3713, a) —E-; b 1;¢0) %;'d) ln%. 3713.1 0. 3715. Nelze. 3716. Nelze.
2

8717, F'(x)=2xe ™ -¢ = - [y ='dy. 3718.a) -fesiael sing +¢ ol cogg) f JT-xZee T gy

sing

1 1Y, 1 1Y), o .
b) [E+b+a) smu{bfu:) _[EJraﬂxJ sina{g +a); ¢) %]n(l +a2); d) f(n, —a}+2{f;(u,zj)dx, kde u=x +a
“2" “! ﬂ{ X'm
av=x-a;e) 2a f sin[y“+a“~a2)dyf?fsin2x2c052axdx—2-afdxfcos(x2+y2—a2)dy.
a-u 0 0 x-u

3719. F7(x)=3f(x)+2xf'(x). 3720. F"(x) =2f{x) pro xe(e,d), a F”.(x) =0 pro xe(a,b).
2 .

3721 F'(x) =A—,f§ﬂ- kde A%f(x)=f(x - 2h) - 2f(x +h) +f(x). 3722. F)=(n-1)f(x). 3728, 4x ——’-31.
L

8724. 0,934+0,428x (pribliznet). 3725, SE_E-F. dF E __F
dk k' dik k(1 -k 2] k

448

" X

3729. F,_ (x5 =x(2-3y%)f(xy) + zf(f] +x %5 (L -y xy).  3732. n]nLglbl—. 3733.0,je-li |a|<1;
: At

b+l
a+l’

nlna?, je-li |a| > 1. 3734 %sgna In(1 +ja|). 3735. narcsing. 3736. ;m(hﬁ). 3737. In

b-a 1, B2+42542

3738. 1. ib) —
T e Y 2 e

<1,

. 3741. a20. 3742, max{p.q)>1. 3741’;.}E
q

2n-1
n

3744. p<1. 3745.n<{)an>%. 3746.p>—;-. 3747. Konverguje pro a>0 apro a=-

{n=1,2,...). 3748. Konverguje pro n>4. 3749. Konvergujc pro p>1. 3750. Konverguje pro ~1<m <2.
3755.1 a) Konverguje stejnomérné; b) konverguje nestejnoméme. 3755.2 Konverguje nestejnomérné.
3756. Konverguje stejnomérng. 3757, Konverguje stejnoméme. 3758, Konverguje stejnomémé.

3759. Konverguje nestejnomé&mé.  $760. Konverguje stejnomérné. 3766.1 Konverguje stejnomérné.

3761. Konverguje stejnomérné. 3762. Konverguje nestejnomémé. 3763. a) Konverguje stejnomémé;

b) konverguje nestejnomé&rng, 3764, Konverguje nestejnomérné. 3765. Konverguje stejnomérné.

3765.1 b2 107", 3766. a) Konverguje stejnomérng; b} konverguje nestejnomérne. 3767. Konverguje
stejnomérné. 3768, Konverguje nestejnomémé. 3769. Konverguje stejnomémé. 3770. Konverguje
stejnomérné. 3772, Nelze. 3776, g 37762 1. 3778 a=%1. 3779. Je spojits. o0 J¢ pojitd
(-1)"m!

ﬂ'mtl

3781. Je spojitd. 3782, Je spojitd. 3783. Je nespojitd v bodé a=0. 3784.
b

Lot :
3785. EM«J 2). 3788. In2. 3790, 2
a a

T, a 1, §
. 3781.0. 3792. “in?. 3793, LB
2 (@2n! 87 2 g 2 g

220 0126 2,0
3794, 1n 2 "B 7 3795. arcig B arctgi (m+0). 3796. %ln B +m2‘ 3797. —n(] -y1 —a’).
n

(a+B)2102ﬂ . -ﬂ:_ ng m
' - o2
3798. ninl;é—a. 3799. -gsgna(lﬂo:j— 1+¢%. 3800. i_g_lin(lc::]+||3|) (B+0).
PEICH
3801, gln(—“% {«>0,p>0), 3802. %E[aﬁ(u+|3)+a31nm+ﬁ31nﬂ—(a3+I35)in(0!+5)] (@>0,p>0).
all
Lack? +26%a, -4abb +2a% _meck? .
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3807, Y%, 2 3808. /x(/B-/a). 3809. lJ—-’E e, 310, DT, Ve,
o ; 2\ a 4aya-
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3811, (-1)"—‘/_1. d
22nvl db?n
2k a maxima v bodech (2k-1)x, kde £=1,2,3,... Asymptoty jsou }v=% Prox- +m ay=~g pro x-~ -,

). 3812, (n/2)sgnp. 3812.1 Funkee je lich. Pro x> 0 jsou minima v bodech

3813, m%— Ta. 3814 %1.1}“—*";{_ 3815. 0 pro |e| < |B|: Esgnd pra |e|=|p[; ;5@« pro |a|> |B|.
o - . .

n T irn n 3 |
3816. —sgna. 3817. —|a|. 3818. ~“gfux|. 3819. . 3820. —Inl>
i %ol % ajal. 3819, 2 ol

3821, .
4

+ - - ifa-P)? . 1
3822, azparctg%g—ig—-ﬂ-arctg%ﬁ+%ln%. 3823. Dix}=1 pro |x{<1,; D(x)=—2— pro

x=%1;D{)=0 pro |x|>1. 3824.a) nsgna cosab;b) nsgne sinab. 3825. ge -l 3826, Esgnot.r: wml

2
3827 Z1-¢ %) 3828 20100 vu ggpg T B%, wda T ggg 1 |Z. 1T
4 4 a 2Y2 22

)
ac—b"

Q

_p2 1 1
3851-,’—;!' sin(“ b +%sgna). 3832, ‘/ncos[a.‘-’%). 3833, 1/n5in[a2+—;£}. 3835.2) —;
14 Pnd
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yT_ ~i€) —— f)ln[l v—],g "’/- e ME 3887, a) 1; b) x? +l;
2plp (P*a) pi+ pf 2
et g le'"’“ cosax. 3839. @(t)=—¢*F 4o oo oj+ay. 3843, = 3844, 7%
2 o/2n 8 16
-1
3845. % 3846. 27 3847. " 384s. % 3849. ) 3850.@&.
2\/5 3\/_ 2‘/E nsinZ 2
n
b el fam+ ] m+1
3851. © <m<n). 3852.B(ﬂ mm) (0<m<n). 3853, b B -
nsin— " " 4
n
_aymins]
o<"’”l <p. 385¢. — " _peii1nily me-Ln>-1). 3855, ls{l,l-l) (n<0 nebo
@y 1oy mo\m n
1 m+l n+l

1), 3856. =B
n>1) 3 2[2 5

n-1
)(m>—l,n>—1). 3857. (|n] <1). 3858, —2 B[E EJ

2cos T (1 k)zm 22

n>0). 3859. Lr{ L} ;n>0). sse0. L pf™rl) (Pl o) 3861 T(p +1) (p>-1).
rn \n =] n n

+ 2
3862. P(f’ l @>-1). 3863, ﬂif’_“(o‘:pﬂ) 3864, 13 LLOSPT o pyy.
p sin®pn sin*pn
2 T tg%ﬂ
5864.1 ETE2. | @<t<L0<g<1);0 (p=g). 3866. ncorgnp.
q
(g2 —
8%

1414 1
——tg——=. 3868. InyZn. 3869. In,2% +a(lna-1). 3870. ~[1+1n "], sa71. L
3867. QﬁthB 868. Iny/2, ny?2 % +a(lng - 1). 0. [+n2] o ]

1)
ma" ! ne™"! 1 1 2% |n
3876. (@>0). 3877. — % __ (2>0). 3879. 4B 3oy 3880 S -—=L
2F(m}cos£;—7£' 21"(m)sian r I‘[;]
3881. f(x)=3 sm}'coslx dL. 3882, f@x)=2 f 1-c0sd i di.

3883, flx) - 2fsml(x a)- stL(x b),a}_ 3884, f(x)‘2hf] -cosai coshxdl.

ta =

3885, — .1 f ¢ Ycoshx dA. 3886, —5 - f eFsindx dX. 3887. fix)=> f SINAR o dx di.
a?+x? ay a+x? s LA 1-A%
3888, f(x) = 2] “’5“”2 coshx dA. 3889. f)=2A2 f E@Kﬂ—fm.sinltdl
[1Y]
3sso.f(x)=2—f“’5“d1 3891. f(x)——-f[ — L lcosax da.
X [0-BFa h-pira

s

AsinAx i. 3893, e-=’=_l_fe"ﬂ"coslx di.
T

~afapread”

daf
3892, fix) =t
fe =22 f =
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3894, x¢ " =

f Msindx dA. 3895, a)e*== 2 f mﬂxdl (0sx<=<w); b) e E lsm).x
=
¢ o

L
2a Lo

(O<x<+x). 3896. F(x)=J-: . 3897 Fix)=-i ’E—“"_. 3898, F(r)=¢ =7
T oe?yp? “(t2+a2)2
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3901 1. 3902. 5 A0 L. 5 g 0 M1 5 1o Presns hodnota je
4 3 n 3n2 " 3 n 3ﬂ2 3

21!(7 —\/24)—* 13,20. 3904. 0,402, Ptesni hodnota je 0,4. 3905. § <0,00022. 3906.1. 3907, 4—10

3 . .
3908. 1‘-;_. 3910. I =F(4,B)-F(4,b)- F(a, B)+ F(a,b). 3912.2) Zéporné; b) zdporné; ¢) kladné. 3913 %.

Py 1 x 3 1
3914. 1,96 </<2. 3915, a2+b2+%. 3916. fdxff(x,y)dy=fdyff(x,j)dx.

2 L 2y

1 2 I
3917, f dx f Sfledy= fdy f feende. 3918, fdx f flxydy= fdy ff(x.y)dx+ fdy f flepdx.
2 |xle 0 2 0 LR N
L fi=t Jm i !ﬂam 1 i
3919. fdx f flx,yydy= fdy f fleydx. 3920. f dx f f(x,y)dy=fdy f fie,ydx.
L i » IR LY
1 1
3921. fdxff(x,y)dy=fdy ff(x,y)dx.
I B 0 ,\/-
a0 i ’ TR i e
3922. fdx [ fixy)dy+ fdx [ fendy [ fleydy fdx [ fendy.
T i RY T2 LY e
2 T 8 2y [
3924, fd_yff(x.y)dx+fdyff(x,3)dx 3925, fdy fyf(x,j)dx+fdy f fle.ndx. 3926, fdyff(x,y)dx.
Y X 9 ey v s
0 ﬂ vT-7 Lo Leyfli=y?
3927, fdy f St pydx + fdy f fleydx. 3928, fdy f flx,ydx.
-1 *ﬂ 0 Ty 2-y
a-J;_! 2a 2q
3829. fdy f fteyyds+ f Jtoyydxp + [ dy f Siy)dx. 3930, fdy ff(r,y)dx
r."ﬁn. aryfat gt a 3%
1 T -arrsiny T + arcsin
3931. J’a!y f fley)dx - fdy2 f Ef(x,:,)dx 3933, 12’5. 3933, {2./“ *S]aﬁ. 3934.%.
arcsing -1 - arcsiny
35].“14 2 a Lrs acosg

3935. 14q*. 3936.

. 3937, fd{pfrf(rcosq:,rsintp)dr. 3938, fdtp f rf(rcosg, rsing)dr.
1] [ -2
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EE T w2 1y Tcosec(pr w4y
3939, fd(pfrf(rcosrp,rsm(p)dr 3940, fdtp f
Q lal 0
ri4 asingicoste 3m/4 alsing © asing/cos® g
3941, fdl,p f rf(rcos g, rsingidr + Idtpf rf(reosy, rsing)dr + fd(p f rf(rcosg,rsing)dr.
)

] e a Irf4 0

rfrcose,rsing)dr.

3942. Pouze v pfipadg, Ze je oblast integrace vymezena dvéma soustfednymi. kruZnicemi se stfedem
v poditku soustavy soufadnic a dvéma polopfimkami, kiers vychizeji z poddtku,

4 lcosg r/2 Wsing 1 2
3943. fdtp f rf(rcosq:,rsinq:)dr+ fd:p f rf(rcostp,rsimp)dr=frdr ff(rcostp,rsincp)dtp+
0 ., 0 o 0.
VI armnln‘r
f rdr: f f(rcOs:p.rsm(p)dq:
I arccos 1

1 1

] w4 v arceos Ury/Z.
3944, fdtp f *f{rcosq,rsing)dr = f rdr

f frcosq,rsing)dy.

/B oosec(e + ~id) 11T T4 -arccos Ly /3
A Heasy . 4 - 2
3945, Idrp f rf(r)dr—— f rf(rdr+ + f (-g—arccos—-J rfindr.
w0 . A0 r .
4 lfcosy
3944, fd(p f rf(rcos,rsingddr =
o singp/cus’p .
arcsip X4 - 1 minﬁl--ir'f—l
1 e I 77 S
=frdr f Sflreosg,rsing)dg + frdr f flreosg,rsing)deg
1] [1} arceos [fr
! v r
x4 ayfcosBqg " ?a cosF a arccos: )
3947, fd(p f rf(rcosrp,rsimp)dr=frdr f Sflrcos,rsing)dg. 3948, fdr f fionde.
e o v ! 2 o -arecos -
] .t z at ¢
a ;’gamlnF |
3949. [dr [ Fende. 3950. fdrff(tp,r)dcp. 3951. 2 [rfir)dr.
1] 1 0
EIKS"'I—

3955. -6n?.

1 vZ w2 q
3952. frf(r)dr+ f [ﬂ-4arcccs%)'rf(r)dr-. 3953, L f fige)cosiodp. 3954, 21;“ .
1

6 b2+b(b+h) (b +h)+(2b +h) B R 3[ ) 2 ook

3956. — ; — . 3957, du. . du,

z e (,/E+ a+h)( e b+1} 1P fu uff(u uv) i
T2

3958. 2fd ff(uﬂ" u2v} dv. 3959, 4fsm v Cos vdvfuf(ucos vusin'v)du. 3961 u=xy, vsx-y.

3962, f Jaddu. 3963, 2 f J —ugj'(u.\ff12+bz+c)du. 3964. In2 ff(u)du. 3965. g 3966. i;-.
] -1 1

3967. Znab. 3068, = 3969, 54311 3970. 137 1o, 3971 90 3972. 2 n. 3973,
3 7z 13 128 i6

| e
+
ENE

3974, gmslnl—f\/__@; 3975.5. 3976. %(4‘3,[214‘/5). 3978. f(0,0). 3979. %F(t), jeli £> 0.
5

e -
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dxdy 3981. F'(1) = fzf(tcostp,tsmqa)dtp 3984, [185 -21n-2}a2

s980. 2

- st x* y?

- ; 2

3985. 3 (b+q)ypq. 3986. na®. 3987. > 2. Ta% 3988 %+-§1n(1+¢§). 3989, 1%
2 2 4 2; 2
3990.&2{ﬁ+arcsin‘/—r_i]. 3991, T8 b} 5gge 827 [a’ bY) a%
2 8 3./_ At kY] a2

4 \h? g2
2 2 2

3993, 2847 67| 49, a'bk(ak+20h) 39941 L0 54y ab gogc (B-mp(i-ahy
5 |5 7 2@ 1) 1)

k2 6h2(ak +bh)® 1260 (8 °

2
3997. S-n2. 3998, :;-{q-p)(sw). 3998.1 1_‘5.(1;5—5;5)# g,

_ gl gel WAL 13}
3998.2 —q—-?—(b oy ‘H"] [c 14 “"]. 3999, 2at!J 3999.1 189 au'vctg-l-+—1g ab.
@-1ig+1) 10 16 25

2 2
4000. %—(m— 2}arcsin-;-. 4001, % 4002, 54—[(1;2 ~v,}(sinh2u, -sinh2u ) - (u, -#,){sin 20, -sin-2vl)].

2
1003, 2ra%. s004. 8% 4007, 5. a008. 22¢ _Zps 4000 28 4010, . 4011. 7.
3 7/7 6 4 3 105

3
4012. 17 _ommo. go13. -__r'2 a® a014. = 4015, 55 4o16, 16,5 417, T
12 3 8 32 ) 3

4018. =l -« ). s019. 242, w. 4020, %. 4021. %nabc(?-ﬁ). 4022. %ﬂ:abc(ﬁ.’ﬁ—l).
3_ 3
4023, il:ﬂ. 4024. %nabc 4025. ”Tbc 4026. %abc(3n+20-16 3). 4027, 1‘1”12—“) 4028, ga‘.
3 a’c, P 8 75 e I
4029. = 4030. “Zin2. 4031, 2. 4032, 7 nape. 4033, . 4033.1 (n - e Fal.
Y T e 35 256 ¢ 28 fromye e T
b be | BhG 2
4034, 225 P31 myT3my. q0s5. 20 _Am) \#)  yoee Zna?2/3-1). 4037. 1642
3nt Gmen I‘[-—l—+g] 3
m n

a

4043, - 23“ L22()

4038. 8a’arcsin. 4039, 7’1- 4040, 8a%. 4041. ©2. 4042, T
3

( —-ln3)+-§arctg7]_- 4044, __(20 31). 4045. 20%. 4045.1 Z[3/T0 +Infs - /70,
7

a 52
[.l_ L +L] - -%J 4045.3 %ab(?ﬁ- l)arctgﬁ. 4045.4 gln(e S ’).
c

4046. S=4n:(3+2\/5_’)a2; V=87_T.t.a,3, 4047. (p,- Jsing,-siny, YR, kde P ¢, Jsou iihlové délky polednikd,
3

T, ¥, jsou dhlové §itky rovnobézek a R j Je polomér sféry. 4048, n a‘m RI+ppltve th” W}
) h
. be Cobe
4049. S=.c;(rp2 -@ )[b(\]; ~¥ ) +aising, ‘siml’,)]i 4niap. 4050, w=arcsin——— . (= 7°

PN a?
4051, [2+J‘1n(1 +,/‘)]. 4052 xu=—%;yo=§a. 4053. x,=5,=%. 4054, x0=y0=32]?36na.
2 2 =

4055, 5, =58y @07 o x Vo 4057, x, =2 a; yn=—§-a 4058. x,=1a; j,=2a.
4c? 8 6 6
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bhs h|b| bzl
12’

1
4059. x0=——§-;y0=0. 4060. Parabola y, == /50p%. 4061. 1 =" (b=l -2,))-

4 4 4
a 2lwa 49mg Sxa 9 4
=D =T=(16-5m). 4063. 1 =220 1 = TTTE | 4064 7 o . 4065, [ <] =—q.
4062. 1, =1,=2(16 -5m) e b o =g
4 4
4066. I =T%_ 406601 Z_. WA X=ah®; ¥=0, kde X, Y jsou priiméty tlakové sily .
g T2 *'323

naosy xay. 4071 P, =1ta‘°‘6[h - %a) s Py=ma 26[1: +-§-a] - 4072, Priiméry tlakové sily na vodorovnou osy
x a svislou osu z svislé roviny urfené osou vilce jsou po radd rovny X, = —nagﬁ[h—icos a) sina,
Z= -nagﬁ(h-%cosa) cose; X2=1m2|5(h +%cosa] sine, 7, =na26(a‘;+%cosa) cosa. 4073, Priméty

. : 2k
gravitalni sily na osy %, y, z jsourovay X=0, ¥=0, Z=- mM
al

{lb[ |6 -h] + 2T~ R - 2T 57}, kde &

je gravita?n! konstanta. 4074.p7=-1-p0. 4075.A=k—p{2ab a2+bﬂ+a31nb+"a +b” +bslna+"ﬂb b }
a

1 1. . 5
L — . 4077, Lme-3 s07s. L. s0m0. _mbc 4080. I
4076. 551 3276 43 6

x -x 1 - ] 1-
4081. }dx{fdzlff(x,y,z)dyrfdz ff(x,y,z)dy}=fdz{fdy ff(x,'y,z)dx+fdy fyf(x,y,z)dx}.
x o o .- o
P = s s o ’
4082, fd:cfdz f fle,y,2dy - fdzfdy f fle,y.2)dx.
A i

2 2 1
4083. jl’t_txl.fdzj‘f(x,y,z)dp f dz f Sy, 2)dy} =
1) ] 1]

¥
}'dz fdy ff(x,y,z)dx+fdjff(x,y,z)dx +fdz fdy ff(x,y,z)dx
Vi L

4084, — f -0 f{)dl. 4085, *f (2-z3fz)dr+~ f (2-2Yf(z)dz.

4086. F(4,8,0) -F(4,8,0)-F(4,,0)~F(a, 5, C)+F(A b,¢) +Fla, B,c} + Fla,b,C) - F(a,b.c). 4087. T"a

mg-——— oos:pcosqa
£ g2 =labe 16n
4088. —(2J' 1). 4089. f dyp f cosyrd SL r*firdr. 4090, 7 0oL ——.
ost
2f1 1 1 4 {1 1 B__ B\lm2_ .2 1 p
2. —[— ][J' J_]h VR 4093, E(—2 —-2] P -aBp?-a?| 1+ o +4ln;.
a094. & 4095.3(-9). 4096 u-4—“ R e o<
2 ‘/a +bl+c?+BR

4098.a) F/(y)= 411!2}'(22) by Fln== ‘F(t) fffxyzf’(xyz)dxdydz] kde t>0a V={0sxst,0cyct,0<zst).

4n (m-1)lie- - DI
(m+np+ 1)1

4099. 0, je-li jedno z gisel m, n, p liché;

, jsou-li &sla m, n, p sudd.
min+p+3
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ato0, L& DT+ DI DIG1y 0 3 7 5103 2438 7-4). 4104 7
Fiprger+s+4) 35 24 6
3 2 3
4105, Z_(31-4). 4106. 227, 4107. na®. 4108, 2% 4109. L 4110, —(2 V2 -a3).
24 k] 4‘[2' 2
2z 2 2 -
ann, 220 gyg Bobe. aniza Fob g, Snabols_ 15). 4114, Exape.
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2
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4118, 225 41380 %€ 41182 . 41183 —Zabe. 4119, Zo?. 4120, ~ b7 -oh (213}
3 90 1680° - 35°%¢ i PR b b

ir 3 nabc

4121, 3 —a”. 4122,

(- 7). an2s, %abc. 4124, 5abc(l—-;.J. 4125. 37/27.
. 4

5ma’

8k hh 4rh? n? abe?
4126, V= s-__e 3 +5 . 4127, L 23 4198, . 4128, — —%%¢
6 (‘/_+ f5-1). 412 a 314 Snsin(n) &

g 2 ;
4130, — 22¢ DA A gy g 4[32.41:90[I+k_22+—_]e". 41?_,3( ]

.10,0,=¢]|.
mu +mp+nh I‘i+..l_+l L3 4
m on P
oy 22,7 s 7 _ 7 3 3 _3
41.34. xo—yn—ga, zo-%-a . 4135.x0=1—8p;y0=0;zﬂ—mp. 4136.x0=§a,yn=—8—b;zﬂ-§c.
_n.. _3a Y u _y.. _B _9n o _9m,  9n o
4137, x, =3, =0; ;_0-_8-, 4138, -"u‘:*n‘l’zn'g' 4139, xo--—448a,y0-——448b,z0~—4485. 4140. x, =y, =0
2 3
r=ir =
7 %o Y %3 n] [n abc? a3he
Zy==—, 4141, —="=_"2-2 . 4142 x =a;y. =PB;z =y. 4148. 1 =< HY S R
LT e b ¢ 4 (13 B Xp =@ 3o =B 2=y »" 50 260
rf—|rf =
n n
3 3 8
L=20C 41441 =—4_-1mbc3;1 - Zratbe; [ =L rabde. args. g -Tabe’ , _mallc
=""50 * 15 =15 = 15 = =20
3
n:“‘;’) €. 4146. 1 -2‘”" 55— (15%-16); I, -2“b C(105 ~272); I -2“ b“(lo 57 -92).

=9 P
4147, Ix’=znabcs; Iﬂ=i1mb"‘c; Iu=inasbc. 4147.1 Iz=—l°—ﬂ—a5bc; I - 157 ab’c;
2 3 * 3 25642 256,/2

2 I‘Q(i I‘[E r‘*’! 1 r!f’.l
kL n

: abe®. atarag =L _Anj\n) oy 1 (n ab’c;
To128y2 527 pf3 5n*  pf5
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Lo\ abe®, 148, 7,= 12 g140. 1 =2T4 5 1) a140.1 Fod. arso. Amr?,
= Snt 15 T 5 9
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—
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)
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4153, [ =%{a z +§h 2) ,kde M=2 no,u h je himotnost vilce. 4154, 1=

a’g,

. 4155.u =2r:g"{1{2 —%]

*

41|:R39
prorsR; u= pro 7> R, kde r=yx%y?+z%, 4156, u- 41tff(g)m1n[ ,g]dg kde =ity Tzl
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4157. u=mp, (h—z)‘/aﬂ+(h—z)2+z\/a2+12—[(h—z) fh —z|+z|z|]+a2ln£z—+a—(hzz- .
a®+zt-z

EMm kM

R:na pro [e| <R. 4159, X=0; V=0

Z=-2ng0k{\/a2+12—Ja2+(k—z)2—(|z| -|h—zi)}_, 4160. X=0; ¥=0; Z=-mkg Rsin’a.

4161. Konverguje pro #>1. 4162. Konverguje pro p>1 a 4>1. 4163. Konverguje pro p> %

4158. X=0; Y=0; Z-—

al pro |a|2R, Z=~-

4164. Konverguje pro ;!afi-: 1. 4165. Diverguje. 4169, —— (p>g>1). 4170, ﬁ (¢>1).
q -

E-plg-1)
4171. 2%, 4172, P—"T @>1). 4178, n2[Z7-1). 4174. % 4175. 7.’ 4176. g 4177 g
abd ) . .
4178. ~e¥® kded=| |aA=lb ¢ ¢ 4179. Zab. 4180, - 20 4181 Ronverguie.
[ b ¢ d e 2{1 _82)3/2
ld e f

4182. Konverguje pro < 1. 4183. Konverguje pro %+-I— > 1. 4184. Konverguje pro p<1.
_ 7

2 .
4185. Konverguje pro p<1. 4187. 12‘:- 4188. ma. 4189.. —%In?. 4190. 2. 4191, Konverguje pro

p>g. 4192. Konverguje pro p < i 4193, Konverguje pro },1- +l +l <1. 4194. Konverguje pro p<1.
)

4195. Konverguje pro p<1. 4196. (1 -p)"'(I -t f)l(p<l,q<1r<l) 4[97 43“.

3. . a2 n _ n . nl@n+l) at
4198, 21:5(5,1 p] (h<l). 4199, =*? 4300, - kde A—laij,. 4204.a}§,b) — 5 4205, —
. . L ALk Caa,...a {u-1p2
4206 . 4207 — 2 4208, — L2 4999, 12 7m 4919, _ T a,a,...a.
k| m-11(2n+1) [A nl ﬂr.[rul]
2
n2_n r-10% n-1 3 {n+1)y2
az11, 287 g T AT h e

2

) 121‘[2] p{_J []

4219. u—l—ﬂ Q(]RD 4220. 6 e kde &= |a la A= _]E determinant ovroubené matice.

4221. 1+/2. 4222, 2°5a’ 4223, 272 Y1 +27%. 4224._%—cqshm2t0-1). 4225. 40

2 .
4226, 2("-)+Zae”. 4227, 20%(-2/3). 4228, 2—-_ "“k. 4220. 24%. 4230. L. 42315
a

4282. 3. 4233 x| +[zy|, kde [x f<a. 4284 oy 4235. 1+
!

4236, a,/2 arctgi-—
7

. 4237, 2Tt(Sta +4n2b? ) a%+b®. 4238, Emﬂ 4239. _[2 t e 23’2]
2
[/ 4

2 F

2 ’ 5 +4./38 © aresi Y
2 _|100438-72-17In E*’”_%] 4241. 25 [b +a.irﬂ£] kde e=¥2 "0 je excentricita
562 ’ € [

4240.

_KAPITOLA VIII
elipsy. 4241.1 %ﬁ"'(?ﬁ—l). 4242.%[3\/5*1)»'%1:13*:‘/?_’]. 4248. x,=b -a :‘ L. 2 L
Tt
2;}1 -a*
4244, 5 =y =2 =5 =342 3, 3\/—*
P Xy =¥y = 0. 42441 § =5 =247, 4244.2 na 42443:1) ; . 4244 4 r"=——-.
3 5 ﬁ
4245, 2=y =2, =22 goq6. 5 220 L ) osm g ere “_2+"_ J4nﬂa2+h?-
00T 3y BCEFAECIN SRS vl s '

=a*yar’a+h%. 4248.2)0;b) -f;;c) 2. 4249,3)2;b)2;¢) 2. 4250 —%. 4251. %. 4252. 0.
a

4253, -27a®. 4254, -7, 4255, 0. 4256. 0. 4257. ;-l. 4258. 8. 4259.12. 4260.4. 4261. -2.

aslh *y Fy
4262, f flw)du. 4263, g 4264.9. 4265. f p(x)dx + f Windy. 4266.62. 4267.1. 4268. n+1.
] %) x

.

4269. ¢ “cosh-1. 4271, z=% +x 2y-xy —y—-+C 4272, z——-—l-—arctg L.
3 22 /2

4273, z=- 2° srinlx ey «C. 4274, 2= T(x-y+ 1) rye*+C. 4275, 2= T u

(x+)° Ox "oy ™

tm
[arc[gx)ﬂ? 4278. )1, s—. 4279, 51_ 4280, -ma®. 4281. 2:r\/§a2sin(;—a].
bl

+C.

4276, z=

dx oy ™

Xy 2
1282, “% 4283, -4, 4234 -53%. 4285.0. 4286.5h-2. 4287, f @{x)dx < f Y (y)dy+ f x{z)dz,

¥
J.'z r,! rz ‘/.Tg 'I " ! ;l
4288. f Jluydu, 4289, f uf(u)du. 4290.u=—é-(x3+y3+za)—2xyz+c_ 4291, y=x-2.2 .

4292-u=in\f(x+y)2+z2+arc:gxi++c. 4293, A= -mg,-z,). 4294.A=-g(ahb2}. 4295.A=k[l-i],
3

1 Ty

O 4
r'.=‘lx!.z+y‘,2+zl-2 i=1,2). 4296.7= f f yidxdy. 4297. -46%. 4298, “—g- 4299. -2mah.
£

. 2
4300, —%(e"—l). 430L. 0. 4302.1,-7,-2. 4303, “";“ :

4304.mS+ex’(p(y2)—ex‘(p(yl)—m(}'g.—yl)-ﬂ(xg X)(,+y,). 4305, P——- Q=kx+ 2% ¥ kde u je dvakrit
oy

diferencovatelnd funkce a kJe konstanta, 4306. —[xF(x,y)]——biF(x y)] 4307. 1) I=0;2) I =2m,

3 a? 3 1 4n
4308. mab. 4309. —mab. 4310. = 4311. 24 4312. 4%, 4313, — - FT
8 6 2 3 93
2 b F2 l b l ‘i i b 2
4314. L pom+1,20+1). 4315, 48 LY i § R WY NN ST ST L L
] 2n [2] n .7 22n+1)’
= sin—
k3 n

AB18. nin+ D +2)r®; 6nr?. 4319, (- -2)r2; 6nr?. 4320 422, 4321, sgniad -be).

4322. 7 =Esgni%1;—), kde se s¢fid pres viechny priiseciky kiivek p(x, ¥1=0a yix,y) =0, kieré leii uvniti
o(x,y

smycky C. 4324, I=25 kde SJE plocha vymezend kfivkou C. 4325. X, ( X ¥o) +¥! Y05y 4326, Priméty
sily na osy soufadnic jsou X =0; Y=2kmM/ma?, kde k j Je gravitaéni konstanta, 4327, u=2nxR [n% pro




VYSLEDKY

p=yxZ+y?<R, u= 2mchnE pre p>R. 4328.7F ——g cosmp, ], -—-g "sinme@ pro 0O<ps1;

I -_Q "cosmey, 1’2——Q smm(p prog>1, 4329 =2, jestlife bod {x,7) leff uvnit? plochy vymezené
kiivkow C; u =7, jestlize bod (x,3) le na kfivce C; u=0, Jestlize bod (x,y) lel vad kt"*ivky C.

4330. K =ng casmtp,K ﬁg sinmg pro O<p<]; K =0, K,=0 prog=1; K= —cosmtp,

o"
K, ———smmtp pro e>1, 4559 Q= “‘[Pﬁh@-] dxd du  dv .
" dy ¥

4340, H_ -sz—s[(q —y)dz - -ndy); HJ:sz-r_s[(c—z)dx - -x)_dz]; H, =iu'fi3[(.5 -x)dy —(n -y}dx}.
: Cr Iol .

4341.11-12=(4n-2,/§)a". 4342, ln,ﬁa’. 4343, 70’ 1344, 2(1+9). F-1)in2.
at
4346, 12{;‘2/; Ly 4347, -3— abe -a—2+b—12+;1-2-). 4348, la 1+a? +Inb+1/1+a )] 4349, -2—smac052a

Dsacl]. 4350, 64,/‘a 4352. -?-“(“—5'/_). 3520 na?. 43522 L. 4353. Zrguat
2 15 2\/5 3

ng,e(3a®+26%)Jal+h? 16 a a
4, . 4355. %y -—, =0; z. =" 6. =z =2 [T k1),
438 12 27 Yo=Yi %o o 4356. x, =y, 272 % n(\r* )

4356.1 a) 40(14; b} ‘rrRl {R+H}+ H"‘] 4356.2 l—\/; 4357. Priiméty gravitaéni sfly na soufadnicové osy

2

jsouX=0;Y=0;Z=nkmlen%. 4358.u=41‘cgomin[a,a—~],kde To=y%o +¥o *2y. 4359 F(Y)= (s e
T
0

pro |t] <y3; F(©)=0 pro |t|>3. 4360. F(t)=-ﬁ(8;ﬁ5ﬁlt‘*. 4361, F=0 pro t<r-a; F=T¢ 2—(r—t)2] pro
T

r-a<t<r+g; F=0 pro{>r+a ({20}, 4362. 412>, 4363. [f(a) SO, g® ;g(O) $ h(c)_k(o)]a'bc
. &

4364. 0. 4365. 4—;(«12b‘-’+a 24b%c%). 4366. -——(a+b+c)R5 4367. -na/3. 4368. ’:3. 4369. 25,
aec

4370.0. 4371, -2mala+h). 4372. 2=R»?. 4375, —-2_a_?. 4374. 0. 4375. 3 f H(x?+y‘-’+z?)dxdydz.

4377.0.- 4378. 2”{%. 4379, H[Audxdydz kde Au=T%, P8, P agg g,
‘fxz+}v2+12 ox*~ 5)' dz*

4384, 4;(a +-) [¢]. 4385. 3{13 4385.1 27%%. 4337 Sa 4388, Emﬁ. 4389, 1.
<]

4390. _113 . 4392.a) I=0;b) I=4n. 440L.a) gradu(ﬂ) 3i- 2} 6k, lgradu(0)| =7, cosa—%

cosl3=——%, cosy =*—; b} gradu (4} =6i+3j, |gradu (1)] =35, -go'so:=-2—, cosf =i, cosy =0;
7 7 ‘ B
c) gradu(B)=7i, |gradu(B)| =7, cosa=1, cosP=0, cosy=0; gradu =0 v bods (-2,1,1).

4401.1 gradu (M) =12i-9§-20%, |gradu(M)| = 25, cosa-;—-. cosB--i_, |:osy—‘Ai a—u=i
25

5" ol

)

4402.a)xy= byxey=Oax=y=z;c)x=y=z. 4403.r=1. 4404. 4(t ;JG) i —=1 {u:x16);
: uT-256 . u®

4406. Ekvipotencidlni plochy jsou vnitiky kuZelt;

x2+y2 z2

=1; maxu=20, 4405. cosp=-

u::lcc

960 1024

KaAPITOLA VI

plochy stejné velikosti gradientu jsou tory; infu =0, supu =1; inf|gradu| =0, sup[gradu[-—-—.

4407. et 4409, a)— b) 2r; ¢} L. 4410. f’(r)_ 4411 . 4412, 2r{c-c)-2e(c-r),
gradufe,.y,.z, r3
Ou 1 du ,8u . . . . .y
4415.1 a) gradu=-— 6 e t——— 3o e, 6 ——e, kde e =icosp+jsing, e ¢~ ESINQ rjcosg, e =k jsou teéné
r r

vektory k odpovndajic:m souraclnlcovym kiivkdm; b) gradu = 3': +_:1— g%‘e + ﬁé' g—:e -
,=icosgsind +jsin@sin® +kcosH, £, =icos@cosO +jsinpcosO -ksing, €, =-ising+jcosy jsou tefné
du_ 2y

kde

vektory k odpovidajicim soufadnicovym kfivkam. 4416. it kde r=4fx2+y2 422 -ﬁ= {gradu| pro
ror or
Ju _ cos(lr) oy du _gradugradv odu
a=b=c. 4417. — = — —=0 ! 4418, =2 =0 du ) grad
< ) 57 Oprolir. 37 Tgrade] 3l pro gradu .. grade.

A7, 2 il Tt _ .
4419.a=ﬂ'/" i) ”“) 1(‘/" 2 “‘Z)*_"(x Nz 4420, y=c x, z=¢,x*. 4422.1 diva(M) - 18/125;

oy

_ 24 3 . _ _azu azu aEU; 47 2 tea.
II__IET“:. 4423. 0. 4425, div(gradu) =Au, kde éu_ﬁj-%§+§' 4426. f (r)+:f (1

¢ ’
fr=c+t kdec a ¢, jsou konstanty. 4427. a) 3; b} E 4428, m(c:-r). 4429. 3/t +rf'(r); fin) =—55-,

r T T T
kde ¢ je konstanta. 4430.a) Ay +(gradw)?; b) uAv +gradu gradv, kde Au je Laplacedv operzimr

4431. dive=0; divir= -2w?. 4432, 0 vne pfitahujicich se stfedl. 4433, dwa——-[—(ra) , kde

a_,a, jsou priméty vekioru @ na soufadnicové kfivky g =const a r=const.

4434. diva = IJ&! [-iWNa")+ a—i(NLav)+i(LMaw)], kde g, a , a, jsou priméty vektoru a na

R EEERE)

' 2 2 2
N =J [ -é%] +[§—5) +(%) <Jestlize r, @, z jsou cylidrické soufadnice, pak

2
odpovidajici soufadnicové kfivkya L =J [ o ) ( ) ( Bh]
du du du

. 1 a da da
diva=—|— +-—" +r—-— sjsoulir, 8, ¢ sférické souiadnice, pak
r ar ' de

diva=

A ria sme)+r—a smﬁ +r— 4436.a)0; b) 0. 4436.1 rota(M)———a—;h—-k
r2sin@ o7 2

|rota(M)|=—' 141, cosa = -5 cosp=—% cosy = 10 . MS?.a)m[rXc]-
yidl

ot

b) 2f(r)c+f( )[c(r 1) -r(cr)). 4439.2) 0;b) 0. 4440, rotv=2al. 4440.1 rota——[ rtr q,)

kde 2, 2 a_json priméty vektoru @, na odpovidajict soufadnicové kfivky 7 =const a ¢ =const.

1 da, aa da_ da
44402 a) rota =] — 2 -_*¥ -—Ile +——(ra )——’e,
“\Tx o) r|ory ¥ ag|*

roe dz
kde a, =a _cosp +ajsm(p, ™ =-a sing +a cosp, 4 =a;

1 |9, . dag| 1| 1 s, g 1] 3 @a,
rsinﬂ[ﬁﬁ(a*’sme)-% ’+_r"[5m9 dy ar(m )]e°+?[§(me) %]e"

kde 2_=a_cospsin® +& singsin8 +a_cosd, a, =a_cos@cost mysm(pcosﬂ -a,sin@, @, =0 5ing -4 cosg.

b) rota=




VYSLEDKY

4441.2) 0; b) mh®. 4442.2)0:b) 0. 4443, 7, 4444.%5. 4445, 0. 4445.1 l;- 4447, 4nm.

4448. ) .. 4450. co % =div{kgradu), kde ¢ je koeficient mérné tepelné kapacity a @ je hustota télesa.
i=1

4452, 21%0?. 4452.1 s%m. 4452.2 %(Sﬂ"—l?e’ﬂ). 453, [[()rdr. 4454.2) 2m; b) 27,

4455.a) I'=0:b) ['=2nn, kde n je pocet otofeni kitvky C kolem o'é'y z. 4455.1 rota(M)= -2k,

P du _dv dv_du du__duv du_dv
=- 2 4456, Q= || =+ | dxd ,I‘=ff-———— dxdy, —=-—, Z=—,
I'=-n(cosp+2cosy)e 56. @ -U-(ax ayJ xdy . (ax ByJ xdy; — 3y’ By o

4457, u=xyz(x +y+z}+C. 4457.1 % 4458. =", 4459, u(x,y,2) =£—', kde r, je vzdilenost pohybujict-
r T,
il .

ho se bodu M =(x,y.z) od bodu M, (i=1,2,...,m). 4460. u(x,y,z):ftf(t)di, kde r=yx?+pZaz?,

o
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