
All Labels Are Not Created Equal: Enhancing Semi-supervision via Label
Grouping and Co-training

Islam Nassar1*, Samitha Herath1, Ehsan Abbasnejad2, Wray Buntine1, Gholamreza Haffari1

1 Dept of Data Science and AI, Faculty of IT, Monash University, Australia
2 Australian Institute for Machine Learning, University of Adelaide, Australia

Abstract

Pseudo-labeling is a key component in semi-supervised
learning (SSL). It relies on iteratively using the model to
generate artificial labels for the unlabeled data to train
against. A common property among its various methods
is that they only rely on the model’s prediction to make la-
beling decisions without considering any prior knowledge
about the visual similarity among the classes. In this paper,
we demonstrate that this degrades the quality of pseudo-
labeling as it poorly represents visually similar classes in
the pool of pseudo-labeled data. We propose SemCo, a
method which leverages label semantics and co-training to
address this problem. We train two classifiers with two dif-
ferent views of the class labels: one classifier uses the one-
hot view of the labels and disregards any potential similarity
among the classes, while the other uses a distributed view
of the labels and groups potentially similar classes together.
We then co-train the two classifiers to learn based on their
disagreements. We show that our method achieves state-
of-the-art performance across various SSL tasks includ-
ing 5.6% accuracy improvement on Mini-ImageNet dataset
with 1000 labeled examples. We also show that our method
requires smaller batch size and fewer training iterations to
reach its best performance. We make our code available
at https://github.com/islam-nassar/semco.

1. Introduction
Deep neural models require large amounts of labeled

data to achieve their high performance. This quickly be-
comes prohibitive and non-scalable especially when label-
ing data is expensive and/or non practical. Semi-supervised
learning (SSL) [5, 35] has hence emerged to explore a di-
verse set of methods which aim to leverage unlabeled data
to enable learning from a smaller set of labeled data.

In the context of image classification, recent methods
use unlabeled data to guide learning in different ways.

*corresponding author: islam.nassar@monash.edu

Figure 1: A conceptual diagram of our co-training solution

Some methods primarily focus on consistency regulariza-
tion [30, 18], where the model is enforced to produce con-
sistent predictions for different perturbed versions of the
same unlabeled input image. While others focus on pseudo-
labeling [1, 19, 14], where the model is used to produce
artificial labels for the unlabeled data that are then used to
further train the model. Evidently, combining the two ap-
proaches has shown the state-of-the-art results on various
image classification tasks [31].

When it comes to pseudo-labeling, a common problem
which hinders the SSL performance is the so-called con-
firmation bias [34]. This takes place when the model re-
assures its wrong predictions by retraining on them, lead-
ing to an accumulation of the error from which the model
can not recover. To mitigate this behaviour, some methods
use a warm-up phase until the model becomes more reli-
able [14, 34], or limit the number of pseudo-labeled sam-
ples in each mini-batch [1]. Other strategies include using a
confidence threshold whereby a sample is only considered
for pseudo-labeling if the model is highly confident about
its prediction [31, 19]. One property shared by all these
methods, however, is that they only rely on the model’s
output and disregard any prior knowledge about potential
similarities among the classes. As we show in Section 2,
visually similar classes are expected to confuse the model
and therefore get poorly represented in the pseudo-labeled
data pool. This fact is even more exacerbated in confidence-

1

ar
X

iv
:2

10
4.

05
24

8v
1

 [
cs

.C
V

]
 1

2
A

pr
 2

02
1

https://github.com/islam-nassar/semco

based methods [19, 31] as it leads to discarding most of the
visually similar samples simply because the model is rarely
confident about their predictions. We show that this leads to
a class imbalance in the pseudo-labeled pool, and thereby,
misguides the training.

In this paper, we demonstrate that by exploiting class la-
bels semantics, we can account for such similarity among
the classes. We draw inspiration from few-shot learning
methods [10, 43] where we use distributed embeddings to
represent class labels. We present two methods to generate
label embeddings in a way which encodes a weak prior on
the visual similarity among the classes. One such method
is based on knowledge graph embeddings [33], while an-
other is based on visual attributes annotation [37]. Having
such embeddings provides basis to group the class labels
into visually similar concepts and allow considering such
grouping while making pseudo-labeling decisions.

The benefit of using label embeddings goes beyond la-
bel grouping. Earlier work [10] has shown that using em-
beddings as training targets (as opposed to one-hot labels)
allows the model to map the image features to a more mean-
ingful semantic space, and thereby, enables few shot trans-
fer. In our work, we leverage this idea in a co-training [4]
style approach to improve SSL performance. We propose to
train two classifiers with the two different views of the class
labels, i.e. one-hot and distributed. One of the classifiers
makes use of the label grouping during pseudo-labelling,
while the other does not. We then allow the two classifiers
to learn from their disagreements via a shared consistency
regularization loss on the unlabeled data.

We show that our method achieves new state-of-the-art
results across five different datasets, while using smaller
batch size with fewer training iterations. To summarize, our
contributions are:

1. We propose an approach which leverages the seman-
tic similarity among the classes to improve pseudo-
labeling quality by addressing the confusion events.

2. We present a co-training-based SSL method which in-
volves two classifiers co-operating via pseudo-labels
obtained using their different views of the class label.

3. We show our approach outperforms the state-of-the-
art in SSL by a large margin on 5 different datasets
including 5.6% on Mini-Imagenet with 1000 labeled
point, i.e. 10 labels per class.

2. Background
We are interested in a K-way semi-supervised im-

age classification problem, where we train a model us-
ing batches of both labelled and unlabelled examples.
Specifically, each batch comprises labeled examples, X =
{(xi,yi)}ni=1 and unlabeled examples, U = {uj}µ·nj=1,
where the scalar µ denotes the ratio between the number

of unlabeled and labeled examples in a given batch, and yi
denotes the one-hot representation of the label. But before
we introduce our approach, we begin by reviewing three key
concepts underpinning our method.

Consistency Regularization These methods exploit the as-
sumption that predictions for different perturbed versions of
a sample should be consistent [20, 30]. One way to opera-
tionalise this idea is to produce several augmented versions
of a given unlabeled image, then apply a loss to ensure that
the predictions for all such versions are consistent. Inspired
by recent methods [31, 3], we make use of two types of aug-
mentations, namely, weak augmentations Aw(.) and strong
augmentations As(.), where the notion of intensity relates
to how perturbing an augmentation is to an image.

Pseudo-labeling These methods rely on producing syn-
thetic labels for unlabeled data which are then used to re-
train the model. Recent alternative variations of pseudo-
labeling [19, 3, 31] can broadly be formalized as methods
trying to account for unlabeled data by minimizing the fol-
lowing objective,

L(θ) =
−1

µ · n

µn∑
j=1

ηj log p(y = ŷj |uj ,θ), (1)

where θ represents learnable model parameters, ŷ denotes
the pseudo-label, and η is an arbitrary function. The choice
of ŷ and η gives rise to different variations of pseudo-
labeling methods [19, 3, 31, 19]. We are particularly in-
terested in confidence-based methods where

ŷj = arg max
y′

p(y = y′ |uj ,θ) (2)

and ηj = 1(p(y = ŷj |uj ,θ) ≥ τ),

with 1 denoting the Indicator function. In such methods,
the unlabeled sample is only retained for pseudo-labeling
if the model’s maximum confidence score exceeds a prede-
fined threshold, τ , and the pseudo-label is then selected to
be the class with the maximum score1. This approach mit-
igates confirmation bias (see Sec. 1) by only retaining high
confidence samples. Simultaneously, it encourages entropy
minimization [11] whereby the model is encouraged to pro-
duce high confidence predictions on the unlabeled data.
Recently, Sohn et al. [31] combined such approach with
consistency regularization to propose FixMatch, a method
which achieves state-of-the-art results on several SSL im-
age classification benchmarks.

Co-training The idea of co-training [4] is to train two mod-
els with different views of the data, where each model is
trained on the other’s most confident predictions. Given
sufficiently diverse views of the data, this approach was
shown to improve learning, as it allows the two models to

1For notation simplicity, we assume here that the argmax in Eqn. 2
produces a one-hot probability distribution

2

Visually similar classes Visually distinct classes Visually similar classes Visually distinct classes
FixMatch Ours

ibizan
hound

golden
retriever

wok frying
pan

orange theater
curtain

school
bus

rock
beauty

ibizan
hound

golden
retriever

wok frying
pan

orange theater
curtain

school
bus

rock
beauty

60%

40%

20%

60%

40%

20%

Figure 2: Confidence-based pseudo-labeling comparison between the baseline (left) and our method (right). Accuracy values
show how much, on average, pseudo-labels for a given class match the true label, while Ratio values show the percentage of
samples of a given class which are retained for pseudo-labeling (i.e. with confidence score above the threshold). The two
metrics are calculated for the 4 most (red) and least (green) visually similar classes over the first 10 epochs of training.

learn based on their disagreements [35]. We adopt a simi-
lar strategy, albeit, we use two different views of the label
rather than the data. We use the regular one-hot view as
well as a distributed view (i.e. label embedding). As we
introduced in Sec. 1, using a distributed view of the label
grants the ability to map from the image feature space to
another meaningful semantic space. This is under the as-
sumption that the label embeddings are learnt in a way that
captures semantic similarities among the labels. In [10], au-
thors show how semantic information gleaned from text, in
form of word embeddings [22], can be exploited to enable
prediction of labels never observed during training. In this
work, we combine the above ideas to propose our method.

3. Problem Statement and Motivation

While achieving great results, approaches that rely on
pseudo-labeling share a limitation. As Eqn. (1) suggests,
they solely rely on the model’s prediction to decide about
pseudo-labeling, while disregarding any prior information
about possible similarities among the classes. We find
in our work that visually similar classes often produce
low-confidence predictions, hence are either discarded (for
methods which use confidence thresholds such as Fix-
Match) or confused with others. This leads to class imbal-
ance among the pseudo-labeled instances which potentially
misguides SSL training. In Fig. 2 - left, we demonstrate
such behaviour by examining the pseudo-labeling statistics
of FixMatch method. We use the true labels of the unla-
beled data2 to calculate the true accuracy of pseudo-labeling
for each class. Further, we calculate the ratio of samples
retained for pseudo-labeling (i.e. where the classifier confi-
dence exceeds the threshold). We plot these two metrics for
the 4 most and least visually similar classes3. We observe
that visually similar concepts are chosen less frequently (i.e.

2Note that we have access to the true labels but they are discarded dur-
ing training to emulate an SSL setting

3We elaborate on how we identify similarity in Sec. 4

less ratio) for pseudo-labeling and are often mislabeled (i.e.
less accuracy) as opposed to visually distinct concepts. Mo-
tivated by this observation, we consider the label similari-
ties as a particularly essential prior that is easy to obtain. In
the subsequent sections, we will discuss how to obtain and
incorporate such a prior for an improved pseudo-labeling.

4. Our Method (SemCo)
We aim to address the issues demonstrated for visually

similar classes. We build on top of recent approaches, but
we additionally propose to condition pseudo-labeling on
our prior knowledge of class similarities. Effectively, we
enhance the model by incorporating knowledge about po-
tential confusions based on semantic and visual similari-
ties4. To that end, we encode the notion of similarity among
the classes using a label embeddings matrix M ∈ RK×d
where each row represents a d-dimensional label embed-
ding of class k ∈ {1, · · · ,K}5. We further group the labels
using a density-based clustering approach such as [7] us-
ing a hyperparameter ε so that the number of groups are not
pre-defined. Subsequently, we obtain Q class groups.

Thereafter, we train two classifiers sharing the same
backbone network (see Fig. 1). The Semantic Classifier
fsc : Rh×w → Rd maps an input image closer to its corre-
sponding label in the embedding space spanned by the rows
of M ; and the One-Hot Classifier foh : Rh×w → RK maps
input images to a one-hot view of the label. Note that, for
brevity, we define the classifiers fsc and foh to implicitly
include the shared backbone network and its parameters.

For each of the two classifiers we minimize a supervised
loss on the labeled data and an unsupervised consistency
loss on the unlabeled data. Additionally, we add a loss term
for co-training to allow the two classifiers to co-operate on
pseudo-labeling.

4We present a probabilistic interpretation of our method in the supple-
mentary material

5We defer the discussion on how to obtain M to Sec. 4.5.

3

sabinka

sabinka

4.1. Semantic Classifier

For the supervised loss, we minimize the cosine loss be-
tween the true label embedding and the predicted label em-
bedding,

Lscs =
1

n

n∑
i=1

C(MTyi, fsc(xi)), (3)

with C(z, z′) = 1− CosineSim(z, z′).

For the unsupervised loss (see Fig. 3), we draw inspira-
tion from FixMatch [31], where we use a weakly augmented
version of the image to obtain a pseudo-label and enforce
that against the model’s prediction for a strongly augmented
version of the same image. Specifically, for an unlabeled
image uj , we obtain the predicted embedding for a weakly
augmented version of the image: qj = fsc(Aw(uj)). Then
we calculate class scores, pj = p(yj |uj) by normalizing
the vector-wise cosine similarity between qj and M .

Unlike FixMatch, we consider an unlabeled sample for
pseudo labeling if the prediction score for one of the class
groups (as opposed to the individual classes) exceeds a pre-
defined threshold (τe). To elaborate, referring to Fig. 3, due
to the visual similarity between “bicycle” and “motorbike”,
the class scores for each of them, individually, is falling be-
low the threshold. However, since they are both identified
as “visually similar” based on clustering their embeddings,
their scores are added first before applying the threshold.
The combined score exceeds the threshold so the sample
is retained for pseudo-labeling where the pseudo-label is
calculated as the average of the “bicycle” and “motorbike”
embeddings weighted by their normalized class prediction
scores.
To put it formally, to obtain the score for a given class label
group, we sum the normalized class scores of all its mem-
bers (where the membership is defined based on clustering
M). This gives rise to our group scores gj

6.
Thereafter, we apply our mask to select samples for pseudo-
labeling as per,

ηscj = 1(max(gj) ≥ τe). (4)

If a sample is selected for pseudo-labeling, we obtain
a pseudo-label embedding (ŷj)

7 for such sample as a
weighted average of the group members embedding, where
we weigh the average based on the original class scores pj .
Consequently, we apply the loss against the embedding pre-
diction of a strongly augmented version of uj as per,

Lscu =
1

µ · n

µ·n∑
j=1

C(ŷj , fsc(As(uj))) · ηscj . (5)

6gj is calculated as the inner product of pj with the cluster assignment
matrix

7ŷj is calculated as the inner product of M with the normalised class
scores.

4.2. One-Hot Classifier

For the One-Hot Classifier, we follow the same proce-
dure as the Semantic Classifier with two crucial differences:
1) we use cross-entropy loss instead of cosine loss, and 2)
we don’t apply label grouping before comparing with the
confidence threshold. We note here that this classifier oper-
ates in a similar way to FixMatch, yet we include the loss
equations for completeness. By analogy, the supervised loss
is calculated as,

Lohs =
1

n

n∑
i=1

H(yi, foh((xi))). (6)

Here, we useH to represent the cross-entropy loss function.
To this end, the unsupervised loss is formulated as,

Lohu =
1

µ · n

µ·n∑
j=1

H(ŷj , foh(As(uj))) · ηohj , (7)

where ŷj = arg maxAw(uj); ηohj = 1(max(ŷj) ≥
τo). We note that our motivation behind using two dif-
ferent types of loss functions is related to the concept of
co-training. An assumption underlying the success of co-
training is to ensure that the learners are sufficiently diverse
so that they learn better based on their different views [35].
We validate such choice in our ablations (Sec. 5.4)

4.3. Co-training Loss

This loss is meant to enable both classifiers to learn from
each other. The intuition is that due to each classifier’s dif-
ferent view of the labels, they will each be confident about
different samples of the unlabeled data. We exploit that by
retaining a sample for pseudo-labeling if either of the classi-
fiers is confident about its prediction. In case the two classi-
fiers disagree about a sample (i.e. they are both confident
about two different labels), the sample is included twice
in the loss, once with each of the two pseudo-labels. We
experimented with another approach, where in such event,
the sample gets discarded but it degraded the performance.
We conjecture that it’s because the former approach encour-
ages the two classifiers to be consistent while the latter com-
pletely ignores the confusion event. Formally, we define the
co-training loss as,

Lco =
1

µ · n

µ·n∑
j=1

C(MT ŷj , fsc(As(uj))) · ηohj

+H(arg max(pj), foh(As(uj))) · ηscj (8)

4.4. Total Loss

We now define our final training loss function by com-
bining all five losses (Eqns. 3, and 5 to 8) as per,

Ltotal = Lscs + Lohs + λu(Lscu + Lohu) + λcoLco. (9)

4

Figure 3: Unsupervised loss for the Semantic Classifier - A weakly augmented image is used (upper path) to obtain a predicted
embedding, which is then used to obtain class scores. The class scores are summed for each label group (as identified by our
grouping method) to obtain group scores. If one of the group scores exceeds the threshold, it is retained for pseduo-labeling.
The pseudo-label is then calculated as an average of the group members embeddings weighted by their class scores. The loss
is then enforced against the predicted embedding for a strongly augmented image (lower path).

Here, λu and λco are fixed scalar weights to modulate the
contribution of the unsupervised loss and co-training loss,
respectively.

4.5. Extracting Label Semantics

In this section, we propose two alternatives to obtain the
label embedding matrix M which establishes our prior on
the visual similarity among the classes.

Using Knowledge Graphs In cases where the class labels
are semantically meaningful, we make use of the Concept-
Net knowledge graph [33] together with GloVe [26] and
word2vec [22] distributional embeddings as the basis for
obtaining the distributed label embeddings. ConceptNet
is a multilingual knowledge graph that connects words of
natural language with labeled, weighted relations. Since
our main goal is to obtain label embeddings which cap-
ture visual similarity, we filter the graph to only retain re-
lations which imply such similarity. Specifically, we re-
tain any nodes which share the following relations: Sim-
ilarTo, InstanceOf, IsA, FormOf, Synonym, Etymological-
lyRelatedTo, DefinedAs. A detailed description of such rela-
tions and examples thereof can be found in the ConceptNet
documentation8. On the other hand, GloVe and word2vec
are two prominent sets of word embeddings, the former is
trained on 840 billion words of the Common Crawl [26],
while the latter is trained on 100 billion words of Google
News [22]. The two sets capture the distributional similar-
ity among the different words but don’t necessarily capture
visual similarity. For example, “cat” and “dog” usually ap-
pear in similar contexts (being both animal pets) so they
would have a relatively similar GloVe (or word2vec) word
embedding even though they are not visually similar. Com-
bining the distributional embeddings with the ConceptNet

8https : / / github . com / commonsense / conceptnet5 /
wiki/Relations

filtered graph allows us to address this problem: we follow
a procedure similar to the authors in [33] to retrofit the dis-
tributional embeddings with the filtered knowledge graph.
Retrofitting [8] is a process which adjusts a word embed-
ding matrix based on a knowledge graph by optimizing an
objective function which tries to find for each term a new
vector close to the vector’s original value but also close to
the term neighbours in the graph. Since the retained rela-
tions in the graph are those which implies visual similarity,
this retrofitting results in a new hybrid set of embeddings
which captures distributional similarity but also correlates
well with visual similarity. Finally, to handle class labels
which are not present in the embeddings vocabulary, we
implement a fall-out strategy to find the most reasonable al-
ternative. We provide further description of the retrofitting
process and we show a qualitative comparison to demon-
strate its effectiveness in the supplementary material. We
also provide further details of the fall-out strategy.
Using Class Attributes Annotations In cases where the
class labels are not semantically meaningful, a viable al-
ternative is to use manually annotated class attributes. We
demonstrate (Sec. 5) that by using attributes annotation of
CUB-200 [37] fine-grained dataset as our M matrix, we
achieve significant gains against the baseline. Consider-
ing that the cost of annotating attributes is expected to be
cheaper than annotating data instances, we propose class
attributes annotation as a possible alternative.

5. Experiments
To evaluate SemCo, we compare it to various recent

SSL baselines on 3 standard benchmarks (CIFAR-10 [16],
CIFAR-100 [16], Mini-ImageNet [28]). Further, we experi-
ment on 2 other datasets: CUB-200 [37], to test SemCo on
fine-grained tasks; and DomainNet [25], to verify its perfor-
mance on larger more complex images.

5

https://github.com/commonsense/ conceptnet5/wiki/Relations
https://github.com/commonsense/ conceptnet5/wiki/Relations

Table 1: Error rates for CIFAR-10, CIFAR-100 and Mini-ImageNet. We report results for two different values of µ - i.e.
ratio between unlabeled and labeled data in a mini-batch, for our method and FixMatch. † denotes that the results reported
are using the same codebase. ∗ denotes that the result is based on using CNN-13 model. We report the mean and standard
deviation across 3 different splits of labeled data for each experiment.

CIFAR-10 CIFAR-100 Mini-ImageNet
Total Labelled Samples 250 4000 2500 4000 10000 1000 4000 10000
Pseudo-labeling [19] 49.78±0.43 16.09±0.28 - - - - - -
Mean teacher [34] 32.32±2.30 9.19±0.19 - - - - 72.51±0.22 57.55±1.11
UDA [42] 8.82±1.08 4.88±0.18 33.13±0.22 - 24.50±0.25 - - -
Label Propagation [14] - 12.69±0.29∗ - - - - 70.29±0.81 57.58±1.47
PLCB [1] 24.81±5.35 6.28±0.30 - 37.55±1.09∗ 32.15±0.50∗ - 56.49±0.51 46.08±0.11
MixMatch† [3] 11.29±0.75 6.24±0.07 39.70±0.27 - 28.59±0.31 60.97±0.31 49.79±0.11 44.27±0.23
FixMatch†(µ = 3) [31] 5.78±0.23 4.52±0.01 38.45±0.51 32.22±0.21 28.42±0.09 66.23±1.13 59.73±5.45 44.66±0.12
FixMatch† (µ = 7) 4.55±0.12 4.49±0.05 33.64±0.07 31.27±1.30 26.13±0.18 60.97±0.31 49.79±0.11 44.27±0.23
Ours (SemCo)† (µ = 3) 5.87±0.31 4.43±0.01 33.80±0.57 29.40±0.18 25.07±0.04 55.35±0.71 46.01±0.93 41.25±0.76
Ours (SemCo)† (µ = 7) 5.12±0.27 3.80±0.08 31.93±0.01 28.61±0.23 24.45±0.12 59.35±0.23 49.46±2.20 42.78±0.35

5.1. Datasets

CIFAR-10/100 Both datasets comprise natural images of
10, and 100 classes respectively. Their training set consists
of 50k images while the test set consists of 10k images. All
the images have a fixed resolution of 32x32. We conduct
three different experiments on each of them with varying
amounts of labeled data as shown in Table 1.

Mini-ImageNet A subset of the well-known Ima-
geNet [29]. It consists of 100 classes with 600 images per
class (84x84 each). We use the same train/test split used by
[14] and we create splits for 40 and 100 labeled images per
class to enable comparing with the baseline systems. How-
ever, we also experiment with 10 images per class to test
SemCo in the low data regime.

CUB-200 A fine-grained image classification dataset com-
prising 11k images from 200 different types of birds anno-
tated with 312 attributes per class. We experiment with 5
and 10 images per class corresponding to 1000 and 2000
total labeled data.

DomainNet The dataset contains 345 classes of images
coming from six domains: Clipart, Infograph, Painting,
Quickdraw, Real, and Sketch. We report results only on the
Real domain to evaluate how our method works on larger
more complex datasets.

5.2. Experimental Setup

Across all experiments, we follow the standard approach
where we randomly select a certain number of samples to
represent our labeled set and ignore the labels of the remain-
ing samples and use them to form our unlabeled set. For the
standard benchmarks, we compare our results to various ex-
isting baselines [19, 34, 3, 42, 14, 1, 31], which employ con-
sistency regularization and/or pseudo-labeling (see Sec. 6).
For the two other datasets, we only compare with FixMatch,

being the most similar to our solution and the closest in per-
formance.

Since SemCo bears the most resemblance with [31], [3],
and [2], we follow the recommendation of Oliver et al. [24]
for a realistic comparison: we integrate the implementa-
tion of their methods9 into our codebase and use the unified
codebase to conduct all the experiments. As for the other
baselines, we report the results as mentioned in the orig-
inal papers, provided that the result is based on the same
model architecture we use. We use WideResnet-28-2 [44]
for CIFAR-10/100, Resnet-18 [12] for Mini-ImageNet, and
Resnet50 for CUB-200 and DomainNet. Additionally, we
attach a fully connected layer to the encoder output to act
as our Semantic Classifier (see Fig. 1). We train our model
end-to-end along with the backbone network.

Unless otherwise specified, we use the same hyperpa-
rameters for all our experiments. These were tuned on a
validation set for a single experiment (CIFAR100 - 2500 la-
bels) and then fixed across all other experiments. In general,
we found that our model is not sensitive to the values of λu
and λco. Values between 0.5 - 1 all yielded similar perfor-
mance, albeit, smaller values of λu slightly slowed conver-
gence. Further, we found that our model is mostly sensitive
to ε - the label grouping parameter and hence it was the only
parameter we tuned separately for each dataset (see supple-
ments for the full list of hyperparameters).

Since the labels of all datasets are semantically mean-
ingful, we use their retrofitted embeddings (see Sec. 4.5) as
targets for our Semantic Classifier. The only exception is
for CUB-200 where we use human annotated attributes as
targets to test our alternative proposal in Sec. 4.5. We start
from the 312 dimensional class attributes given in [37] and
reduce their dimensionality to 128 using PCA [38]. We,
then, use the obtained class attributes matrix as targets for
our Semantic Classifier.

9we don’t report results for [2] due to adaptation difficulties

6

5.3. Main Results

We report standard benchmarks results in Table 1 and
CUB-200 and DomainNet results in Table 2. We observe
that SemCo outperforms all the baselines with a large mar-
gin across the different datasets and amounts of labeled data
(except for one case). Notably, SemCo achieves an average
error rate of 55.35% on Mini-ImageNet with 1000 labels
(i.e. 10 samples per class). This is almost 5.6% improve-
ment compared to the closest baseline. We note here that
Mini-ImageNet classes include 13 different species of dogs
which share many visual similarities. SemCo grouped 7 of
these classes into a single group based on clustering their
label embeddings. To understand why the performance de-
grades on CIFAR10 (250 labeled samples), we looked into
the clustering results for CIFAR-10 class embeddings. We
observed that the 10 classes were deemed visually distinct
by our clustering component, leading to one-member clus-
ters for all 10 classes. The two above results align with our
original hypothesis that SemCo is particularly useful when
there are visually similar concepts among the classes. Ev-
idently, in such cases, using label grouping in conjunction
with our co-training routine helps improving the pseudo-
labeling quality. This is also consistent with the pseudo-
labeling statistics shown in Fig. 2 - right, where we can see
that SemCo significantly improves both the quality and the
quantity of pseudo-labeled data.

Ratio of unlabeled data We observe that SemCo achieves
better results with less batch size as opposed to the baseline.
As shown in Table 1, we experiment with different values
of µ, which defines the ratio between unlabeled and labeled
data in each training batch. We find that our method con-
sistently achieves better results even when using less unla-
beled data. For example, for CIFAR-100 (4000 labels), we
achieve less average error rate (29.4%) with µ = 3 than
FixMatch does with µ = 7 (31.27%). More notably, we
achieve 13% improvement on Mini-ImageNet (4000 labels)
when fixing µ to 3.

Co-training Analysis Further, we investigate the effective-
ness of our co-training routine. We use the same experimen-
tal setup of capturing pseudo-label metrics (see Fig. 2), but
this time, we monitor the rate of disagreement on pseudo-
labels among the two classifiers fsc and foh (i.e. per-
centage of time the two classifiers are confident about dif-
ferent pseudo-labels for the same unlabeled sample). In
Fig. 4 c, we report disagreement curves for the same 8
classes shown in Fig. 2. As the training progresses, we
track the pseudo-labeling accuracy (Fig. 4 d) for each of:
1) our classifier ensemble, 2) our one-hot classifier foh, and
3) the baseline (FixMatch). Note that foh is using the same
method for pseudo-labeling (i.e. confidence threshold on
non-grouped labels) as FixMatch. We find that at the begin-
ning of the training, both classifiers highly disagree about

pseudo-labeling, especially for visually similar classes. As
the training progresses, we witness a sharp reduction in dis-
agreements coupled with an increase in accuracy for both
classifiers. Interestingly, we find that the accuracy of our
foh is considerably higher than FixMatch although both
are using the same basis for pseudo-labeling. This demon-
strates the success of co-training in making pseudo-labeling
consistent and accurate by leveraging the co-operation be-
tween the two classifiers.

Convergence Speed In Fig. 4 a and b, we study the con-
vergence plots on Mini-ImageNet and CIFAR-100 (1000
labels). We observe that SemCo achieves the best perfor-
mance of the baseline with significantly less training itera-
tions. This can be explained through Fig. 4 d: the higher
accuracy of pseudo-labeling in the early phase of the train-
ing helps better guide the learning and thereby translates to
faster convergence.

Table 2: Error rates on CUB-200 dataset and DomainNet
Real. Errors are reported based on 1 split for each of the
amounts of labeled data. Poor baseline results are omitted.

CUB-200 Total Labeled Samples
Method 1000 2000
Supervised baseline - 70.11
FixMatch 84.35 72.15
Ours (SemCo) 79.44 66.76

DomainNet Real Total Labeled Samples
Method 6900 10350
Supervised baseline 47.9 45.2
FixMatch 41.34 39.04
Ours (SemCo) 35.32 32.89

5.4. Ablation

We are interested in isolating the contribution of each of
the three key components of SemCo towards the witnessed
performance gain.

Label Grouping & Co-training In Table 3, we investi-
gate the effect of label grouping (by controlling our clus-
tering hyperparameter ε), and co-training (by toggling λco).
We observe that both components are almost equally im-
portant towards the witnessed performance gain. However,
co-training seems to provide a slight advantage over label
grouping in both experiments.

Label Embeddings as Training Targets We experiment
on CIFAR-100 and Mini-ImageNet in another setting where
we use the one-hot target for both our classifiers. In such
case, the only difference between the two classifiers is that
the Semantic Classifier implements label grouping while
the One-Hot Classifier does not. In Table 4, we observe

7

(a) (b) (c) (d)

Convergence - CIFAR-100 (1000) Convergence - Mini-ImageNet (1000) Co-training Disagreements Pseudo-Labelling Accuracy

Figure 4: Experimental analysis plots showing: (a,b): Convergence trends of our method and the baseline for CIFAR-100 (a)
and Mini-ImageNet (b) with 1000 labeled examples. (c,d): Co-training analysis plots showing the disagreements between our
two classifiers for visually similar and distinct classes (c) and the associated pseudo-labeling accuracies (d). The co-training
plots are spanning only the first 10 epochs of training.

Table 3: Error Rates for different settings of Co-training and
Label Grouping

Mini-ImageNet
1000

CIFAR-100
2500

Label Grouping Co-training Error Rate
X X 55.35 31.93
- X 59.60 33.09
X - 60.39 33.19
- - 62.16 34.25

a significant decrease in performance when using the one-
hot view for both the classifiers. This strongly supports our
hypothesis that co-training with different views of the label
does indeed help the learning.

Table 4: Error Rates when using Embedding Targets versus
One-Hot Targets for our Semantic Classifier, reported on
CIFAR-100 and Mini-ImageNet

Embeddings Target One-Hot Target
CIFAR-100 (2500) 31.93 33.33
Mini-ImageNet (1000) 55.35 60.33

6. Related Work
Since the seminal “Π-model” [27], consistency regular-

ization and pseudo-labelling SSL solutions have seen im-
provements in the consistency propagation [34, 18], and ap-
proaches for generating diverse views [9, 17, 23]. For in-
stance, the Mean-Teacher [34] proposes a teacher model,
where its parameters are updated according to an expo-
nential moving average (EMA) rule. Temporal Ensem-
bling [18], maintains an EMA over the predictions for the
consistency loss computation. French et al. [9] explore a
masking based approach for generating diverse views. The
interpolation training given in [36] computes the consis-
tency between interpolated views of unlabelled instances.
Miyato et al. [23] explores using adversarial methods for
perturbation to create diverse views.

Our solution bears a lot of similarity to FixMatch and

ReMixMatch [31, 2] where the main idea is to use a weakly
augmented image to obtain a pseudo-label then enforce it
against the model’s prediciton for a strongly augmented
one. ReMixMatch uses a soft pseudo-label via sharpening,
while FixMatch uses a hard label based on confidence. Our
method compliments theirs by also conditioning on label
semantics while pseudo-labeling.

Using label semantics to benefit learning is not a new
idea, prior knowledge from language models [26], graph
embeddings [33], and attribute vector representaions [37]
has helped pushing the performance of computer vision
models. In the pioneering work, DeViSE [10] showed dis-
tributed label representations derived from unannotated text
are helpful for image classification. They also extend their
solution to Zero-Shot Learning (ZSL) [41]. Ye et al. [43]
proposes distributed labels for Few-shot learning. Such
label representations are informative to even generate de-
scriptive representations for classification [40] and has be-
come the backbone representation for ZSL [15, 21]. To
this end, literature provides explorations on learning visual-
semantic embedding spaces with better discriminative prop-
erties [39, 13]. However, to our best knowledge the capacity
of such label representations has not been explored for SSL.

7. Conclusion
In this paper, we have introduced a novel semi-

supervised learning approach leveraging class label seman-
tics and co-training for more effective and efficient learn-
ing. We operationalize this approach for image classifica-
tion, and demonstrate that it leads to significant gains. We
believe the key ingredients of our approach are general and
can be extended to supervised and unsupervised learning
settings, which we will explore in the future work.

Acknowledgement
This work was partly supported by DARPA’s Learning with
Less Labeling (LwLL) program under agreement FA8750-
19-2-0501 and by the Australian Government Research
Training Program (RTP) Scholarship.

8

References
[1] Eric Arazo, Diego Ortego, Paul Albert, Noel E O’Connor,

and Kevin McGuinness. Pseudo-labeling and confirmation
bias in deep semi-supervised learning. In 2020 International
Joint Conference on Neural Networks (IJCNN), pages 1–8.
IEEE, 2020. 1, 6

[2] David Berthelot, Nicholas Carlini, Ekin D Cubuk, Alex
Kurakin, Kihyuk Sohn, Han Zhang, and Colin Raffel.
Remixmatch: Semi-supervised learning with distribution
alignment and augmentation anchoring. arXiv preprint
arXiv:1911.09785, 2019. 6, 8

[3] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas
Papernot, Avital Oliver, and Colin A Raffel. Mixmatch:
A holistic approach to semi-supervised learning. In Ad-
vances in Neural Information Processing Systems, pages
5049–5059, 2019. 2, 6, 11

[4] Avrim Blum and Tom Mitchell. Combining labeled and un-
labeled data with co-training. In Proceedings of the eleventh
annual conference on Computational learning theory, pages
92–100, 1998. 2

[5] Olivier Chapelle, Bernhard Scholkopf, and Alexander
Zien. Semi-supervised learning (chapelle, o. et al., eds.;
2006)[book reviews]. IEEE Transactions on Neural Net-
works, 20(3):542–542, 2009. 1

[6] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V
Le. Randaugment: Practical automated data augmenta-
tion with a reduced search space. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pages 702–703, 2020. 12

[7] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu,
et al. A density-based algorithm for discovering clusters in
large spatial databases with noise. 3

[8] Manaal Faruqui, Jesse Dodge, Sujay K Jauhar, Chris Dyer,
Eduard Hovy, and Noah A Smith. Retrofitting word vectors
to semantic lexicons. arXiv preprint arXiv:1411.4166, 2014.
5, 12

[9] Geoff French, Avital Oliver, and Tim Salimans. Milking
cowmask for semi-supervised image classification. arXiv
preprint arXiv:2003.12022, 2020. 8

[10] Andrea Frome, Greg S Corrado, Jon Shlens, Samy Bengio,
Jeff Dean, Marc’Aurelio Ranzato, and Tomas Mikolov. De-
vise: A deep visual-semantic embedding model. In Advances
in neural information processing systems, pages 2121–2129,
2013. 2, 3, 8

[11] Yves Grandvalet and Yoshua Bengio. Semi-supervised
learning by entropy minimization. In Advances in neural
information processing systems, pages 529–536, 2005. 2, 11

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 6

[13] Yao-Hung Hubert Tsai, Liang-Kang Huang, and Ruslan
Salakhutdinov. Learning robust visual-semantic embed-
dings. In Proceedings of the IEEE International Conference
on Computer Vision, pages 3571–3580, 2017. 8

[14] Ahmet Iscen, Giorgos Tolias, Yannis Avrithis, and Ondrej
Chum. Label propagation for deep semi-supervised learning.

In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 5070–5079, 2019. 1, 6

[15] Elyor Kodirov, Tao Xiang, and Shaogang Gong. Semantic
autoencoder for zero-shot learning. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 3174–3183, 2017. 8

[16] Alex Krizhevsky and Geoffrey Hinton. Learning multiple
layers of features from tiny images. 2009. 5

[17] Chia-Wen Kuo, Chih-Yao Ma, Jia-Bin Huang, and Zsolt
Kira. Featmatch: Feature-based augmentation for semi-
supervised learning. arXiv preprint arXiv:2007.08505, 2020.
8

[18] Samuli Laine and Timo Aila. Temporal ensembling for semi-
supervised learning. arXiv preprint arXiv:1610.02242, 2016.
1, 8

[19] Dong-Hyun Lee. Pseudo-label: The simple and effi-
cient semi-supervised learning method for deep neural net-
works. In Workshop on challenges in representation learn-
ing, ICML, 2013. 1, 2, 6, 11

[20] Yiting Li, Lu Liu, and Robby T Tan. Decoupled certainty-
driven consistency loss for semi-supervised learning. arXiv
preprint arXiv:1901.05657, 2019. 2

[21] Shaoteng Liu, Jingjing Chen, Liangming Pan, Chong-Wah
Ngo, Tat-Seng Chua, and Yu-Gang Jiang. Hyperbolic visual
embedding learning for zero-shot recognition. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), June 2020. 8

[22] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean.
Efficient estimation of word representations in vector space.
arXiv preprint arXiv:1301.3781, 2013. 3, 5

[23] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and
Shin Ishii. Virtual adversarial training: a regularization
method for supervised and semi-supervised learning. IEEE
transactions on pattern analysis and machine intelligence,
41(8):1979–1993, 2018. 8

[24] Avital Oliver, Augustus Odena, Colin A Raffel, Ekin Dogus
Cubuk, and Ian Goodfellow. Realistic evaluation of deep
semi-supervised learning algorithms. In Advances in neural
information processing systems, pages 3235–3246, 2018. 6

[25] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate
Saenko, and Bo Wang. Moment matching for multi-source
domain adaptation. In Proceedings of the IEEE International
Conference on Computer Vision, pages 1406–1415, 2019. 5

[26] Jeffrey Pennington, Richard Socher, and Christopher D Man-
ning. Glove: Global vectors for word representation. In
Proceedings of the 2014 conference on empirical methods in
natural language processing (EMNLP), pages 1532–1543,
2014. 5, 8

[27] Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri
Valpola, and Tapani Raiko. Semi-supervised learning with
ladder networks. In Advances in neural information process-
ing systems, pages 3546–3554, 2015. 8

[28] Sachin Ravi and Hugo Larochelle. Optimization as a model
for few-shot learning. 2016. 5

[29] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large

9

scale visual recognition challenge. International journal of
computer vision, 115(3):211–252, 2015. 6

[30] Mehdi Sajjadi, Mehran Javanmardi, and Tolga Tasdizen.
Regularization with stochastic transformations and perturba-
tions for deep semi-supervised learning. In Advances in neu-
ral information processing systems, pages 1163–1171, 2016.
1, 2

[31] Kihyuk Sohn, David Berthelot, Chun-Liang Li, Zizhao
Zhang, Nicholas Carlini, Ekin D Cubuk, Alex Kurakin, Han
Zhang, and Colin Raffel. Fixmatch: Simplifying semi-
supervised learning with consistency and confidence. arXiv
preprint arXiv:2001.07685, 2020. 1, 2, 4, 6, 8, 11, 14

[32] Robyn Speer and Joshua Chin. An ensemble method to pro-
duce high-quality word embeddings (2016). arXiv preprint
arXiv:1604.01692, 2016. 12

[33] Robyn Speer, Joshua Chin, and Catherine Havasi. Concept-
net 5.5: An open multilingual graph of general knowledge.
arXiv preprint arXiv:1612.03975, 2016. 2, 5, 8, 11, 12

[34] Antti Tarvainen and Harri Valpola. Mean teachers are better
role models: Weight-averaged consistency targets improve
semi-supervised deep learning results. In Advances in neural
information processing systems, pages 1195–1204, 2017. 1,
6, 8

[35] Jesper E Van Engelen and Holger H Hoos. A survey on
semi-supervised learning. Machine Learning, 109(2):373–
440, 2020. 1, 3, 4

[36] Vikas Verma, Alex Lamb, Juho Kannala, Yoshua Bengio,
and David Lopez-Paz. Interpolation consistency training for
semi-supervised learning. In Proceedings of the 28th Inter-
national Joint Conference on Artificial Intelligence, pages
3635–3641, 2019. 8

[37] Peter Welinder, Steve Branson, Takeshi Mita, Catherine
Wah, Florian Schroff, Serge Belongie, and Pietro Perona.
Caltech-ucsd birds 200. 2010. 2, 5, 6, 8

[38] Svante Wold, Kim Esbensen, and Paul Geladi. Principal
component analysis. Chemometrics and intelligent labora-
tory systems, 2(1-3):37–52, 1987. 6

[39] Hao Wu, Jiayuan Mao, Yufeng Zhang, Yuning Jiang, Lei
Li, Weiwei Sun, and Wei-Ying Ma. Unified visual-semantic
embeddings: Bridging vision and language with structured
meaning representations. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
6609–6618, 2019. 8

[40] Yongqin Xian, Tobias Lorenz, Bernt Schiele, and Zeynep
Akata. Feature generating networks for zero-shot learning.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 5542–5551, 2018. 8

[41] Yongqin Xian, Bernt Schiele, and Zeynep Akata. Zero-shot
learning-the good, the bad and the ugly. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 4582–4591, 2017. 8

[42] Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Luong,
and Quoc V Le. Unsupervised data augmentation for con-
sistency training. arXiv preprint arXiv:1904.12848, 2019.
6

[43] Han-Jia Ye, Hexiang Hu, De-Chuan Zhan, and Fei Sha.
Learning embedding adaptation for few-shot learning. arXiv
preprint arXiv:1812.03664, 2018. 2, 8

[44] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-
works. arXiv preprint arXiv:1605.07146, 2016. 6

[45] Kai Zhao, Hany Hassan, and Michael Auli. Learning trans-
lation models from monolingual continuous representations.
In Proceedings of the 2015 Conference of the North Amer-
ican Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 1527–1536,
2015. 12

10

A. Probabilistic Interpretation of SemCo

In this section, we provide a probabilistic interpretation
of our method described in Sec. 4.10

We start by recalling the general form of recent pseudo-
labeling methods captured by the below formalization for
the unsupervised loss:

L(θ) =
−1

µ · n

µn∑
j=1

ηj log p(y = ŷj |uj ,θ), (1)

which is typically added to the loss for the labeled data. To
reiterate, we use θ to represent learnable model parameters.
For an unlabelled input ui, ŷ denotes the pseudo-label and
η is an arbitrary function. The choice of ŷ and η gives rise
to three distinct variations of pseudo-labeling that can be
written as,

ŷj = arg max
y′

p(y = y′ |uj ,θ) with ηj = 1, (2)

ŷj =
exp(f`(uj)/T)∑
k exp(fk(uj)/T)

with ηj = 1, and (3)

ŷj = arg max
y′

p(y = y′ |uj ,θ) (4)

with ηj = 1(p(y = ŷj |uj ,θ) ≥ τ).

The first approach (Eqn. 2) corresponds to naive pseudo-
labeling where the class with the highest confidence is used
as a pseudo-label regardless of its score, while the second
(Eqn. 3) improves on that by employing temperature sharp-
ening [3] via T . For brevity, we use f` is the onehot logit for
class `. Sharpening the pseudo-label implicitly encourages
entropy minimizaton [11] whereby the classifier is encour-
aged to produce high confidence predictions on the unla-
beled data. The third approach (Eqn. 4) adopted in [31, 19]
where the unlabeled sample is only retained for pseudo-
labeling if the max confidence score exceeds a predefined
threshold, τ . This simultaneously encourages entropy min-
imization11 and decrease confirmation bias (see Sec. 1) by
only retaining high confidence samples.

As opposed to above methods, we additionally propose
to take a multi-view approach in which we have y′ as dif-
ferent representation of the label as well as a grouping of
the similar labels potentially (but not necessarily) obtained
from it. We consider this additional label to be condition-
ally independent of the one-hot representation of the label.
Specifically, instead of Eqn. 1, we propose to minimize the

10All section, table, and figure references are following the original pa-
per numbering.

11Note that it is equivalent to sharpening with T → 0

objective,

L(θ) = −1
µ · n

∑
j

log
(
p(y = ŷj |uj ,θ)p(y′ = ŷ′j |uj ,θ)

ηj
)
,

p(y′ = ŷ′j |uj ,θ) =
∑
c

p(y′ = ŷ′j | c,uj ,θ)︸ ︷︷ ︸
additional classification

p(c | Y ′,θ)︸ ︷︷ ︸
grouped semantics

,

(5)

where Y ′ denotes the collection of the labels which we con-
sider to be conditionally independent of the conventional
one-hot label. We use the density-based clustering to calcu-
late p(c | Y ′,θ). Then by using Jensen’s inequality, we have
the following as the upper-bound on the loss in Eqn. 5:

L(θ) ≥ −1

µ · n
∑
j

ηj

[
log (p(y = ŷj |uj ,θ))

+
∑
c

log
(
p(y′ = ŷ′j | c,uj ,θ)

)
︸ ︷︷ ︸

Sec. 4.1

p(c | Y ′,θ)︸ ︷︷ ︸
Sec. 4.5

]
.

(6)

which indicates the log-likelihood of the additional labels
are weighted by the grouping of their semantic relation-
ships. We use the fsc in the paper to denote the classifier
head that predicts these additional labels.

B. Obtaining Label Embeddings using Con-
ceptNet Knowledge Graph

In this section, we elaborate on the process described in
Sec. 4.5 which aims to obtain class label embeddings which
correlate well with visual similarity. We start by describing
the procedure and then we present some qualitative exam-
ples to demonstrate its effectiveness.

B.1. Procedure

We follow a similar procedure to that described in [33]
with one crucial difference. Instead of using the entire Con-
ceptNet graph, we use the graph after filtering it to retain
only the relations which imply visual similarity (see Sec. 5
for more details).

We start with the filtered graph, the GloVe word embed-
dings matrix, and the word2vec word embeddings matrix.
The process comprises two main steps: 1) retrofitting each
of the GloVe and word2vec embeddings using the Concept-
Net filtered graph to obtain two new sets of embeddings,
and 2) combining the two retrofitted sets to obtain our final
hybrid embeddings set.

Retrofitting Given the filtered graph and a matrix of word
embeddings, the aim is to infer for each term/word a new
embedding vector vi which is close to the original vector
v̂i but also close to the term neighbors in the graph with
edgesE. This can be achieved by minimizing the following

11

objective function.

E(v) =

n∑
i=1

αi ‖vi − v̂i‖2 +
∑

(i,j)∈E

βij ‖vi − vj‖2
 ;

with αi = 1 if term i is present in the embeddings vocabu-
lary and zero otherwise; and βij denoting the weight of the
edge connecting term i and term j. Note that the use of α
allows optimizing the above objective for terms which ap-
pear in the knowledge graph even if it is not present in the
vocabulary of the word embeddings [32]. To minimize the
above function, we follow the iterative algorithm originally
suggested by Faruqui et al. [8] and later extended by Speer
et al. [32]. We perform such optimization twice: once for
the GloVe embeddings and another for the word2vec.

Combining the Two Sets After applying retrofitting to both
matrices, we combine them by finding a globally linear pro-
jection that aligns the results based on their common vo-
cabulary. As inspired by [45] and [33], to find such pro-
jection, we concatenate the columns of the two matrices
and use SVD to reduce their dimensionality to 128. Such
alignment allows us to deduce compatible embeddings for
terms which appear in one of the vocabularies but not the
other. This alignment and merging give rise to a hybrid set
of embeddings which combines all three sources: GloVe,
word2vec, and ConceptNet filtered graph. We use this set
as the basis for establishing the prior on visual similarity
among a given set of class labels (see Sec. 4).

Handling Out-of-Vocabulary Labels Our obtained em-
beddings vocabulary consists of approximately 500k dif-
ferent terms and hence provides a reasonable coverage for
most of the class labels. However, it might sometimes be
the case that one or more of the class labels are missing
from the vocabulary. In such event, we employ a fall-out
strategy to find the most reasonable alternative. We present
the flowchart for our fall-out strategy in Fig. 5.

B.2. Label Grouping Examples

As mentioned in Sec. 4, we apply density-based cluster-
ing on the class labels embeddings to group the labels into
visually similar concepts. To demonstrate the effectivness
of the retrofitted embeddings in capturing said similarity,
we compare the clustering output if we use the retrofitted
embeddings as opposed to if we use the GloVe distributional
embeddings without retrofitting. We perform this compar-
ison for Mini-ImageNet (see Table 6,7), CIFAR-100 (see
Table 8,9), and DomainNet classes (see Table 10,11). Note
that we only report the groups having more than one mem-
ber and we omit single-member groups. We observe that
in all three cases, clustering the retrofitted embeddings pro-
duces groups which largely match our intuition about visual
similarity. On the other hand, we notice that clustering the

non-retrofitted GloVe embeddings results in grouping labels
which usually appear in similar context, even if they are not
visually similar. For example, in Table 9, we observe that
“sea” was grouped with other classes which are contex-
tually related to “sea”, yet bear no visual similarity to it.
This is due to the fact that GloVe embeddings are learnt in
a way that captures distributional semantics rather than vi-
sual semantics. However, when the GloVe embeddings are
retrofitted with the ConceptNet filtered graph, we witness
an improved grouping which aligns better with visual se-
mantic similarity.

C. Implementation Details

Hyperparameters In our preliminary experiments, we
mostly found that our method is not sensitive to the hyper-
parameters, so we tuned their values via a validation set on
a single experiment (CIFAR100 - 2500 labels) then fixed
them across all other experiments to the values shown in Ta-
ble 5. The only exception is the density-based clustering pa-
rameter ε. The number of clusters (i.e. label groups) is auto-
matically decided based on ε, which denotes the maximum
cosine distance between two embedding vectors for one to
be considered in the same neighbourhood as the other. The
larger the value of ε, the more aggressive the grouping is
(i.e. the more members in each group). Accordingly, we
tune ε individually for each dataset. We find that ε = 0.2
works well for all datasets except Mini-ImageNet where we
use ε = 0.3 instead. In Fig. 8, we demonstrate the effect of
varying ε on the error rate using a single split of CIFAR-100
(2500 labeled instances) when training for 100 epochs.

Semantic Classifier Loss We use two different loss func-
tions for our two classifiers, i.e. cosine loss for the Seman-
tic Classifier, and cross-entropy for the One-Hot Classifier
(see Sec. 4). It is, hence, important to consider the scale of
both losses so that one doesn’t dominate over the other. Co-
sine loss values are bounded between 0 and 2 while cross-
entropy values are not. Accordingly, we multiply the Se-
mantic Classifier loss by a factor of 3 before applying the
back propagation step. We obtained such value by using
a held-out validation set on CIFAR-100 (1000 labeled ex-
amples) and we fixed it across all other experiments and
datasets.

Augmentations As described in Sec. 2, we make use of
two types of augmentations, i.e. weak and strong. For weak
augmentations, we use random cropping and padding, and
random horizontal flips. As for the strong augmentations,
we use the RandAugment [6] list of transformations for both
our system and the FixMatch baseline.

Inference Since we train two classifiers in our method, dur-
ing inference time, we can choose one of three options for
inference: 1) use the One-Hot Classifier prediction, 2) use
the Semantic Classifier prediction, 3) Average the softmax

12

Figure 5: A flowchart describing our label embedding lookup strategy aiming to find the most reasonable embedding for a
given class label. We include demonstrative examples for each of the fall-out cases.

Table 5: Hyper-parameters values across all our experiments

Hyper-parameter Description Value
λu Unlabeled loss coefficient 1.00
λco Co-training loss coefficient 1.00
τe Pseudo-labeling confidence threshold for the Semantic Classifier 0.70
τo Pseudo-labeling confidence threshold for the One-Hot Classifier 0.95
batch size Number of labeled images per batch 64
µ Ratio between number of unlabeled and labeled images in each batch 3
images per epoch Number of labeled images per epoch 64× 1024
num epochs Number of epochs of training 300
lr learning rate max value (10 epochs warmup then cosine decay) 0.03
weight decay Weight decay regualrization coefficient 5.00× 10−4

momentum Nesterov momentum for SGD optimizer 0.90
emb dim Dimensionality of the label embeddings 128
ε DBSCAN clustering coefficient denoting the maximum distance between

two samples for one to be considered as in the neighborhood of the other 0.20

Visually similar classes Visually distinct classes Visually similar classes Visually distinct classes
FixMatch Ours

girl boy crab lobster sunflower orange wardrobe plain girl boy crab lobster sunflower orange wardrobe plain

60%

40%

20%

60%

40%

20%

Figure 6: CIFAR-100 confidence-based pseudo-labeling comparison between the baseline (left) and our method (right).
Accuracy values show how much, on average, pseudo-labels for a given class match the true label, while Ratio values show
the percentage of samples of a given class which are retained for pseudo-labeling (i.e. with confidence score above the
threshold). The two metrics are calculated for the 4 most (red) and least (green) visually similar classes over the first 10
epochs of training.

scores of the two classifiers and use the combined score for
prediction. During our validations, we found that the for-
mer approach always yields marginally better results, so we
use it as our basis for inference. Finally, We also use an

exponential moving average of model weights with a decay
rate of 0.999.

13

(a) Mini-ImageNet

boy

girl

lobster

crab

(b) CIFAR-100

Figure 7: The most confused images for the 4 most visually similar classes of Mini-ImageNet (left) and CIFAR-100 (right).
The caption next to each image group denotes the true class to which the image group belongs.

D. Further Pseudo-labeling Analysis
In Fig. 2 in the main text, we present a compari-

son between pseudo-labeling statistics (on Mini-ImageNet
dataset) of our method versus the baseline. In this section,
we elaborate about the experimental setup for obtaining
these statistics. Additionally, we provide similar analysis
on CIFAR-100 dataset.

For a given dataset, we run our algorithm for 10 epochs
of unlabeled data and we capture a highly granular view of
the pseudo-labeling statistics for each mini-batch. Conse-
quently, we calculate two metrics: 1) we use the true labels
of the unlabeled data samples (which we originally ignore to
emulate an SSL setting) to measure the true pseudo-labeling
accuracy for each of the classes in the dataset, and 2) we
use the classifier confidence scores to calculate the pseudo-
labeling ratio for each class, which represents the amount
of unlabeled samples exceeding the confidence threshold
and thereby are retained for pseudo-labeling. We repeat the
same procedure and measure the same metrics for our base-
line [31]. We, then, display those metrics for the 4 classes
which were deemed by our clustering method as the most
visually similar concepts. Conversely, we also display them
for the 4 classes which are deemed most visually distinct.
In Fig. 6, we report these metrics for CIFAR-100 dataset
(see Fig. 2 for Mini-ImageNet). Additionally, through the
same experimental setup described above, we keep track of
pseudo-labeling statistics for each individual unlabeled im-
age. We report in Fig. 7 the most confused images among
the 4 most visually similar classes for both datasets. We
define confusion as the average number of times a given
image is incorrectly pseudo-labeled as another class within
the 4 classes (e.g. “boy” pseudo-labeled as “girl”).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
epsilon ()

34

36

38

40

42

Er
ro

r R
at

e
(%

)

Tuning epsilon ()

Figure 8: Error rates for different values of ε. ε = 0 corre-
sponds to no label grouping, while ε > 0.7 corresponds to
grouping all labels into a single cluster.

14

Table 6: Mini-ImageNet class groups obtained by clustering the retrofitted embeddings.

Group Members
Group 1 ’French bulldog’, ’Ibizan hound’, ’Saluki’, ’Walker hound’, ’golden retriever’, ’malamute’, ’miniature poodle’
Group 2 ’catamaran’, ’yawl’
Group 3 ’frying pan’, ’wok’
Group 4 ’horizontal bar’, ’parallel bars’

Table 7: Mini-ImageNet class groups obtained by clustering the GloVe embeddings.

Group Members
Group 1 ’African hunting dog’, ’French bulldog’, ’Ibizan hound’, ’Walker hound’, ’golden retriever’, ’miniature poodle’
Group 2 ’combination lock’, ’garbage truck’, ’horizontal bar’, ’parallel bars’, ’pencil box’, ’street sign’

Table 8: CIFAR-100 class groups obtained by clustering the retrofitted embeddings.

Group Members
Group 1 ’aquarium fish’, ’flatfish’, ’trout’
Group 2 ’bicycle’, ’motorcycle’
Group 3 ’boy’, ’girl’
Group 4 ’crab’, ’lobster’
Group 5 ’dolphin’, ’whale’
Group 6 ’man’, ’woman’
Group 7 ’oak tree’, ’pine tree’

Table 9: CIFAR-100 class groups obtained by clustering the GloVe embeddings.

Group Members
Group 1 ’aquarium fish’, ’crab’, ’dolphin’, ’lobster’, ’sea’, ’shark’, ’trout’, ’turtle’, ’whale’
Group 2 ’elephant’, ’fox’, ’house’, ’leopard’, ’lion’, ’man’, ’pickup truck’, ’road’, ’table’, ’tiger’, ’tractor’, ’wolf’, ’woman’
Group 3 ’bicycle’, ’motorcycle’
Group 4 ’bus’, ’train’
Group 5 ’crocodile’, ’lizard’, ’snake’
Group 6 ’raccoon’, ’squirrel’
Group 7 ’oak tree’, ’pine tree’

Table 10: DomainNet class groups obtained by clustering the retrofitted embeddings.

Group Members
Group 1 ’basketball’, ’soccer ball’
Group 2 ’beard’, ’goatee’, ’moustache’
Group 3 ’bicycle’, ’motorbike’
Group 4 ’birthday cake’, ’cake’
Group 5 ’bracelet’, ’necklace’
Group 6 ’cello’, ’clarinet’, ’guitar’, ’piano’, ’saxophone’, ’trombone’, ’trumpet’, ’violin’
Group 7 ’crab’, ’lobster’
Group 8 ’oven’, ’stove’
Group 9 ’pants’, ’shorts’, ’underwear’
Group 10 ’pickup truck’, ’truck’
Group 11 ’wine bottle’, ’wine glass’

15

Table 11: DomainNet class groups obtained by clustering the GloVe embeddings.

Group Members
Group 1 ’airplane’, ’helicopter’
Group 2 ’ambulance’, ’hospital’
Group 3 ’apple’, ’blackberry’
Group 4 ’asparagus’, ’broccoli’, ’peas’
Group 5 ’axe’, ’knife’, ’sword’
Group 6 ’backpack’, ’suitcase’
Group 7 ’banana’, ’blueberry’, ’pineapple’, ’strawberry’
Group 8 ’baseball’, ’basketball’
Group 9 ’baseball bat’, ’bat’
Group 10 ’bathtub’, ’sink’, ’toilet’
Group 11 ’beard’, ’goatee’, ’moustache’
Group 12 ’bracelet’, ’necklace’
Group 13 ’bread’, ’cake’, ’cookie’, ’peanut’, ’pizza’, ’sandwich’
Group 14 ’bus’, ’train’
Group 15 ’carrot’, ’onion’, ’potato’
Group 16 ’crab’, ’dolphin’, ’fish’, ’lobster’, ’octopus’, ’shark’, ’whale’
Group 17 ’crayon’, ’pencil’
Group 18 ’fireplace’, ’microwave’, ’oven’, ’stove’
Group 19 ’jacket’, ’pants’, ’shorts’, ’sweater’, ’underwear’
Group 20 ’raccoon’, ’squirrel’
Group 21 ’radio’, ’television’
Group 22 ’snowflake’, ’snowman’
Group 23 ’toothbrush’, ’toothpaste’

16

