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Abstract—Recognizing pedestrian attributes in camera surveil-
lance images is a very hard problem, due to the lack of high-
quality labeled data. In the field of deep learning the semi-
supervised learning paradigm provides a possible answer to
this problem. We propose a novel semi-supervised model that
we call Binary Mean Teacher, tailored for binary classification
task of detecting the presence of wearable objects. We train
our model in a traditional scenario with a randomly initialized
model, but we also explore fine-tuning a model pretrained on
a large-scale image dataset. The performance of our model is
compared to strong supervised baselines trained or fine-tuned
using our dataset and the same augmentation strategy as in
our model. We evaluate the impact of various augmentation
strategies commonly used in deep learning on the performance of
models in our binary classification task. Using only 1000 labeled
training images, randomly initialized Binary Mean Teacher
model achieves roughly 90% classification accuracy compared to
75% accuracy of randomly initialized supervised model that does
not use any augmentations. When both Binary Mean Teacher and
the supervised model are pretrained using the ImageNet dataset,
and augmentations are used for both models, the Binary Mean
Teacher achieves 92% accuracy compared to 90% accuracy of
the supervised model.

Index Terms—Image classification, Camera surveillance, Deep
learning, Transfer learning, Semi-supervised learning

I. INTRODUCTION

There are many open challenges for machine learning in
the domain of camera surveillance. Apart from identification
of individual people from photos or videos, there are other
vision tasks such as detection of wearable objects or outfits of
the observed people in cases that the identity is unknown or
cannot be distinguished.

The task of recognizing the attributes of people is difficult.
Moreover, it is very difficult in the case of camera surveillance,
where the quality of images is usually low. The cameras used
to collect the data have low resolution and high variability in
view angles. Since the task inherently spans across time, the
lighting and weather conditions vary significantly.

In our work we focus on the pedestrian attribute recognition
problem. To be more specific, we focus on recognizing just one
important attribute in question, therefore we aim at training
a binary classification system. An ensemble of well-trained

classifiers for detecting crucial features from the images can
be used for finding matches among multiple-camera images,
which can be very useful in forensic search. For instance if a
suspect of whom the identity is not precisely known, leaving
no space for face verification, was carrying a special type of
baggage or clothing, that can be used as a clue for finding the
person in the huge amount of surveillance camera footage.

Although the video data are not hard to obtain via contin-
uous recording, as well as automatic segmentation of images
of people, the task of collecting a large enough dataset is still
limited by making proper annotations. Given the poor quality
of the data, automation possibilities in this respect are limited
and the task is highly dependent on human operators. The
problem of having an abundance of unlabeled data together
with a small amount of well labeled data is currently well
studied in the field of deep learning. The modern methods for
the semi-supervised learning (SSL), e.g. learning from labeled
and unlabeled data, can be used to leverage some problems of
the camera surveillance image classification.

Here we present our explorations of deep learning tech-
niques for binary classification of images. In order to evaluate
our models we used a dataset proposed in our previous
work. Our work unfolds in two directions, namely the use
of data augmentation to reach better performance in the
supervised learning paradigm as a continuation of our previous
work, but also a new path in which we experiment with the
semi-supervised learning models. We propose a novel semi-
supervised model for binary classification of wearable objects
that we call Binary Mean Teacher, based on the Mean Teacher
model [1].

II. RELATED WORK

A. Semi-supervised learning

Generally, the SSL makes use of a large set of unlabeled
examples from the same distribution as the real training set
with proper labels. There are many SSL algorithms, but
currently the most successful are the methods based on consis-
tency regularization. These methods rely on applying various
perturbations to the input of the model that do not change the
label of the input and then force the output of the model to stay
consistent across these inputs. Examples of this approach are
Ladder networks [2], Pi model [3], Temporal Ensembling [3],978-1-6654-0976-6/21/$31.00 ©2021 IEEE



Virtual Adversarial Training [4] and Mean Teacher model [1].
Another family of SSL approaches are proxy-label methods.
These methods aim to expand the labeled portion of the
dataset by labeling the unlabeled portion of the dataset using a
neural network model trained using a smaller labeled portion
of the dataset. These predictions can be generated using a
single model or an ensemble of different models and data
augmentation techniques. Examples of proxy-label methods
are Pseudo-label [5], Deep clustering for unsupervised learning
of visual features [6], Billion-scale semi-supervised learning
for image classification [7], MixMatch [8] or Noisy student
training [9].

B. Classification of surveillance camera images

There are two main tasks related to the classification in
the domain of camera surveillance image processing. First the
re-identification task in which the identity of the observed
persona has to be identified in multiple-view images from
different cameras recorded over some time. The pioneers of
transfer learning in the re-identification domain are Li et al.
[10] who proposed the so-called metric transfer approach,
which outperformed the state of the art based on features
extraction. Further research showed that learning an addi-
tional task, along with the re-identification leads to better
performance of the models. Examples of this approach is the
addition of person classification [11], ranking task [12] or
feature recognition task [13]. Wang et al. [14] combined the
transfer learning and semi-supervised learning paradigms and
made use of the attribute annotations on a dataset with sparse
labels. Singh et al. [15] combined deep transfer learning with
unsupervised learning via clustering of feature vectors using
k-means clustering.

Another task is the so-called pedestrian attribute recogni-
tion task that aims to identify the physical attributes of the
persona in the image, such as age (old/young), clothing or
wearable items. Adding the attribute recognition subtask to re-
identification has been shown to improve performance [13].
PETA [16] and RAP [17] are two of the recent benchmark
datasets for pedestrian attribute recognition, which essentially
is a multi-label classification task. Generally, the multi-label
classification is learned as a sum of binary cross-entropy
(BCE) losses from individual attributes. Yu et al. [18] showed
improvement of performance on PETA and RAP datasets
and demonstrated that weakly-supervised learning suffices to
classify pedestrian attributes without the need of bounding box
annotations. Ji et al. [19] enhanced the performance on PETA
dataset using contextual information processed via LSTM
modules in a hybrid CNN-LSTM neural architecture. Li et al.
[20] proposed the deep hierarchical contexts model, a precisely
engineered architecture which uses deep representations of hu-
mans in various poses together with the scene descriptions and
is able to derive the attributes which are not even recognizable
by a naked eye. Xiang et al. [21] tackled the problem of the
lack of the labeled data via incremental few-shot learning. The
first semi-supervised multi-label classification architecture was
introduced by Cevikalp et al. [22].

III. DATASET AND TASK

Our primary interest is in automated attribute recognition
for camera surveillance systems. In this work, we build upon
our previous work in the domain of pedestrian attribute recog-
nition. Our dataset, called DukeMTMC-backpack dataset, con-
sists of a reannotated version of the DukeMTMC-attribute [13]
dataset that focuses on the backpack attribute. We reannotated
the original dataset by hand to fix the label mismatches
present in the original dataset, which led to substantially higher
classification accuracy. These mismatches were caused by the
fact that the original attributes had been assigned based on
the entities observed throughout the whole video footage,
rather than visual assessment of the attributes in the individual
images. An illustration of our data is in Fig. 1.

Yes Yes No No N/A N/A
Fig. 1: Example of data classes in our dataset, from left to right: with
backpack, without backpack and uncertain (N/A).

For experiments with semi-supervised learning, we took our
DukeMTMC-backpack and used either the full labeled training
set or kept only a portion (2%, 8%, 10%) of the labels and
removed the labels from the remainder of the dataset. The
case in which there is only data from DukeMTMC-backpack
with portion of labels removed will be referred to as DS0. In
order to explore the impact of the size of unlabeled portion of
our dataset, we expanded the size of the unlabeled portion by
using two additional datasets. First we expanded the unlabeled
portion by including the data that we had previously removed
due to uncertain labels in our previous work. We refer to this
portion of the data as DS1.We decided to use a completely
different, yet a similar dataset, namely both training and testing
sets of the Market-1501 dataset [23]. The combination of
DukeMTMC-backpack with Market-1501 will be referred to
as DS2.

For completeness, we include the dataset statistics in Table.
I. Note that the case of DS0 with 100% labels is actually
not a real case of semi-supervised learning since there are
no unlabeled data. However, it can work nicely as another
supervised baseline that uses the same augmentation technique
and distance-based regularization, yet with no contribution of
the consistency regularization.

IV. OUR APPROACH

To overcome the problem of a small amount of labeled
data in our task, we have explored the possibilities of transfer
learning with the conclusion that the ImageNet-pretrained
models with fine-tuned weights yielded the best performance
so far, which was about 92% of accuracy on our test set.



TABLE I: Naming and statistics of the datasets for SSL.
Labels DS0: DukeMTMC-backpack DS1: DS0 + uncertain DS2: DS0 + Market-1501

10133 100.00% 61.33% 28.00%

1000 10.00% 6.05% 2.76%

800 8.00% 4.84% 2.21%

200 2.00% 1.21% 0.55%

In the current work, we further explore the transfer learning
and the influence of data augmentation on learning. Note,
that our DukeMTMC-backpack dataset is not typical in terms
of train-to-test set size ratio, as we kept the split by the
particular entities as in the original DukeMTMC-attribute.
With uncertain samples left out, we ended up having a slightly
larger testing set with a similar, yet not precisely the same data
distribution as the training set.

In the domain of camera surveillance it is crucial to over-
come the problem of the lack of labels for the abundance of
collected data. The aim of the novel semi-supervised learning
paradigm is to leverage a high number of unlabeled examples
which are more easily obtainable than labelled examples. In
our work, we explore the SSL approach, namely the well
established Mean Teacher (MT) model by Tarvainen and
Valopola [1] and adapt it for our dataset and task. The novel
Binary Mean Teacher (BMT) model and its components are
presented in this section.

A. Transfer learning

Transfer learning [24] works by adapting the source predic-
tive function (neural classifier) to the target domain [25] as-
suming that the target and source domains share some common
low-level structure, for instance natural world images. The
low-level layers of a convolutional architecture are assumed
to act as low-level feature extractors, sensitive to basic lines
and shapes. A convolutional classifier trained on a large and
variable dataset such as ImageNet [26] is altered for a different
target function using the target dataset, which is usually much
smaller. This practice has become very common in image
processing tasks.

The fine-tuning of the model for the new task can be done
locally by separately training the topmost fully connected layer
on a new task using the existing feature extractor. However,
as we also confirmed in our experiments with our dataset, the
model fine-tuning, i.e. training the whole architecture with an
appropriately small learning rate yields much better results.
In our current work, we compare the performance of the
pretrained and unpretrained model using the ImageNet dataset.

B. Semi-supervised learning

The goal of SSL can be broadly characterized as an usage of
a large number of unlabeled examples from the same distribu-
tion as a small number of labeled examples for the purpose of
informing the learning algorithm about the distribution of the
overall dataset. The infusion of unlabeled data together with a
mechanism for learning from them yields higher prediction

accuracy than the identical algorithm trained only using a
small number of training examples.

The Mean Teacher model [1] leverages a combination of
various semi-supervised learning techniques to dramatically
improve generalization accuracy in the semi-supervised learn-
ing context. Inspired by the Ladder Networks [2], MT predicts
the class of the unsupervised data points using two sets of
noise augmentations applied to unsupervised data points.

Noisy batches are evaluated using two neural networks
called the student θ and the teacher θ′. Predictions for every
data point in each of the noisy batches should be consistent
between the student and the teacher. This is achieved using a
consistency cost J between the student and teacher predictions
in the form of the Mean Squared Error (MSE):

J(θ) =
1

n

n∑
i

‖f(xi, θ′, η′)− f(xi, θ, η)‖
2 (1)

of all samples xi corrupted by random noise η and η′.
MT uses MSE as the consistency cost, although different

cost functions, such as Cross Entropy (CE) or Kullback-
Leibler (KL) divergence are also usable. In addition to consis-
tency cost, supervised cost in the form of CE is also evaluated
for the labeled portion of the input batch:

S(θ) =
1

m

m∑
j

[− log Pf (yj |xj ; θ, η)] (2)

of all labeled samples xj corrupted by random noise η and
their respective targets yj .

Consistency cost in the MT model effectively acts as a
regularization technique that enforces the outputs of the model
to be consistent across similar data points, which leads to
improvement in generalization accuracy of the model. Since
the consistency cost uses self-generated targets and because
in the semi-supervised setting there are usually many more
unlabeled examples than labeled examples, during the training
the consistency cost might come to dominate the training
process. The Mean Teacher model mitigates this problem
by introducing a dynamic consistency cost weight wt that
balances the contribution of consistency cost and supervised
cost. The overall composite cost function is then

Loss(θ) = S(θ) + wtJ(θ) (3)

MT also incorporates model parameters ensembling tech-
nique similar to prediction ensembling technique from Pi
model [3]. In order to improve targets produced by the
teacher network, the parameters of the teacher network θ′ are



computed as an exponential moving average of the student
model θ

θ′t = αθ′t−1 + (1− α)θt, (4)

where α represents an additional hyperparameter that controls
the smoothing of the averaging.

C. Data augmentations

Common image augmentation techniques were found to in-
crease generalization accuracy of both fully supervised models
[27] as well as unsupervised representation learning models
[28] and semi-supervised learning models [1]. These may
include augmentations such as rotation, translation, adding
random noise or color jitter, random cropping and aspect ratio
changes. More advanced techniques include augmentations
using generative adversarial networks [29] or randomly se-
lected and algorithmically optimized strategies [30]. We have
drawn inspiration from the MT model [1] when selecting data
augmentation techniques. We applied random rotation, random
crop and resize, random horizontal flip and random color jitter
to all training data in our experiments with Binary Mean
Teacher, as well as in the supervised baselines. We provide
the parameters for each augmentation used in Table II. We
explored the importance of random augmentations and also the
ways they influence the performance separately via supervised
learning with a limited number of labels. The experimental
setups and results are presented in the following section.

Fig. 2: Examples of used augmentations. Top left corner shows the
original image.

D. Network architecture

In our previous work, the best results were achieved with
the DenseNet model [31]. Therefore we used it consistently
throughout all our experiments. Similarly to the ResNet model
[32] used by the original MT model, the DenseNet model
also adds a novel type of skip connections between layers.
DenseNet, as well as other skip-connection models, alleviates

the vanishing gradient problem and enables the individual
convolutional layers to exploit information from different
parts of the model. Even though the best results achieved in
previous work were obtained with DenseNet161, we chose the
DenseNet121 variation due to a smaller demand on computa-
tional resources and only a very small decrease in the model
accuracy.

E. Binary Mean Teacher

To change the MT model for our purposes, we needed to
change the shape of the last fully connected layer. Besides
that, since our task is binary, we only have one output neuron
and our primary (supervised) cost function is the Binary Cross
Entropy (BCE) so our supervised cost is

S(θ) = −
m∑
j

[yj log ŷj + (1− yj) log(1− ŷj)] , (5)

where yj stands for the desired value (yes/no) and ŷj repre-
sents the network output f(xj , θ, η) for labeled input xj given
noise η.

In our preliminary experiments, we realized that the MSE
cost used for the unsupervised part of the model given just one
output neuron did not lead to successful learning. Therefore
we altered the model to compute the unsupervised consistency
cost directly as MSE from the last convolutional layers of the
student and the teacher networks as displayed in Fig. 3. Our
unsupervised cost is then computed as

J(τ) =
1

n

n∑
i

‖g(xi, τ ′, η′)− g(xi, τ, η)‖
2
, (6)

where, as in Eq. 1, xi are all training samples corrupted by
noise η for the student network and η′ for the teacher network,
τ ⊂ θ and τ ′ ⊂ θ′ are all weights of the student and teacher
up to the last convolutional layer and the whole network f =
h(g(x)) where g is the convolutional part and h is the fully
connected layer atop of the architecture. We combined the two
losses S(θ) and J(τ) in the same manner as the original MT
model according to Eq. 3.

V. EXPERIMENTS

We evaluate our models in several different setups: simple
supervised learning with no pretraining and also model fine-
tuning with the model pretrained using ImageNet. First, we
describe the used hyperparameters. Second, we evaluate the
influence of data augmentations in the supervised setup with
fully labeled set, but also with a very limited small subset of
the training data. Finally, we explore and evaluate our Binary
Mean Teacher model that we adapted for our task and the
dataset and compare the performance of BMT in the limited
data case, i.e. just one thousand labels. We evaluate this semi-
supervised model with varying quantity and quality of the
unlabeled data as described below.
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Fig. 3: The Binary Mean Teacher model for binary classification task - figure adapted from [1]

A. Model selection and hyperparameter tuning

In our experiments we used DenseNet121 adapted for our
binary classification task. The output layer contains one output
neuron predicting whether the person in the image is with a
backpack as described in Sec. IV.

In our experiments, where there was no pretraining we
used the Xavier weight initialization [33]. As described in
Sec. IV-E, we used the composite loss function that contains
supervised loss (Eq. 5) and unsupervised loss (Eq. 6) weighted
by parameter wt. We trained our networks using well estab-
lished ADAM optimizer algorithm [34] with standard Adam
hyper parameters: β1 = 0.9, β2 = 0.999, ε = 10−8 and no
weight decay. Due to a high computational demand, we used
exactly 100 training epochs in all experiments including the
hyperparameter search. As the performance measure we use
standard classification accuracy.

B. Supervised learning and augmentations

Data augmentation undoubtedly enhances the performance
of the image classification models and is one of the core
components of the BMT model. We explored the influence
of the augmentations in the case of sole supervised learning
with a limited dataset and with a full dataset. Our assumption
behind this experiment was that even with a very limited
amount of data, using a reasonable augmentation technique,
we can achieve a performance comparable to the full dataset
training. We explored the full model training as well as model
fine-tuning with the model pretrained using ImageNet.

For our experiments, we used the same set of augmenta-
tions as the original MT [1] for the ImageNet (discussed in
Sec. IV-C) and evaluated them separately and in combination.
The only difference in our augmentation strategies compared
to the original MT is in the crop and resize, which were
slightly adapted to keep the backpack and the torso of the
person in the image intact. For the sake of clarity we name
the augmentations using arbitrary codes as shown in Table II.

In a search for optimal hyperparameters, we experimented
with a varying learning rate and minibatch size for various
sizes of the training data sets in both setups: full training and
model fine-tuning. We tested batch sizes of 4–64 samples and

TABLE II: Augmentation types and parameters.
Technique Parameters

A Random rotation max. 10 degree

B Varying aspect ratio crop & resize 224×224, scale=(0.8, 1),
ratio=(0.8, 1.2)

C Random horizontal flip

D Random color jitter brightness=0.4, contrast=0.4,
saturation=0.4, hue=0.1

initial learning rates from 10−2 to 10−5. While for the learning
rate we identified the best value over all tested combinations
and learning setups, which was 10−4, ideal minibatch size
varied from 4 to 16. However, the differences in performance
were rather small so we decided to settle with minibatch size
8 as the best value. Note that such a small minibatch size
could not be feasible for the Binary Mean Teacher, where a
certain ratio of unlabeled and labeled samples has to be kept
in each minibatch. Unlike our smallish optimal minibatch size,
the SSL uses rather large minibatches of approximately 128 or
more samples. We assume this is necessary due to the nature
of the dataset which can in some cases contain only several
labeled samples per minibatch which would not be feasible to
make a data split with such a small size.

The influence of the augmentation strategy on the accuracy
of our models is shown in Fig. 4. The best performing models
were the ones that used model fine-tuning and a combination
of three and more augmentations. It seems that the cropping
and resizing (B) as well as the color jitter (D) have the best
overall influence on the task performance.

In the context of our domain, the well-labeled images are
not in abundance. Therefore, we were interested to see how
well a standard supervised model can generalize over the
whole testing set when trained with only a small amount of
labeled data. We chose small portions in accordance with the
SSL experiments which go up to one third of the dataset
and compared it with the full dataset. Results are displayed
in Fig. 5. Note that the testing set we used was the same
as in any other task and contained more than 11000 images.
The smallest portion of labels, which was 2% of our training
set equals to approximately 200 images. This graph illustrates
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how augmentations can compensate for the lack of data even
when no unlabeled data are used. The effect of augmentations
is much more visible in the case of full training which,
however performs generally worse than the fine-tuned setup.
If pretrained models are used, the weights already respond
well to low-level features so the augmentations that generally
increase variability of the training data have smaller influence
on the model performance.

C. Semi-supervised learning with Binary Mean Teacher

We used our BMT model as described Sec. IV-E and
evaluated both learning modes as in the supervised scenario.
We used model fine-tuning with ImageNet, but also trained the
models from the scratch. Adding more complexity, we tested
the model on three variations of the labeled and unlabeled
dataset listed in Table I, which start from basic DukeMTMC-
backpack (DS0) and then add on different unlabeled data. We
also took varying amounts of labeled data from our trainset
(e.g. 1000 or the whole 10000) while the remainder was added

to the unlabeled part of the training set. As described in
Table I, DS1 combines DukeMTMC-backpack with uncertain
category which contains images that cannot be conclusively
categorized due to occlusions and the presence of multiple
persons. Then in DS2 we combine two different, yet similar
datasets which both contain images of people from surveil-
lance cameras, DukeMTMC and Market-1501. Although there
are strong similarities, the distribution of backpack vs. no-
backpack cases in Market-1501 is different from that in our
dataset. Nevertheless, we presume that a higher number of
unlabelled data will improve the accuracy of our model despite
the different dataset distributions. This can be very useful in
practical applications where there is an abundance of data,
but the labels for the data are hard to achieve. Therefore a
reasonable small set of good examples along with well tailored
augmentation strategies can help balance this problem.

We have found the Binary Mean Teacher model to be
very sensitive to hyperparameter selection. Therefore we paid
particular attention to hyperparameter tuning process. Because
of the large number of hyperparameters that can influence the
final accuracy, we focused on exhaustive parameter search only
for a small subset of hyperparameters that most influenced the
final accuracy. These include the learning rate, unsupervised
weight, EMA decay rate and ramp-up length. We performed
hyperparameter search on these parameters with range [0.01,
0.005, 0.001, 0.0005, 0.0001, 0.00005, 0.00001] for the learn-
ing rate, [20, 30, 40, 50, 60, 70, 80] for unsupervised weight,
[0.9, 0.95, 0.99, 0.995, 0.999, 0.9995, 0.9999] for EMA decay
rate and [1,5,10,15,20] for ramp-up length. We performed
the hyperparameter search using 1000-label subset of DS2
and then reused these hyperparameters in subsequent BMT
experiments.

We performed the hyperparameter tuning process separately
for fine-tuning and full training setup. Other hyperparameters
were fine-tuned using various heuristics with original param-
eters used in the original MT research [1] as a starting point.
We used minibatch of size 64 due to the memory limitations
of our hardware. In each minibatch we used 48 unlabeled and
16 labeled examples (8 examples with backpack and 8 without
backpack). We have found that using a minibatch composition
with a fixed number of labeled and unlabeled examples led
to higher classification accuracy than sampling labeled and
unlabeled examples randomly due to high imbalance between
labeled and unlabeled examples. We also explored different
minibatch compositions but found previously mentioned com-
position to work best across multiple experiments. We have
fixed the ramp-down length at the value 20 in the initial
exploratory experiments and then left it fixed because this
parameter did not significantly alter the performance. We
found that the optimal ramp up length was 10 for our setup.
We used all the above mentioned data augmentations at once,
which is the same as in original MT setup for the ImageNet
dataset. In Table III, we summarize optimal hyperparameters
that differ between setups.



TABLE III: Optimal BMT hyperparameters found for different se-
tups.

Setup Learn. rate w0 EMA α

Full training, all labels 0.001 50.0 0.995

Full training, 1000 labels 0.0005 70.0 0.999

Fine-tuning, all labels 0.0001 70.0 0.9999

Fine-tuning, 1000 labels 0.001 60.0 0.99

D. Overall results

To sum up the results of our experiments with supervised
and semi-supervised learning with and without the use of
model fine-tuning, we evaluated our best models on the above-
mentioned datasets. The fine-tuned models start with the
DenseNet architecture pretrained using the ImageNet dataset,
which is a common practice in deep neural computer vision.
In our case, we can confirm that the transfer learning paradigm
is useful also for binary classification of images.

For the supervised learning, we just use the DS0 with
varying portion of the training dataset. Our Binary Mean
Teacher results are shown for DS0-DS2 also with a varying
ratio of the labeled part of the training set. For evaluation,
we always use the whole DukeMTMC-backpack testing set
(roughly 12000 images). The results are shown in Tables IV
and V.

TABLE IV: Overall results: full training
Learning Dataset Augment All 10% 8% 2%

Supervised DS0 None 85.39 74.96 72.35 63.10

Supervised DS0 ABCD 88.44 78.47 77.95 69.38

BMT DS0 ABCD 83.28 89.14 81.77 75.33

BMT DS1 ABCD 83.73 88.53 82.45 75.56

BMT DS2 ABCD 85.09 89.57 83.17 75.67

TABLE V: Overall results: model fine-tuning
Learning Dataset Augment All 10% 8% 2%

Supervised DS0 None 92.73 86.96 86.19 78.29

Supervised DS0 ABCD 93.50 89.91 88.89 82.07

BMT DS0 ABCD 92.85 90.72 90.04 79.21

BMT DS1 ABCD 92.98 90.47 89.75 78.96

BMT DS2 ABCD 93.53 91.75 90.83 77.70

VI. DISCUSSION

In this work we propose a semi-supervised model for binary
classification task of detecting the presence of wearable objects
that we call the Binary Mean Teacher. Our model is based on
our finding that computing the consistency cost using the final
output of the network, as in the original Mean teacher model,
yields suboptimal results in binary classification setting. In our
model, we instead opted to compute consistency cost using the
last convolutional layer of both the student and teacher models.
Computing and combing the consistency cost on different

layers of the network might further improve the classification
accuracy but we leave this to future work.

We compared the classification accuracy of this model to
strong transfer learning baseline based on model pretrained
on the ImageNet dataset. We also tested the impact of var-
ious input augmentation methods on the final classification
accuracy when applied to both the transfer learning baseline
and Binary Mean Teacher model. Skipping the cropping aug-
mentation (Resized crop) leads to slightly higher classification
accuracy, due to the sometimes small distance of the object of
interest (backpack) to the border of the image. This can lead
to removal of the backpack object during the augmentation
process rendering the example invalid.

The main advantage of the Binary Mean Teacher compared
to the baseline manifests itself when we train both models
from randomly initialized weights. In this setting we observe
5–10% difference in the classification accuracy in favor of the
Binary Mean Teacher model. In the tests using 1000 labeled
training images, randomly initialized Binary Mean Teacher
model achieved 90% classification accuracy. Randomly ini-
tialized baseline without any image augmentations achieved
75% accuracy using the same number of training images. This
demonstrates the superiority of our approach compared to the
baseline in the setting with randomly initialized weights.

The difference is much smaller when we initialize the
weights of both supervised baselines and Binary Mean Teacher
using the weights pretrained on the ImageNet dataset. In this
setting Binary Mean Teacher achieved 92% accuracy and
the baseline achieved 90% accuracy. This suggests that the
supervised model pretrained on a suitable large dataset should
be used as a baseline when testing semi-supervised models.
In this setting the Binary Mean Teacher model has only a
slight accuracy advantage compared to supervised baseline,
which demonstrates the effect of well-established fine-tuning
paradigm. This finding is contrary to most semi-supervised
research results where the gap between supervised models and
semi-supervised models is much higher because of absence
of baselines pretrained on large-scale image datasets such as
ImageNet. We suspect that much larger unlabeled datasets
would be needed to fully leverage the potential of semi-
supervised models like our Binary Mean Teacher model in
the binary classification task studied in this work.

In the 2% labeled examples setting the Binary Mean Teacher
model achieved a slightly lower accuracy than the baseline.
This can be attributed to the hyperparameter tuning procedure
that used the 1000 label (8%) setting. This suggests that
setups using a different number of labeled examples require
different hyperparameter settings to achieve optimal results.
We did not perform exhaustive hyperparameter tuning for
every setting with a different number of labeled examples due
to computational constraints.

VII. CONCLUSION

We presented our work on binary classification of pedestrian
attributes in camera surveillance images using deep neural net-
works. This domain is characteristic with a lack of well labeled
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data, which can be counterbalanced by special techniques that
make use of data augmentations as well as unlabeled data.
We proposed a semi-supervised model called Binary Mean
Teacher for the task of detecting the presence of wearable ob-
jects in surveillance data. We compared the performance of our
model to strong supervised baselines and found that although
semi-supervised learning did lead to high performance gains in
low training data regimes, these gains were limited when both
semi-supervised model and supervised model were pretrained
on large image dataset and when image augmentations are
applied in both settings. We explored the influence of data
augmentations, well-tailored random transformations of input
data that increase generalization abilities of the networks. This
work reveals that the lack of training data can be compensated
for by both data augmentations in case of simple supervised
learning as well as by using the semi-supervised learning
paradigm.
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