Matrix models of fuzzy field theories

Juraj Tekel

Department of Theoretical Physics and Didactics of Physics
Faculty of Mathematics, Physics and Informatics Comenius University, Bratislava

人ㄷㅁㄷㄴ Action MP 1405
Quantum Structure of Spacetime

Quantum Spacetime '18, 21.2.2018, Sofia

Introduction and outline

The ABEGHHK'tH mechanism

Introduction and outline

Real scalar ϕ^{4} field on plane

Introduction and outline

In this talk, we will

- very briefly introduce fuzzy spaces and some aspects of fuzzy field theories,
- describe these theories in terms of a random matrix model,
- investigate the properties of this model.

Introduction and outline

Take home message.

- Symmetry breaking in noncommutative field theory is (very) different than in the commutative case.
- Matrix models are a great tool to analyze the(se) properties of scalar field theories on fuzzy spaces, and beyond.

Fuzzy spaces

Fuzzy sphere

- Noncommutative spaces introduce a shortest possible distance.
- Fuzzy spaces (= a finite dimensional algebra) have finite number of the "Planck cells" N.
- The hallmark example is the fuzzy sphere S_{F}^{2}.
Hoppe '82; Madore '92; Grosse, Klimcik, Presnajder '90s
- However there are no sharp boundaries between the pieces and everything is blurred, or fuzzy.

Image from
http://principles.ou.edu/mag/earth.html

Fuzzy sphere

Technically, this is done by

- truncating the possible values of l in the expansion

$$
f=\sum_{l=0}^{L} \sum_{m=-l}^{l} c_{l m} Y_{l m}(\theta, \phi)
$$

- deforming the coordinate(function)s

$$
x_{i} x_{i}=\rho^{2} \quad, \quad x_{i} x_{j}-x_{j} x_{i}=i \theta \varepsilon_{i j k} x_{k} .
$$

Real functions on the fuzzy sphere are $N \times N$ hermitian and the eigenvalues of M represent the values of the function on the cells.

Fuzzy scalar field theory

Scalar field theory

- Commutative euclidean theory of a real scalar field is given by an action

$$
S(\Phi)=\int d x\left[\frac{1}{2} \Phi \Delta \Phi+\frac{1}{2} m^{2} \Phi^{2}+V(\Phi)\right]
$$

and path integral correlation functions

$$
\langle F\rangle=\frac{\int d \Phi F(\Phi) e^{-S(\Phi)}}{\int d \Phi e^{-S(\Phi)}}
$$

- We construct the noncommutative theory as an analogue with
- field \rightarrow matrix,
- functional integral \rightarrow matrix integral,
- spacetime integral \rightarrow trace,
- derivative $\rightarrow L_{i}$ commutator.

Scalar field theory

- Commutative

$$
\begin{gathered}
S(\Phi)=\int d x\left[\frac{1}{2} \Phi \Delta \Phi+\frac{1}{2} m^{2} \Phi^{2}+V(\Phi)\right] \\
\langle F\rangle=\frac{\int d \Phi F(\Phi) e^{-S(\Phi)}}{\int d \Phi e^{-S(\Phi)}} .
\end{gathered}
$$

- Noncommutative (for S_{F}^{2})

$$
\begin{gathered}
S(M)=\frac{4 \pi R^{2}}{N} \operatorname{Tr}\left[\frac{1}{2} M \frac{1}{R^{2}}\left[L_{i},\left[L_{i}, M\right]\right]+\frac{1}{2} m^{2} M^{2}+V(M)\right] \\
\langle F\rangle=\frac{\int d M F(M) e^{-S(M)}}{\int d M e^{-S(M)}} .
\end{gathered}
$$

Balachandran, Kürkçüoğlu, Vaidya '05; Szabo '03

Spontaneous symmetry breaking

Symmetry breaking in NC field theories

- From now on ϕ^{4} theory.
- The commutative field theory has two phases in the phase diagram, disorder and uniform order phases.
Glimm, Jaffe, Spencer '75; Chang '76
Loinaz, Willey '98; Schaich, Loinaz '09
- In disorder phase the field oscillates around the value $\phi=0$.
- In uniform order phase the field oscillates around a nonzero value which is a minimum of the potential.

Symmetry breaking in NC field theories

- The phase diagram of noncommutative field theories has one more phase. It is a non-uniform order phase, or a striped phase. Gubser, Sondhi ' 01 ; G.-H. Chen and Y.-S. Wu '02
- In this phase, the field does not oscillate around one given value in the whole space. Translational symmetry is broken.
- This has been established in numerous numerical works for variety different spaces.
Martin '04; García Flores, Martin, O'Connor '06, '09; Panero '06, '07; Ydri '14; Bietenholz, F. Hofheinz, Mejía-Díaz, Panero '14; Mejía-Díaz, Bietenholz, Panero '14;
Medina, Bietenholz, D. O'Connor '08; Bietenholz, Hofheinz, Nishimura '04; Lizzi, Spisso '12; Ydri, Ramda, Rouag '16
Panero '15

Symmetry breaking in NC field theories

Mejía-Díaz, Bietenholz, Panero '14 for \mathbb{R}_{θ}^{2}

Symmetry breaking in NC field theories

- This phase is a result of the nonlocality of the theory.
- This phase survives the commutative limit of the noncommutative theory! Result of the UV/IR mixing.
- The commutative limit of such noncommutative theory is (even more) different than the commutative theory we started with.

Symmetry breaking in NC field theories

O'Connor, Kováčik '18 for S_{F}^{2}

Matrix model description of fuzzy field theories

Matrix models

- Ensemble of hermitian $N \times N$ matrices with a probability measure $S(M)$ and expectation values

$$
\langle F\rangle=\frac{\int d M F(M) e^{-S(M)}}{\int d M e^{-S(M)}} .
$$

- This is the very same expression as for the real scalar field.
- Fuzzy field theory = matrix model with

$$
S(M)=\frac{1}{2} \operatorname{Tr}\left(M\left[L_{i},\left[L_{i}, M\right]\right]\right)+\frac{1}{2} r \operatorname{Tr}\left(M^{2}\right)+g \operatorname{Tr}\left(M^{4}\right)
$$

(minus the red Brezin, Itzykson, Parisi, Zuber '78)

Matrix models of fuzzy field theories

- The large N limit of the model without the kinetic term

$$
S(M)=\frac{1}{2} \operatorname{Tr}\left(M\left[L_{i},\left[L_{i}, M\right]\right]\right)+\frac{1}{2} r \operatorname{Tr}\left(M^{2}\right)+g \operatorname{Tr}\left(M^{4}\right)
$$

is well understood.

- The key is diagonalization and the saddle point approximation.

Matrix models of fuzzy field theories

- The large N limit of the model without the kinetic term

$$
S(M)=\frac{1}{2} \operatorname{Tr}\left(M\left[L_{i},\left[L_{i}, M\right]\right]\right)+\frac{1}{2} r \operatorname{Tr}\left(M^{2}\right)+g \operatorname{Tr}\left(M^{4}\right)
$$

is well understood.

- The key results is that for $r<-4 \sqrt{g}$ we get two cut eigenvalue density.

Matrix models of fuzzy field theories

- The model with the kinetic term

$$
S(M)=\frac{1}{2} \operatorname{Tr}\left(M\left[L_{i},\left[L_{i}, M\right]\right]\right)+\frac{1}{2} r \operatorname{Tr}\left(M^{2}\right)+g \operatorname{Tr}\left(M^{4}\right)
$$

is not well understood.
Steinacker '05; JT Acta Physica Slovaca '15

- The key issue being that diagonalization no longer straightforward.

Matrix models of fuzzy field theories

- The model with the kinetic term

$$
S(M)=\frac{1}{2} \operatorname{Tr}\left(M\left[L_{i},\left[L_{i}, M\right]\right]\right)+\frac{1}{2} r \operatorname{Tr}\left(M^{2}\right)+g \operatorname{Tr}\left(M^{4}\right)
$$

is not well understood.
Steinacker '05; JT Acta Physica Slovaca '15

- The key issue being that diagonalization no longer straightforward.
- We are to compute integrals like

$$
\begin{aligned}
\langle F\rangle \sim \int\left(\prod_{i=1}^{N} d \lambda_{i}\right) & F\left(\lambda_{i}\right) e^{-N^{2}\left[\frac{1}{2} r \frac{1}{N} \sum \lambda_{i}^{2}+g \frac{1}{N} \sum \lambda_{i}^{4}-\frac{2}{N^{2}} \sum_{i<j} \log \left|\lambda_{i}-\lambda_{j}\right|\right]} \\
& \times \int d U e^{-N^{2} \frac{1}{2} \operatorname{Tr}\left(U \Lambda U^{\dagger}\left[L_{i},\left[L_{i}, U \Lambda U^{\dagger}\right]\right]\right)}
\end{aligned}
$$

Matrix models of fuzzy field theories

- The model with the kinetic term

$$
S(M)=\frac{1}{2} \operatorname{Tr}\left(M\left[L_{i},\left[L_{i}, M\right]\right]\right)+\frac{1}{2} r \operatorname{Tr}\left(M^{2}\right)+g \operatorname{Tr}\left(M^{4}\right)
$$

is not well understood.
Steinacker '05; JT Acta Physica Slovaca ' 15

- The key issue being that diagonalization no longer straightforward.
- We are to compute integrals like

$$
\begin{gathered}
\langle F\rangle \sim \int\left(\prod_{i=1}^{N} d \lambda_{i}\right) F\left(\lambda_{i}\right) e^{-N^{2}\left[S_{\text {eff }}\left(\lambda_{i}\right)+\frac{1}{2} r \frac{1}{N} \sum \lambda_{i}^{2}+g \frac{1}{N} \sum \lambda_{i}^{4}-\frac{2}{N^{2}} \sum_{i<j} \log \left|\lambda_{i}-\lambda_{j}\right|\right]} \\
e^{-N^{2} S_{e f f}\left(\lambda_{i}\right)}=\int d U e^{-N^{2} \frac{1}{2} \operatorname{Tr}\left(U \Lambda U^{\dagger}\left[L_{i},\left[L_{i}, U \Lambda U^{\dagger}\right]\right]\right)}
\end{gathered}
$$

- How to compute $S_{e f f}$?

Matrix models of fuzzy field theories

- Perturbative calculation of the integral show that the $S_{\text {eff }}$ contains products of traces of M. O'Connor, Sämann '07; Sämann '10

$$
e^{-N^{2} S_{e f f}\left(\lambda_{i}\right)}=\int d U e^{-N^{2} \varepsilon \frac{1}{2} \operatorname{Tr}\left(U \Lambda U^{\dagger}\left[L_{i},\left[L_{i}, U \Lambda U^{\dagger}\right]\right]\right)}
$$

- The most recent result is Sämann ' 15

$$
\begin{aligned}
S_{e f f}(M)= & \frac{1}{2}\left[\varepsilon \frac{1}{2}\left(c_{2}-c_{1}^{2}\right)-\varepsilon^{2} \frac{1}{24}\left(c_{2}-c_{1}^{2}\right)^{2}+\varepsilon^{4} \frac{1}{2880}\left(c_{2}-c_{1}^{2}\right)^{4}\right]- \\
& -\varepsilon^{4} \frac{1}{3456}\left[\left(c_{4}-4 c_{3} c_{1}+6 c_{2} c_{1}^{2}-3 c_{1}^{4}\right)-2\left(c_{2}-c_{1}^{2}\right)^{2}\right]^{2}- \\
& -\varepsilon^{3} \frac{1}{432}\left[c_{3}-3 c_{1} c_{2}+2 c_{1}^{3}\right]^{2}
\end{aligned}
$$

where

$$
c_{n}=\frac{1}{N} \operatorname{Tr}\left(M^{n}\right)
$$

- The standard treatment of such multitrace matrix model yields a very unpleasant behaviour. Self interaction is way too strong in the important region.

Hermitian matrix model of fuzzy field theories

- For the free theory $g=0$ the kinetic term just rescales the eigenvalues. Steinacker '05
- There is a unique parameter independent effective action that reconstructs this rescaling. Polychronakos ' 13

$$
S_{e f f}=\frac{1}{2} F\left(c_{2}\right)+\mathcal{R}=\frac{1}{2} \log \left(\frac{c_{2}}{1-e^{-c_{2}}}\right)+\mathcal{R}
$$

- Recall the perturbative action

$$
\begin{aligned}
S_{e f f}(M)= & \frac{1}{2}\left[\varepsilon \frac{1}{2}\left(c_{2}-c_{1}^{2}\right)-\varepsilon^{2} \frac{1}{24}\left(c_{2}-c_{1}^{2}\right)^{2}+\varepsilon^{4} \frac{1}{2880}\left(c_{2}-c_{1}^{2}\right)^{4}\right]- \\
& -\varepsilon^{4} \frac{1}{3456}\left[\left(c_{4}-4 c_{3} c_{1}+6 c_{2} c_{1}^{2}-3 c_{1}^{4}\right)-2\left(c_{2}-c_{1}^{2}\right)^{2}\right]^{2}- \\
& -\varepsilon^{3} \frac{1}{432}\left[c_{3}-3 c_{1} c_{2}+2 c_{1}^{3}\right]^{2}
\end{aligned}
$$

The first line is the first terms of the small c_{2} expansion with $c_{2} \rightarrow c_{2}-c_{1}^{2}$.

Hermitian matrix model of fuzzy field theories

- For the free theory $g=0$ the kinetic term just rescales the eigenvalues. Steinacker '05
- There is a unique parameter independent effective action that reconstructs this rescaling. Polychronakos '13

$$
S_{e f f}=\frac{1}{2} F\left(c_{2}\right)+\mathcal{R}=\frac{1}{2} \log \left(\frac{c_{2}}{1-e^{-c_{2}}}\right)+\mathcal{R}
$$

- Introducing the asymmetry $c_{2} \rightarrow c_{2}-c_{1}^{2}$ we obtain a matrix model

$$
S(M)=\frac{1}{2} F\left(c_{2}-c_{1}^{2}\right)+\frac{1}{2} r \operatorname{Tr}\left(M^{2}\right)+g \operatorname{Tr}\left(M^{4}\right) \quad, \quad F(t)=\log \left(\frac{t}{1-e^{-t}}\right)
$$

Polychronakos '13; JT '15, JT '17

Matrix models of fuzzy field theories

- Such F introduces a (not too strong) interaction among the eigenvalues. For some values of r, g an asymmetric configuration can become stable.
- It corresponds to the "standard" symmetry broken phase.

Hermitian matrix model

JT '17

Matrix models of fuzzy field theories

- A very good qualitative agreement. A very good quantitative agreement in the critical coupling.
- Different value for the critical mass parameter and different behaviour of the asymmetric transition line for large $-r$.
- We need to include \mathcal{R} in a nonperturbative way. work in progress with M. Subjaková

Matrix models of fuzzy field theories

- Recall the perturbative action

$$
\begin{aligned}
S_{e f f}(M)= & \frac{1}{2}[\varepsilon \frac{1}{2} \underbrace{\left(c_{2}-c_{1}^{2}\right)}_{t_{2}}-\varepsilon^{2} \frac{1}{24}\left(c_{2}-c_{1}^{2}\right)^{2}+\varepsilon^{4} \frac{1}{2880}\left(c_{2}-c_{1}^{2}\right)^{4}]- \\
& -\varepsilon^{4} \frac{1}{3456}[\underbrace{\left(c_{4}-4 c_{3} c_{1}+6 c_{2} c_{1}^{2}-3 c_{1}^{4}\right)-2\left(c_{2}-c_{1}^{2}\right)^{2}}_{t_{4}-2 t_{2}^{2}}]^{2}- \\
& -\varepsilon^{3} \frac{1}{432}[\underbrace{c_{3}-3 c_{1} c_{2}+2 c_{1}^{3}}_{t_{3}}]^{2} \approx \\
\approx & \frac{1}{2} F_{2}\left[t_{2}\right]+F_{3}\left[t_{3}\right]+F_{4}\left[t_{4}-2 t_{2}^{2}\right]
\end{aligned}
$$

Matrix models of fuzzy field theories

- Find a function which gives a correct perturbative expansion and behaves well close to the triple point. E.g.

$$
\begin{aligned}
& n \log \left(1+A \frac{t^{2}}{n}\right), \frac{1}{\left(1+A \frac{t^{2}}{n}\right)^{2}}-1 \\
- & A n \log \left(1+\frac{t^{2}}{n}\right), A\left(\frac{1}{\left(1+A \frac{t^{2}}{n}\right)^{2}}-1\right)
\end{aligned}
$$

- So far it either does barely anything or completely ruins the model.

Conclusions

- Symmetry breaking in noncommutative field theory is (very) different than in the commutative case.
- Matrix models are a great tool to analyze the(se) properties of scalar field theories on fuzzy spaces, and beyond.

Outlook

To do list.

- Find (a more) complete understanding of the matrix model.
- Investigate matrix models corresponding to spaces beyond the fuzzy sphere.
- Investigate matrix models corresponding to theories without the UV/IR mixing.

Thank you for your attention!

If time permits I

- Recall the perturbative action

$$
\begin{aligned}
S_{e f f}(M)= & \frac{1}{2}\left[\varepsilon \frac{1}{2}\left(c_{2}-c_{1}^{2}\right)-\varepsilon^{2} \frac{1}{24}\left(c_{2}-c_{1}^{2}\right)^{2}+\varepsilon^{4} \frac{1}{2880}\left(c_{2}-c_{1}^{2}\right)^{4}\right]- \\
& -\varepsilon^{4} \frac{1}{3456}\left[\left(c_{4}-4 c_{3} c_{1}+6 c_{2} c_{1}^{2}\right)-3 c_{1}^{4}-2\left(c_{2}-c_{1}^{2}\right)^{2}\right]^{2}- \\
& -\varepsilon^{3} \frac{1}{432}\left[c_{3}-3 c_{1} c_{2}+2 c_{1}^{3}\right]^{2} \\
= & \frac{1}{2} \frac{1}{2} c_{2}-\frac{1}{4} c_{1}^{2}-\frac{1}{24} c_{2}^{2}-\frac{1}{432} c_{3}^{2}-\frac{1}{3456} c_{4}^{2}+\ldots
\end{aligned}
$$

- This part can be interpreted as an additional two-particle interaction.

If time permits I

- Recall the perturbative action

$$
S_{e f f}(M)=\frac{1}{2} \frac{1}{2} c_{2}-\frac{1}{4} c_{1}^{2}-\frac{1}{24} c_{2}^{2}-\frac{1}{432} c_{3}^{2}-\frac{1}{3456} c_{4}^{2}+\ldots
$$

- Function of the form

$$
S_{e f f}=\sum_{i, j} a \log \left(1-b \lambda_{i} \lambda_{j}\right)
$$

with $a=3 / 2, b=1 / 6$ correctly reproduces all four known coefficients.

If time permits II

Investigate matrix models corresponding to theories without the UV/IR mixing.

- For a noncommutative theory with no UV/IR mixing, the extra phase should not be present in the commutative limit of the phase diagram.
- B.P. Dolan, D. O'Connor and P. Prešnajder [arXiv:0109084],
- H. Grosse and R. Wulkenhaar [arXiv:0401128],
- R. Gurau, J. Magnen, V. Rivasseau and A. Tanasa [arXiv:0802.0791].
- Understanding the phase diagram of such theories, especially mechanism of the removal of the striped phase could teach us a lot technically and conceptually.

If time permits III

