Matrix models of fuzzy field theories

Juraj Tekel

Department of Theoretical Physics
Faculty of Mathematics, Physics and Informatics
Comenius University, Bratislava

人ㄷㅁㄷㅡ Action MP 1405
Quantum Structure of Spacetime

Seminar für Mathematische Physik, 16.1.2018, TU Vienna

Math - Matrix models

- ensemble of matrices, probability measure
- expectation values, correlation functions, partition function
- eigenvalue distribution
- a good tool to analyse (some) properties of fuzzy field theories

Physics - fuzzy field theory

- (compact) noncommutative space, (real scalar) field theory
- (naïve) commutative limit of NC theory is different from commutative theory - UV/IR mixing
- different spontaneous symmetry breaking patterns

Introduction and outline

The ABEGHHK'tH mechanism

Introduction and outline

Real scalar ϕ^{4} field on plane

Introduction and outline

quantum theory + general relativity \|

?!?!?!

Introduction and outline

quantum theory + general relativity \Downarrow

some nontrivial short distance structure of space

Doplicher, Fredenhagen, Robersts '95

Introduction and outline

- To measure an event of spatial extent Δx, we need a particle with a similar wavelength. According to de Broglie, this particle has energy

$$
E \sim \frac{1}{\Delta x} .
$$

- As we lower Δx beyond a certain point, the concentration of energy will create a black hole. The result of the measurement will be hidden under the event horizon of this black hole and we can not obtain the information we were after.
- Rather unsurprisingly, this will happen at the Planck scale

$$
R_{S}=\frac{2 G M}{c^{2}}, E=M c^{2}, E=\frac{h c}{\lambda} \Rightarrow L=\sqrt{2} \underbrace{\sqrt{\frac{h G}{c^{3}}}}_{l_{p l}}
$$

Introduction and outline

some nontrivial short distance structure of space
介
space noncommutatitvity

Introduction and outline

In this talk, we will

- describe the construction of the fuzzy sphere S_{F}^{2}, as the trademark example of a noncommutative space,
- show how the noncommutativity introduces a short distance structure without any loss of symmetry of the space,
- mention some most interesting properties of scalar field theories defined on such spaces,
- describe this theory in terms of a random matrix model,
- investigate the properties of this model.

Introduction and outline

Take home message.

- Fuzzy (and NC) spaces have a discrete, yet symmetric, short distance structure.
- This comes with some unexpected consequences.
- Matrix models are a great tool to analyze the properties of (scalar field theories on) fuzzy spaces.

Construction(s) of fuzzy spaces

Fuzzy sphere Hoppe '82; Madore '92; Grosse, Klimčík, Prešnajder '90s; Steinacker '13

- Functions on the usual sphere are given by

$$
f(\theta, \phi)=\sum_{l=0}^{\infty} \sum_{m=-l}^{l} c_{l m} Y_{l m}(\theta, \phi)
$$

where $Y_{l m}$ are the spherical harmonics

$$
\Delta Y_{l m}(\theta, \phi)=l(l+1) Y_{l m}(\theta, \phi) .
$$

- They form an (commutative) algebra and all the information about the sphere is encoded in this algebra (Gelfand, Naimark).
- To describe features at a length scale δx we need functions Y_{m}^{l} with

$$
l \sim \frac{1}{\delta x} .
$$

Fuzzy sphere

Fuzzy sphere

- If we truncate the possible values of l in the expansion

$$
f=\sum_{l=0}^{L} \sum_{m=-l}^{l} c_{l m} Y_{l m}(\theta, \phi),
$$

we will not be able to see any features of functions at length scales under $\sim 1 / L$.

- Points on the sphere (as δ-functions) cease to exist.
- Expressions defined in this way are not closed under multiplication.

Fuzzy sphere

Fuzzy sphere

- Number of independent functions with $l \leq L$ is

$$
\sum_{l=0}^{L} \sum_{m=-l}^{l} 1=(L+1)^{2}=N^{2}
$$

This is the same as the number of $N \times N$ hermitian matrices

$$
N+2 \sum_{n=1}^{N}(n-1)=N^{2} .
$$

The idea is to map the former on the latter and borrow a closed product from there.

- In order to do so, we consider a $N \times N$ matrix as a product of two N-dimensional representations \underline{N} of the group $S U(2)$. It reduces to

$$
\begin{array}{rlcccc}
\underline{N} \otimes \underline{N} & =\begin{array}{ccccc}
\underline{1} & \oplus & \underline{3} & \oplus & \underline{5} \\
\downarrow & \\
& =\left\{Y_{0 m}\right\} & \oplus & \left\{Y_{1 m}\right\} & \oplus
\end{array}\left\{\begin{array}{l}
\left.Y_{2 m}\right\}
\end{array}\right.
\end{array}
$$

Fuzzy sphere

- We thus have a map $\varphi: Y_{l m} \rightarrow M$ and we define the product

$$
Y_{l m} * Y_{l^{\prime} m^{\prime}}:=\varphi^{-1}\left(\varphi\left(Y_{l m}\right) \varphi\left(Y_{l^{\prime} m^{\prime}}\right)\right) .
$$

- We have obtained a short distance structure, but the prize we had to pay was a noncommutative product $*$ of functions. The space, for which this is the algebra of functions, is called the fuzzy sphere.
- Opposing to some lattice discretization this space still possess a full rotational symmetry.
- In the limit $N \rightarrow \infty$ we recover the original sphere.

Fuzzy sphere - an alternative

- The regualar sphere S^{2} is given by the coordinates

$$
x_{i} x_{i}=R^{2} \quad, \quad x_{i} x_{j}-x_{j} x_{i}=0
$$

which generate the following algebra of functions

$$
f=\left\{\sum_{k \in \mathbb{N}^{3}}\left(a_{k_{1} k_{2} k_{3}} \prod_{i=1}^{3} x_{i}^{k_{i}}\right) \mid x_{i} x_{i}=R^{2}\right\},
$$

which is by definition commutative.

- Information about the sphere is again hidden in this algebra.

Fuzzy sphere - an alternative

- For the fuzzy sphere S_{F}^{2} we define

$$
x_{i} x_{i}=\rho^{2} \quad, \quad x_{i} x_{j}-x_{j} x_{i}=i \theta \varepsilon_{i j k} x_{k} .
$$

- Such x_{i} 's generate a different, noncommutative algebra and S_{F}^{2} is an object, which has this algebra as an algebra of functions.
- The conditions can be realized as an $N=2 j+1$ dimensional representation of $S U(2)$

$$
x_{i}=\frac{2 r}{\sqrt{N^{2}-1}} L_{i} \quad, \quad \theta=\frac{2 r}{\sqrt{N^{2}-1}} \quad, \quad \rho^{2}=\frac{4 r^{2}}{N^{2}-1} j(j+1)=r^{2} .
$$

- The group $S U(2)$ still acts on x_{i} 's and this space enjoys a full rotational symmetry.
- And again, in the limit $N \rightarrow \infty$ we recover the original sphere.

Fuzzy sphere - an alternative

- x_{i} 's are $N \times N$ matrices, functions on S_{F}^{2} are combinations of all their possible products and thus hermitian matrices M.
- Such $N \times N$ matrix can be decomposed into

$$
M=\sum_{l=0}^{N-1} \sum_{m=-l}^{m=l} c_{l m} T_{l m}
$$

where matrices T_{m}^{l} are called polarization tensors and

$$
\begin{aligned}
T_{m}^{l} & =\varphi\left(Y_{m}^{l}\right) \\
\operatorname{Tr}\left(T_{l m} T_{l^{\prime} m^{\prime}}\right) & =\delta_{l l^{\prime}} \delta_{m m^{\prime}} \\
{\left[L_{i},\left[L_{i}, T_{l m}\right]\right] } & =l(l+1) T_{l m}
\end{aligned}
$$

Fuzzy sphere - conclusion

- Either way, we have divided the sphere into N cells. Function on the fuzzy sphere is given by a matrix M and the eigenvalues of M represent the values of the function on these cells.

- However there are no sharp boundaries between the pieces and everything is blurred, or fuzzy.

Fuzzy spaces in physics

- Regularization of infinities in the standard QFT. Heisenberg ~'30; Snyder '47, Yang '47
- Regularization of field theories for numerical simulations. Panero '16
- An effective description of the open string dynamics in a magnetic background in the low energy limit. Seiberg Witten '99; Douglas, Nekrasov '01
- Solutions of various matrix formulations of the string theory. Steinacker '13
- Geometric unification of the particle physics and theory of gravity. van Suijlekom '15
- An effective description of various systems in a certain limit (eg. QHE). Karabali, Nair '06

Fuzzy scalar field theory

Scalar field theory

- Commutative euclidean theory of a real scalar field is given by an action

$$
S(\Phi)=\int d x\left[\frac{1}{2} \Phi \Delta \Phi+\frac{1}{2} m^{2} \Phi^{2}+V(\Phi)\right]
$$

and path integral correlation functions

$$
\langle F\rangle=\frac{\int d \Phi F(\Phi) e^{-S(\Phi)}}{\int d \Phi e^{-S(\Phi)}}
$$

- We construct the noncommutative theory as an analogue with
- field \rightarrow matrix,
- functional integral \rightarrow matrix integral,
- spacetime integral \rightarrow trace,
- derivative $\rightarrow L_{i}$ commutator.

Scalar field theory

- Commutative

$$
\begin{gathered}
S(\Phi)=\int d x\left[\frac{1}{2} \Phi \Delta \Phi+\frac{1}{2} m^{2} \Phi^{2}+V(\Phi)\right] \\
\langle F\rangle=\frac{\int d \Phi F(\Phi) e^{-S(\Phi)}}{\int d \Phi e^{-S(\Phi)}} .
\end{gathered}
$$

- Noncommutative (for S_{F}^{2})

$$
\begin{gathered}
S(M)=\frac{4 \pi R^{2}}{N} \operatorname{Tr}\left[\frac{1}{2} M \frac{1}{R^{2}}\left[L_{i},\left[L_{i}, M\right]\right]+\frac{1}{2} m^{2} M^{2}+V(M)\right] \\
\langle F\rangle=\frac{\int d M F(M) e^{-S(M)}}{\int d M e^{-S(M)}} .
\end{gathered}
$$

Balachandran, Kürkçüoğlu, Vaidya '05; Szabo '03

UV/IR mixing

UV/IR mixing

- The key property of the noncommutative field theories is the UV/IR mixing phenomenon, which arises as a result of the nonlocality of the theory.
Minwalla, Van Raamsdonk, Seiberg '00; Chu, Madore, Steinacker '01
- Quanta can not be compressed into an arbitrarily small volume. If we try to squeze a packet in one direction, it will spread out in a different one. Processes with large momentum contribute to processes at small momentum.

UV/IR mixing

- The key property of the noncommutative field theories is the UV/IR mixing phenomenon, which arises as a result of the nonlocality of the theory.
Minwalla, Van Raamsdonk, Seiberg '00; Chu, Madore, Steinacker '01
- Quanta can not be compressed into an arbitrarily small volume. If we try to squeze a packet in one direction, it will spread out in a different one. Processes with large momentum contribute to processes at small momentum.

UV/IR mixing

- The key property of the noncommutative field theories is the UV/IR mixing phenomenon, which arises as a result of the nonlocality of the theory.
Minwalla, Van Raamsdonk, Seiberg '00; Chu, Madore, Steinacker '01
- Quanta can not be compressed into an arbitrarily small volume. If we try to squeze a packet in one direction, it will spread out in a different one. Processes with large momentum contribute to processes at small momentum.

UV/IR mixing

- The key property of the noncommutative field theories is the UV/IR mixing phenomenon, which arises as a result of the nonlocality of the theory.
Minwalla, Van Raamsdonk, Seiberg '00; Chu, Madore, Steinacker '01
- Quanta can not be compressed into an arbitrarily small volume. If we try to squeze a packet in one direction, it will spread out in a different one. Processes with large momentum contribute to processes at small momentum.

UV/IR mixing

- In terms of diagrams different properties of planar and non-planar ones.

non-planar
- Bad behaviour of higher loop diagrams.

UV/IR mixing

- There is no clear separation of scales and the theory is no longer renormalizable.
- This effect survives the commutative limit.
- The commutative limit of a noncommutative theory is very different from the commutative theory we started with.
- The space (geometry) forgets where it came from but the field theory (physics) remembers its fuzzy origin.

Spontaneous symmetry breaking

Symmetry breaking in NC field theories

- The commutative field theory has two phases in the phase diagram, disorder and uniform order phases.
Glimm, Jaffe '74; Glimm, Jaffe, Spencer '75; Chang '76
Loinaz, Willey '98; Schaich, Loinaz '09
- In disorder phase the field oscillates around the value $\phi=0$.
- In uniform order phase the field oscillates around a nonzero value which is a minimum of the potential.

Symmetry breaking in NC field theories

Symmetry breaking in NC field theories

- The phase diagram of noncommutative field theories has one more phase. It is a non-uniform order phase, or a striped phase. Gubser, Sondhi ' 01 ; G.-H. Chen and Y.-S. Wu '02
- In this phase, the field does not oscillate around one given value in the whole space. Translational symmetry is broken.
- This has been established in numerous numerical works for variety different spaces.
Martin '04; García Flores, Martin, O'Connor '06, '09; Panero '06, '07; Ydri '14; Bietenholz, F. Hofheinz, Mejía-Díaz, Panero '14; Mejía-Díaz, Bietenholz, Panero '14;
Medina, Bietenholz, D. O'Connor '08; Bietenholz, Hofheinz, Nishimura '04; Lizzi, Spisso '12; Ydri, Ramda, Rouag '16
Panero '15

Symmetry breaking in NC field theories

Mejía-Díaz, Bietenholz, Panero '14 for \mathbb{R}_{θ}^{2}

Symmetry breaking in NC field theories

- This phase is a result of the nonlocality of the theory. Mermin-Wagner Theorem : no spontaneous breaking of a continuous symmetry in local 2-dimensional theories.
- This phase survives the commutative limit of the noncommutative theory! Result of the UV/IR mixing.
- The commutative limit of such noncommutative theory is (even more) different than the commutative theory we started with.

Symmetry breaking in NC field theories

O'Connor, Kováčik '18 for S_{F}^{2}

Matrix model description of fuzzy field theories

Matrix models

- Ensemble of hermitian $N \times N$ matrices with a probability measure $S(M)$ and expectation values

$$
\langle F\rangle=\frac{\int d M F(M) e^{-S(M)}}{\int d M e^{-S(M)}} .
$$

- This is the very same expression as for the real scalar field.
- Fuzzy field theory = matrix model with

$$
S(M)=\frac{1}{2} \operatorname{Tr}\left(M\left[L_{i},\left[L_{i}, M\right]\right]\right)+\frac{1}{2} r \operatorname{Tr}\left(M^{2}\right)+g \operatorname{Tr}\left(M^{4}\right)
$$

(minus the red Brezin, Itzykson, Parisi, Zuber '78)

Matrix models

- Matrix model with

$$
S(M)=\frac{1}{2} r \operatorname{Tr}\left(M^{2}\right)+g \operatorname{Tr}\left(M^{4}\right)
$$

- We diagonalize $M=U \Lambda U^{\dagger}$ for some $U \in S U(N)$ and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right)$, the integration measure becomes

$$
d M=d U\left(\prod_{i=1}^{N} d \lambda_{i}\right) \times \prod_{i<j}\left(\lambda_{i}-\lambda_{j}\right)^{2}
$$

and we are to compute integrals like

$$
\begin{aligned}
\langle F\rangle \sim \int\left(\prod_{i=1}^{N} d \lambda_{i}\right) & F\left(\lambda_{i}\right) e^{-N^{2}\left[\frac{1}{2} r \frac{1}{N} \sum \lambda_{i}^{2}+g \frac{1}{N} \sum \lambda_{i}^{4}-\frac{2}{N^{2}} \sum_{i<j} \log \left|\lambda_{i}-\lambda_{j}\right|\right]} \\
& \times \int d U
\end{aligned}
$$

Matrix models

- In the $N \rightarrow \infty$ limit the probability measure localizes on configurations minimizing the expression

$$
\frac{1}{2} r \frac{1}{N} \sum \lambda_{i}^{2}+g \frac{1}{N} \sum \lambda_{i}^{4}-\frac{2}{N^{2}} \sum_{i<j} \log \left|\lambda_{i}-\lambda_{j}\right|
$$

- Equivalent to a 1D gas of N repelling particles.
- Several technical steps, introduction of a continuous eigenvalue distribution $\rho(x)$ and resolvent

$$
\omega(z)=\int d y \frac{\rho(y)}{z-y}
$$

solution of a Riemann-Hilbert problem

$$
\omega\left(x+i 0^{+}\right)+\omega\left(x-i 0^{+}\right)=r x+V^{\prime}(x), x \in \operatorname{supp} \rho
$$

Matrix models of fuzzy field theories

- The model without the kinetic term

$$
S(M)=\frac{1}{2} \operatorname{Tr}\left(M\left[L_{i},\left[L_{i}, M\right]\right]\right)+\frac{1}{2} r \operatorname{Tr}\left(M^{2}\right)+g \operatorname{Tr}\left(M^{4}\right)
$$

is well understood.

- The key results is that for $r<-4 \sqrt{g}$ we get two cut eigenvalue density.

Matrix models of fuzzy field theories

- The model with the kinetic term

$$
S(M)=\frac{1}{2} \operatorname{Tr}\left(M\left[L_{i},\left[L_{i}, M\right]\right]\right)+\frac{1}{2} r \operatorname{Tr}\left(M^{2}\right)+g \operatorname{Tr}\left(M^{4}\right)
$$

is not well understood.
Steinacker '05; JT Acta Physica Slovaca '15

- The key issue being that diagonalization no longer straightforward.

Matrix models of fuzzy field theories

- Fuzzy field theory $=$ matrix model with

$$
S(M)=\frac{1}{2} \operatorname{Tr}\left(M\left[L_{i},\left[L_{i}, M\right]\right]\right)+\frac{1}{2} r \operatorname{Tr}\left(M^{2}\right)+g \operatorname{Tr}\left(M^{4}\right)
$$

- We are to compute integrals like

$$
\begin{aligned}
\langle F\rangle \sim \int\left(\prod_{i=1}^{N} d \lambda_{i}\right) & F\left(\lambda_{i}\right) e^{-N^{2}\left[\frac{1}{2} r \frac{1}{N} \sum \lambda_{i}^{2}+g \frac{1}{N} \sum \lambda_{i}^{4}-\frac{2}{N^{2}} \sum_{i<j} \log \left|\lambda_{i}-\lambda_{j}\right|\right]} \\
& \times \int d U e^{-N^{2} \frac{1}{2} \operatorname{Tr}\left(U \Lambda U^{\dagger}\left[L_{i},\left[L_{i}, U \Lambda U^{\dagger}\right]\right]\right)}
\end{aligned}
$$

Matrix models of fuzzy field theories

- Fuzzy field theory $=$ matrix model with

$$
S(M)=\frac{1}{2} \operatorname{Tr}\left(M\left[L_{i},\left[L_{i}, M\right]\right]\right)+\frac{1}{2} r \operatorname{Tr}\left(M^{2}\right)+g \operatorname{Tr}\left(M^{4}\right)
$$

- We are to compute integrals like

$$
\begin{gathered}
\langle F\rangle \sim \int\left(\prod_{i=1}^{N} d \lambda_{i}\right) F\left(\lambda_{i}\right) e^{-N^{2}\left[S_{\text {eff }}\left(\lambda_{i}\right)+\frac{1}{2} r \frac{1}{N} \sum \lambda_{i}^{2}+g \frac{1}{N} \sum \lambda_{i}^{4}-\frac{2}{N^{2}} \sum_{i<j} \log \left|\lambda_{i}-\lambda_{j}\right|\right]} \\
e^{-N^{2} S_{e f f}\left(\lambda_{i}\right)}=\int d U e^{-N^{2} \frac{1}{2} \operatorname{Tr}\left(U \Lambda U^{\dagger}\left[L_{i},\left[L_{i}, U \Lambda U^{\dagger}\right\rfloor\right]\right)}
\end{gathered}
$$

Steinacker '05

- How to compute $S_{e f f}$?

Matrix models of fuzzy field theories

- Perturbative calculation of the integral show that the $S_{\text {eff }}$ contains products of traces of M. O'Connor, Sämann '07; Sämann '10

$$
e^{-N^{2} S_{e f f}\left(\lambda_{i}\right)}=\int d U e^{-N^{2} \varepsilon \frac{1}{2} \operatorname{Tr}\left(U \Lambda U^{\dagger}\left[L_{i},\left[L_{i}, U \Lambda U^{\dagger}\right]\right]\right)}
$$

- The most recent result is Sämann ' 15

$$
\begin{aligned}
S_{e f f}(M)= & \frac{1}{2}\left[\varepsilon \frac{1}{2}\left(c_{2}-c_{1}^{2}\right)-\varepsilon^{2} \frac{1}{24}\left(c_{2}-c_{1}^{2}\right)^{2}+\varepsilon^{4} \frac{1}{2880}\left(c_{2}-c_{1}^{2}\right)^{4}\right]- \\
& -\varepsilon^{4} \frac{1}{3456}\left[\left(c_{4}-4 c_{3} c_{1}+6 c_{2} c_{1}^{2}-3 c_{1}^{4}\right)-2\left(c_{2}-c_{1}^{2}\right)^{2}\right]^{2}- \\
& -\varepsilon^{3} \frac{1}{432}\left[c_{3}-3 c_{1} c_{2}+2 c_{1}^{3}\right]^{2}
\end{aligned}
$$

where

$$
c_{n}=\frac{1}{N} \operatorname{Tr}\left(M^{n}\right)
$$

- Standard treatment of such multitrace matrix model yields a very unpleasant behaviour. Self interaction is way too strong in the importat region.

Hermitian matrix model of fuzzy field theories

- For the free theory $g=0$ the kinetic term just rescales the eigenvalues. Steinacker '05
- There is a unique parameter independent effective action that reconstructs this rescaling. Polychronakos ' 13

$$
S_{e f f}=\frac{1}{2} F\left(c_{2}\right)+\mathcal{R}=\frac{1}{2} \log \left(\frac{c_{2}}{1-e^{-c_{2}}}\right)+\mathcal{R}
$$

- Recall the perturbative action

$$
\begin{aligned}
S_{e f f}(M)= & \frac{1}{2}\left[\varepsilon \frac{1}{2}\left(c_{2}-c_{1}^{2}\right)-\varepsilon^{2} \frac{1}{24}\left(c_{2}-c_{1}^{2}\right)^{2}+\varepsilon^{4} \frac{1}{2880}\left(c_{2}-c_{1}^{2}\right)^{4}\right]- \\
& -\varepsilon^{4} \frac{1}{3456}\left[\left(c_{4}-4 c_{3} c_{1}+6 c_{2} c_{1}^{2}-3 c_{1}^{4}\right)-2\left(c_{2}-c_{1}^{2}\right)^{2}\right]^{2}- \\
& -\varepsilon^{3} \frac{1}{432}\left[c_{3}-3 c_{1} c_{2}+2 c_{1}^{3}\right]^{2}
\end{aligned}
$$

The first line is the first terms of the small c_{2} expansion with $c_{2} \rightarrow c_{2}-c_{1}^{2}$.

Hermitian matrix model of fuzzy field theories

- For the free theory $g=0$ the kinetic term just rescales the eigenvalues. Steinacker '05
- There is a unique parameter independent effective action that reconstructs this rescaling. Polychronakos '13

$$
S_{e f f}=\frac{1}{2} F\left(c_{2}\right)+\mathcal{R}=\frac{1}{2} \log \left(\frac{c_{2}}{1-e^{-c_{2}}}\right)+\mathcal{R}
$$

- Introducing the asymmetry $c_{2} \rightarrow c_{2}-c_{1}^{2}$ we obtain a matrix model

$$
S(M)=\frac{1}{2} F\left(c_{2}-c_{1}^{2}\right)+\frac{1}{2} r, \operatorname{Tr}\left(M^{2}\right)+g, \operatorname{Tr}\left(M^{4}\right) \quad, \quad F(t)=\log \left(\frac{t}{1-e^{-t}}\right)
$$

Polychronakos '13; JT '15, JT '17

Matrix models of fuzzy field theories

- Such F introduces a (not too strong) interaction among the eigenvalues. For some values of r, g an asymmetric configuration can become stable.
- It corresponds to the "standard" symmetry broken phase.

Matrix models of fuzzy field theories

Hermitian matrix model

JT '17

Matrix models of fuzzy field theories

- A very good qualitative agreement. A very good quantitative agreement in the critical coupling.
- Different value for the critical mass parameter and different behaviour of the asymmetric transition line for large $-r$.
- We need to include \mathcal{R} in a nonperturbative way. work in progress with M. Subjaková

Matrix models of fuzzy field theories

- Recall the perturbative action

$$
\begin{aligned}
S_{e f f}(M)= & \frac{1}{2}\left[\varepsilon \frac{1}{2}\left(c_{2}-c_{1}^{2}\right)-\varepsilon^{2} \frac{1}{24}\left(c_{2}-c_{1}^{2}\right)^{2}+\varepsilon^{4} \frac{1}{2880}\left(c_{2}-c_{1}^{2}\right)^{4}\right]- \\
& -\varepsilon^{4} \frac{1}{3456}\left[\left(c_{4}-4 c_{3} c_{1}+6 c_{2} c_{1}^{2}-3 c_{1}^{4}\right)-2\left(c_{2}-c_{1}^{2}\right)^{2}\right]^{2}- \\
& -\varepsilon^{3} \frac{1}{432}\left[c_{3}-3 c_{1} c_{2}+2 c_{1}^{3}\right]^{2}
\end{aligned}
$$

- Find a function which gives a correct perturbative expansion and behaves well close to the triple point. Eg.

$$
\log \left(1+A t^{2}\right), \frac{1}{1+A t^{2}}
$$

Matrix models of fuzzy field theories

- Recall the perturbative action

$$
\begin{aligned}
S_{e f f}(M)= & \frac{1}{2}\left[\varepsilon \frac{1}{2}\left(c_{2}-c_{1}^{2}\right)-\varepsilon^{2} \frac{1}{24}\left(c_{2}-c_{1}^{2}\right)^{2}+\varepsilon^{4} \frac{1}{2880}\left(c_{2}-c_{1}^{2}\right)^{4}\right]- \\
& -\varepsilon^{4} \frac{1}{3456}\left[\left(c_{4}-4 c_{3} c_{1}+6 c_{2} c_{1}^{2}\right)-3 c_{1}^{4}-2\left(c_{2}-c_{1}^{2}\right)^{2}\right]^{2}- \\
& -\varepsilon^{3} \frac{1}{432}\left[c_{3}-3 c_{1} c_{2}+2 c_{1}^{3}\right]^{2} \\
= & \frac{1}{2} \frac{1}{2} c_{2}-\frac{1}{4} c_{1}^{2}-\frac{1}{24} c_{2}^{2}-\frac{1}{432} c_{3}^{2}-\frac{1}{3456} c_{4}^{2}+\ldots
\end{aligned}
$$

- This part can be interpreted as an additional two-particle interaction, modifying the Riemann-Hilbert problem.

Matrix models of fuzzy field theories

- Recall the perturbative action

$$
S_{\text {eff }}(M)=\frac{1}{2} \frac{1}{2} c_{2}-\frac{1}{4} c_{1}^{2}-\frac{1}{24} c_{2}^{2}-\frac{1}{432} c_{3}^{2}-\frac{1}{3456} c_{4}^{2}+\ldots
$$

- Function of the form

$$
S_{e f f}=\sum_{i, j} a \log \left|1-b \lambda_{i} \lambda_{j}\right|
$$

with $a=3 / 2, b=1 / 6$ correctly reproduces all four known coefficients.

Conclusions

- Fuzzy spaces have a discreet, yet symmetric, short distance structure.
- This comes with some unexpected consequences.
- Matrix models are a great tool to analyze the properties of (scalar field theories on) fuzzy spaces.

Outlook

To do list.

- Find (a more) complete understanding of the matrix model.
- Investigate matrix models corresponding to spaces beyond the fuzzy sphere.
- Investigate matrix models corresponding to theories without the UV/IR mixing.

Thank you for your attention!

If time permits I

Find (a more) complete understanding of the matrix model.

- It can be shown

$$
\begin{aligned}
e^{-N^{2} S_{e f f}\left(\lambda_{i}\right)} & =\int d U e^{-N^{2} \frac{1}{2} \operatorname{Tr}\left(U \Lambda U^{\dagger}\left[L_{i},\left[L_{i}, U \Lambda U^{\dagger}\right]\right)\right.} \\
& =\int d U e^{-N^{2} \frac{1}{2} \operatorname{Tr}\left(U \Lambda U^{\dagger}\left[E,\left[E, U \Lambda U^{\dagger}\right]\right)\right.}
\end{aligned}
$$

for a single matrix E.
Steinacker ' 16

- This is a significantly simpler integral to compute and model to consider.

If time permits II

Investigate matrix models corresponding to theories without the UV/IR mixing.

- For a noncommutative theory with no UV/IR mixing, the extra phase should not be present in the commutative limit of the phase diagram.
- B.P. Dolan, D. O'Connor and P. Prešnajder [arXiv:0109084],
- H. Grosse and R. Wulkenhaar [arXiv:0401128],
- R. Gurau, J. Magnen, V. Rivasseau and A. Tanasa [arXiv:0802.0791].
- Understanding the phase diagram of such theories, especially mechanism of the departure the striped phase could teach us a lot technically and conceptually.

