Fuzzy field theories and new random matrix ensembles

Juraj Tekel

Department of Theoretical Physics and Didactics of Physics
Faculty of Mathematics, Physics and Informatics
Comenius University, Bratislava

School and workshop on mathematical physics 31.8.2018, Stará Lesná

Outline

I will talk about

- random matrix ensembles,
- fuzzy spaces,
- ensembles of random matrices related to physics on fuzzy spaces.

Take home message

- Random matrix ensembles are more than just a bunch of random numbers in a table.
- Fuzzy spaces are finite mode approximations to compact manifolds.
- Scalar field theories on such spaces are described in terms of a very specific (and very purely understood) hermitian random matrix models.

Random matrices

Random matrices

$$
\left(\begin{array}{ccccc}
-1.97209 & -0.0976152 & 1.35614 & 0.223808 & 1.11521 \\
0.0626392 & 0.0996544 & 1.24676 & 0.178807 & 0.890936 \\
-0.352318 & 1.04726 & -0.416029 & -3.24653 & 1.36851 \\
-0.150889 & 0.083049 & 1.05206 & 0.622012 & -0.266355 \\
1.29318 & -0.260398 & -1.36629 & 0.311455 & -0.0599934
\end{array}\right)
$$

Random matrices

$$
\left(\begin{array}{ccc}
-0.467628 & -0.293526+0.259101 i & 0.208354-0.510098 i \\
-0.293526-0.259101 i & -0.422052 & 0.752265+0.0954037 i \\
0.208354+0.510098 i & 0.752265-0.0954037 i & 0.0384826
\end{array}\right)
$$

Random matrices

- Matrices random entries.

Ensemble of matrices M, measure on this set $d M$ and probability distribution

$$
P\left(M_{11}, M_{12}, \ldots\right)=P(M)
$$

- Expected value of some function f of the matrix is

$$
\langle f\rangle=\frac{1}{Z} \int d M f(M) P(M)
$$

- E.g.

$$
f(M)=M_{11}, f(M)=M^{2}, f(M)=\operatorname{Tr}\left(M^{12}\right), f(M)=\frac{1}{N} \operatorname{Tr}\left(M^{12}\right)
$$

- Interesting cases are $N=1, N=2, N \rightarrow \infty$.

Random matrices

- An important example - ensemble of $N \times N$ hermitian matrices with independent, normally distributed entries

$$
p\left(M_{i i}\right)=N(0,1), p\left(\operatorname{Re} M_{i j}\right)=p\left(\operatorname{Im} M_{i j}\right)=N(0,1 / 2)
$$

and

$$
P(M)=\left[\prod_{i=1}^{N} p\left(M_{i i}\right)\right]\left[\prod_{i<j} p\left(\operatorname{Re} M_{i j}\right) p\left(\operatorname{Im} M_{i j}\right)\right]=e^{-\frac{1}{2} \operatorname{Tr}\left(M^{2}\right)}
$$

and

$$
d M=\left[\prod_{i=1}^{N} M_{i i}\right]\left[\prod_{i<j} \operatorname{Re} M_{i j} \operatorname{Im} M_{i j}\right]
$$

- Both the measure and the probability distribution are invariant under $M \rightarrow U M U^{\dagger}$ with $U \in S U(N)$.
- Requirement of such invariance is very restrictive.

Random matrices - applications

- Originally - spectra of large nuclei.
- Large color limits of QCD.
- Discretization of surfaces.
- Quantum chaos.
- Mesoscopic physics.
- Riemann conjecture.
- Integrable hierarchies.
- Free probability.

Random matrices - eigenvalue decomposition

- We have

$$
d M P(M)=d M e^{-\left[\frac{1}{2} \operatorname{Tr}\left(M^{2}\right)+\ldots\right]}=d M e^{-V(M)}
$$

- If we ask invariant questions, we can turn

$$
\langle f\rangle=\frac{1}{Z} \int d M f(M) P(M)
$$

into an eigenvalue problem by diagonalization $M=U \Lambda U^{\dagger}$ for some $U \in S U(N)$ and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right)$, the integration measure becomes

$$
d M=d U\left(\prod_{i=1}^{N} d \lambda_{i}\right) \times \prod_{i<j}\left(\lambda_{i}-\lambda_{j}\right)^{2}
$$

- We are to compute integrals like

$$
\langle f\rangle \sim \int\left(\prod_{i=1}^{N} d \lambda_{i}\right) f\left(\lambda_{i}\right) e^{-\left[\sum_{i} V\left(\lambda_{i}\right)-2 \sum_{i<j} \log \left|\lambda_{i}-\lambda_{j}\right|\right]} \times \int d U
$$

Random matrices - eigenvalue decomposition

- Term

$$
2 \sum_{i<j} \log \left|\lambda_{i}-\lambda_{j}\right|
$$

is of order N^{2} if $\lambda_{i} \sim 1$. Potential term

$$
\sum_{i} V\left(\lambda_{i}\right)
$$

is of order N.

- We need to enhance the probability measure by a factor of N to

$$
e^{-N^{2}\left[\frac{1}{N} \sum_{i} V\left(\lambda_{i}\right)-\frac{2}{N^{2}} \sum_{i<j} \log \left|\lambda_{i}-\lambda_{j}\right|\right]}
$$

- This makes the N^{2} dependence explicit.

Random matrices - eigenvalue decomposition

- We introduce eigenvalue distribution

$$
\rho(\lambda)=\frac{1}{N} \sum_{j} \delta\left(\lambda-\lambda_{j}\right)
$$

which gives for the averages

$$
\langle f\rangle=\sum_{i} \rho\left(\lambda_{i}\right) f\left(\lambda_{i}\right) .
$$

- The question is, how does do probability measure

$$
e^{-N^{2}\left[\frac{1}{N} \sum_{i} V\left(\lambda_{i}\right)-\frac{2}{N^{2}} \sum_{i<j} \log \left|\lambda_{i}-\lambda_{j}\right|\right]}
$$

translate into eigenvalue distribution ρ.

Random matrices - large N

- For finite N - orthogonal polynomials method.
- For $N \rightarrow \infty$ the question simplifies due to the factor N^{2}

$$
e^{-N^{2}\left[\frac{1}{N} \sum_{i} V\left(\lambda_{i}\right)-\frac{2}{N^{2}} \sum_{i<j} \log \left|\lambda_{i}-\lambda_{j}\right|\right]} .
$$

- For large N only configurations with small exponent contribute significantly to the integral. In the limit $N \rightarrow \infty$ only the extremal configuration

$$
V^{\prime}\left(\lambda_{i}\right)-\frac{2}{N} \sum_{j \neq i} \frac{1}{\lambda_{i}-\lambda_{j}}=0 \quad \forall i
$$

- Like a gas of particles with logarithmic repulsion.

Random matrices - large N

- In the $N \rightarrow \infty$ limit sums become integrals. We introduce resolvent

$$
\omega(z)=\int d y \frac{\rho(y)}{z-y}
$$

and

$$
V^{\prime}\left(\lambda_{i}\right)-\frac{1}{N} \sum_{i \neq j} \frac{1}{\lambda_{i}-\lambda_{j}}=0 \quad \forall i
$$

becomes a Riemann-Hilbert problem

$$
\omega\left(x+i 0^{+}\right)+\omega\left(x-i 0^{+}\right)=V^{\prime}(x), x \in \operatorname{supp} \rho
$$

- The eigenvalue distribution is then given by

$$
\rho(\lambda)=-\frac{1}{2 \pi i}\left[\omega\left(x+i 0^{+}\right)-\omega\left(x-i 0^{+}\right)\right]
$$

Random matrices - quartic potential

- The simplest case

$$
V(x)=\frac{1}{2} r x^{2}+g x^{4}
$$

- For $r>0$ eigenvalues spread around the minimum at $x=0$. For $r<0$, peak can be high enough to spread the eigenvalues.
- This happens for $r=-4 \sqrt{g}$.

Random matrices - quartic potential

Random matrices - quartic potential

Random matrices - quartic potential

Fuzzy spaces

Fuzzy spaces - introduction

- Part of a more general concept of noncommutative spaces. Fuzzy spaces have finite volume.
- Promoting the phase space of QM to a true geometric space.
- The most important property is a 'lattice" like short distance structure, but with continuous symmetries.

Fuzzy spaces - introduction

quantum theory + general relativity \|

?!?!?!

Fuzzy spaces - introduction

quantum theory + general relativity \Downarrow
some nontrivial short distance structure of space

Doplicher, Fredenhagen, Robersts '95

Fuzzy spaces - introduction

- To measure an event of spatial extent Δx, we need a particle with a similar wavelength. According to de Broglie, this particle has energy

$$
E \sim \frac{1}{\Delta x} .
$$

- As we lower Δx beyond a certain point, the concentration of energy will create a black hole. The result of the measurement will be hidden under the event horizon of this black hole and we can not obtain the information we were after.
- Rather unsurprisingly, this will happen at the Planck scale

$$
R_{S}=\frac{2 G M}{c^{2}}, E=M c^{2}, E=\frac{h c}{\lambda} \Rightarrow L=\sqrt{2} \underbrace{\sqrt{\frac{h G}{c^{3}}}}_{l_{p l}}
$$

Fuzzy spaces - introduction

quantum theory + general relativity \Downarrow
some nontrivial short distance structure of space
介
space noncommutatitvity

Fuzzy spaces - construction

Fuzzy spaces - construction

Fuzzy sphere Hoppe '82; Madore '92; Grosse, Klimčík, Prešnajder '90s; Steinacker '13

- Functions on the usual sphere are given by

$$
f(\theta, \phi)=\sum_{l=0}^{\infty} \sum_{m=-l}^{l} c_{l m} Y_{l m}(\theta, \phi)
$$

where $Y_{l m}$ are the spherical harmonics

$$
\Delta Y_{l m}(\theta, \phi)=l(l+1) Y_{l m}(\theta, \phi) .
$$

- They form an (commutative) algebra and all the information about the sphere is encoded in this algebra (Gelfand, Naimark).
- To describe features at a length scale δx we need functions Y_{m}^{l} with

$$
l \sim \frac{1}{\delta x}
$$

Fuzzy spaces - construction

Fuzzy spaces - construction

- If we truncate the possible values of l in the expansion

$$
f=\sum_{l=0}^{L} \sum_{m=-l}^{l} c_{l m} Y_{l m}(\theta, \phi),
$$

we will not be able to see any features of functions at length scales under $\sim 1 / L$.

- Points on the sphere (as δ-functions) cease to exist.
- Expressions defined in this way are not closed under multiplication.

Fuzzy spaces - construction

Fuzzy spaces - construction

- Number of independent functions with $l \leq L$ is

$$
\sum_{l=0}^{L} \sum_{m=-l}^{l} 1=(L+1)^{2}=N^{2}
$$

This is the same as the number of $N \times N$ hermitian matrices

$$
N+2 \sum_{n=1}^{N}(n-1)=N^{2} .
$$

The idea is to map the former on the latter and borrow a closed product from there.

- In order to do so, we consider a $N \times N$ matrix as a product of two N-dimensional representations \underline{N} of the group $S U(2)$. It reduces to

$$
\begin{aligned}
& \underline{N} \otimes \underline{N}= \\
& =\left\{Y_{0 m}\right\} \oplus\left\{Y_{1 m}\right\} \oplus\left\{Y_{2 m}\right\}
\end{aligned}
$$

Fuzzy spaces - construction

- We thus have a map $\varphi: Y_{l m} \rightarrow M$ and we define the product

$$
Y_{l m} * Y_{l^{\prime} m^{\prime}}:=\varphi^{-1}\left(\varphi\left(Y_{l m}\right) \varphi\left(Y_{l^{\prime} m^{\prime}}\right)\right) .
$$

- We have obtained a short distance structure, but the prize we had to pay was a noncommutative product $*$ of functions. The space, for which this is the algebra of functions, is called the fuzzy sphere.
- Opposing to some lattice discretization this space still possess a full rotational symmetry.
- In the limit $N \rightarrow \infty$ we recover the original sphere.

Fuzzy spaces - an alternative construction

- The regualar sphere S^{2} is given by the coordinates

$$
x_{i} x_{i}=R^{2} \quad, \quad x_{i} x_{j}-x_{j} x_{i}=0
$$

which generate the following algebra of functions

$$
f=\left\{\sum_{k \in \mathbb{N}^{3}}\left(a_{k_{1} k_{2} k_{3}} \prod_{i=1}^{3} x_{i}^{k_{i}}\right) \mid x_{i} x_{i}=R^{2}\right\},
$$

which is by definition commutative.

- Information about the sphere is again hidden in this algebra.

Fuzzy spaces - an alternative construction

- For the fuzzy sphere S_{F}^{2} we define

$$
x_{i} x_{i}=\rho^{2} \quad, \quad x_{i} x_{j}-x_{j} x_{i}=i \theta \varepsilon_{i j k} x_{k} .
$$

- Such x_{i} 's generate a different, noncommutative algebra and S_{F}^{2} is an object, which has this algebra as an algebra of functions.
- The conditions can be realized as an $N=2 j+1$ dimensional representation of $S U(2)$

$$
x_{i}=\frac{2 r}{\sqrt{N^{2}-1}} L_{i} \quad, \quad \theta=\frac{2 r}{\sqrt{N^{2}-1}} \quad, \quad \rho^{2}=\frac{4 r^{2}}{N^{2}-1} j(j+1)=r^{2} .
$$

- The group $S U(2)$ still acts on x_{i} 's and this space enjoys a full rotational symmetry.
- And again, in the limit $N \rightarrow \infty$ we recover the original sphere.

Fuzzy spaces - an alternative construction

- x_{i} 's are $N \times N$ matrices, functions on S_{F}^{2} are combinations of all their possible products and thus hermitian matrices M.
- Such $N \times N$ matrix can be decomposed into

$$
M=\sum_{l=0}^{N-1} \sum_{m=-l}^{m=l} c_{l m} T_{l m}
$$

where matrices T_{m}^{l} are called polarization tensors and

$$
\begin{aligned}
T_{m}^{l} & =\varphi\left(Y_{m}^{l}\right) \\
\operatorname{Tr}\left(T_{l m} T_{l^{\prime} m^{\prime}}\right) & =\delta_{l l^{\prime}} \delta_{m m^{\prime}} \\
{\left[L_{i},\left[L_{i}, T_{l m}\right]\right] } & =l(l+1) T_{l m} .
\end{aligned}
$$

Fuzzy spaces - an alternative construction

- Either way, we have divided the sphere into N cells. Function on the fuzzy sphere is given by a matrix M and the eigenvalues of M represent the values of the function on these cells.

- However there are no sharp boundaries between the pieces and everything is blurred, or fuzzy.

Fuzzy spaces - examples of function/matrix correspondence

Examples of function/matrix correspondence

$N=2$

Examples of function/matrix correspondence

$$
\left(\begin{array}{cc}
0.153116 & -0.299646+0.0471715 i \\
-0.299646-0.0471715 i & 1.2326
\end{array}\right)
$$

Examples of function/matrix correspondence

$$
\left(\begin{array}{cc}
0.0948057 & -0.196209-0.572162 i \\
-0.196209+0.572162 i & -0.344324
\end{array}\right)
$$

Fuzzy physics - scalar field theory

Fuzzy physics - scalar field theory

- Commutative euclidean theory of a real scalar field is given by an action

$$
S(\Phi)=\int d x\left[\frac{1}{2} \Phi \Delta \Phi+\frac{1}{2} m^{2} \Phi^{2}+V(\Phi)\right]
$$

and path integral correlation functions

$$
\langle F\rangle=\frac{\int d \Phi F(\Phi) e^{-S(\Phi)}}{\int d \Phi e^{-S(\Phi)}}
$$

- We construct the noncommutative theory as an analogue with
- field \rightarrow matrix,
- functional integral \rightarrow matrix integral,
- spacetime integral \rightarrow trace,
- derivative $\rightarrow L_{i}$ commutator.

Fuzzy physics - scalar field theory

- Commutative

$$
\begin{gathered}
S(\Phi)=\int d x\left[\frac{1}{2} \Phi \Delta \Phi+\frac{1}{2} m^{2} \Phi^{2}+V(\Phi)\right] \\
\langle F\rangle=\frac{\int d \Phi F(\Phi) e^{-S(\Phi)}}{\int d \Phi e^{-S(\Phi)}} .
\end{gathered}
$$

- Noncommutative (for S_{F}^{2})

$$
\begin{gathered}
S(M)=\frac{4 \pi R^{2}}{N} \operatorname{Tr}\left[\frac{1}{2} M \frac{1}{R^{2}}\left[L_{i},\left[L_{i}, M\right]\right]+\frac{1}{2} m^{2} M^{2}+V(M)\right] \\
\langle F\rangle=\frac{\int d M F(M) e^{-S(M)}}{\int d M e^{-S(M)}} .
\end{gathered}
$$

Balachandran, Kürkçüoğlu, Vaidya '05; Szabo '03

Random matrix models of scalar field theories

Models of scalar fields

- Fuzzy field theory $=$ Ensemble of hermitian $N \times N$ matrices with

$$
S(M)=\frac{1}{2} \operatorname{Tr}\left(M\left[L_{i},\left[L_{i}, M\right]\right]\right)+\frac{1}{2} r \operatorname{Tr}\left(M^{2}\right)+g \operatorname{Tr}\left(M^{4}\right)
$$

- We are to compute integrals like

$$
\begin{aligned}
\langle F\rangle \sim \int\left(\prod_{i=1}^{N} d \lambda_{i}\right) & F\left(\lambda_{i}\right) e^{-N^{2}\left[\frac{1}{2} r \frac{1}{N} \sum \lambda_{i}^{2}+g \frac{1}{N} \sum \lambda_{i}^{4}-\frac{2}{N^{2}} \sum_{i<j} \log \left|\lambda_{i}-\lambda_{j}\right|\right]} \\
& \times \int d U e^{-N^{2} \frac{1}{2} \operatorname{Tr}\left(U \Lambda U^{\dagger}\left[L_{i},\left[L_{i}, U \Lambda U^{\dagger}\right]\right]\right)}
\end{aligned}
$$

Models of scalar fields

- Fuzzy field theory $=$ Ensemble of hermitian $N \times N$ matrices with

$$
S(M)=\frac{1}{2} \operatorname{Tr}\left(M\left[L_{i},\left[L_{i}, M\right]\right]\right)+\frac{1}{2} r \operatorname{Tr}\left(M^{2}\right)+g \operatorname{Tr}\left(M^{4}\right)
$$

- We are to compute integrals like

$$
\begin{gathered}
\langle F\rangle \sim \int\left(\prod_{i=1}^{N} d \lambda_{i}\right) F\left(\lambda_{i}\right) e^{-N^{2}\left[S_{e f f}\left(\lambda_{i}\right)+\frac{1}{2} r \frac{1}{N} \sum \lambda_{i}^{2}+g_{1}^{1} \sum \lambda_{i}^{4}-\frac{2}{N^{2}} \sum_{i<j} \log \left|\lambda_{i}-\lambda_{j}\right|\right]} \\
e^{-N^{2} S_{e f f}\left(\lambda_{i}\right)}=\int d U e^{-N^{2} \frac{1}{2} \operatorname{Tr}\left(U \Lambda U ^ { \dagger } \left(\left[L_{i},\left(L_{i}, U \Lambda U^{\dagger} \dagger\right]\right)\right.\right.}
\end{gathered}
$$

Steinacker '05

- How to compute $S_{e f f}$?

Models of scalar fields - perturbative

- Perturbative calculation of the integral show that the $S_{\text {eff }}$ contains products of traces of M. O'Connor, Sämann '07; Sämann '10

$$
e^{-N^{2} S_{e f f}\left(\lambda_{i}\right)}=\int d U e^{-N^{2} \varepsilon \frac{1}{2} \operatorname{Tr}\left(U \Lambda U^{\dagger}\left[L_{i},\left[L_{i}, U \Lambda U^{\dagger}\right]\right]\right)}
$$

- The most recent result is Sämann ' 15

$$
\begin{aligned}
S_{e f f}(M)= & \frac{1}{2}\left[\varepsilon \frac{1}{2}\left(c_{2}-c_{1}^{2}\right)-\varepsilon^{2} \frac{1}{24}\left(c_{2}-c_{1}^{2}\right)^{2}+\varepsilon^{4} \frac{1}{2880}\left(c_{2}-c_{1}^{2}\right)^{4}\right]- \\
& -\varepsilon^{4} \frac{1}{3456}\left[\left(c_{4}-4 c_{3} c_{1}+6 c_{2} c_{1}^{2}-3 c_{1}^{4}\right)-2\left(c_{2}-c_{1}^{2}\right)^{2}\right]^{2}- \\
& -\varepsilon^{3} \frac{1}{432}\left[c_{3}-3 c_{1} c_{2}+2 c_{1}^{3}\right]^{2}
\end{aligned}
$$

where

$$
c_{n}=\frac{1}{N} \operatorname{Tr}\left(M^{n}\right)
$$

- Standard treatment of such multitrace matrix model yields a very unpleasant behaviour. Self interaction is way too strong in the importat region.

Models of scalar fields - perturbative

- Interesting structure

$$
\begin{aligned}
S_{\text {eff }}(M)= & \frac{1}{2}\left[\varepsilon \frac{1}{2} t_{2}-\varepsilon^{2} \frac{1}{24} t_{2}^{2}+\varepsilon^{4} \frac{1}{2880} t_{2}^{4}\right]- \\
& -\varepsilon^{4} \frac{1}{3456}\left[t_{4}-2 t_{2}^{2}\right]^{2}- \\
& -\varepsilon^{3} \frac{1}{432} t_{3}^{2}
\end{aligned}
$$

where

$$
t_{n}=\frac{1}{N} \operatorname{Tr}\left[\left(M-\frac{1}{N} \operatorname{Tr}(M)\right)^{n}\right]
$$

- First line - quadratic, second line vanishes for semicircle.

Models of scalar fields - nonperturbative

- For the free theory $g=0$ the kinetic term just rescales the eigenvalues. Steinacker '05
- There is a unique parameter independent effective action that reconstructs this rescaling. Polychronakos ' 13

$$
S_{e f f}=\frac{1}{2} F\left(c_{2}-c_{1}^{2}\right)+\mathcal{R}=\frac{1}{2} \log \left(\frac{c_{2}-c_{1}^{2}}{1-e^{-\left(c_{2}-c_{1}^{2}\right)}}\right)+\mathcal{R}
$$

- We get a the following fuzzy-field-theory-like matrix model

$$
S(M)=\frac{1}{2} F\left(c_{2}-c_{1}^{2}\right)+\frac{1}{2} r \operatorname{Tr}\left(M^{2}\right)+g \operatorname{Tr}\left(M^{4}\right)
$$

Better behaved for S_{F}^{2} but still not complete.
Polychronakos '13; JT '15, JT '17

- In general function F given by the properties of the fuzzy space.

Models of scalar fields - different (?) approximation (?)

- It can be shown

$$
\begin{aligned}
e^{-N^{2} S_{e f f}\left(\lambda_{i}\right)} & =\int d U e^{-N^{2} \frac{1}{2} \operatorname{Tr}\left(U \Lambda U^{\dagger}\left[L_{i},\left[L_{i}, U \Lambda U^{\dagger}\right]\right)\right.} \\
& \approx \int d U e^{-N^{2} \frac{1}{2} \operatorname{Tr}\left(U \Lambda U^{\dagger}\left[E,\left[E, U \Lambda U^{\dagger}\right]\right)\right.}
\end{aligned}
$$

for a single matrix E with given eigenvalues.
Steinacker '16

- This is still an approximation, but a significantly simpler integral to compute.
- The Harish-Chandra-Itzykson-Zuber integral formula might be of use.

$$
\int d U e^{\operatorname{Tr}\left(A U B U^{\dagger}\right)}=\left(\prod_{p=1}^{N-1} p!\right) \frac{\operatorname{det} e^{a_{i} b_{j}}}{\Delta(a) \Delta(b)}
$$

a_{i} - eigenvalues of A, b_{j} - eigenvalues of B, Δ - Vandermonde

Models of scalar fields - different approximation

- Recall the perturbative action

$$
\begin{aligned}
S_{e f f}(M)= & \frac{1}{2}\left[\varepsilon \frac{1}{2}\left(c_{2}-c_{1}^{2}\right)-\varepsilon^{2} \frac{1}{24}\left(c_{2}-c_{1}^{2}\right)^{2}+\varepsilon^{4} \frac{1}{2880}\left(c_{2}-c_{1}^{2}\right)^{4}\right]- \\
& -\varepsilon^{4} \frac{1}{3456}\left[\left(c_{4}-4 c_{3} c_{1}+6 c_{2} c_{1}^{2}\right)-3 c_{1}^{4}-2\left(c_{2}-c_{1}^{2}\right)^{2}\right]^{2}- \\
& -\varepsilon^{3} \frac{1}{432}\left[c_{3}-3 c_{1} c_{2}+2 c_{1}^{3}\right]^{2} \\
= & \frac{1}{2} \frac{1}{2} c_{2}-\frac{1}{4} c_{1}^{2}-\frac{1}{24} c_{2}^{2}-\frac{1}{432} c_{3}^{2}-\frac{1}{3456} c_{4}^{2}+\ldots
\end{aligned}
$$

- Function of the form

$$
S_{e f f}=\sum_{i, j} a \log \left|1-b \lambda_{i} \lambda_{j}\right|
$$

with $a=3 / 2, b=1 / 6$ correctly reproduces all four known coefficients.

Conclusion

Conclusion - the new random matrix ensembles

- Scalar field theories on fuzzy spaces give rise to certain specific hermitian random matrix ensembles.
- The new ingredient is in a term in the probability distribution coming from the kinetic term of the theory.
- The issue is computation of the following integral over the $U(N)$ group

$$
\int d U e^{-N^{2} \frac{1}{2} \operatorname{Tr}\left(U \Lambda U^{\dagger}\left[L_{i},\left[L_{i}, U \Lambda U^{\dagger}\right]\right)\right.}
$$

L_{i} 's are the generators of $S U(2)$ in the N dimensional representation for the case of S_{F}^{2}, more complicated for other spaces.

Thank you for your attention!

If time permits - Fuzzy spaces in physics

- Regularization of infinities in the standard QFT.

Heisenberg ~'30; Snyder '47, Yang '47

- Regularization of field theories for numerical simulations.

Panero '16

- An effective description of the open string dynamics in a magnetic background in the low energy limit.
Seiberg Witten '99; Douglas, Nekrasov '01
- Solutions of various matrix formulations of the string theory (IKKT, BFSS, BNM).
Steinacker '13
- Geometric unification of the particle physics and theory of gravity. van Suijlekom '15
- An effective description of various systems in a certain limit (eg. QHE). Karabali, Nair '06

If time permits - Symmetry breaking in NC field theories

- From now on ϕ^{4} theory.
- The commutative field theory has two phases in the phase diagram, disorder and uniform order phases.
Glimm, Jaffe, Spencer '75; Chang '76
Loinaz, Willey '98; Schaich, Loinaz '09
- In disorder phase the field oscillates around the value $\phi=0$.
- In uniform order phase the field oscillates around a nonzero value which is a minimum of the potential.

If time permits - Symmetry breaking in NC field theories

- The phase diagram of noncommutative field theories has one more phase. It is a non-uniform order phase, or a striped phase. Gubser, Sondhi ' 01 ; G.-H. Chen and Y.-S. Wu '02
- In this phase, the field does not oscillate around one given value in the whole space. Translational symmetry is broken.
- This has been established in numerous numerical works for variety different spaces.
Martin '04; García Flores, Martin, O'Connor '06, '09; Panero '06, '07; Ydri '14;
Bietenholz, F. Hofheinz, Mejía-Díaz, Panero '14; Mejía-Díaz, Bietenholz, Panero '14;
Medina, Bietenholz, D. O'Connor '08; Bietenholz, Hofheinz, Nishimura '04; Lizzi,
Spisso '12; Ydri, Ramda, Rouag '16
Panero '15
- This phase is a result of some very interesting features/bugs of the theory.

If time permits - Symmetry breaking in NC field theories

Mejía-Díaz, Bietenholz, Panero '14 for \mathbb{R}_{θ}^{2}

If time permits - Symmetry breaking in NC field theories

O'Connor, Kováčik '18 for S_{F}^{2}

If time permits - Symmetry breaking in NC field theories

$$
S(M)=\frac{1}{2} F\left(c_{2}-c_{1}^{2}\right)+\frac{1}{2} r \operatorname{Tr}\left(M^{2}\right)+g \operatorname{Tr}\left(M^{4}\right)
$$

