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Outline

I will talk about

random matrix ensembles,

fuzzy spaces,

ensembles of random matrices related to physics on fuzzy spaces.
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Take home message

Random matrix ensembles are more than just a bunch of random
numbers in a table.

Fuzzy spaces are �nite mode approximations to compact manifolds.

Scalar �eld theories on such spaces are described in terms of a very
speci�c (and very purely understood) hermitian random matrix models.
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Random matrices
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Random matrices


−1.97209 −0.0976152 1.35614 0.223808 1.11521
0.0626392 0.0996544 1.24676 0.178807 0.890936
−0.352318 1.04726 −0.416029 −3.24653 1.36851
−0.150889 0.083049 1.05206 0.622012 −0.266355

1.29318 −0.260398 −1.36629 0.311455 −0.0599934
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Random matrices

 −0.467628 −0.293526 + 0.259101i 0.208354− 0.510098i
−0.293526− 0.259101i −0.422052 0.752265 + 0.0954037i
0.208354 + 0.510098i 0.752265− 0.0954037i 0.0384826
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Random matrices

Matrices random entries.
Ensemble of matrices M , measure on this set dM and probability
distribution

P (M11,M12, . . .) = P (M) .

Expected value of some function f of the matrix is

〈f〉 =
1

Z

∫
dM f(M)P (M) .

E.g.

f(M) = M11 , f(M) = M2 , f(M) = Tr
(
M12

)
, f(M) =

1

N
Tr
(
M12

)
.

Interesting cases are N = 1, N = 2, N →∞.
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Random matrices

An important example - ensemble of N ×N hermitian matrices with
independent, normally distributed entries

p(Mii) = N(0, 1) , p(ReMij) = p(ImMij) = N(0, 1/2)

and

P (M) =

[
N∏
i=1

p(Mii)

][∏
i<j

p(ReMij)p(ImMij)

]
= e−

1
2Tr(M

2)

and

dM =

[
N∏
i=1

Mii

][∏
i<j

ReMijImMij

]
.

Both the measure and the probability distribution are invariant under
M → UMU† with U ∈ SU(N).

Requirement of such invariance is very restrictive.
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Random matrices - applications

Originally - spectra of large nuclei.

Large color limits of QCD.

Discretization of surfaces.

Quantum chaos.

Mesoscopic physics.

Riemann conjecture.

Integrable hierarchies.

Free probability.
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Random matrices - eigenvalue decomposition

We have
dM P (M) = dM e−[ 1

2Tr(M
2)+...] = dM e−V (M) .

If we ask invariant questions, we can turn

〈f〉 =
1

Z

∫
dM f(M)P (M)

into an eigenvalue problem by diagonalization M = UΛU† for some
U ∈ SU(N) and Λ = diag(λ1, . . . , λN ), the integration measure becomes

dM = dU

(
N∏
i=1

dλi

)
×
∏
i<j

(λi − λj)2

We are to compute integrals like

〈f〉 ∼
∫ ( N∏

i=1

dλi

)
f(λi) e

−[
∑

i V (λi)−2
∑

i<j log |λi−λj |] ×
∫
dU
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Random matrices - eigenvalue decomposition

Term
2
∑
i<j

log |λi − λj |

is of order N2 if λi ∼ 1. Potential term∑
i

V (λi)

is of order N .

We need to enhance the probability measure by a factor of N to

e−N
2[ 1

N

∑
i V (λi)− 2

N2

∑
i<j log |λi−λj |]

This makes the N2 dependence explicit.
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Random matrices - eigenvalue decomposition

We introduce eigenvalue distribution

ρ(λ) =
1

N

∑
j

δ(λ− λj)

which gives for the averages

〈f〉 =
∑
i

ρ(λi)f(λi) .

The question is, how does do probability measure

e−N
2[ 1

N

∑
i V (λi)− 2

N2

∑
i<j log |λi−λj |]

translate into eigenvalue distribution ρ.
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Random matrices - large N

For �nite N - orthogonal polynomials method.

For N →∞ the question simpli�es due to the factor N2

e−N
2[ 1

N

∑
i V (λi)− 2

N2

∑
i<j log |λi−λj |] .

For large N only con�gurations with small exponent contribute
signi�cantly to the integral. In the limit N →∞ only the extremal
con�guration

V ′(λi)−
2

N

∑
j 6=i

1

λi − λj
= 0 ∀i

Like a gas of particles with logarithmic repulsion.

Juraj Tekel Fuzzy �eld theories and new random matrix ensembles



Random matrices - large N

In the N →∞ limit sums become integrals. We introduce resolvent

ω(z) =

∫
dy

ρ(y)

z − y

and

V ′(λi)−
1

N

∑
i 6=j

1

λi − λj
= 0 ∀i

becomes a Riemann-Hilbert problem

ω(x+ i0+) + ω(x− i0+) = V ′(x) , x ∈ supp ρ .

The eigenvalue distribution is then given by

ρ(λ) = − 1

2πi

[
ω(x+ i0+)− ω(x− i0+)

]
.
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Random matrices - quartic potential

The simplest case

V (x) =
1

2
rx2 + gx4

For r > 0 eigenvalues spread around the minimum at x = 0. For r < 0,
peak can be high enough to spread the eigenvalues.

This happens for r = −4
√
g.
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Random matrices - quartic potential
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Random matrices - quartic potential
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Random matrices - quartic potential
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Fuzzy spaces
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Fuzzy spaces - introduction

Part of a more general concept of noncommutative spaces.
Fuzzy spaces have �nite volume.

Promoting the phase space of QM to a true geometric space.

The most important property is a �lattice� like short distance structure,
but with continuous symmetries.
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Fuzzy spaces - introduction

quantum theory + general relativity

=

?!?!?!

Doplicher, Fredenhagen, Robersts '95
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Fuzzy spaces - introduction

quantum theory + general relativity

⇓
some nontrivial short distance structure of space

Doplicher, Fredenhagen, Robersts '95
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Fuzzy spaces - introduction

To measure an event of spatial extent ∆x, we need a particle with a
similar wavelength. According to de Broglie, this particle has energy

E ∼ 1

∆x
.

As we lower ∆x beyond a certain point, the concentration of energy will
create a black hole. The result of the measurement will be hidden under
the event horizon of this black hole and we can not obtain the
information we were after.

Rather unsurprisingly, this will happen at the Planck scale

RS =
2GM

c2
, E = Mc2 , E =

hc

λ
⇒ L =

√
2

√
hG

c3︸ ︷︷ ︸
lpl

.

Juraj Tekel Fuzzy �eld theories and new random matrix ensembles



Fuzzy spaces - introduction

quantum theory + general relativity

⇓
some nontrivial short distance structure of space

⇑
space noncommutatitvity
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Fuzzy spaces - construction
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Fuzzy spaces - construction

Fuzzy sphere Hoppe '82; Madore '92; Grosse, Klim£ík, Pre²najder '90s; Steinacker '13

Functions on the usual sphere are given by

f(θ, φ) =

∞∑
l=0

l∑
m=−l

clmYlm(θ, φ) ,

where Ylm are the spherical harmonics

∆Ylm(θ, φ) = l(l + 1)Ylm(θ, φ) .

They form an (commutative) algebra and all the information about the
sphere is encoded in this algebra (Gelfand, Naimark).

To describe features at a length scale δx we need functions Y lm with

l ∼ 1

δx
.
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Fuzzy spaces - construction

Image taken from http://principles.ou.edu/mag/earth.html
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Fuzzy spaces - construction

If we truncate the possible values of l in the expansion

f =

L∑
l=0

l∑
m=−l

clmYlm(θ, φ) ,

we will not be able to see any features of functions at length scales under
∼ 1/L.

Points on the sphere (as δ-functions) cease to exist.

Expressions de�ned in this way are not closed under multiplication.
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Fuzzy spaces - construction
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Fuzzy spaces - construction

Number of independent functions with l ≤ L is

L∑
l=0

l∑
m=−l

1 = (L+ 1)2 = N2 .

This is the same as the number of N ×N hermitian matrices

N + 2

N∑
n=1

(n− 1) = N2 .

The idea is to map the former on the latter and borrow a closed product
from there.

In order to do so, we consider a N ×N matrix as a product of two
N -dimensional representations N of the group SU(2). It reduces to

N ⊗N = 1 ⊕ 3 ⊕ 5 ⊕ . . .
↓ ↓ ↓

= {Y0m} ⊕ {Y1m} ⊕ {Y2m} ⊕ . . .
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Fuzzy spaces - construction

We thus have a map ϕ : Ylm →M and we de�ne the product

Ylm ∗ Yl′m′ := ϕ−1 (ϕ (Ylm)ϕ (Yl′m′)) .

We have obtained a short distance structure, but the prize we had to pay
was a noncommutative product ∗ of functions. The space, for which this
is the algebra of functions, is called the fuzzy sphere.

Opposing to some lattice discretization this space still possess a full
rotational symmetry.

In the limit N →∞ we recover the original sphere.
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Fuzzy spaces - an alternative construction

The regualar sphere S2 is given by the coordinates

xixi = R2 , xixj − xjxi = 0 ,

which generate the following algebra of functions

f =

{∑
k∈N3

(
ak1k2k3

3∏
i=1

xkii

)∣∣∣xixi = R2

}
,

which is by de�nition commutative.

Information about the sphere is again hidden in this algebra.
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Fuzzy spaces - an alternative construction

For the fuzzy sphere S2
F we de�ne

xixi = ρ2 , xixj − xjxi = iθεijkxk .

Such xi's generate a di�erent, noncommutative algebra and S
2
F is an

object, which has this algebra as an algebra of functions.

The conditions can be realized as an N = 2j + 1 dimensional
representation of SU(2)

xi =
2r√
N2 − 1

Li , θ =
2r√
N2 − 1

, ρ2 =
4r2

N2 − 1
j(j + 1) = r2 .

The group SU(2) still acts on xi's and this space enjoys a full rotational
symmetry.

And again, in the limit N →∞ we recover the original sphere.
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Fuzzy spaces - an alternative construction

xi's are N ×N matrices, functions on S2
F are combinations of all their

possible products and thus hermitian matrices M .

Such N ×N matrix can be decomposed into

M =

N−1∑
l=0

m=l∑
m=−l

clmTlm .

where matrices T lm are called polarization tensors and

T lm =ϕ(Y lm) ,

Tr (TlmTl′m′) = δll′δmm′ ,

[Li, [Li, Tlm]] = l(l + 1)Tlm .
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Fuzzy spaces - an alternative construction

Either way, we have divided the sphere into N cells. Function on the
fuzzy sphere is given by a matrix M and the eigenvalues of M represent
the values of the function on these cells.

However there are no sharp boundaries between the pieces and everything
is blurred, or fuzzy.
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Fuzzy spaces - examples of function/matrix
correspondence
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Examples of function/matrix correspondence

N = 2
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Examples of function/matrix correspondence

(
0.153116 −0.299646 + 0.0471715i

−0.299646− 0.0471715i 1.2326

)
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Examples of function/matrix correspondence

(
0.0948057 −0.196209− 0.572162i

−0.196209 + 0.572162i −0.344324

)
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Fuzzy physics - scalar �eld theory
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Fuzzy physics - scalar �eld theory

Commutative euclidean theory of a real scalar �eld is given by an action

S(Φ) =

∫
dx

[
1

2
Φ∆Φ +

1

2
m2Φ2 + V (Φ)

]
and path integral correlation functions

〈F 〉 =

∫
dΦF (Φ)e−S(Φ)∫
dΦ e−S(Φ)

.

We construct the noncommutative theory as an analogue with

�eld → matrix,

functional integral → matrix integral,

spacetime integral → trace,

derivative → Li commutator.
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Fuzzy physics - scalar �eld theory

Commutative

S(Φ) =

∫
dx

[
1

2
Φ∆Φ +

1

2
m2Φ2 + V (Φ)

]

〈F 〉 =

∫
dΦF (Φ)e−S(Φ)∫
dΦ e−S(Φ)

.

Noncommutative (for S2
F )

S(M) =
4πR2

N
Tr

[
1

2
M

1

R2
[Li, [Li,M ]] +

1

2
m2M2 + V (M)

]

〈F 〉 =

∫
dM F (M)e−S(M)∫

dM e−S(M)
.

Balachandran, Kürkçüo§lu, Vaidya '05; Szabo '03
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Random matrix models of scalar �eld theories
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Models of scalar �elds

Fuzzy �eld theory = Ensemble of hermitian N ×N matrices with

S(M) =
1

2
Tr (M [Li, [Li,M ]]) +

1

2
rTr

(
M2
)

+ gTr
(
M4
)

We are to compute integrals like

〈F 〉 ∼
∫ ( N∏

i=1

dλi

)
F (λi) e

−N2[ 1
2 r

1
N

∑
λ2
i +g 1

N

∑
λ4
i− 2

N2

∑
i<j log |λi−λj |]Seff (λi)+

×
∫
dU e−N

2 1
2Tr(UΛU†[Li,[Li,UΛU†]])
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Models of scalar �elds

Fuzzy �eld theory = Ensemble of hermitian N ×N matrices with

S(M) =
1

2
Tr (M [Li, [Li,M ]]) +

1

2
rTr

(
M2
)

+ gTr
(
M4
)

We are to compute integrals like

〈F 〉 ∼
∫ ( N∏

i=1

dλi

)
F (λi) e

−N2[Seff (λi)+
1
2 r

1
N

∑
λ2
i +g 1

N

∑
λ4
i− 2

N2

∑
i<j log |λi−λj |]

e−N
2Seff (λi) =

∫
dU e−N

2 1
2Tr(UΛU†[Li,[Li,UΛU†]])

Steinacker '05

How to compute Seff?
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Models of scalar �elds - perturbative

Perturbative calculation of the integral show that the Seff contains
products of traces of M . O'Connor, Sämann '07; Sämann '10

e−N
2Seff (λi) =

∫
dU e−N

2ε 1
2Tr(UΛU†[Li,[Li,UΛU†]])

The most recent result is Sämann '15

Seff (M) =
1

2

[
ε

1

2

(
c2 − c21

)
− ε2 1

24

(
c2 − c21

)2
+ ε4 1

2880

(
c2 − c21

)4]−
− ε4 1

3456

[ (
c4 − 4c3c1 + 6c2c

2
1 − 3c41

)
− 2

(
c2 − c21

)2 ]2−
− ε3 1

432

[
c3 − 3c1c2 + 2c31

]2
where

cn =
1

N
Tr (Mn)

Standard treatment of such multitrace matrix model yields a very
unpleasant behaviour. Self interaction is way too strong in the important
region.
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Models of scalar �elds - perturbative

Interesting structure

Seff (M) =
1

2

[
ε

1

2
t2 − ε2 1

24
t22 + ε4 1

2880
t42

]
−

− ε4 1

3456

[
t4 − 2t22

]2
−

− ε3 1

432
t23

where

tn =
1

N
Tr

[(
M − 1

N
Tr (M)

)n]
First line - quadratic, second line vanishes for semicircle.

Juraj Tekel Fuzzy �eld theories and new random matrix ensembles



Models of scalar �elds - nonperturbative

For the free theory g = 0 the kinetic term just rescales the eigenvalues.
Steinacker '05

There is a unique parameter independent e�ective action that
reconstructs this rescaling. Polychronakos '13

Seff =
1

2
F (c2 − c21) +R =

1

2
log

(
c2 − c21

1− e−(c2−c21)

)
+R

We get a the following fuzzy-�eld-theory-like matrix model

S(M) =
1

2
F (c2 − c21) +

1

2
rTr

(
M2
)

+ gTr
(
M4
)

Better behaved for S2
F but still not complete.

Polychronakos '13; JT '15, JT '17

In general function F given by the properties of the fuzzy space.
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Models of scalar �elds - di�erent (?) approximation (?)

It can be shown

e−N
2Seff (λi) =

∫
dU e−N

2 1
2Tr(UΛU†[Li,[Li,UΛU†])

≈
∫
dU e−N

2 1
2Tr(UΛU†[E,[E,UΛU†])

for a single matrix E with given eigenvalues.
Steinacker '16

This is still an approximation, but a signi�cantly simpler integral to
compute.

The Harish-Chandra-Itzykson-Zuber integral formula might be of use.∫
dU eTr(AUBU

†) =

(
N−1∏
p=1

p!

)
det eaibj

∆(a)∆(b)

ai - eigenvalues of A, bj - eigenvalues of B, ∆ - Vandermonde
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Models of scalar �elds - di�erent approximation

Recall the perturbative action

Seff (M) =
1

2

[
ε

1

2

(
c2 − c21

)
− ε2 1

24

(
c2−c21

)2
+ ε4 1

2880

(
c2 − c21

)4]−
− ε4 1

3456

[ (
c4−4c3c1 + 6c2c

2
1

)
−3c41 − 2

(
c2 − c21

)2]2−
− ε3 1

432

[
c3−3c1c2 + 2c31

]2
=

1

2

1

2
c2 −

1

4
c21 −

1

24
c22 −

1

432
c23 −

1

3456
c24 + . . .

Function of the form

Seff =
∑
i,j

a log |1− b λiλj |

with a = 3/2, b = 1/6 correctly reproduces all four known coe�cients.
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Conclusion
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Conclusion - the new random matrix ensembles

Scalar �eld theories on fuzzy spaces give rise to certain speci�c hermitian
random matrix ensembles.

The new ingredient is in a term in the probability distribution coming
from the kinetic term of the theory.

The issue is computation of the following integral over the U(N) group∫
dU e−N

2 1
2Tr(UΛU†[Li,[Li,UΛU†])

Li's are the generators of SU(2) in the N dimensional representation for
the case of S2

F , more complicated for other spaces.
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Thank you for your attention!
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If time permits - Fuzzy spaces in physics

Regularization of in�nities in the standard QFT.
Heisenberg ∼'30; Snyder '47, Yang '47

Regularization of �eld theories for numerical simulations.
Panero '16

An e�ective description of the open string dynamics in a magnetic
background in the low energy limit.
Seiberg Witten '99; Douglas, Nekrasov '01

Solutions of various matrix formulations of the string theory (IKKT,
BFSS, BNM).
Steinacker '13

Geometric uni�cation of the particle physics and theory of gravity.
van Suijlekom '15

An e�ective description of various systems in a certain limit (eg. QHE).
Karabali, Nair '06
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If time permits - Symmetry breaking in NC �eld theories

From now on φ4 theory.
The commutative �eld theory has
two phases in the phase diagram,
disorder and uniform order
phases.
Glimm, Ja�e, Spencer '75; Chang '76

Loinaz, Willey '98; Schaich, Loinaz '09

In disorder phase the �eld
oscillates around the value φ = 0.
In uniform order phase the �eld
oscillates around a nonzero value
which is a minimum of the
potential.

Juraj Tekel Fuzzy �eld theories and new random matrix ensembles



If time permits - Symmetry breaking in NC �eld theories

The phase diagram of noncommutative �eld theories has one more phase.
It is a non-uniform order phase, or a striped phase.
Gubser, Sondhi '01; G.-H. Chen and Y.-S. Wu '02

In this phase, the �eld does not oscillate around one given value in the
whole space. Translational symmetry is broken.

This has been established in numerous numerical works for variety
di�erent spaces.
Martin '04; García Flores, Martin, O'Connor '06, '09; Panero '06, '07; Ydri '14;

Bietenholz, F. Hofheinz, Mejía-Díaz, Panero '14; Mejía-Díaz, Bietenholz, Panero '14;

Medina, Bietenholz, D. O'Connor '08; Bietenholz, Hofheinz, Nishimura '04; Lizzi,

Spisso '12; Ydri, Ramda, Rouag '16

Panero '15

This phase is a result of some very interesting features/bugs of the theory.

Juraj Tekel Fuzzy �eld theories and new random matrix ensembles



If time permits - Symmetry breaking in NC �eld theories

Mejía-Díaz, Bietenholz, Panero '14 for R2
θ
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If time permits - Symmetry breaking in NC �eld theories

O'Connor, Ková£ik '18 for S2
F
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If time permits - Symmetry breaking in NC �eld theories

S(M) =
1

2
F (c2 − c21) +

1

2
rTr

(
M2
)

+ gTr
(
M4
)

JT '17
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