SECOND MOMENT FUZZY-FIELD-THEORY-LIKE MATRIX MODELS

Juraj Tekel

Department of Theoretical Physics
Faculty of Mathematics, Physics and Informatics
Comenius University, Bratislava

Seminár katedry teoretickej fyziky, 18.2.2020 KTF FMFI UK, Bratislava
arXiv:2002.02317 [hep-th], work with M. Šubjaková

THE LAW OF INSTRUMENT

"If the only tool you have is a hammer,
it is tempting to treat everything as if it were a nail."
Abraham Harold Maslow (1908-1970)

Pade approximation

Pade approximation - Geometric series

$$
1-x+x^{2}-x^{3}+x^{4}
$$

Pade approximation - Geometric series

Pade approximation - General

- Start with a series

$$
a_{0}+a_{1} x+a_{2} x^{2}+\cdots=\sum_{n=0}^{N} a_{n} x^{n}
$$

- Construct rational function

$$
\frac{b_{0}+b_{1} x+\ldots+b_{k} x^{k}}{1+c_{1} x+\ldots+c_{l} x^{\prime}}
$$

such that its expansion agrees with the first N terms of the series.

- Good, news. Mathematica can do it for you.

Pade approximation - General

- Plenty of interesting questions and uses.
- For us only a tool to extend perturbative results.

Take home message

Take home message

- Fuzzy spaces are (among other things) toy models of spaces with quantum structure.
- Fuzzy scalar field theories are described by matrix models.
- As such, they are a great laboratory to investigate consequences of quantum structure.

Second moment fuzzy-field-theory-like matrix models

FUZZY SPACES

Fuzzy sphere Hoppe '82; Madore '92; Grosse, Klimčík, Prešnajder '90s

- Functions on the usual sphere are given by

$$
f(\theta, \phi)=\sum_{l=0}^{\infty} \sum_{m=-I}^{I} c_{l m} Y_{l m}(\theta, \phi)
$$

where $Y_{l m}$ are the spherical harmonics

$$
\Delta Y_{l m}(\theta, \phi)=I(I+1) Y_{l m}(\theta, \phi)
$$

- To describe features at a small length scale we need $Y_{l m}$'s with a large I.

FUZZY SPACES

FUZZY SPACES

- If we truncate the possible values of l in the expansion

$$
f=\sum_{l=0}^{L} \sum_{m=-l}^{l} c_{l m} Y_{l m}(\theta, \phi)
$$

we will not be able to see any features of functions under certain length scales.

- Points on the sphere (as δ-functions) cease to exist.
- Expressions defined in this way are not closed under multiplication.

FUZZY SPACES

FUZZY SPACES

- Number of independent functions with $I \leq L$ is N^{2}, the same as the number of $N \times N$ hermitian matrices.
The idea is to map the former on the latter and borrow a closed product from there.
- In order to do so, we consider a $N \times N$ matrix as a product of two N-dimensional representations \underline{N} of the group $S U(2)$. It reduces to
- We thus have a map $\varphi: Y_{l m} \rightarrow M$ and we define the product

$$
Y_{l m} * Y_{l^{\prime} m^{\prime}}:=\varphi^{-1}\left(\varphi\left(Y_{l m}\right) \varphi\left(Y_{l^{\prime} m^{\prime}}\right)\right) .
$$

FUZZY SPACES

- We have a short distance structure, but the prize we had to pay was a noncommutative product * of functions. The space, for which this is the algebra of functions, is called the fuzzy sphere.
- Opposing to some lattice discretization this space still possess a full rotational symmetry

$$
Y_{l m} * Y_{l^{\prime} m^{\prime}}:=\varphi^{-1}\left(\varphi\left(Y_{l m}\right) \varphi\left(Y_{l^{\prime} m^{\prime}}\right)\right) .
$$

- In the limit N or $L \rightarrow \infty$ we recover the original sphere.

FuZZy spaces - An Alternative construction

- We have divided the sphere into N cells. Function on the fuzzy sphere is given by a matrix M and the eigenvalues of M represent the values of the function on these cells.

- However there are no sharp boundaries between the pieces and everything is blurred, or fuzzy.

FUZZY SPACES

- Regularization of infinities in the standard QFT.

Heisenberg ~'30; Snyder '47, Yang '47

- Regularization of field theories for numerical simulations.

Panero '16

- An effective description of the open string dynamics in a magnetic background in the low energy limit.
Seiberg Witten '99; Douglas, Nekrasov '01
- Solutions of various matrix formulations of the string theory (IKKT, BFSS, BNM). Steinacker '13
- Geometric unification of the particle physics and theory of gravity. van Suijlekom '15
- An effective description of various systems in a certain limit (eg. QHE).

Karabali, Nair '06

FuZZY SCALAR FIELD THEORY

- Commutative euclidean theory of a real scalar field is given by an action

$$
S(\Phi)=\int d^{2} x\left[\frac{1}{2} \Phi \Delta \Phi+\frac{1}{2} m^{2} \Phi^{2}+V(\Phi)\right]
$$

and path integral correlation functions

$$
\langle F\rangle=\frac{\int d \Phi F(\Phi) e^{-S(\Phi)}}{\int d \Phi e^{-S(\Phi)}} .
$$

- We construct the noncommutative theory as an analogue with
- field \rightarrow matrix,
- functional integral \rightarrow matrix integral,
- spacetime integral \rightarrow trace,
- derivative $\rightarrow L_{i}$ commutator.

FUZZY SCALAR FIELD THEORY

- Commutative

$$
\begin{gathered}
S(\Phi)=\int d^{2} x\left[\frac{1}{2} \Phi \Delta \Phi+\frac{1}{2} m^{2} \Phi^{2}+V(\Phi)\right] \\
\langle F\rangle=\frac{\int d \Phi F(\Phi) e^{-S(\Phi)}}{\int d \Phi e^{-S(\Phi)}} .
\end{gathered}
$$

- Noncommutative (for S_{F}^{2})

$$
\begin{gathered}
S(M)=\frac{4 \pi R^{2}}{N} \operatorname{Tr}\left[\frac{1}{2} M \frac{1}{R^{2}}\left[L_{i},\left[L_{i}, M\right]\right]+\frac{1}{2} m^{2} M^{2}+V(M)\right] \\
\langle F\rangle=\frac{\int d M F(M) e^{-S(M)}}{\int d M e^{-S(M)}} .
\end{gathered}
$$

Balachandran, Kürkçüoğlu, Vaidya '05; Szabo '03; Ydri '16

FUZZY SCALAR FIELD THEORY - UV/IR MIXING

- The key property of the noncommutative field theories is the UV/IR mixing phenomenon, which arises as a result of the nonlocality of the theory.
Minwalla, Van Raamsdonk, Seiberg '00; Chu, Madore, Steinacker '01
- Very energetic fluctuations (UV physics) have consequences at large distances (IR physics).
- In terms of diagrams different properties of planar and non-planar ones. The (matrix) vertex is not invariant under permutation of incoming momenta.

FUZZY SCALAR FIELD THEORY - UV/IR MIXING

$$
M=\sum_{l=0}^{N-1} \sum_{m=-l}^{l} c_{l m} T_{l m}, \operatorname{Tr}\left(M^{4}\right)=\sum_{l_{1} \ldots 4} \sum_{m_{1} \ldots 4} c_{l_{1}, m_{1}} c_{l_{2}, m_{2}} c_{l_{3}, m_{3}} c_{l_{4}, m_{4}} \operatorname{Tr}\left(T_{l_{1}, m_{1}} T_{l_{2}, m_{2}} T_{l_{3}, m_{3}} T_{l_{4}, m_{4}}\right)
$$

FUZZY SCALAR FIELD THEORY - UV/IR MIXING

FUZZY SCALAR FIELD THEORY - UV/IR MIXING

Chu, Madore, Steinacker '01

$$
\begin{aligned}
I^{P} & =\sum_{j=0}^{N-1} \frac{2 j+1}{j(j+1)+m^{2}} \\
I^{N P} & =\sum_{j=0}^{N-1} \frac{2 j+1}{j(j+1)+m^{2}}(-1)^{I+j+N-1}\left\{\begin{array}{lll}
l & s & s \\
j & s & s
\end{array}\right\}, s=\frac{N-1}{2}
\end{aligned}
$$

FUZZY SCALAR FIELD THEORY - UV/IR MIXING

$$
I^{N P}-I^{P}=\sum_{j=0}^{N-1} \frac{2 j+1}{j(j+1)+m^{2}}\left[(-1)^{I+j+N-1}\left\{\begin{array}{lll}
I & s & s \\
j & s & s
\end{array}\right\}-1\right]
$$

- This difference is finite in $N \rightarrow \infty$ limit.
- $N \rightarrow \infty$ limit of the effective action is different from the standard S^{2} effective action. Regularization of the field theory by NC space is anomalous.
- In the planar limit $S^{2} \rightarrow \mathbb{R}^{2}$ one recovers singularities and the standard UV/IR-mixing.
- The space (geometry) forgets where it came from, but the field theory (physics) remembers its fuzzy origin.

Symmetry breaking in NC field theories

$$
S[\phi]=\int d^{2} \times\left(\frac{1}{2} \partial_{i} \phi \partial_{i} \phi+\frac{1}{2} m^{2} \phi^{2}+g \phi^{4}\right)
$$

Glimm, Jaffe '74; Glimm, Jaffe, Spencer '75; Chang '76
Loinaz, Willey '98; Schaich, Loinaz '09

Symmetry breaking in NC field theories

- The phase diagram of noncommutative field theories has one more phase. It is a non-uniform order phase, or a striped phase.
Gubser, Sondhi '01; Chen, Wu '02
- In this phase, the field does not oscillate around one given value in the whole space. Translational symmetry is broken.
- This has been established in numerous numerical works for variety different spaces.

Martin '04; García Flores, Martin, O'Connor '06, '09; Panero '06, '07; Ydri '14; Bietenholz, F. Hofheinz, Mejía-Díaz, Panero '14; Mejía-Díaz, Bietenholz, Panero '14; Medina, Bietenholz, D. O'Connor '08; Bietenholz, Hofheinz, Nishimura '04; Lizzi, Spisso '12; Ydri, Ramda, Rouag '16; Kováčik, O'Connor '18 Panero '15

Symmetry breaking in NC field theories

Mejía-Díaz, Bietenholz, Panero '14 for \mathbb{R}_{θ}^{2}

$$
S[M]=\operatorname{Tr}\left(\frac{1}{2} M\left[L_{i},\left[L_{i}, M\right]\right]+\frac{1}{2} m^{2} M^{2}+g M^{4}\right)
$$

Second moment fuzzy-field-theory-like matrix models

Random matrices

$$
\left(\begin{array}{ccccc}
-1.97209 & -0.0976152 & 1.35614 & 0.223808 & 1.11521 \\
0.0626392 & 0.0996544 & 1.24676 & 0.178807 & 0.890936 \\
-0.352318 & 1.04726 & -0.416029 & -3.24653 & 1.36851 \\
-0.150889 & 0.083049 & 1.05206 & 0.622012 & -0.266355 \\
1.29318 & -0.260398 & -1.36629 & 0.311455 & -0.0599934
\end{array}\right)
$$

Random matrices

$$
\left(\begin{array}{ccc}
-0.467628 & -0.293526+0.259101 i & 0.208354-0.510098 i \\
-0.293526-0.259101 i & -0.422052 & 0.752265+0.0954037 i \\
0.208354+0.510098 i & 0.752265-0.0954037 i & 0.0384826
\end{array}\right)
$$

Random matrices

- Matrices random entries.

Ensemble of matrices M, measure on this set $d M$ and probability distribution

$$
P\left(M_{11}, M_{12}, \ldots\right)=P(M)
$$

- Expected value of some function f of the matrix is

$$
\langle f\rangle=\frac{1}{Z} \int d M f(M) P(M)
$$

- E.g.

$$
f(M)=M_{11}, f(M)=M^{2}, f(M)=\operatorname{Tr}\left(M^{12}\right), f(M)=\frac{1}{N} \operatorname{Tr}\left(M^{12}\right)
$$

- Interesting cases are $N=1, N=2, N \rightarrow \infty$.

Random matrices

- An important example - ensemble of $N \times N$ hermitian matrices with

$$
P(M)=e^{-\operatorname{Tr}(V(M))}, \text { usually } V(x)=\frac{1}{2} r x^{2}+g x^{4}
$$

and

$$
d M=\left[\prod_{i=1}^{N} M_{i i}\right]\left[\prod_{i<j} \operatorname{Re} M_{i j} I m M_{i j}\right] .
$$

- Both the measure and the probability distribution are invariant under $M \rightarrow U M U^{\dagger}$ with $U \in S U(N)$.
- Requirement of such invariance is very restrictive.

Random matrices - EIGENVALUE DECOMPOSITION

- If we ask invariant questions, we can turn

$$
\langle f\rangle=\frac{1}{Z} \int d M f(M) P(M)
$$

into an eigenvalue problem by diagonalization $M=U \wedge U^{\dagger}$ for some $U \in S U(N)$ and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right)$, the integration measure becomes

$$
d M=d U\left(\prod_{i=1}^{N} d \lambda_{i}\right) \times \prod_{i<j}\left(\lambda_{i}-\lambda_{j}\right)^{2}
$$

- We are to compute integrals like

$$
\langle f\rangle \sim \int\left(\prod_{i=1}^{N} d \lambda_{i}\right) f\left(\lambda_{i}\right) e^{-\left[\sum_{i} V\left(\lambda_{i}\right)-2 \sum_{i<j} \log \left|\lambda_{i}-\lambda_{j}\right|\right]} \times \int d U
$$

Random matrices - EIGENVALUE DECOMPOSITION

- Term

$$
2 \sum_{i<j} \log \left|\lambda_{i}-\lambda_{j}\right|
$$

is of order N^{2} if $\lambda_{i} \sim 1$. Potential term

$$
\sum_{i} V\left(\lambda_{i}\right)
$$

is of order N.

- We need to enhance the probability measure by a factor of N to

$$
e^{-N^{2}\left[\frac{1}{N} \sum_{i} V\left(\lambda_{i}\right)-\frac{2}{N^{2}} \sum_{i<j} \log \left|\lambda_{i}-\lambda_{j}\right|\right]}
$$

- This makes the N^{2} dependence explicit.

Random matrices - EIGENVALUE DECOMPOSITION

- We introduce eigenvalue distribution

$$
\rho(\lambda)=\frac{1}{N} \sum_{j} \delta\left(\lambda-\lambda_{j}\right)
$$

which gives for the averages

$$
\langle f\rangle=\int d \lambda \rho(\lambda) f(\lambda)
$$

- The question is, how does do probability measure

$$
e^{-N^{2}\left[\frac{1}{N} \sum_{i} V\left(\lambda_{i}\right)-\frac{2}{N^{2}} \sum_{i<j} \log \left|\lambda_{i}-\lambda_{j}\right|\right]}
$$

translate into eigenvalue distribution ρ.

Random matrices - Large N

- For finite N - orthogonal polynomials method.
- For $N \rightarrow \infty$ the question simplifies due to the factor N^{2}

$$
e^{-N^{2}\left[\frac{1}{N} \sum_{i} V\left(\lambda_{i}\right)-\frac{2}{N^{2}} \sum_{i<j} \log \left|\lambda_{i}-\lambda_{j}\right|\right] .}
$$

- For large N only configurations with small exponent contribute significantly to the integral. In the limit $N \rightarrow \infty$ only the extremal configuration

$$
V^{\prime}\left(\lambda_{i}\right)-\frac{2}{N} \sum_{j \neq i} \frac{1}{\lambda_{i}-\lambda_{j}}=0 \quad \forall i
$$

- Like a gas of particles with logarithmic repulsion. This gives us nice intuition.

RANDOM MATRICES - QUARTIC POTENTIAL

- The simplest case

$$
V(x)=\frac{1}{2} r x^{2}+g x^{4}
$$

Random matrices - Quartic potential

$$
V(x)=r x^{2} / 2+g x^{4} \text { and } r>0
$$

Random matrices - Quartic potential

$$
V(x)=r x^{2} / 2+g x^{4} \text { and } r>0
$$

Random matrices - Quartic potential

$$
V(x)=r x^{2} / 2+g x^{4} \text { and } r>0
$$

Random matrices - Quartic potential

$$
V(x)=r x^{2} / 2+g x^{4} \text { and } r>0
$$

Random matrices - Quartic potential

$$
V(x)=r x^{2} / 2+g x^{4} \text { and } r>0
$$

Random matrices - QUARTIC Potential

- If more than one solution is possible, the one with lower energy

$$
\mathcal{F}=-N^{2}\left[\frac{1}{N} \sum_{i} V\left(\lambda_{i}\right)-\frac{2}{N^{2}} \sum_{i<j} \log \left|\lambda_{i}-\lambda_{j}\right|\right]
$$

is the preferred one.

- The probability measure

$$
e^{-N^{2}\left[\frac{1}{N} \sum_{i} V\left(\lambda_{i}\right)-\frac{2}{N^{2}} \sum_{i<j} \log \left|\lambda_{i}-\lambda_{j}\right|\right]}
$$

i.e. the more probable solution.

Second moment fuzzy-field-theory-like matrix models

SECOND MOMENT APpROXIMATION

- Recall the action of the fuzzy scalar field theory

$$
S(M)=\frac{1}{2} \operatorname{Tr}\left(M\left[L_{i},\left[L_{i}, M\right]\right]\right)+\frac{1}{2} m^{2} \operatorname{Tr}\left(M^{2}\right)+g \operatorname{Tr}\left(M^{4}\right)
$$

This is a particular case of a matrix model since we need

$$
\int d M F(M) e^{-S(M)}
$$

- The large N limit of the model with the kinetic term is not well understood.

The key issue being that diagonalization $M=U \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right) U^{\dagger}$ no longer straightforward.

- Integrals like

$$
\begin{aligned}
& \langle F\rangle \sim \int\left(\prod_{i=1}^{N} d \lambda_{i}\right) d U F\left(\lambda_{i}, U\right) e^{-N^{2}\left[\frac{1}{2} m^{2} \frac{1}{N} \sum \lambda_{i}^{2}+g_{\frac{1}{N}} \sum \lambda_{i}^{4}-\frac{2}{N^{2}} \sum_{i<j} \log \left|\lambda_{i}-\lambda_{j}\right|\right]} \\
& \times e^{-\frac{1}{2} \operatorname{Tr}\left(U \wedge U^{\dagger}\left[L_{i},\left[L_{i}, U \wedge U^{\dagger}\right]\right]\right)}
\end{aligned}
$$

SECOND MOMENT APPROXIMATION

- For the free theory $g=0$ the kinetic term just rescales the eigenvalues.

Steinacker '05

- There is a unique parameter independent effective action that reconstructs this rescaling. Polychronakos '13

$$
S_{e f f}\left(\lambda_{i}\right)=\frac{1}{2} \log \left(\frac{c_{2}}{1-e^{-c_{2}}}\right)+\mathcal{R}
$$

- Introducing the asymmetry $c_{2} \rightarrow c_{2}-c_{1}^{2}$ we obtain a matrix model

$$
S(M)=\frac{1}{2} F\left(c_{2}-c_{1}^{2}\right)+\frac{1}{2} m^{2} \operatorname{Tr}\left(M^{2}\right)+g \operatorname{Tr}\left(M^{4}\right) \quad, \quad F(t)=\log \left(\frac{t}{1-e^{-t}}\right)
$$

Polychronakos '13; JT

Second moment fuzzy-field-theory-like matrix models

FUZZY-FIELD-THEORY-LIKE MODELS

- We can consider model for a general function $F(x)$

$$
S(M)=\frac{1}{2} F\left(c_{2}-c_{1}^{2}\right)+\frac{1}{2} m^{2} \operatorname{Tr}\left(M^{2}\right)+g \operatorname{Tr}\left(M^{4}\right)
$$

- Such models appear within this approximation for generalized kinetic terms

$$
M \frac{1}{2}\left[L_{i},\left[L_{i}, M\right]\right] \rightarrow M K\left(\left[L_{i},\left[L_{i}, \cdot\right]\right]\right) M
$$

for some $K(x)$ i.e. certain higher derivative actions.

Second moment fuzzy-field-theory-like matrix models

General solution

- The symmetric one-cut solution. Interval $(-\sqrt{\delta}, \sqrt{\delta})$ and

$$
\begin{aligned}
0 & =\frac{4-3 \delta^{2} g}{\delta}-r-F^{\prime}\left(\frac{4 \delta+\delta^{3} g}{16}\right), \\
\mathcal{F}_{S_{1} C} & =\frac{1}{4}+\frac{9}{128} \delta^{4} g^{2}+\frac{1}{8} r \delta+\frac{1}{32} \delta^{3} g r+\frac{1}{2} F\left(\frac{4 \delta+\delta^{3} g}{16}\right)-\frac{1}{2} \log \left(\frac{\delta}{4}\right) .
\end{aligned}
$$

- The symmetric two-cut solution. Intervals $(-\sqrt{D+\delta},-\sqrt{D-\delta}) \cup(\sqrt{D-\delta}, \sqrt{D+\delta})$ and

$$
\begin{align*}
0 & =4 D g+r+F^{\prime}(D), \delta^{2}=\frac{1}{g}, \tag{1}\\
\mathcal{F}_{2 C} & =\frac{3}{8}+D^{2} g+\frac{D r}{2}+\frac{1}{2} F(D)+\frac{1}{4} \log (4 g) . \tag{2}
\end{align*}
$$

General solution

- The asymmetric one-cut solution. Interval $(D-\sqrt{\delta}, D+\sqrt{\delta})$ and

$$
\begin{gathered}
0=4 \frac{4+15 \delta^{2} g+2 r \delta}{\delta\left(4+9 \delta^{2} g\right)}-F^{\prime}\left(\frac{\delta\left(64+160 \delta^{2} g+144 \delta^{4} g^{2}+81 \delta^{6} g^{3}+36 \delta^{3} g r+27 \delta^{5} g^{2} r\right)}{64\left(4+9 \delta^{2} g\right)}\right), \\
\mathcal{F}_{A S 1 C}=-\frac{1}{128 g\left(4+9 \delta^{2} g\right)^{2}}\left[6075 \delta^{8} g^{5}+3240 \delta^{6} g^{4}(4+r \delta)+144 \delta^{4} g^{3}\left(29+40 r \delta+3 \delta^{2} r^{2}\right)\right. \\
\left.+8 \delta^{2} g^{2}\left(-144+352 r \delta+117 \delta^{2} r^{2}\right)+64 g\left(-8+8 r \delta+9 \delta^{2} r^{2}\right)+128 r^{2}\right]+ \\
+\frac{1}{2} F\left(\frac{\delta\left(64+160 \delta^{2} g+144 \delta^{4} g^{2}+81 \delta^{6} g^{3}+36 \delta^{3} g r+27 \delta^{5} g^{2} r\right)}{64\left(4+9 \delta^{2} g\right)}\right)-\frac{1}{2} \log \left(\frac{\delta}{4}\right) .
\end{gathered}
$$

$$
S[M]=\operatorname{Tr}\left(\frac{1}{2} M\left[L_{i},\left[L_{i}, M\right]\right]+\frac{1}{2} r M^{2}+g M^{4}\right)
$$

General solution

- The idea: for very negative r the terms F^{\prime} do not play a role.

$$
0=4 D g+r+F^{\prime}(D)
$$

- In this limit the solution is

$$
D=-\frac{r}{4 g}+\ldots
$$

and corrections determined by the large t behaviour of $F(t)$.

- Similarly for asymmetric one-cut solution

$$
\delta=-\frac{2}{r}+\ldots
$$

and corrections determined by the small t behaviour of $F(t)$.

General solution

- This leads to large $-r$ expansions of the free energies \mathcal{F}. Condition $\mathcal{F}_{A S 1 C}=\mathcal{F}_{2 C}$ is then the phase transition condition.
- Solution for g as a series in powers of $1 / r$.
- At the end, we treat it to a Pade approximation to obtain the phase transition line $g(r)$.

$$
S[M]=\operatorname{Tr}\left(\frac{1}{2} M\left[L_{i},\left[L_{i}, M\right]\right]+\frac{1}{2} r M^{2}+g M^{4}\right)
$$

GENERAL SOLUTION

- The symmetric one-cut to symmetric two-cut phase transition can be solved analytically.

$$
r(g)=-4 \sqrt{g}-F^{\prime}\left(\frac{1}{\sqrt{g}}\right)
$$

$$
S[M]=\operatorname{Tr}\left(\frac{1}{2} M\left[L_{i},\left[L_{i}, M\right]\right]+\frac{1}{2} r M^{2}+g M^{4}\right)
$$

General solution

- The symmetric to asymmetric one-cut phase transition more tricky.
- Problem: the condition

$$
0=\frac{4-3 \delta^{2} g}{\delta}-r-F^{\prime}\left(\frac{4 \delta+\delta^{3} g}{16}\right)
$$

has no reasonable large $-r$ solution.

- Idea: we can solve this condition at the symmetric phase transition phase transition; then look to corrections around this point

$$
\delta=\delta_{0}+\delta_{1}\left(r-r_{c}\right)+\delta_{2}\left(r-r_{c}\right)^{2}+\ldots, r_{c}=-4 \sqrt{g}-F^{\prime}\left(\frac{1}{\sqrt{g}}\right)
$$

We obtain a usable expression for $\mathcal{F}_{S 1 C}$ and get $\mathcal{F}_{S 1 C}=\mathcal{F}_{A S 1 C}$ as the final phase transition condition.

Results - FuZZy sphere

Results - FuZZy sphere

Results - FuZZy sphere

- A very good qualitative agreement. A very good quantitative agreement in the critical coupling. Kováčik, O'Connor '18
- Different behaviour of the asymmetric transition line for large -r.
- We need to include \mathcal{R}, or the higher moments of the matrix, in a nonperturbative way. work in progress with M. Šubjaková

Towards a matrix model of UV/IR free Theory

- We would like to analyse the more complicated model

$$
S=\operatorname{Tr}\left(\frac{1}{2} M\left[L_{i},\left[L_{i}, M\right]\right]+12 g M Q M+\frac{1}{2} m^{2} M+g M^{4}\right)
$$

where

$$
Q T_{l m}=\underbrace{-\left(\sum_{j=0}^{N-1} \frac{2 j+1}{j(j+1)+m^{2}}\left[(-1)^{I+j+N-1}\left\{\begin{array}{lll}
l & s & s \\
j & s & s
\end{array}\right\}-1\right]\right)}_{Q(I)} T_{l m}
$$

- This removes the UV/IR mixing in the theory. Dolan, O'Connor, Prešnajder '01

TOWARDS A MATRIX MODEL OF UV/IR FREE THEORY

- Operator Q can be expressed as a power series in $C_{2}=\left[L_{i},\left[L_{i}, \cdot\right]\right]$

$$
Q=q_{1} C_{2}+q_{2} C_{2}^{2}+\ldots
$$

- As a starting point, it is interesting to see the phase structure of such simplified model. O'Connor, Säman '07
- This is the case of

$$
K(x)=(1+a g) x \quad \text { or } \quad K(x)=(1+a g) x+b g x^{2} .
$$

Results - Rescaled Kinetic term

- Rescale the eigenvalues to obtain the original model with

$$
\tilde{r}=\frac{r}{1+a g} \quad, \quad \tilde{g}=\frac{g}{(1+a g)^{2}}
$$

- A deformation of the original phase diagram.

Results - Rescaled Kinetic term

Results - Rescaled Kinetic term

Results - Quadrakinetic Term

- Rescale the eigenvalues to obtain the model $K(x)=x+\tilde{b} x^{2}$ and

$$
\tilde{b}=\frac{b g}{1+a g}, \tilde{r}=\frac{r}{1+a g}, \tilde{g}=\frac{g}{(1+a g)^{2}} .
$$

- The same procedure with

$$
\begin{aligned}
F(t) & \stackrel{t \rightarrow 0}{=} \frac{1}{6}(3+2 \tilde{b}) t-\frac{16 \tilde{b}^{2}+30 \tilde{b}+15}{360} t^{2}+\frac{\tilde{b}\left(64 \tilde{b}^{2}+126 \tilde{b}+63\right)}{11340} t^{3}+\ldots \\
& \stackrel{t \rightarrow \infty}{=} \log t+\left(1+\frac{1}{\tilde{b}}\right) \log (1+\tilde{b})-1+\frac{1}{1+\tilde{b}} e^{-t}+\frac{1+\tilde{b}+2 \tilde{b} t-\tilde{b}^{2}(1-2 t)}{2(1+\tilde{b})^{3}} e^{-2 t}+\ldots,
\end{aligned}
$$

Results - Quadrakinetic Term

Results - Quadrakinetic Term

Take home message

Take home message

- Fuzzy spaces are (among other things) toy models of spaces with quantum structure.
- Fuzzy scalar field theories are described by matrix models.
- As such, they are a great laboratory to investigate consequences of quantum structure.

Take home message

- Fuzzy spaces are (among other things) toy models of spaces with quantum structure.
- Fuzzy scalar field theories are described by matrix models.
- As such, they are a great laboratory to investigate consequences of quantum structure.

Thank you for your attention!

If time permits - Challenges

Correlation functions

- Quantity $\langle M(x) M(y)\rangle$ is U dependent, so we need to figure out what to do with

$$
\int d U F(\Lambda, U) e^{-\frac{1}{2} \operatorname{Tr}\left(U \Lambda U^{\dagger}\left[L_{i},\left[L_{i}, U \wedge U^{\dagger}\right]\right]\right)}
$$

Entanglement entropy

- We need to extended the model to $\mathbb{R} \times S_{F}^{2}$, i.e. $M(t)$

$$
S(M)=\int d t \operatorname{Tr}\left(-\frac{1}{2} M \partial_{t}^{2} M+\frac{1}{2} M\left[L_{i},\left[L_{i}, M\right]\right]+\frac{1}{2} m^{2} M^{2}+g M^{4}\right)
$$

Medina, Bietenholz, O'Connor '07; Ihl, Sachse, Sämann '10
Also the U dependence will play a role, but free theory where $\mathcal{R}=0$, is enough.

If Time permits - GW solution

Grosse, Wulkenhaar '09 '14; Grosse, Sako, Wulkenhaar '16; Panzer, Wulkenhaar '18;
Grosse, Hock, Wulkenhaar '19 '19

- Model

$$
S(M)=\operatorname{Tr}\left(E M^{2}+g M^{4}\right)
$$

for a fixed external matrix E has been solved.

- An implicit formula for two point function and formulas for all higher correlation functions in terms of this two point function.
- Challenges: expressions are technically complicated to work with and work only for positive eigenvalues of E.

