FUZZY FIELD THEORIES IN THE STRING MODES FORMALISM

Juraj Tekel

Department of Theoretical Physics

FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS **Comenius University**

Bratislava

Letná škola matematickej fyziky, 26.8.2021, Stará Lesná work with H. Steinacker

supported by VEGA 1/0703/20 grant Quantum structure of spacetime

(日) (四) (王) (王) (王) (王)

Slavkovský štít, 25.8.2021

Take home message

JURAJ TEKEL FUZZY FIELD THEORIES IN THE STRING MODES FORMALISM 3 / 59

イロン イヨン イヨン イヨ

- Fuzzy spaces are (among other things) toy models of spaces with quantum structure.
- Fuzzy scalar field theories are very different from their standard counterparts.
- There is an interesting (new) way to see and understand this difference in position space.

.

Fuzzy field theories in the string modes formalism

Fuzzy field theories in the string modes formalism

JURAJ TEKEL FUZZY FIELD THEORIES IN THE STRING MODES FORMALISM 6 / 59

A D > A D > A D > A D

- We need a quantum theory of gravity.
- Quantization of general relativity leads to a nonrenormalizable theory.
- We have reasons to believe that future theory of quantum gravity will have a different notion of spacetime.

No distinction between points under certain length scales. Hossenfelder 1203.6191

- Reasons:
 - gravitational Heisenberg microscope,
 - instability of quantum gravitational vacuum, Doplicher, Fredenhagen, Roberts '95
 - emergent spacetime.

Image from https://commons.wikimedia.org/

イロン イロン イヨン イヨン

12

Image from https://commons.wikimedia.org/

<ロ> (四) (四) (三) (三) (三)

Image from https://commons.wikimedia.org/

イロト イヨト イヨト イヨト

2

Fuzzy sphere Hoppe '82; Madore '92; Grosse, Klimčík, Prešnajder '90s

• Functions on the usual sphere are given by

$$f(\theta,\phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} c_{lm} Y_{lm}(\theta,\phi) ,$$

where Y_{lm} are the spherical harmonics

$$\Delta Y_{lm}(\theta,\phi) = l(l+1)Y_{lm}(\theta,\phi)$$
.

• To describe features at a small length scale we need Y_{lm} 's with a large l.

Image taken from http://principles.ou.edu/mag/earth.html

A D F A D F A D F

э

-

• If we truncate the possible values of I in the expansion

$$f = \sum_{l=0}^{L} \sum_{m=-l}^{l} c_{lm} Y_{lm}(\theta, \phi) ,$$

we will not be able to see any features of functions under certain length scales.

- Points on the sphere (as δ -functions) cease to exist.
- Expressions defined in this way are not closed under multiplication.

• • • • • • •

э

JURAJ TEKEL FUZZY FIELD THEORIES IN THE STRING MODES FORMALISM 14/59

イロト イヨト イヨト イヨト

• Number of independent functions with $I \leq L$ is

$$\sum_{l=0}^{L} \sum_{m=-l}^{l} 1 = (L+1)^2 = N^2 .$$

This is the same as the number of $N \times N$ hermitian matrices

$$N+2\sum_{n=1}^{N}(n-1)=N^{2}$$
.

- The idea is to map the functions on the matrices and borrow a closed product from there.
- In order to do so, we consider a $N \times N$ matrix as a product of two N-dimensional representations <u>N</u> of the group SU(2). It reduces to

$$\underbrace{\underline{N}} \otimes \underline{\underline{N}} = \underbrace{\underline{1}}_{\downarrow} \oplus \underbrace{\underline{3}}_{\downarrow} \oplus \underbrace{\underline{5}}_{\downarrow} \oplus \ldots \\ = \{\underline{Y}_{0m}\} \oplus \{\underline{Y}_{1m}\} \oplus \{\underline{Y}_{2m}\} \oplus \ldots$$

ullet We thus have a map $arphi: Y_{lm}
ightarrow M$ and we define the product

$$Y_{lm} * Y_{l'm'} := \varphi^{-1} \left(\varphi \left(Y_{lm} \right) \varphi \left(Y_{l'm'} \right) \right) .$$

JURAJ TEKEL FUZZY FIELD THEORIES IN THE STRING MODES FORMALISM 16 / 59

• We have a short distance structure, but the prize we had to pay was a noncommutative product * of functions.

The space, for which this is the algebra of functions, is called the fuzzy sphere.

• Opposing to some lattice discretization this space still possess a full rotational symmetry

$$Y_{lm} * Y_{l'm'} := \varphi^{-1} \left(\varphi \left(Y_{lm} \right) \varphi \left(Y_{l'm'} \right) \right) \; .$$

• In the limit N or $L \to \infty$ we recover the original sphere.

• The regualar sphere S^2 is given by the coordinates

$$x_i x_i = R^2$$
, $x_i x_j - x_j x_i = 0$, $i = 1, 2, 3$,

which generate the following algebra of functions

$$f = \left\{ \sum_{k \in \mathbb{N}^3} \left(a_{k_1 k_2 k_3} \prod_{i=1}^3 x_i^{k_i} \right) \left| x_i x_i = R^2 \right\} ,$$

which is by definition commutative.

• Information about the sphere is again hidden in this algebra.

FUZZY SPACES - AN ALTERNATIVE CONSTRUCTION

• For the fuzzy sphere S_F^2 we define

$$\hat{x}_i \hat{x}_i = \rho^2$$
 , $\hat{x}_i \hat{x}_j - \hat{x}_j \hat{x}_i = i\theta \varepsilon_{ijk} \hat{x}_k$, $i = 1, 2, 3$.

- Such \hat{x}_i 's generate a different, noncommutative algebra and S_F^2 is an object, which has this algebra as an algebra of functions.
- The conditions can be realized as an N = 2s + 1 dimensional representation of SU(2)

$$\hat{x}_i = rac{2r}{\sqrt{N^2-1}} L_i \quad , \quad heta = rac{2r}{\sqrt{N^2-1}} \sim rac{2}{N} \quad , \quad
ho^2 = rac{4r^2}{N^2-1} s(s+1) = r^2 \; .$$

- The group SU(2) still acts on \hat{x}_i 's and this space enjoys a full rotational symmetry.
- And again, in the limit $N \to \infty$ we recover the original sphere.

FUZZY SPACES - AN ALTERNATIVE CONSTRUCTION

Most importantly nonzero commutators

$$\hat{x}_i \hat{x}_i = \rho^2$$
 , $\hat{x}_i \hat{x}_j - \hat{x}_j \hat{x}_i = i\theta \varepsilon_{ijk} \hat{x}_k$, $i = 1, 2, 3$.

imply uncertainty relations for positions

$$\Delta x_i \Delta x_j
eq 0$$
 .

- Configuration space is analogous to phase space of quantum mechanics.
- In a similar fashion it is possible to construct an analogous deformation of the plane

$$\hat{x}_i \hat{x}_j - \hat{x}_j \hat{x}_i = i \theta \varepsilon_{ij}$$
, $i = 1, 2$.

FUZZY SPACES - AN ALTERNATIVE CONSTRUCTION

- \hat{x}_i 's are $N \times N$ matrices, functions on S_F^2 are combinations of all their possible products and thus hermitian matrices M.
- Such $N \times N$ matrix can be decomposed into

$$M = \sum_{l=0}^{N-1} \sum_{m=-l}^{m=l} c_{lm} T_{lm} \; .$$

where matrices T'_m are called polarization tensors and

$$T_m^l = \varphi(Y_m^l) ,$$

Tr $(T_{lm} T_{l'm'}) = \delta_{ll'} \delta_{mm'} ,$
 $[L_i, [L_i, T_{lm}]] = l(l+1) T_{lm}$

• We have divided the sphere into N cells. Function on the fuzzy sphere is given by a matrix M and the eigenvalues of M represent the values of the function on these cells.

An auxiliary Hilbert space has been used in both constructions.

• However there are no sharp boundaries between the pieces and everything is blurred, or fuzzy.

Fuzzy field theories in the string modes formalism

JURAJ TEKEL FUZZY FIELD THEORIES IN THE STRING MODES FORMALISM 23 / 59

FUZZY SCALAR FIELD THEORY

• Commutative euclidean theory of a real scalar field is given by an action

$$S(\Phi) = \int d^2x \left[rac{1}{2} \Phi \Delta \Phi + rac{1}{2} m^2 \Phi^2 + V(\Phi)
ight]$$

and path integral correlation functions

$$\langle F \rangle = rac{\int d\Phi F(\Phi) e^{-S(\Phi)}}{\int d\Phi e^{-S(\Phi)}}$$

• We construct the noncommutative theory as an analogue with

- field \rightarrow matrix,
- functional integral \rightarrow matrix integral,
- spacetime integral \rightarrow trace,
- derivative $\rightarrow L_i$ commutator.

FUZZY SCALAR FIELD THEORY

• Commutative

$$S(\Phi) = \int d^2 x \left[\frac{1}{2} \Phi \Delta \Phi + \frac{1}{2} m^2 \Phi^2 + V(\Phi) \right]$$
$$\langle F \rangle = \frac{\int d\Phi F(\Phi) e^{-S(\Phi)}}{\int d\Phi e^{-S(\Phi)}} .$$

• Noncommutative (for S_F^2)

$$S(M) = \frac{4\pi r^2}{N} \operatorname{Tr} \left[\frac{1}{2} M \frac{1}{r^2} [L_i, [L_i, M]] + \frac{1}{2} m^2 M^2 + V(M) \right]$$
$$\langle F \rangle = \frac{\int dM F(M) e^{-S(M)}}{\int dM e^{-S(M)}} .$$

Balachandran, Kürkçüoğlu, Vaidya '05; Szabo '03; Ydri '16

-

- The key property of the noncommutative field theories is the UV/IR mixing phenomenon, which arises as a result of the nonlocality of the theory.
 Minwalla, Van Raamsdonk, Seiberg '00; Chu, Madore, Steinacker '01
- Very energetic fluctuations (UV physics) have consequences at large distances (IR physics).
- In terms of diagrams different properties of planar and non-planar ones. The (matrix) vertex is not invariant under permutation of incoming momenta.

$$M = \sum_{l=0}^{N-1} \sum_{m=-l}^{l} c_{lm} T_{lm} , \ S(M) = \frac{4\pi}{N} \text{Tr} \left[\frac{1}{2} M[L_i, [L_i, M]] + \frac{1}{2} m^2 M^2 + g M^4 \right]$$

$$\mathrm{Tr}(M^{4}) = \sum_{l_{1...4}} \sum_{m_{1...4}} c_{l_{1}m_{1}} c_{l_{2}m_{2}} c_{l_{3}m_{3}} c_{l_{4}m_{4}} \mathrm{Tr}(T_{l_{1}m_{1}} T_{l_{2}m_{2}} T_{l_{3}m_{3}} T_{l_{4}m_{4}})$$

Chu, Madore, Steinacker '01

$$I^{NP} = \sum_{j=0}^{N-1} \frac{2j+1}{j(j+1)+m^2} N(-1)^{l+j+N-1} \left\{ \begin{array}{cc} l & s & s \\ j & s & s \end{array} \right\} , \ s = \frac{N-1}{2}$$

JURAJ TEKEL FUZZY FIELD THEORIES IN THE STRING MODES FORMALISM 29 / 59

$$I^{NP} - I^{P} = \sum_{j=0}^{N-1} \frac{2j+1}{j(j+1)+m^{2}} \left[N(-1)^{l+j+N-1} \left\{ \begin{array}{ccc} l & s & s \\ j & s & s \end{array} \right\} - 1 \right]$$

- This difference is finite in $N o \infty$ limit.
- $N o \infty$ limit of the effective action is different from the standard S^2 effective action.

$$S_{\text{one loop}} = S_0 + \frac{1}{2} \int d^2 x \, \phi^2 \delta m^2 - \frac{g}{12\pi} \int d^2 x \, \phi h(\tilde{\Delta}) \phi + \dots$$
$$\tilde{\Delta} Y_{lm} = l \, Y_{lm} \, , \ h(n) = \sum_{k=1}^n \frac{1}{k}$$

There is an extra, mildly nonlocal, term.

• Regularization of the field theory by NC space is anomalous.

• In the planar limit $S^2 o \mathbb{R}^2$ one recovers singularities and the standard UV/IR-mixing.

- Nonplanar diagrams are divergent in the limit $p \rightarrow 0$.
- This leads to issues when such nonplanar loops appear on other loops. Technically we obtain effective action which diverges as $p \rightarrow 0$.

- The space (geometry) forgets where it came from, but the field theory (physics) remembers its fuzzy origin.
- Commutative limit of noncomutative theory is very different from commutative theory.

- Expressing M in terms of T_{lm} diagonalizes the kinetic term and leaves us to struggle with the interaction term.
- There is a different treatment that is more favorable to the interaction term but the kinetic term is the problematic one now.

FUZZY SCALAR FIELD THEORY - MATRIX FORMALISM

• If we forget about the kinetic term for a moment

$$S(M) = \frac{4\pi}{N} \left[\frac{1}{2} m^2 M_{ij} M_{ji} + g M_{ij} M_{jk} M_{kl} M_{li} \right]$$

we can treat this model as a field theory with propagator

$$\int_{i}^{i} = \langle M_{ij}M_{kl} \rangle \sim \frac{1}{m^2} \delta_{il} \delta_{jk}$$

and vertex

FUZZY SCALAR FIELD THEORY - MATRIX FORMALISM

• Such graphs are called fat graphs or ribbon graphs and are well known in matrix models.

- Matrix indexes run in the loops, not the momenta!
- The problem is that the kinetic term leads to a nondiagonal propagator.

Fuzzy field theories in the string modes formalism

JURAJ TEKEL FUZZY FIELD THEORIES IN THE STRING MODES FORMALISM 36 / 59

 \bullet Natural basis in the auxiliary hilbert space ${\cal H}$ is the ''spin'' basis

$$|n
angle = \left(\begin{array}{c} \vdots \\ 1 \\ \vdots \end{array}
ight)$$

derived from the highest weight state $|1\rangle$.

• For any $x \in S^2$ with radius 1, choose some $g_x \in SO(3)$ such that $x = g_x \cdot p$, where p is the north pole on S^2 . We define

$$|x
angle=g_x\cdot|1
angle\;,\;g_x\in SU(2)$$

and call the set of all $|x\rangle$ the coherent states.

STRING MODES - COHERENT STATES

• Coherent states are optimally localized in the sense

$$\langle x | \hat{x}_i \hat{x}_i | x \rangle - \langle x | \hat{x}_i | x \rangle \langle x | \hat{x}_i | x \rangle \approx \frac{2}{N}$$
.

 \bullet They form an over-complete basis in ${\cal H}$ and

$$\mathbb{1}=rac{N}{4\pi}\int d^{2}x\left|x
ight
angle \left\langle x
ight| \;.$$

• They are orthogonal only in the large N limit

$$|\langle x | y \rangle|^2 = \left(\frac{1 + x \cdot y}{2}\right)^{N-1}$$

.

• Coherent states can be used to map (quantize) functions on S^2 on matrices

$$\phi(x) o M = \int dx \phi(x) |x\rangle \langle x| \; .$$

and matrices on functions (de-quantize)

$$M o \phi(x) = \langle x | M | x \rangle$$
.

• This maps Y_{lm} on T_{lm} up to normalization.

STRING MODES - COHERENT STATES AND REPRESENTATIONS OF FUNCTIONS ON FUZZY SPHERE

 \bullet Functions on the fuzzy sphere are matrices acting on ${\cal H}$

$$M = \sum_{m,n} M_{mn} \ket{m} ra{n} \; .$$

• We can express the matrix M in a similar fashion using the coherent states

$$M = \left(rac{N}{4\pi}
ight)^2 \int d^2x \, d^2y \, \phi(x,y) \left|x
ight
angle \left\langle y
ight| \; .$$

Objects

$$|x\rangle \langle y| =: \begin{vmatrix} x \\ y \end{vmatrix}$$

form a basis of functions on the fuzzy sphere and we will call them the string modes.

STRING MODES - COHERENT STATES AND REPRESENTATIONS OF FUNCTIONS ON FUZZY SPHERE

- Such representation of matrix M by function $\phi(x, y)$ seems to be not unique (way more functions than matrices). But one can show that derivatives of $\phi(x, y)$ are bounded by \sqrt{N} , which means that the Fourier modes of ϕ to be restricted by $I_x, I_y \leq \sqrt{N}$.
- Functions $\phi(x, y)$ that represent functions on the fuzzy sphere have rather mild behavior. The coherent states are spread out over an area $\sim 2/N$ and average out any larger oscillations.
- Large momentum UV wavelengths are smoothed out on the fuzzy sphere. But the price we pay are non-local string modes.

STRING MODES - COHERENT STATES AND REPRESENTATIONS OF FUNCTIONS ON FUZZY SPHERE

- Short modes \$\begin{smallmatrix} x \ y\$ for \$|x y| < 1/√N\$ can be show to represent localized wave-packets with momentum ~ \$|x y|\$.
 Particularly \$\begin{smallmatrix} x \ x\$ represents maximal localization around point \$x\$, i.e. a fuzzy version of δ-function.
- Long modes $\begin{vmatrix} x \\ y \end{vmatrix}$ for $|x-y| > 1/\sqrt{N}$ are non-local and have no classical analogue.

• When working with functions we encounter operators

$$\mathcal{O}: M \to \mathcal{O}(M)$$
.

For example the kinetic term of the field theory $[L_i, [L_i, M]] =: \Box M$ or the propagator of the theory

$$rac{1}{\Box+m^2}$$
 .

• For example

$$\begin{pmatrix} x \\ y \end{pmatrix} \Box \begin{vmatrix} x \\ y \end{pmatrix} \sim |x - y|^2 \; .$$

JURAJ TEKEL FUZZY FIELD THEORIES IN THE STRING MODES FORMALISM 43 / 59

STRING MODES - REPRESENTATION OF OPERATORS ON FUNCTIONS

• A general representation of such operators in terms of the string modes is straightforward

$$\mathcal{O} = \left(\frac{N}{4\pi}\right)^4 \int d^2x \, d^2x' \, d^2y \, d^2y' \, \Big|_y^x \right) \mathcal{O}(x,y;x',y') {x' \choose y'} \, .$$

- There are two special cases
 - Local

$$\mathcal{O} = \left(\frac{N}{4\pi}\right)^4 \int d^2x \, d^2y \, \Big|_x^x \Big) \mathcal{O}_L(x,y) \Big(\frac{y}{y}\Big| \; .$$

• Non-local

$$\mathcal{O} = \left(\frac{N}{4\pi}\right)^4 \int d^2x \, d^2y \, \Big|_y^x \Big) \mathcal{O}_D(x,y) \Big(_y^x \Big| \; .$$

• Functions \mathcal{O}_L and \mathcal{O}_D may have very different behavior for different operators (oscillation, singularity). Local representations are typically highly oscillatory, non-local representations are better behaved.

• For any function of the \Box operator $f(\Box)$ we have

$$\binom{x}{y} f(\Box) \Big|_{y}^{x} = \sum_{k,l} (2k+1)(2l+1)(-1)^{l+k+2s} f(k(k+1)) \frac{1}{N} \left\{ \begin{array}{cc} l & s & s \\ k & s & s \end{array} \right\} e^{-l^{2}/N} P_{l}(\cos \vartheta)$$

where the curly bracket is the 6*j*-symbol and $\cos \vartheta = x \cdot y$.

• Especially for propagator we obtain

$$\binom{x}{y} f(\Box) \Big|_{y}^{x} \approx \frac{1}{\frac{N^{2}}{4}|x-y|^{2}+m^{2}}$$

Fuzzy field theories in the string modes formalism

JURAJ TEKEL FUZZY FIELD THEORIES IN THE STRING MODES FORMALISM 46 / 59

LOOP COMPUTATIONS AND (NON)LOCALITY IN FUZZY QFT

• Feynman rules in string modes formalism - propagator

$$\sum_{y_1}^{X_2} = \binom{x_2}{y_2} = \binom{x_2}{y_2} \frac{1}{\Box + m^2} \Big|_{y_1}^{x_1} \approx \frac{1}{\frac{M^2}{4} |x - y|^2 + \mu^2} \delta(x_1, x_2) \delta(y_1, y_2)$$

Compare with the matrix models propagator

$$i_{j}$$
 \cdots $\frac{1}{m^{2}}\delta_{il}\delta_{jk}$.

LOOP COMPUTATIONS AND (NON)LOCALITY IN FUZZY QFT

• Feynman rules in string modes formalism - vertex

$$\sum_{x_4}^{x_1} \sum_{y_4}^{y_4} \sum_{x_3}^{x_4} = \frac{g}{4!} \langle y_1 | x_2 \rangle \langle y_2 | x_3 \rangle \langle y_3 | x_4 \rangle \langle y_4 | x_1 \rangle \approx \frac{g}{4!} \delta(y_1, x_2) \delta(y_2, x_3) \delta(y_3, x_4) \delta(y_4, x_1) .$$

ONE-LOOP TWO-POINT FUNCTION AND EFFECTIVE ACTION

ONE-LOOP TWO-POINT FUNCTION AND EFFECTIVE ACTION

• We obtain the one-loop effective action for the classical fields $\phi(x,y) = \delta(x,y)\phi(x)$

$$S_{
m eff} = \int dx \phi(x) rac{1}{2} (\Box + \mu^2) \phi(x) + rac{g}{3} rac{1}{4\pi} \int dx \, \phi(x)^2 \mu_N^2 + rac{g}{6} \left(rac{N}{4\pi}
ight)^2 \int dx \, dy \, \phi(x) \phi(y) rac{1}{rac{N^2}{4} |x - y|^2 + m^2} \, dx$$

• It can be shown that this is equivalent to the previous formula with $-\frac{g}{12\pi}\int d^2x \phi h(\tilde{\Delta})\phi$ but with a different interpretation.

TWO-LOOP TWO-POINT FUNCTION AND EFFECTIVE ACTION

Take home message

JURAJ TEKEL FUZZY FIELD THEORIES IN THE STRING MODES FORMALISM 53 / 59

イロト イポト イヨト イヨ

- Fuzzy spaces are (among other things) toy models of spaces with quantum structure.
- Fuzzy scalar field theories are very different from their standard counterparts.
- There is an interesting (new) way to see and understand this difference in position space.

- Fuzzy spaces are (among other things) toy models of spaces with quantum structure.
- Fuzzy scalar field theories are very different from their standard counterparts.
- There is an interesting (new) way to see and understand this difference in position space.

Thank you for your attention!

IF TIME PERMITS - FUZZY SPACES

- Regularization of infinities in the standard QFT. Heisenberg ~'30; Snyder '47, Yang '47
- Regularization of field theories for numerical simulations. Panero '16
- An effective description of the open string dynamics in a magnetic background in the low energy limit.

Seiberg Witten '99; Douglas, Nekrasov '01

- Solutions of various matrix formulations of the string theory (IKKT, BFSS, BNM). Steinacker '13
- Geometric unification of the particle physics and theory of gravity. van Suijlekom '15
- An effective description of various systems in a certain limit (eg. QHE). Karabali, Nair '06

IF TIME PERMITS - SYMMETRY BREAKING IN NC FIELD THEORIES

$$S[\phi] = \int d^2 x \, \left(rac{1}{2} \partial_i \phi \partial_i \phi + rac{1}{2} m^2 \phi^2 + g \phi^4
ight)$$

Glimm, Jaffe '74; Glimm, Jaffe, Spencer '75; Chang '76 Loinaz, Willey '98; Schaich, Loinaz '09

• The phase diagram of noncommutative field theories has one more phase. It is a non-uniform order phase, or a striped phase.

Gubser, Sondhi '01; Chen, Wu '02

- In this phase, the field does not oscillate around one given value in the whole space. Translational symmetry is broken.
- This has been established in numerous numerical works for variety different spaces. Martin '04; García Flores, Martin, O'Connor '06, '09; Panero '06, '07; Ydri '14; Bietenholz, F. Hofheinz, Mejía-Díaz, Panero '14; Mejía-Díaz, Bietenholz, Panero '14; Medina, Bietenholz, D. O'Connor '08; Bietenholz, Hofheinz, Nishimura '04; Lizzi, Spisso '12; Ydri, Ramda, Rouag '16; Kováčik, O'Connor '18 Panero '15

IF TIME PERMITS - SYMMETRY BREAKING IN NC FIELD THEORIES

Mejía-Díaz, Bietenholz, Panero '14 for $\mathbb{R}^2_{ heta}$

$$S[M] = Tr\left(\frac{1}{2}M[L_i, [L_i, M]] + \frac{1}{2}m^2M^2 + gM^4\right)$$

・ロト ・回ト ・ヨト ・ヨト

æ