Towards removal of striped phase in matrix model DESCRIPTION OF FUZZY FIELD THEORIES

Juraj Tekel

Department of theoretical physics

FACULTY OF MATHEMATICS,
PHYSICS AND INFORMATICS
Comenius University
Bratislava

Corfu Summer Institute 2022, Corfu, Greece, 20. 9. 2022
work with: M. Šubjaková; D. Prekrat, D. Ranković, N. K. Todorović-Vasović, S. Kováčik arXiv: 2002.02317 [hep-th] , 2209.00592 [hep-th]

Towards removal of striped phase in matrix model description of fuzzy field theories

Towards removal of striped phase in matrix model description fuzzy field theories

FuZZY SPACES

Fuzzy sphere [Hoppe '82; Madore '92; Grosse, Klimčík, Prešnajder '90s]

- Functions on the usual sphere are given by

$$
f(\theta, \phi)=\sum_{l=0}^{\infty} \sum_{m=-1}^{l} c_{l m} Y_{l m}(\theta, \phi)
$$

where $Y_{l m}$ are the spherical harmonics

$$
\Delta Y_{l m}(\theta, \phi)=I(I+1) Y_{l m}(\theta, \phi)
$$

- To describe features at a small length scale we need $Y_{l m}$'s with a large I.

FuZZY SPACES

FuZZY SPACES

- If we truncate the possible values of l in the expansion

$$
f=\sum_{l=0}^{L} \sum_{m=-l}^{l} c_{l m} Y_{l m}(\theta, \phi)
$$

we will not be able to see any features of functions under certain length scales.

- Points on the sphere (as δ-functions) cease to exist.
- Expressions defined in this way are not closed under multiplication.

FuZZY SPACES

FuZZY SPACES

- Number of independent functions with $I \leq L$ is N^{2}, the same as the number of $N \times N$ hermitian matrices.
The idea is to map the former on the latter and borrow a closed product from there.
- In order to do so, we consider a $N \times N$ matrix as a product of two N-dimensional representations \underline{N} of the group $S U(2)$. It reduces to

$$
\begin{array}{rlccccccc}
\underline{N} \otimes \underline{N} & = & \underset{1}{\downarrow} & \oplus & \underline{3} & \oplus & \underline{5} & \oplus & \ldots \\
\downarrow & & \\
& =\left\{Y_{0 m}\right\} & \oplus & \left\{Y_{1 m}\right\} & \oplus & \left\{Y_{2 m}\right\} & \oplus & \ldots
\end{array}
$$

- We thus have a map $\varphi: Y_{I m} \rightarrow M$ and we define the product

$$
Y_{l m} \star Y_{l^{\prime} m^{\prime}}:=\varphi^{-1}\left(\varphi\left(Y_{l m}\right) \varphi\left(Y_{l^{\prime} m^{\prime}}\right)\right) .
$$

FUZZY SPACES

- We have a short distance structure, but the prize we had to pay was a noncommutative product * of functions. The space, for which this is the algebra of functions, is called the fuzzy sphere.
- Opposing to some lattice discretization this space still possess a full rotational symmetry

$$
Y_{l m} \star Y_{l^{\prime} m^{\prime}}:=\varphi^{-1}\left(\varphi\left(Y_{l m}\right) \varphi\left(Y_{l^{\prime} m^{\prime}}\right)\right) .
$$

- In the limit N or $L \rightarrow \infty$ we recover the original sphere.

FuZZY SPACES

- The regular sphere S^{2} is given by the coordinates

$$
x_{i} x_{i}=R^{2} \quad, \quad x_{i} x_{j}-x_{j} x_{i}=0, i, j=1,2,3,
$$

which generate the algebra of functions.

- For the fuzzy sphere S_{N}^{2} we define

$$
\hat{x}_{i} \hat{x}_{i}=r^{2} \quad, \quad \hat{x}_{i} \hat{x}_{j}-\hat{x}_{j} \hat{x}_{i}=i \theta \varepsilon_{i j k} \hat{x}_{k}, i, j=1,2,3 .
$$

- Such \hat{x}_{i} 's generate a different, non-commutative, algebra and S_{N}^{2} is an object, which has this algebra as an algebra of functions.

FuZZY SPACES

- The conditions can be realized as an $N=2 s+1$ dimensional representation of $S U(2)$

$$
\hat{x}_{i}=\frac{2 r}{\sqrt{N^{2}-1}} L_{i} \quad, \quad \theta=\frac{2 r}{\sqrt{N^{2}-1}} \sim \frac{2}{N} \quad, \quad \rho^{2}=\frac{4 r^{2}}{N^{2}-1} s(s+1)=r^{2} .
$$

- The group $S U(2)$ still acts on \hat{x}_{i} 's and this space enjoys a full rotational symmetry.
- In the limit $N \rightarrow \infty$ we recover the original sphere.

FuZZY SPACES

- Most importantly nonzero commutators

$$
\hat{x}_{i} \hat{x}_{i}=\rho^{2} \quad, \quad \hat{x}_{i} \hat{x}_{j}-\hat{x}_{j} \hat{x}_{i}=i \theta \varepsilon_{i j k} \hat{x}_{k}, i=1,2,3 .
$$

imply uncertainty relations for positions

$$
\Delta x_{i} \Delta x_{j} \neq 0 .
$$

- Configuration space is analogous to phase space of quantum mechanics.
- In a similar fashion it is possible to construct an analogous deformation of the plane

$$
\hat{x}_{i} \hat{x}_{j}-\hat{x}_{j} \hat{x}_{i}=i \theta \varepsilon_{i j}=i \theta_{i j}, \quad i=1,2 .
$$

Construction uses the \star-product

$$
f \star g=f e^{\frac{i}{2} \grave{\partial} \theta \vec{\partial}} g=f g+\frac{i \theta^{\mu \nu}}{2} \frac{\partial f}{\partial x^{\mu}} \frac{\partial g}{\partial x^{\nu}}+\cdots
$$

FuZZY SPACES - AN ALTERNATIVE CONSTRUCTION

- We have divided the sphere into N cells. Function on the fuzzy sphere is given by a matrix M and the eigenvalues of M represent the values of the function on these cells.

- However there are no sharp boundaries between the pieces and everything is blurred, or fuzzy.

FuZZY SPACES

- Regularization of infinities in the standard QFT.
[Heisenberg ~'30; Snyder '47, Yang '47]
- Regularization of field theories for numerical simulations.
[Panero '16]
- An effective description of the open string dynamics in a magnetic background in the low energy limit.
[Seiberg Witten '99; Douglas, Nekrasov '01]
- Solutions of various matrix formulations of the string theory (IKKT, BFSS, BNM). [Steinacker '13]
- Geometric unification of the particle physics and theory of gravity. [van Suijlekom '15]
- An effective description of various systems in a certain limit (eg. QHE). [Karabali, Nair '06]

FuZZY SPACES

- Regularization of infinities in the standard QFT.
[Heisenberg ~'30; Snyder '47, Yang '47]
- Regularization of field theories for numerical simulations.
[Panero '16]
- An effective description of the open string dynamics in a magnetic background in the low energy limit.
[Seiberg, Witten '99; Douglas, Nekrasov '01]
- Solutions of various matrix formulations of the string theory (IKKT, BFSS, BNM). [many talks in this meeting, Steinacker '13]
- Geometric unification of the particle physics and theory of gravity. [van Suijlekom '15]
- An effective description of various systems in a certain limit (eg. QHE). [Karabali, Nair '06]

FUZZY SPACES

- Regularization of infinities in the standard QFT.
[Heisenberg ~'30; Snyder '47, Yang '47]
- Regularization of field theories for numerical simulations. [Panero '16]
- An effective description of the open string dynamics in a magnetic background in the low energy limit.
[Seiberg Witten '99; Douglas, Nekrasov '01]
- Solutions of various matrix formulations of the string theory (IKKT, BFSS, BNM). [many talks in this meeting, Steinacker '13]
- Geometric unification of the particle physics and theory of gravity. [van Suijlekom '15]
- An effective description of various systems in a certain limit (eg. QHE). [Karabali, Nair '06]
- Toy models of spaces with discrete quantum structure, which is expected to arise in quantum theory of gravity.
[Doplicher, Fredenhagen, Roberts '95; Hossenfelder 1203.6191]

Towards removal of striped phase in matrix model description of fuzzy field theories

FuZZY SCALAR FIELD THEORY

- Commutative euclidean theory of a real scalar field is given by an action

$$
S(\Phi)=\int d^{2} x\left[\frac{1}{2} \Phi \Delta \Phi+\frac{1}{2} m^{2} \Phi^{2}+V(\Phi)\right]
$$

and path integral correlation functions

$$
\langle F\rangle=\frac{\int d \Phi F(\Phi) e^{-S(\Phi)}}{\int d \Phi e^{-S(\Phi)}} .
$$

- We construct the noncommutative theory as an analogue with
- field \rightarrow matrix,
- functional integral \rightarrow matrix integral,
- spacetime integral \rightarrow trace,
- derivative $\rightarrow L_{i}$ commutator.

FuZZY SCALAR FIELD THEORY

- Commutative

$$
\begin{gathered}
S(\Phi)=\int d^{2} x\left[\frac{1}{2} \Phi \Delta \Phi+\frac{1}{2} m^{2} \Phi^{2}+V(\Phi)\right], \\
\langle F\rangle=\frac{\int d \Phi F(\Phi) e^{-S(\Phi)}}{\int d \Phi e^{-S(\Phi)}}
\end{gathered}
$$

- Noncommutative (for S_{F}^{2})

$$
\begin{gathered}
S(M)=\frac{4 \pi R^{2}}{N} \operatorname{Tr}\left[\frac{1}{2} M \frac{1}{R^{2}}\left[L_{i},\left[L_{i}, M\right]\right]+\frac{1}{2} m^{2} M^{2}+V(M)\right], \\
\langle F\rangle=\frac{\int d M F(M) e^{-S(M)}}{\int d M e^{-S(M)}} .
\end{gathered}
$$

[Balachandran, Kürkçüoğlu, Vaidya '05; Szabo '03; Ydri '16]

FUZZY SCALAR FIELD THEORY - UV/IR MIXING

- The key property of the noncommutative field theories is the UV/IR mixing phenomenon, which arises as a result of the nonlocality of the theory.
[Minwalla, Van Raamsdonk, Seiberg '00; Vaidya '01; Chu, Madore, Steinacker '01]
- Very energetic fluctuations (UV physics) have consequences at large distances (IR physics).
- In terms of diagrams different properties of planar and non-planar ones. The (matrix) vertex is not invariant under permutation of incoming momenta.

FUZZY SCALAR FIELD THEORY - UV/IR MIXING

$$
M=\sum_{l=0}^{N-1} \sum_{m=-1}^{1} c_{l m} T_{l m}, \operatorname{Tr}\left(M^{4}\right)=\sum_{l_{1}, \ldots 4} \sum_{m_{1 . \ldots 4}} c_{1, m_{1}} c_{l, m_{2}} c_{l, m_{3}} c_{l 4}, m_{4} \operatorname{Tr}\left(T_{l i, m_{1}} T_{l, m_{2}} T_{l_{3}, m_{3}} T_{l 4, m_{4}}\right)
$$

FUZZY SCALAR FIELD THEORY - UV/IR MIXING

FUZZY SCALAR FIELD THEORY - UV/IR MIXING

[Chu, Madore, Steinacker '01]

$$
I^{N P}-I^{P}=\sum_{j=0}^{N-1} \frac{2 j+1}{j(j+1)+m^{2}}\left[(-1)^{I+j+N-1}\left\{\begin{array}{lll}
I & s & s \\
j & s & s
\end{array}\right\}-1\right]
$$

- This difference is finite in $N \rightarrow \infty$ limit.
- $N \rightarrow \infty$ limit of the effective action is different from the standard S^{2} effective action. Regularization of the field theory by NC space is anomalous.
- In the planar limit $S^{2} \rightarrow \mathbb{R}^{2}$ one recovers singularities and the standard UV/IR-mixing.
- The space (geometry) forgets where it came from, but the field theory (physics) remembers its fuzzy origin.

FUZZY SCALAR FIELD THEORY - UV/IR MIXING

$$
S=\int d^{2} \times\left(\frac{1}{2} \partial_{\mu} \phi \star \partial^{\mu} \phi+\frac{m^{2}}{2} \phi \star \phi+\frac{\lambda}{4!} \phi \star \phi \star \phi \star \phi\right)
$$

FUZZY SCALAR FIELD THEORY - UV/IR MIXING

[Minwalla, Van Raamsdonk, Seiberg '00]

- Planar contribution

$$
I_{P}=\frac{\lambda}{4!} \int \frac{d^{2} k}{(2 \pi)^{2}} \frac{2}{k^{2}+m^{2}}
$$

- Non-planar contribution

$$
I_{N P}=\frac{\lambda}{4!} \int \frac{d^{2} k}{(2 \pi)^{2}} \frac{\exp \left(i k_{\mu} \theta^{\mu \nu} p_{\nu}\right)}{k^{2}+m^{2}}=\frac{\lambda}{96 \pi} \log \frac{\Lambda_{\text {eff }}^{2}}{m^{2}}+\cdots, \Lambda_{\text {eff }}^{2}=\frac{1}{1 / \Lambda^{2}+\left|\theta^{\mu \nu} p_{\nu}\right|^{2}} .
$$

Towards removal of striped phase in matrix model description of fuzzy field theories

PHASES OF FUZZY FIELD THEORIES

$$
S[\phi]=\int d^{2} \times\left(\frac{1}{2} \partial_{i} \phi \partial_{i} \phi+\frac{1}{2} m^{2} \phi^{2}+\frac{\lambda}{4!} \phi^{4}\right)
$$

[Glimm, Jaffe '74; Glimm, Jaffe, Spencer '75; Chang '76] [Loinaz, Willey '98; Schaich, Loinaz '09]

PHASES OF FUZZY FIELD THEORIES

- The phase diagram of noncommutative field theories has one more phase. It is a non-uniform order phase, or a striped phase.
[Gubser, Sondhi '01; Chen, Wu '02]
- In this phase, the field does not oscillate around one given value in the whole space. Translational symmetry is broken.
- This has been established in numerous numerical works for variety different spaces. [Martin '04; García Flores, Martin, O'Connor '06, '09; Panero '06, '07; Ydri '14; Bietenholz, F. Hofheinz, Mejía-Díaz, Panero '14; Mejía-Díaz, Bietenholz, Panero '14; Medina, Bietenholz, D. O'Connor '08; Bietenholz, Hofheinz, Nishimura '04; Lizzi, Spisso '12; Ydri, Ramda, Rouag '16; Kováčik, O' Connor '18] [Panero '15]

Phases of fuZZY field theories

[Mejía-Díaz, Bietenholz, Panero '14] for \mathbb{R}_{θ}^{2}

$$
\begin{gathered}
S[M]=\operatorname{Tr}\left(\frac{1}{2} M\left[L_{i},\left[L_{i}, M\right]\right]+\frac{1}{2} m^{2} M^{2}+g M^{4}\right) \\
S=\int d^{2} \times\left(\frac{1}{2} \partial_{\mu} \phi \star \partial^{\mu} \phi+\frac{m^{2}}{2} \phi \star \phi+\frac{\lambda}{4!} \phi \star \phi \star \phi \star \phi\right)
\end{gathered}
$$

Towards removal of striped phase in matrix model description of fuzzy field theories

Random matrices

[M.L. Mehta '04; B. Eynard, T. Kimura, S. Ribault '15; G. Livan, M. Novaes, P. Vivo '17]

- Matrix model $=$ ensemble of random matrices.
- An important example - ensemble of $N \times N$ hermitian matrices with

$$
P(M)=e^{-N \operatorname{Tr}(V(M))}, \text { usually } V(x)=\frac{1}{2} r x^{2}+g x^{4}
$$

and

$$
d M=\left[\prod_{i=1}^{N} M_{i j}\right]\left[\prod_{i<j} \operatorname{Re} M_{i j} \operatorname{Im} M_{i j}\right]
$$

- Both the measure and the probability distribution are invariant under $M \rightarrow U M U^{\dagger}$ with $U \in S U(N)$.
- Requirement of such invariance is very restrictive. One is usually interested in the distribution of eigenvalues.

Random matrices - Quartic potential

$$
V(x)=r x^{2} / 2+g x^{4} \text { and } r>0
$$

Random matrices - Quartic potential

$$
V(x)=r x^{2} / 2+g x^{4} \text { and } r<0
$$

Random matrices - Quartic potential

$$
V(x)=r x^{2} / 2+g x^{4} \text { and } r<-4 \sqrt{g}
$$

Random matrices - Quartic potential

$$
V(x)=r x^{2} / 2+g x^{4} \text { and } r \ll 0
$$

SECOND MOMENT APPROXIMATION

- Recall the action of the fuzzy scalar field theory

$$
S(M)=\frac{1}{2} \operatorname{Tr}\left(M\left[L_{i},\left[L_{i}, M\right]\right]\right)+\frac{1}{2} m^{2} \operatorname{Tr}\left(M^{2}\right)+g \operatorname{Tr}\left(M^{4}\right) .
$$

This is a particular case of a matrix model since we need

$$
\int d M F(M) e^{-S(M)}
$$

- The large N limit of the model with the kinetic term is not well understood.

The key issue being that diagonalization $M=U \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right) U^{\dagger}$ no longer straightforward.

- Integrals like

$$
\begin{gathered}
\langle F\rangle \sim \int\left(\prod_{i=1}^{N} d \lambda_{i}\right) \int d U F\left(\lambda_{i}, U\right) e^{\left.-N^{2}\left[\left.\frac{1}{2} m^{2} \frac{1}{N} \sum \lambda_{i}^{2}+g \frac{1}{N} \sum \lambda_{i}^{4}-\frac{2}{N^{2}} \sum_{i<j} \log \right\rvert\, \lambda_{i}-\lambda_{j}\right]\right]} \\
\times e^{-\frac{1}{2} \operatorname{Tr}\left(U \wedge U^{\dagger}\left[L_{i},\left[L_{i}, U \wedge U^{\dagger}\right]\right]\right)}
\end{gathered}
$$

SECOND MOMENT APPROXIMATION

- For the free theory $g=0$ the kinetic term just rescales the eigenvalues. [Steinacker '05]
- There is a unique parameter independent effective action that reconstructs this rescaling. [Polychronakos '13]

$$
S_{e f f}\left(\lambda_{i}\right)=\frac{1}{2} \log \left(\frac{c_{2}}{1-e^{-c_{2}}}\right)+\mathcal{R} .
$$

Can be generalized to more a more complicated kinetic term \mathcal{K}.

- Introducing the asymmetry $c_{2} \rightarrow c_{2}-c_{1}^{2}$ we obtain a matrix model

$$
S(M)=\frac{1}{2} F\left(c_{2}-c_{1}^{2}\right)+\frac{1}{2} r \operatorname{Tr}\left(M^{2}\right)+g \operatorname{Tr}\left(M^{4}\right) \quad, \quad F(t)=\log \left(\frac{t}{1-e^{-t}}\right) .
$$

[Šubjaková, JT PoS CORFU2019]

SECOND MOMENT APPROXIMATION

[JT '18; Šubjaková, JT '20]

Towards removal of striped phase in matrix model description of fuzzy field theories

REmOVAL OF STRIPES - FUZZY SPHERE

- We would like to analyse the more complicated model

$$
S=\operatorname{Tr}\left(\frac{1}{2} M\left[L_{i},\left[L_{i}, M\right]\right]+12 g M Q M+\frac{1}{2} r M+g M^{4}\right),
$$

where

$$
Q T_{l m}=\underbrace{-\left(\sum_{j=0}^{N-1} \frac{2 j+1}{j(j+1)+r}\left[(-1)^{l+j+N-1}\left\{\begin{array}{ccc}
1 & s & s \\
j & s & s
\end{array}\right\}-1\right]\right)}_{Q(l)} T_{l m} .
$$

- This removes the UV/IR mixing in the theory, essentially by removing the problematic part by brute force.
[Dolan, O'Connor, Prešnajder '01]

REMOVAL OF STRIPES - FUZZY SPHERE

- Operator Q can be expressed as a power series in $C_{2}=\left[L_{i},\left[L_{i}, \cdot\right]\right]$

$$
Q=q_{1} C_{2}+q_{2} C_{2}^{2}+\ldots
$$

- As a starting point, it is interesting to see the phase structure of such simplified model. [O'Connor, Säman '07]
- This is the case of

$$
\mathcal{K}=(1+a g) C_{2} \quad \text { or } \quad \mathcal{K}=(1+a g) C_{2}+b g C_{2}^{2} .
$$

REmOVAL OF STRIPES - FUZZY SPHERE

[Šubjaková, JT '20]

REmOVAL OF STRIPES - FUZZY SPHERE

[Šubjaková, JT '20]

$$
a=3 e^{3 / 2}, \quad b=-4,-2,0,2,4 .
$$

REmoval of stripes - GW model

- Grosse-Wulkenhaar model ['00's]

$$
\begin{gathered}
S_{G W}=\int d^{2} \times\left(\frac{1}{2} \partial_{\mu} \phi \star \partial^{\mu} \phi+\frac{1}{2} \Omega^{2}\left(\tilde{x}_{\mu} \phi\right) \star\left(\tilde{x}^{\mu} \phi\right)+\frac{m^{2}}{2} \phi \star \phi+\frac{\lambda}{4!} \phi \star \phi \star \phi \star \phi\right), \\
\tilde{x}_{\mu}=2\left(\theta^{-1}\right)_{\mu \nu} x^{\nu} .
\end{gathered}
$$

- This model is renormalizable.
- Described by a matrix model in terms of truncated Heisenberg algebra.
[Burić, Wohlgenannt '10]

Removal of stripes - GW model

- The NC plane coordinates can be realized by

$$
X=\frac{1}{\sqrt{2}}\left(\begin{array}{ccccc}
+\sqrt{1} & +\sqrt{1} & & & \\
& & +\sqrt{2} & & \\
& & & \ddots & \\
& & & & \ddots
\end{array}\right), Y=\frac{i}{\sqrt{2}}\left(\begin{array}{cccc}
& -\sqrt{1} & & \\
+\sqrt{1} & & -\sqrt{2} & \\
& +\sqrt{2} & & \ddots \\
& & \ddots & \\
& & & \ddots
\end{array}\right)
$$

then

$$
[X, Y]=i
$$

- This algebra is then truncated to a finite dimension.

Removal of stripes - GW model

- Define finite matrices

$$
X=\frac{1}{\sqrt{2}}\left(\begin{array}{ccccc}
& +\sqrt{1} & & & \\
+\sqrt{1} & & +\sqrt{2} & & \\
& +\sqrt{2} & & \ddots & \\
& & \ddots & & \sqrt{N-1}
\end{array}\right), Y=\ldots
$$

which gives

$$
[X, Y]=i(1-Z), Z=\operatorname{diag}(0, \ldots, N)
$$

- Original algebra is recovered in the $N \rightarrow \infty$ limit or under the $Z=0$ condition.
- The kinetic term becomes

$$
\frac{1}{2} \partial_{\mu} \phi \star \partial^{\mu} \phi \rightarrow[X, M][X, M]+[Y, M][Y, M] .
$$

Removal of stripes - GW model

- The harmonic potential becomes

$$
\frac{1}{2} \Omega^{2}\left(\tilde{x}_{\mu} \phi\right) \star\left(\tilde{x}^{\mu} \phi\right) \rightarrow R M^{2}
$$

where R is a fixed external matrix

$$
R=\frac{15}{2}-4 Z^{2}-8\left(X^{2}+Y^{2}\right)=\frac{31}{2}-16 \operatorname{diag}(1,2, \ldots, N-1,8 N)
$$

- Interpretation of coupling to the curvature of the space.
- We are thus left with a matrix model with action

$$
S=\operatorname{Tr}(M[X,[X, M]]+M[Y,[Y, M]])-g_{r} \operatorname{Tr}\left(R M^{2}\right)-g_{2} \operatorname{Tr}\left(M^{2}\right)+g_{4} \operatorname{Tr}\left(M^{4}\right) .
$$

Removal of stripes - GW model

[Prekrat, Todorović-Vasović, Ranković '21; Prekrat '21]

- Numerical investigation of this matrix model leads to

Removal of stripes - GW model

[Prekrat, Todorović-Vasović, Ranković, Kováčik, JT '22]

- We concentrate on the effect of the curvature term and discard the kinetic term

$$
S(M)=\operatorname{Tr}(M \mathcal{K} M)-\operatorname{Tr}\left(g_{r} R M^{2}\right)-g_{2} \operatorname{Tr}\left(M^{2}\right)+g_{4} \operatorname{Tr}\left(M^{4}\right) .
$$

- This leads to the angular integral

$$
\int d U e^{g_{r} \operatorname{Tr}\left(U R U^{\dagger} \Lambda^{2}\right)}
$$

which gives up to g_{r}^{4}

$$
\begin{aligned}
S(\Lambda)= & N \operatorname{Tr}\left(-g_{2} \Lambda^{2}+8 g_{r} \Lambda^{2}+g_{4} \Lambda^{4}-\frac{32}{3} g_{r}^{2} \Lambda^{4}\right)+\frac{1024}{45} g_{r}^{4} \Lambda^{8}+ \\
& +\frac{32}{3} g_{r}^{2}\left(\operatorname{Tr}\left(\Lambda^{2}\right)\right)^{2}+\frac{1024}{15} g_{r}^{4}\left(\operatorname{Tr}\left(\Lambda^{4}\right)\right)^{2}-\frac{4096}{45} g_{r}^{4} \operatorname{Tr}\left(\Lambda^{6}\right) \operatorname{Tr}\left(\Lambda^{2}\right)
\end{aligned}
$$

- This is a multitrace matrix model which can be analyzed.

Removal of stripes - GW model

[Prekrat, Todorović-Vasović, Ranković, Kováčik, JT '22]

Removal of stripes - GW model

[Prekrat, Todorović-Vasović, Ranković, Kováčik, JT '22]

Removal of stripes - GW model

[Prekrat, Todorović-Vasović, Ranković, Kováčik, JT '22]

Take home message

TAKE HOME MESSAGE AND 2DO LIST

- Noncommutative field theories are naturally described in terms of hermitian random matrix models.
- The UV/IR-mixing is exhibited as a non-local, or striped, phase of the model.
- In models describing theories free of the UV/IR-mixing this phase is reasonably assumed to be removed.

Take home message and 2do List

- Noncommutative field theories are naturally described in terms of hermitian random matrix models.
- The UV/IR-mixing is exhibited as a non-local, or striped, phase of the model.
- In models describing theories free of the UV/IR-mixing this phase is reasonably assumed to be removed.
- Include the kinetic term in the analytic treatment in the GW case.
- Consider matrix model for the GW-inspired $U(1)$ gauge field theory.
- Nonperturbative treatment of the curvature term?

TaKE home message and 2do List

- Noncommutative field theories are naturally described in terms of hermitian random matrix models.
- The UV/IR-mixing is exhibited as a non-local, or striped, phase of the model.
- In models describing theories free of the UV/IR-mixing this phase is reasonably assumed to be removed.
- Include the kinetic term in the analytic treatment in the GW case.
- Consider matrix model for the GW-inspired $U(1)$ gauge field theory.
- Nonperturbative treatment of the curvature term?

Thank you for your attention!

