TOWARDS REMOVAL OF STRIPED PHASE IN MATRIX MODEL DESCRIPTION OF FUZZY FIELD THEORIES

Juraj Tekel

Department of theoretical physics

FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS
Comenius University

Bratislava

Corfu Summer Institute 2022, Corfu, Greece, 20. 9. 2022
work with: M. Šubjaková; D. Prekrat, D. Ranković, N. K. Todorović-Vasović, S. Kováčik
arXiv: 2002.02317 [hep-th], 2209.00592 [hep-th]

Towards removal of striped phase in matrix model description of fuzzy field theories

Towards removal of striped phase in matrix model description of fuzzy field theories

3 / 57

Fuzzy sphere [Hoppe '82; Madore '92; Grosse, Klimčík, Prešnajder '90s]

• Functions on the usual sphere are given by

$$f(\theta,\phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} c_{lm} Y_{lm}(\theta,\phi) ,$$

where Y_{lm} are the spherical harmonics

$$\Delta Y_{lm}(\theta,\phi) = I(I+1)Y_{lm}(\theta,\phi) .$$

• To describe features at a small length scale we need Y_{lm} 's with a large l.

If we truncate the possible values of / in the expansion

$$f = \sum_{l=0}^{L} \sum_{m=-l}^{l} c_{lm} Y_{lm}(\theta, \phi) ,$$

we will not be able to see any features of functions under certain length scales.

- Points on the sphere (as δ -functions) cease to exist.
- Expressions defined in this way are not closed under multiplication.

• Number of independent functions with $l \le L$ is N^2 , the same as the number of $N \times N$ hermitian matrices.

The idea is to map the former on the latter and borrow a closed product from there.

• In order to do so, we consider a $N \times N$ matrix as a product of two N-dimensional representations \underline{N} of the group SU(2). It reduces to

ullet We thus have a map $arphi: Y_{lm} o M$ and we define the product

$$Y_{lm} \star Y_{l'm'} := \varphi^{-1} \left(\varphi \left(Y_{lm} \right) \varphi \left(Y_{l'm'} \right) \right) .$$

- We have a short distance structure, but the prize we had to pay was a noncommutative product ★
 of functions. The space, for which this is the algebra of functions, is called the fuzzy sphere.
- Opposing to some lattice discretization this space still possess a full rotational symmetry

$$Y_{lm} \star Y_{l'm'} := \varphi^{-1} \left(\varphi \left(Y_{lm} \right) \varphi \left(Y_{l'm'} \right) \right) .$$

• In the limit N or $L \to \infty$ we recover the original sphere.

Fuzzy spaces

• The regular sphere S^2 is given by the coordinates

$$x_i x_i = R^2$$
 , $x_i x_j - x_j x_i = 0$, $i, j = 1, 2, 3$,

which generate the algebra of functions.

• For the fuzzy sphere S_N^2 we define

$$\hat{x}_i \hat{x}_i = r^2$$
 , $\hat{x}_i \hat{x}_i - \hat{x}_i \hat{x}_i = i \theta \varepsilon_{ijk} \hat{x}_k$, $i, j = 1, 2, 3$.

• Such \hat{x}_i 's generate a different, non-commutative, algebra and S_N^2 is an object, which has this algebra as an algebra of functions.

Fuzzy spaces

• The conditions can be realized as an N=2s+1 dimensional representation of SU(2)

$$\hat{x}_i = rac{2r}{\sqrt{N^2-1}} L_i \quad , \quad heta = rac{2r}{\sqrt{N^2-1}} \sim rac{2}{N} \quad , \quad
ho^2 = rac{4r^2}{N^2-1} s(s+1) = r^2 \; .$$

- The group SU(2) still acts on \hat{x}_i 's and this space enjoys a full rotational symmetry.
- In the limit $N \to \infty$ we recover the original sphere.

Most importantly nonzero commutators

$$\hat{x}_i \hat{x}_i = \rho^2$$
 , $\hat{x}_i \hat{x}_j - \hat{x}_j \hat{x}_i = i\theta \epsilon_{ijk} \hat{x}_k$, $i = 1, 2, 3$.

imply uncertainty relations for positions

$$\Delta x_i \Delta x_j \neq 0$$
.

- Configuration space is analogous to phase space of quantum mechanics.
- In a similar fashion it is possible to construct an analogous deformation of the plane

$$\hat{x}_i \hat{x}_j - \hat{x}_j \hat{x}_i = i\theta \varepsilon_{ij} = i\theta_{ij}$$
, $i = 1, 2$.

Construction uses the ⋆-product

$$f \star g = f e^{\frac{i}{2} \stackrel{i}{\partial} \theta \stackrel{j}{\partial}} g = fg + \frac{i\theta^{\mu\nu}}{2} \frac{\partial f}{\partial x^{\mu}} \frac{\partial g}{\partial x^{\nu}} + \cdots$$

12 / 57

FUZZY SPACES - AN ALTERNATIVE CONSTRUCTION

• We have divided the sphere into N cells. Function on the fuzzy sphere is given by a matrix M and the eigenvalues of M represent the values of the function on these cells.

• However there are no sharp boundaries between the pieces and everything is blurred, or fuzzy.

Regularization of infinities in the standard QFT.
 [Heisenberg ~'30; Snyder '47, Yang '47]

```
    Regularization of field theories for numerical simulations.
    [Panero '16]
```

 An effective description of the open string dynamics in a magnetic background in the low energy limit.

```
[Seiberg Witten '99; Douglas, Nekrasov '01]
```

- Solutions of various matrix formulations of the string theory (IKKT, BFSS, BNM).
 [Steinacker '13]
- Geometric unification of the particle physics and theory of gravity.
 [van Suijlekom '15]
- An effective description of various systems in a certain limit (eg. QHE).
 [Karabali, Nair '06]

- Regularization of infinities in the standard QFT.
 [Heisenberg ~'30; Snyder '47, Yang '47]
- Regularization of field theories for numerical simulations.
 [Panero '16]
- An effective description of the open string dynamics in a magnetic background in the low energy limit.

```
[Seiberg, Witten '99; Douglas, Nekrasov '01]
```

- Solutions of various matrix formulations of the string theory (IKKT, BFSS, BNM). [many talks in this meeting, Steinacker '13]
- Geometric unification of the particle physics and theory of gravity.
 [van Suijlekom '15]
- An effective description of various systems in a certain limit (eg. QHE).
 [Karabali, Nair '06]

- Regularization of infinities in the standard QFT. [Heisenberg ~'30; Snyder '47, Yang '47]
- Regularization of field theories for numerical simulations.
 [Panero '16]
- An effective description of the open string dynamics in a magnetic background in the low energy limit.

[Seiberg Witten '99; Douglas, Nekrasov '01]

- Solutions of various matrix formulations of the string theory (IKKT, BFSS, BNM). [many talks in this meeting, Steinacker '13]
- Geometric unification of the particle physics and theory of gravity.

 [van Suijlekom '15]
- An effective description of various systems in a certain limit (eg. QHE).
 [Karabali, Nair '06]
- Toy models of spaces with discrete quantum structure, which is expected to arise in quantum theory of gravity.

[Doplicher, Fredenhagen, Roberts '95; Hossenfelder 1203.6191]

Towards removal of striped phase in matrix model description of fuzzy field theories

18 / 57

FUZZY SCALAR FIELD THEORY

• Commutative euclidean theory of a real scalar field is given by an action

$$S(\Phi) = \int d^2x \left[\frac{1}{2} \Phi \Delta \Phi + \frac{1}{2} m^2 \Phi^2 + V(\Phi) \right]$$

and path integral correlation functions

$$\langle F \rangle = rac{\int d\Phi \, F(\Phi) \mathrm{e}^{-S(\Phi)}}{\int d\Phi \, \mathrm{e}^{-S(\Phi)}} \; .$$

- We construct the noncommutative theory as an analogue with
 - field → matrix,
 - ullet functional integral o matrix integral,
 - ullet spacetime integral o trace,
 - derivative $\rightarrow L_i$ commutator.

FUZZY SCALAR FIELD THEORY

Commutative

$$S(\Phi) = \int d^2x \left[\frac{1}{2} \Phi \Delta \Phi + \frac{1}{2} m^2 \Phi^2 + V(\Phi) \right] ,$$
$$\langle F \rangle = \frac{\int d\Phi F(\Phi) e^{-S(\Phi)}}{\int d\Phi e^{-S(\Phi)}} .$$

• Noncommutative (for S_F^2)

$$S(M) = \frac{4\pi R^2}{N} \text{Tr} \left[\frac{1}{2} M \frac{1}{R^2} [L_i, [L_i, M]] + \frac{1}{2} m^2 M^2 + V(M) \right] ,$$

$$\langle F \rangle = \frac{\int dM \, F(M) e^{-S(M)}}{\int dM \, e^{-S(M)}} .$$

[Balachandran, Kürkçüoğlu, Vaidya '05; Szabo '03; Ydri '16]

The key property of the noncommutative field theories is the UV/IR mixing phenomenon, which
arises as a result of the nonlocality of the theory.
 [Minwalla, Van Raamsdonk, Seiberg '00; Vaidva '01; Chu, Madore, Steinacker '01]

- Very energetic fluctuations (UV physics) have consequences at large distances (IR physics).
- In terms of diagrams different properties of planar and non-planar ones.
 The (matrix) vertex is not invariant under permutation of incoming momenta.

$$M = \sum_{l=0}^{N-1} \sum_{m=-l}^{l} c_{lm} T_{lm} , \operatorname{Tr} (M^4) = \sum_{l_{1...4}} \sum_{m_{1...4}} c_{l_{1},m_{1}} c_{l_{2},m_{2}} c_{l_{3},m_{3}} c_{l_{4},m_{4}} \operatorname{Tr} (T_{l_{1},m_{1}} T_{l_{2},m_{2}} T_{l_{3},m_{3}} T_{l_{4},m_{4}})$$

[Chu, Madore, Steinacker '01]

$$I^{NP} - I^P = \sum_{j=0}^{N-1} \frac{2j+1}{j(j+1)+m^2} \left[(-1)^{l+j+N-1} \left\{ egin{array}{ccc} I & s & s \ j & s & s \end{array}
ight\} - 1
ight]$$

- This difference is finite in $N \to \infty$ limit.
- $N \to \infty$ limit of the effective action is different from the standard S^2 effective action. Regularization of the field theory by NC space is anomalous.
- ullet In the planar limit $S^2 o\mathbb{R}^2$ one recovers singularities and the standard UV/IR-mixing.
- The space (geometry) forgets where it came from, but the field theory (physics) remembers its fuzzy origin.

$$S = \int d^2x \left(\frac{1}{2} \partial_{\mu} \phi \star \partial^{\mu} \phi + \frac{m^2}{2} \phi \star \phi + \frac{\lambda}{4!} \phi \star \phi \star \phi \star \phi \right)$$

25 / 57

[Minwalla, Van Raamsdonk, Seiberg '00]

Planar contribution.

$$I_P = \frac{\lambda}{4!} \int \frac{d^2k}{(2\pi)^2} \frac{2}{k^2 + m^2} \ .$$

Non-planar contribution

$$I_{NP} = rac{\lambda}{4!} \int rac{d^2 k}{(2\pi)^2} rac{\exp(ik_\mu heta^{\mu
u} p_
u)}{k^2 + m^2} = rac{\lambda}{96\pi} \log rac{\Lambda_{ ext{eff}}^2}{m^2} + \cdots \; , \; \Lambda_{ ext{eff}}^2 = rac{1}{1/\Lambda^2 + | heta^{\mu
u} p_
u|^2} \; .$$

Towards removal of striped phase in matrix model description of fuzzy field theories

PHASES OF FUZZY FIELD THEORIES

$$S[\phi] = \int d^2x \, \left(\frac{1}{2}\partial_i\phi\partial_i\phi + \frac{1}{2}m^2\phi^2 + \frac{\lambda}{4!}\phi^4\right)$$

[Glimm, Jaffe '74; Glimm, Jaffe, Spencer '75; Chang '76] [Loinaz, Willey '98; Schaich, Loinaz '09]

28 / 57

Phases of fuzzy field theories

 The phase diagram of noncommutative field theories has one more phase. It is a non-uniform order phase, or a striped phase.

```
[Gubser, Sondhi '01; Chen, Wu '02]
```

- In this phase, the field does not oscillate around one given value in the whole space. Translational symmetry is broken.
- This has been established in numerous numerical works for variety different spaces.
 [Martin '04; García Flores, Martin, O'Connor '06, '09; Panero '06, '07; Ydri '14; Bietenholz, F. Hofheinz, Mejía-Díaz,

```
Panero '14; Mejía-Díaz, Bietenholz, Panero '14; Medina, Bietenholz, D. O'Connor '08; Bietenholz, Hofheinz, Nishimura '04; Lizzi, Spisso '12; Ydri, Ramda, Rouag '16; Kováčik, O'Connor '18] [Panero '15]
```


PHASES OF FUZZY FIELD THEORIES

[Mejía-Díaz, Bietenholz, Panero '14] for $\mathbb{R}^2_{ heta}$

$$S[M] = \operatorname{Tr}\left(\frac{1}{2}M[L_i, [L_i, M]] + \frac{1}{2}m^2M^2 + gM^4\right)$$

$$S = \int d^2x \left(\frac{1}{2} \partial_{\mu} \phi \star \partial^{\mu} \phi + \frac{m^2}{2} \phi \star \phi + \frac{\lambda}{4!} \phi \star \phi \star \phi \star \phi \right)$$

Towards removal of striped phase in matrix model description of fuzzy field theories

RANDOM MATRICES

[M.L. Mehta '04; B. Eynard, T. Kimura, S. Ribault '15; G. Livan, M. Novaes, P. Vivo '17]

- Matrix model = ensemble of random matrices.
- An important example ensemble of $N \times N$ hermitian matrices with

$$P(M) = e^{-N \text{Tr}(V(M))}$$
, usually $V(x) = \frac{1}{2} r x^2 + g x^4$

and

$$dM = \left[\prod_{i=1}^{N} M_{ii}\right] \left[\prod_{i < j} \operatorname{Re} M_{ij} \operatorname{Im} M_{ij}\right].$$

- Both the measure and the probability distribution are invariant under $M o UMU^\dagger$ with $U \in SU(N)$.
- Requirement of such invariance is very restrictive. One is usually interested in the distribution of eigenvalues.

REMOVAL OF STRIPED PHASE IS FUZZY FIELD THEORIES

RANDOM MATRICES - QUARTIC POTENTIAL

$$V(x) = rx^2/2 + gx^4$$
 and $r > 0$

RANDOM MATRICES - QUARTIC POTENTIAL

$$V(x)=rx^2/2+gx^4$$
 and $r<0$

RANDOM MATRICES - QUARTIC POTENTIAL

$$V(x) = rx^2/2 + gx^4$$
 and $r < -4\sqrt{g}$

RANDOM MATRICES - QUARTIC POTENTIAL

$$V(x) = rx^2/2 + gx^4$$
 and $r << 0$

SECOND MOMENT APPROXIMATION

Recall the action of the fuzzy scalar field theory

$$S(M) = \frac{1}{2} \operatorname{Tr} \left(M[L_i, [L_i, M]] \right) + \frac{1}{2} m^2 \operatorname{Tr} \left(M^2 \right) + g \operatorname{Tr} \left(M^4 \right) .$$

This is a particular case of a matrix model since we need

$$\int dM \, F(M) e^{-S(M)} \ .$$

- The large N limit of the model with the kinetic term is not well understood. The key issue being that diagonalization $M = U \operatorname{diag}(\lambda_1, \dots, \lambda_N) U^{\dagger}$ no longer straightforward.
- Integrals like

$$\langle F \rangle \sim \int \left(\prod_{i=1}^{N} d\lambda_{i} \right) \int dU \ F(\lambda_{i}, U) \ e^{-N^{2} \left[\frac{1}{2} m^{2} \frac{1}{N} \sum \lambda_{i}^{2} + g \frac{1}{N} \sum \lambda_{i}^{4} - \frac{2}{N^{2}} \sum_{i < j} \log |\lambda_{i} - \lambda_{j}| \right]}$$

$$\times e^{-\frac{1}{2} \operatorname{Tr} \left(U \wedge U^{\dagger} [L_{i}, [L_{i}, U \wedge U^{\dagger}]] \right)}$$

SECOND MOMENT APPROXIMATION

- For the free theory g=0 the kinetic term just rescales the eigenvalues. [Steinacker '05]
- There is a unique parameter independent effective action that reconstructs this rescaling.
 [Polychronakos '13]

$$S_{eff}(\lambda_i) = \frac{1}{2} \log \left(\frac{c_2}{1 - e^{-c_2}} \right) + \mathcal{R} .$$

Can be generalized to more a more complicated kinetic term \mathcal{K} .

ullet Introducing the asymmetry $c_2
ightarrow c_2 - c_1^2$ we obtain a matrix model

$$S(M) = \frac{1}{2} F(c_2 - c_1^2) + \frac{1}{2} r \operatorname{Tr} \left(M^2 \right) + g \operatorname{Tr} \left(M^4 \right) \ , \ F(t) = \log \left(\frac{t}{1 - e^{-t}} \right) \ .$$

[Šubjaková, JT PoS CORFU2019]

SECOND MOMENT APPROXIMATION

Towards removal of striped phase in matrix model description of fuzzy field theories

Removal of Stripes – Fuzzy Sphere

We would like to analyse the more complicated model

$$S = \operatorname{Tr}\left(\frac{1}{2}M[L_i,[L_i,M]] + 12gMQM + \frac{1}{2}rM + gM^4\right) \ ,$$

where

$$QT_{lm} = \underbrace{-\left(\sum_{j=0}^{N-1} \frac{2j+1}{j(j+1)+r} \left[(-1)^{l+j+N-1} \left\{ \begin{array}{ccc} l & s & s \\ j & s & s \end{array} \right\} - 1 \right] \right)}_{Q(l)} T_{lm} \ .$$

 This removes the UV/IR mixing in the theory, essentially by removing the problematic part by brute force.

[Dolan, O'Connor, Prešnajder '01]

Removal of Stripes – fuzzy sphere

ullet Operator Q can be expressed as a power series in $\mathcal{C}_2 = [\mathcal{L}_i, [\mathcal{L}_i, \cdot]]$

$$Q = q_1 C_2 + q_2 C_2^2 + \dots .$$

- As a starting point, it is interesting to see the phase structure of such simplified model.
 [O'Connor, Säman '07]
- This is the case of

$$\mathcal{K} = (1+ag) \, C_2 \quad \mathrm{or} \quad \mathcal{K} = (1+ag) \, C_2 + bg \, \, C_2^2 \ . \label{eq:Kappa}$$

REMOVAL OF STRIPES - FUZZY SPHERE

[Šubjaková, JT '20]

REMOVAL OF STRIPES - FUZZY SPHERE

[Šubjaková, JT '20]

Grosse-Wulkenhaar model ['00's]

$$S_{GW} = \int d^2x igg(rac{1}{2}\partial_{\mu}\phi\star\partial^{\mu}\phi + rac{1}{2}\Omega^2(ilde{x}_{\mu}\phi)\star(ilde{x}^{\mu}\phi) + rac{m^2}{2}\phi\star\phi + rac{\lambda}{4!}\phi\star\phi\star\phi\star\phiigg)\;,$$
 $ilde{x}_{\mu} = 2(heta^{-1})_{\mu
u}x^{
u}\;.$

- This model is renormalizable.
- Described by a matrix model in terms of truncated Heisenberg algebra. [Burić, Wohlgenannt '10]

• The NC plane coordinates can be realized by

$$X = \frac{1}{\sqrt{2}} \begin{pmatrix} +\sqrt{1} & +\sqrt{2} & & \\ +\sqrt{1} & +\sqrt{2} & & \\ & +\sqrt{2} & & \\ & & & \end{pmatrix}, Y = \frac{i}{\sqrt{2}} \begin{pmatrix} -\sqrt{1} & & \\ +\sqrt{1} & & -\sqrt{2} & \\ & +\sqrt{2} & & \\ & & & & \\ & & & & \\ \end{pmatrix},$$

then

$$[X, Y] = i$$
.

• This algebra is then truncated to a finite dimension.

Define finite matrices

$$X = \frac{1}{\sqrt{2}} \begin{pmatrix} +\sqrt{1} & +\sqrt{2} & & \\ +\sqrt{1} & +\sqrt{2} & & \\ & +\sqrt{2} & & \\ & & \ddots & \\ & & & \sqrt{N-1} \end{pmatrix} , Y = \dots ,$$

which gives

$$[X, Y] = i(1 - Z), Z = diag(0, ..., N).$$

- Original algebra is recovered in the $N \to \infty$ limit or under the Z=0 condition.
- The kinetic term becomes

$$\frac{1}{2}\partial_{\mu}\phi\star\partial^{\mu}\phi\to [X,M][X,M]+[Y,M][Y,M]\;.$$

The harmonic potential becomes

$$\frac{1}{2}\Omega^2(\tilde{x}_\mu\phi)\star(\tilde{x}^\mu\phi)\to RM^2$$
,

where R is a fixed external matrix

$$R = \frac{15}{2} - 4Z^2 - 8(X^2 + Y^2) = \frac{31}{2} - 16\operatorname{diag}(1, 2, \dots, N - 1, 8N)$$
.

- Interpretation of coupling to the curvature of the space.
- We are thus left with a matrix model with action

$$S = \operatorname{Tr}\left(M[X,[X,M]] + M[Y,[Y,M]]\right) - g_r \operatorname{Tr}\left(RM^2\right) - g_2 \operatorname{Tr}\left(M^2\right) + g_4 \operatorname{Tr}\left(M^4\right) \ .$$

[Prekrat, Todorović-Vasović, Ranković '21; Prekrat '21]

• Numerical investigation of this matrix model leads to

REMOVAL OF STRIPES - GW MODEL

[Prekrat, Todorović-Vasović, Ranković, Kováčik, JT '22]

• We concentrate on the effect of the curvature term and discard the kinetic term

$$S(M) = \operatorname{Tr}(MKM) - \operatorname{Tr}(g_rRM^2) - g_2\operatorname{Tr}(M^2) + g_4\operatorname{Tr}(M^4)$$
.

This leads to the angular integral

$$\int dU \, e^{g_r {\rm Tr} \left(URU^\dagger \Lambda^2 \right)} \; ,$$

which gives up to g_r^4

$$S(\Lambda) = N \operatorname{Tr} \left(-g_2 \Lambda^2 + 8g_r \Lambda^2 + g_4 \Lambda^4 - \frac{32}{3}g_r^2 \Lambda^4 \right) + \frac{1024}{45}g_r^4 \Lambda^8 +$$

$$+ \frac{32}{3}g_r^2 \left(\operatorname{Tr} \left(\Lambda^2 \right) \right)^2 + \frac{1024}{15}g_r^4 \left(\operatorname{Tr} \left(\Lambda^4 \right) \right)^2 - \frac{4096}{45}g_r^4 \operatorname{Tr} \left(\Lambda^6 \right) \operatorname{Tr} \left(\Lambda^2 \right) .$$

• This is a multitrace matrix model which can be analyzed.

REMOVAL OF STRIPES - GW MODEL

[Prekrat, Todorović-Vasović, Ranković, Kováčik, JT '22]

[Prekrat, Todorović-Vasović, Ranković, Kováčik, JT '22]

[Prekrat, Todorović-Vasović, Ranković, Kováčik, JT '22]

Take home message

56 / 57

TAKE HOME MESSAGE AND 2DO LIST

- Noncommutative field theories are naturally described in terms of hermitian random matrix models.
- The UV/IR-mixing is exhibited as a non-local, or striped, phase of the model.
- In models describing theories free of the UV/IR-mixing this phase is reasonably assumed to be removed.

57 / 57

Take home message and 2do list

- Noncommutative field theories are naturally described in terms of hermitian random matrix models.
- The UV/IR-mixing is exhibited as a non-local, or striped, phase of the model.
- In models describing theories free of the UV/IR-mixing this phase is reasonably assumed to be removed.
- Include the kinetic term in the analytic treatment in the GW case.
- Consider matrix model for the GW-inspired U(1) gauge field theory.
- Nonperturbative treatment of the curvature term?

Take home message and 2do list

- Noncommutative field theories are naturally described in terms of hermitian random matrix models.
- The UV/IR-mixing is exhibited as a non-local, or striped, phase of the model.
- In models describing theories free of the UV/IR-mixing this phase is reasonably assumed to be removed.
- Include the kinetic term in the analytic treatment in the GW case.
- Consider matrix model for the GW-inspired U(1) gauge field theory.
- Nonperturbative treatment of the curvature term?

Thank you for your attention!

