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Take home message

Quantum mechanics and general relativity together lead to a quantum structure of spacetime.

Noncommutative spaces are a version of such a construction where some of the symmetries are
preserved.

Quantum mechanics leads to some possibly observable corrections to things like energies of
quantum systems � like masses of bound states of two heavy quarks.
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Standard model and general relativity
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Standard model

Image from https://commons.wikimedia.org/
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Standard model

SU(3)× SU(2)× U(1)
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General relativity

Image from https://scitechdaily.com/
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General relativity

Rµν −
1

2
R gµν + Λ gµν =

8πG

c4
Tµν
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SM and GR

Rµν −
1

2
R gµν + Λ gµν =

8πG

c4
T̂µν
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SM and GR

Rµν −
1

2
R gµν + Λ gµν ??

8πG

c4
T̂µν
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Quantum structure of spacetime

We need a quantum theory of gravity.

Quantization of general relativity leads to a nonrenormalizable theory.

We have reasons to believe that future theory of quantum gravity will have a di�erent notion of
spacetime.
No distinction between points under certain length scales. [Hossenfelder 1203.6191]

Reasons:

gravitational Heisenberg microscope,

emergent spacetime,

instability of quantum gravitational vacuum. [Doplicher, Fredenhagen, Roberts '95]
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Quantum structure of spacetime

Very energetic and localized quantum �uctuations can lead to black holes.

A discrete structure solves this problem.

Similar to the stabilization of the hydrogen atom in quantum mechanics.
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Quantum structure of spacetime

∆x ·∆p ≥ 1

2
~
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Quantum structure of spacetime

∆x ·∆y ≥ θ

Natural scale for this is
√
θ ≈ lPl ≈ 10−35 m.

A fundamental volume, not length directly.

Discrete, but preserves at least some of the continuous symmetries.
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Fuzzy spaces
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Fuzzy spaces

Image from https://commons.wikimedia.org/
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Fuzzy spaces

Image from https://commons.wikimedia.org/
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Fuzzy spaces

Fuzzy sphere [Hoppe 1982; Madore 1992; Grosse, Klim£ík, Pre²najder 1990s]

The regular sphere S2 is given by the coordinates

xixi = R2 , xixj − xjxi = 0 , i = 1, 2, 3 ,

which generate the following algebra of functions

f =

{∑
k∈N3

(
ak1k2k3

3∏
i=1

xkii

)∣∣∣xixi = R2

}
,

which is by de�nition commutative.

Information about the sphere is hidden in this algebra.
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Fuzzy spaces

For the fuzzy sphere S2
N we de�ne

x̂i x̂i = r2 , x̂i x̂j − x̂j x̂i = iθεijk x̂k , i = 1, 2, 3 .

Such x̂i 's generate a di�erent, non-commutative, algebra and S2
N is an object, which has this

algebra as an algebra of functions.

The conditions can be realized as an N = 2s + 1 dimensional representation of SU(2)

x̂i =
2r√

N2 − 1
Li , θ =

2r√
N2 − 1

∼ 2

N
, ρ2 =

4r2

N2 − 1
s(s + 1) = r2 .

The group SU(2) still acts on x̂i 's and this space enjoys a full rotational symmetry.

In the limit N →∞ we recover the original sphere.
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Fuzzy spaces

Most importantly nonzero commutators

x̂i x̂i = ρ2 , x̂i x̂j − x̂j x̂i = iθεijk x̂k , i = 1, 2, 3 .

imply uncertainty relations for positions

∆xi∆xj 6= 0 .

Con�guration space is analogous to phase space of quantum mechanics.

In a similar fashion it is possible to construct an analogous deformation of the plane

x̂i x̂j − x̂j x̂i = iθεij , i = 1, 2 .
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Fuzzy spaces

If we truncate the possible values of l in the expansion of functions in terms of spherical harmonics

f =
∞∑
l=0

l∑
m=−l

clmYlm(θ, φ) →
L∑

l=0

l∑
m=−l

clmYlm(θ, φ) ,

we will not be able to see any features of functions under certain length scales.

Points on the sphere (as δ-functions) cease to exist.

Expressions de�ned in this way are not closed under multiplication.
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Fuzzy spaces
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Fuzzy spaces

Number of independent functions with l ≤ L is N2, the same as the number of N × N hermitian
matrices.
The idea is to map the former on the latter and borrow a closed product from there.

In order to do so, we consider a N × N matrix as a product of two N-dimensional representations
N of the group SU(2). It reduces to

N ⊗ N = 1 ⊕ 3 ⊕ 5 ⊕ . . .
↓ ↓ ↓

= {Y0m} ⊕ {Y1m} ⊕ {Y2m} ⊕ . . .

We thus have a map ϕ : Ylm → M and we de�ne the product

Ylm ∗ Yl′m′ := ϕ−1 (ϕ (Ylm)ϕ (Yl′m′)) .
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Fuzzy spaces

We have a short distance structure, but the prize we had to pay was a noncommutative product ∗
of functions. The space, for which this is the algebra of functions, is called the fuzzy sphere.

Opposing to some lattice discretization this space still possess a full rotational symmetry

Ylm ∗ Yl′m′ := ϕ−1 (ϕ (Ylm)ϕ (Yl′m′)) .

In the limit N or L→∞ we recover the original sphere.
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Fuzzy spaces

We have divided the sphere into N cells. Function on the fuzzy sphere is given by a matrix M and
the eigenvalues of M represent the values of the function on these cells.

There are no sharp boundaries between the pieces and everything is blurred, or fuzzy.
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Fuzzy spaces

Regularization of in�nities in the standard QFT.
[Heisenberg ∼'30; Snyder '47, Yang '47]

Regularization of �eld theories for numerical simulations.
[Panero '16]

An e�ective description of the open string dynamics in a magnetic background in the low energy
limit.
[Seiberg Witten '99; Douglas, Nekrasov '01]

Solutions of various matrix formulations of the string theory (IKKT, BFSS, BNM).
[Steinacker '13]

Geometric uni�cation of the particle physics and theory of gravity.
[van Suijlekom '15]

An e�ective description of various systems in a certain limit (eg. QHE).
[Karabali, Nair '06]
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3D fuzzy spaces
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3D fuzzy spaces

The above construction does not work in odd dimension.

For a 3D space one needs to be clever. [Galiková, Ková£ik, Pre²najder '13, '15]
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3D fuzzy spaces

Image from https://greatcharacters.miraheze.org/
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Fuzzy onion

Image from https://www.rawpixel.com/
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3D fuzzy spaces

The idea is to layer fuzzy spheres of increasing radius.

[xi , xj ] = 2iλεijkxk , i , j , k = 1, 2, 3 .

The most important point of the construction is that the radial step λ is compatible with the NC
distance of the each fuzzy sphere.

Some technicalities

xj = λσj
αβa
†
αaβ , j ∈ {1, 2, 3} , r = λ

(
a†αaα + 1

)
, r̃ = λ

(
a†αaα

)
.
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3D fuzzy spaces

Fuzzy wave functions with separated variables

Ψlm = λl
∑
(lm)

(a†1)m1(a†2)m2

m1!m2!
: Kl(r̃) :

an11 (−a2)n2

n1!n2!
.

Action of r

r̂ Ψlm = λl
∑
(lm)

(a†1)m1(a†2)m2

m1!m2!
: [r̃K + (λl + λ)K + λr̃K′] :

an11 (−a2)n2

n1!n2!
.

The de�nition of the Laplace operator is

∆̂λΨ = − 1

λr

[
â†α, [âα,Ψ]

]
,

where [
â†α, [âα,Ψlm]

]
= λl

∑
(lm)

(a†1)m1(a†2)m2

m1!m2!
: [−λr̃K′′ − 2(l + 1)λK′] :

an11 (−a2)n2

n1!n2!
.
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Noncommutative quantum mechanics
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3D fuzzy spaces

Fuzzy Hamiltonian

ĤλΨ =

[
− ~2

2µ
∆̂λ + V (r̂)

]
Ψ

and NC version of Schrodinger equation

~2

2µλ

[
â†α, [âα,Ψ]

]
+ r̂V (r̂)Ψ = E r̂Ψ .

The equation for the radial wave function depends on the potential!
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Quarkonium mesons
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Quarkonium mesons

Image from https://commons.wikimedia.org/
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Quarkonium mesons

Image from https://commons.wikimedia.org/
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Quarkonium mesons

Phenomenologically described by Cornell (or Killingback) potential

V (r) = −C

r
+ B r + G r2 .

Masses given by a two-body problem

Mnl = m1 + m2 + Enl .

Spectrum can not be solved for analytically, approximations needed.
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Quarkonium mesons

WKB approximation

1

~

∫ r2

r1

dr

√√√√2µ

(
E −

(
−C

r
+ Br + Gr2

)
−

(l + 1
2

)2~2

2µr2

)
=

(
n +

1

2

)
π , n ∈ Z+

0 .

Pekeris-type approximation � expand the integrand around the characteristic distance of the
problem rQ =

√
C/B.

Treat B,C as free parameters of the model to be �xed by experimental data. The rest of the
masses is a prediction of the model.
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Quarkonium mesons

[Bukor, JT '22]

cc̄ meson mq = 1.27 GeV B = 0.322 GeV2 C = 0.891

state particle present work Mnl [GeV] experimental data Mnl [GeV]

1S J/ψ(1S) used for B, C 3.097
2S ψ(2S) used for B, C 3.686
3S ψ(4040) 3.889 4.039
4S � 3.982 no data
1P χC1(1P) 3.518 3.511
2P χC2(3930) 3.823 3.923
1D ψ(3770) 3.787 3.774
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Quarkonium mesons

[Bukor, JT '22]

bb̄ meson mq = 4.18 GeV B = 1.266 GeV2 C = 0.344

state particle present work Mnl [GeV] experimental data Mnl [GeV]

1S Υ (1S) used for B, C 9.460
2S Υ (2S) used for B, C 10.023
3S Υ (3S) 10.178 10.355
4S Υ (4S) 10.242 10.579
1P hb(1P) 9.942 9.899
2P hb(2P) 10.150 10.260
1D Υ2(1D) 10.140 10.164
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Quarkonium mesons

[Bukor, JT '22]

cb̄ meson µ = 0.97 GeV B = 0.604 GeV2 C = 0.603

state particle present work Mnl [GeV] experimental data Mnl [GeV]

1S B+
c used for B, C 6.274

2S B±c (2S) used for B, C 6.871
3S � 7.054 no data
4S � 7.132 no data
1P � 6.749 no data
2P � 7.009 no data
1D � 6.989 no data
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Quarkonium mesons

[Bukor, JT '22]

quarkonium µ [GeV c−2] B [GeV fm−1] C [GeV fm] rQ [10−16m]

cc̄ 0.64 1.633 0.175 3.28

bb̄ 2.09 6.425 0.068 1.03

cb̄ 0.97 3.067 0.119 1.97

We obtain reasonable sizes of the quarkonium states.
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NC quarkonium
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Quarkonium mesons

Radial Schrodinger equation in dimensionless coordinates

R ′′ +
2

ζ
R ′ − l(l + 1)

ζ2
R +

(
c

ζ
− bζ

)
R + εR + σ

(
εR ′ +

ε

ζ
R − 2bζR ′ − 3bR

)
+

+ σ2
(
− bζR ′′ − 3bR ′ − b

ζ
R
)

= 0 .
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Quarkonium mesons

Second order mass correction [Bukor, JT '22]

Mσ
nl =

(m1 + m2)− 2µ

~2

 2C

n + 1
2

+

√
2µ
~2 C

√
C
B +

(
l + 1

2

)2

2

+ 3
√
BC

+

+ σ2
~2

2µ

B

C

 b
(
105b2 + 62bc + 9c2

)
8
[
n + 1

2
+
√
b + (l + 1

2
)2
]2 +

b(c + 3b)l(l + 1)

2
[
n + 1

2
+
√

b + (l + 1
2

)2
]2 +

+
b(c + 3b)4

8
√
b + (l + 1

2
)2
[
n + 1

2
+
√
b + (l + 1

2
)2
]5 − b

4
(15b + 4c)−

− (45b − c)(c + 3b)3

64
[
n + 1

2
+
√
b + (l + 1

2
)2
]4
+ . . . , b = 2µBr3Q/~2 , c = 2µCrQ/~2
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NC quarkonium

[Bukor, JT '22]

NC cc̄ meson b = c = 1.883 , σ2 ≈ 0.93 × 10−39

state correction to the mass spectrum σ2M
(2)
nl [GeV]

1S +0.522σ2

2S −1.422σ2
3S −2.613σ2
4S −3.301σ2
1P −0.456σ2
2P −1.936σ2
1D −1.062σ2
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NC quarkonium

[Bukor, JT '22]

NC bb̄ meson b = c = 0.750 , σ2 ≈ 9.43 × 10−39

state correction to the mass spectrum σ2M
(2)
nl [GeV]

1S −0.261σ2
2S −1.289σ2
3S −1.753σ2
4S −1.973σ2
1P −0.738σ2
2P −1.480σ2
1D −1.042σ2
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NC quarkonium

[Bukor, JT '22]

NC cb̄ meson b = c = 1.174 , σ2 ≈ 2.58 × 10−39

state correction to the mass spectrum σ2M
(2)
nl [GeV]

1S −0.001σ2
2S −1.442σ2
3S −2.210σ2
4S −2.609σ2
1P −0.672σ2
2P −1.777σ2
1D −1.147σ2
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NC quarkonium

[Bukor, JT '22]

The most precise known mass J/ψ(1S) particle (a cc̄ meson)

M00 = 3096.900± 0.006MeV .

This leads to the bound on NC length scale

λ ≤ 1.11 × 10−18m .
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Future prospect

Find a system or an e�ect, for which the NC correction is �rst order in σ.
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Take home message

Quantum mechanics and general relativity together lead to a quantum structure of spacetime.

Noncommutative spaces are a version of such a construction where some of the symmetries are
preserved.

Quantum mechanics leads to some possibly observable corrections to things like energies of
quantum systems � like masses of bound states of two heavy quarks.

Thank you for your attention!
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