CORRELATION FUNCTIONS IN FUZZY SCALAR FIELD THEORIES

Juraj Tekel

Department of theoretical physics Faculty of Mathematics, Physics and Informatics Comenius University, Bratislava

Corfu Summer Institute 2023, Corfu, Greece, 20. 9. 2023 work with: B. Bukor, D. Prekrat, S. Kováčik

supported by COST Action CA21109 CaLISTA

《曰》 《聞》 《臣》 《臣》 三臣 ---

👤 3rd Call for Dissemination Conference grants and Inclusiveness Target Country Conference grants [.pdf 145Kb]

Application deadline: 16 October 2023 Decision and notification: 27 October 2023 For missions between November 1 & May 31st

- ◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - ∽��♡

Quick motivation

JURAJ TEKEL CORRELATION FUNCTIONS IN FUZZY SCALAR FIELD THEORIES 5/66

イロト イポト イヨト イヨ

quantum mechanics + gravity \Rightarrow short distance (quantum) structure of spacetime

quantum mechanics + gravity \Rightarrow short distance (quantum) structure of spacetime

[many talks this week]

[Doplicher, Fredenhagen, Roberts 1995; Hosenfelder: 1203.6191 [gr-qc]]

QUICK MOTIVATION – CORRELATION FUNCTIONS

JURAJ TEKEL CORRELATION FUNCTIONS IN FUZZY SCALAR FIELD THEORIES 7 / 66

・ロ・ ・ 日・ ・ ヨ・

QUICK MOTIVATION – CORRELATION FUNCTIONS

Prog. Theor. Exp. Phys. 2017, 063B01 (15 pages) DOI: 10.1093/ptep/ptx070

Prog. Theor. Exp. Phys. 2018, 063B05 (15 pages) DOI: 10.1093/ptep/pty064

Correlation functions and renormalization in a scalar field theory on the fuzzy sphere

Kohta Hatakeyama* and Asato Tsuchiya*

Department of Physics, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan *E-mail: hatakeyama.kohta.15@shizuoka.ac.jp; tsuchiya.asato@shizuoka.ac.jp

Received March 30, 2017; Accepted April 28, 2017; Published June 6, 2017

Renormalization on the fuzzy sphere

Kohta Hatakeyama1,2,*, Asato Tsuchiya1,2,*, and Kazushi Yamashiro1,*

¹Department of Physics, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan ³Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamanatsu 432-8011, Japan

*E-mail: hatakeyama.kohta.15@shizuoka.ac.jp, tsuchiya.asato@shizuoka.ac.jp, yamashiro.kazushi.17@shizuoka.ac.jp

Received April 12, 2018; Accepted May 8, 2018; Published June 26, 2018

Renormalization on the fuzzy sphere

Kohta Hatakeyama^{s1,2}, Asato Tsuchiya^{1,2} and Kazushi Yamashiro¹

¹Department of Physics, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan Caraduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamanatus 43-25011, Japan E-mail: hatakeyama.kohta.15@shizuoka.ac.jp. tsuchiya.asato@shizuoka.ac.jp yamashiro.kazushi.17@shizuoka.ac.jp

QUICK MOTIVATION – CORRELATION FUNCTIONS

[Hatakeyama, Tsuchiya, Yamashiro 2018]

CORRELATION FUNCTIONS IN FUZZY SCALAR FIELD THEORIES

8 / 66

JURAJ TEKEL

Moreover, it was

イロン イボン イヨン イヨン

observed that the behavior of the 2-point correlation functions is the same as that in a CFT at short distances and universally different from that at long distances. We consider the latter to be due to the UV/IR mixing.

The CFT observed at short distances seems to be different from the critical Ising model, because the value of u/2 in (3.5) disagrees with the scaling dimension of the spin operator, $\Delta_{\text{Ising}} = 1/8$. This indicates that the universality classes of the scalar field theory on the fuzzy sphere are totally different from those of an ordinary field theory³.

[Hatakeyama, Tsuchiya, Yamashiro 2018]

³It should be noted that $\Delta_{ours} = u/2 \simeq 0.075 = 3/40$ coincides with the scaling dimension of the spin operator in the tricritical Ising model, which is the (4,5) unitary minimal model.

Take home message

э

JURAJ TEKEL CORRELATION FUNCTIONS IN FUZZY SCALAR FIELD THEORIES 10 / 66

・ロト ・四ト ・ヨト ・ヨト

- Plenty of interesting things happen on spaces with quantum structure.
- Among these are the properties of the correlation function.
- Doing field theory on fuzzy spaces is straightforward since they are essentially matrix models.

(_) (_) (_) (_) (_)

Fuzzy spaces

3

JURAJ TEKEL CORRELATION FUNCTIONS IN FUZZY SCALAR FIELD THEORIES 12 / 66

イロト イロト イヨト イヨト

Fuzzy sphere [Hoppe '82; Madore '92; Grosse, Klimčík, Prešnajder 1990s]

• Functions on the usual sphere are given by

$$f(heta, \phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} c_{lm} Y_{lm}(heta, \phi) \; ,$$

where Y_{lm} are the spherical harmonics

$$\Delta Y_{lm}(\theta,\phi) = l(l+1)Y_{lm}(\theta,\phi) \; .$$

• To describe features at a small length scale we need Y_{lm} 's with a large l.

э

Image taken from http://principles.ou.edu/mag/earth.html

(D) (A) (A) (A) (A) (A)

• If we truncate the possible values of I in the expansion

$$f = \sum_{l=0}^{L} \sum_{m=-l}^{l} c_{lm} Y_{lm}(\theta, \phi) ,$$

we will not be able to see any features of functions under certain length scales.

- Points on the sphere (as δ -functions) cease to exist.
- Expressions defined in this way are not closed under multiplication.

<ロ> <回> <回> <回> <三> <三> <三</p>

JURAJ TEKEL CORRELATION FUNCTIONS IN FUZZY SCALAR FIELD THEORIES 16 / 66

• Number of independent functions with $I \leq L$ is N^2 , the same as the number of $N \times N$ hermitian matrices.

The idea is to map the former on the latter and borrow a closed product from there.

• In order to do so, we consider a $N \times N$ matrix as a product of two N-dimensional representations <u>N</u> of the group SU(2). It reduces to

$$\underbrace{\underline{N}} \otimes \underline{\underline{N}} = \underbrace{\underline{1}}_{\downarrow} \oplus \underbrace{\underline{3}}_{\downarrow} \oplus \underbrace{\underline{5}}_{\downarrow} \oplus \ldots$$

$$= \{Y_{0m}\} \oplus \{Y_{1m}\} \oplus \{Y_{2m}\} \oplus \ldots$$

ullet We thus have a map $arphi: Y_{lm}
ightarrow M$ and we define the product

$$Y_{lm} \star Y_{l'm'} := \varphi^{-1} \left(\varphi \left(Y_{lm} \right) \varphi \left(Y_{l'm'} \right) \right) \; .$$

(D) (B) (C) (C)

- We have a short distance structure, but the prize we had to pay was a noncommutative product \star of functions. The space, for which this is the algebra of functions, is called the fuzzy sphere.
- Opposing to some lattice discretization this space still possess a full rotational symmetry

$$Y_{lm} \star Y_{l'm'} := \varphi^{-1} \left(\varphi \left(Y_{lm} \right) \varphi \left(Y_{l'm'} \right) \right) \; .$$

• In the limit N or $L \to \infty$ we recover the original sphere.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

FUZZY SPACES - AN ALTERNATIVE CONSTRUCTION

• We have divided the sphere into N cells. Function on the fuzzy sphere is given by a matrix M and the eigenvalues of ϕ represent the values of the function on these cells.

• However there are no sharp boundaries between the pieces and everything is blurred, or fuzzy.

- Regularization of infinities in the standard QFT. [Heisenberg ~1930; Snyder 1947, Yang 1947]
- Regularization of field theories for numerical simulations. [Panero 2016]
- An effective description of the open string dynamics in a magnetic background in the low energy limit.

```
[Seiberg Witten 1999; Douglas, Nekrasov 2001]
```

- Solutions of various matrix formulations of the string theory (IKKT, BFSS, BNM). [Steinacker 2013]
- Geometric unification of the particle physics and theory of gravity. [van Suijlekom 2015]
- An effective description of various systems in a certain limit (eg. QHE). [Karabali, Nair 2006]

(D) (A) (A) (A) (A)

- Regularization of infinities in the standard QFT. [Heisenberg ~1930; Snyder 1947, Yang 1947]
- Regularization of field theories for numerical simulations. [Panero 2016]
- An effective description of the open string dynamics in a magnetic background in the low energy limit.

[Seiberg, Witten 1999; Douglas, Nekrasov 2001]

- Solutions of various matrix formulations of the string theory (IKKT, BFSS, BNM). [many talks in this meeting, Steinacker 2013]
- Geometric unification of the particle physics and theory of gravity. [van Suijlekom 2015]
- An effective description of various systems in a certain limit (eg. QHE). [Karabali, Nair 2006]

(D) (A) (A) (A)

- Regularization of infinities in the standard QFT. [Heisenberg ~1930; Snyder 1947, Yang 1947]
- Regularization of field theories for numerical simulations. [Panero 2016]
- An effective description of the open string dynamics in a magnetic background in the low energy limit.

[Seiberg Witten 1999; Douglas, Nekrasov 2001]

- Solutions of various matrix formulations of the string theory (IKKT, BFSS, BNM). [many talks in this meeting, Steinacker 2013]
- Geometric unification of the particle physics and theory of gravity. [van Suijlekom 2015]
- An effective description of various systems in a certain limit (eg. QHE). [Karabali, Nair 2006]
- Toy models of spaces with discrete quantum structure, which is expected to arise in quantum theory of gravity.

Fuzzy field theories

JURAJ TEKEL CORRELATION FUNCTIONS IN FUZZY SCALAR FIELD THEORIES 24 / 66

イロン イヨン イヨン イヨン

FUZZY SCALAR FIELD THEORY

• Commutative euclidean theory of a real scalar field is given by an action

$$S(\Phi) = \int d^2x \left[rac{1}{2} \Phi \Delta \Phi + rac{1}{2} m^2 \Phi^2 + V(\Phi)
ight]$$

and path integral correlation functions

$$\langle F \rangle = rac{\int d\Phi F(\Phi) e^{-S(\Phi)}}{\int d\Phi e^{-S(\Phi)}}$$

- We construct the noncommutative theory as an analogue with
 - $\bullet \ field \rightarrow matrix,$
 - functional integral \rightarrow matrix integral,
 - $\bullet\,$ spacetime integral $\rightarrow\,$ trace,
 - derivative $\rightarrow L_i$ commutator.

FUZZY SCALAR FIELD THEORY

Commutative

$$S(\Phi) = \int d^2 x \left[\frac{1}{2} \Phi \Delta \Phi + \frac{1}{2} m^2 \Phi^2 + V(\Phi) \right] ,$$
$$\langle F \rangle = \frac{\int d\Phi F(\Phi) e^{-S(\Phi)}}{\int d\Phi e^{-S(\Phi)}} .$$

• Noncommutative (for S_F^2)

$$S(M) = \frac{4\pi R^2}{N} \operatorname{Tr} \left[\frac{1}{2} M \frac{1}{R^2} [L_i, [L_i, M]] + \frac{1}{2} m^2 M^2 + V(M) \right] ,$$
$$\langle F \rangle = \frac{\int dM F(M) e^{-S(M)}}{\int dM e^{-S(M)}} .$$

[Balachandran, Kürkçüoğlu, Vaidya 2005; Szabo 2003; Ydri 2016]

Fuzzy scalar field theory - UV/IR mixing

 The key property of the noncommutative field theories is the UV/IR mixing phenomenon, which arises as a result of the nonlocality of the theory.

[Minwalla, Van Raamsdonk, Seiberg 2000; Vaidya 2001; Chu, Madore, Steinacker 2001]

- Very energetic fluctuations (UV physics) have consequences at large distances (IR physics).
- In terms of diagrams different properties of planar and non-planar ones. The (matrix) vertex is not invariant under permutation of incoming momenta.

PHASES OF FUZZY FIELD THEORIES

$$S[\phi] = \int d^2 x \left(rac{1}{2} \partial_i \Phi \partial_i \Phi + rac{1}{2} m^2 \Phi^2 + rac{\lambda}{4!} \Phi^4
ight)$$

[Glimm, Jaffe 1974; Glimm, Jaffe, Spencer 1975; Chang 1976] [Loinaz, Willey 1998; Schaich, Loinaz 2009]

- The phase diagram of noncommutative field theories has one more phase. It is a non-uniform order phase, or a striped phase.
 [Gubser, Sondhi 2001; Chen, Wu 2002]
- In this phase, the field does not oscillate around one given value in the whole space. Translational symmetry is broken.
- This has been established in numerous numerical works for variety different spaces.
 [Martin 2004; García Flores, Martin, O'Connor 2006, 2009; Panero 2006, 2007; Ydri 2014; Bietenholz, F. Hofheinz, Mejía-Díaz, Panero 2014; Mejía-Díaz, Bietenholz, Panero 2014; Medina, Bietenholz, D. O'Connor 2008; Bietenholz, Hofheinz, Nishimura 2004; Lizzi, Spisso 2012; Ydri, Ramda, Rouag 2016; Kováčik, O'Connor 2018]
 [Panero 2015]

(D) (A) (A) (A) (A)

PHASES OF FUZZY FIELD THEORIES

[Mejía-Díaz, Bietenholz, Panero 2014] for $\mathbb{R}^2_ heta$

JURAJ TEKEL

JURAJ TEKEL CORRELATION FUNCTIONS IN FUZZY SCALAR FIELD THEORIES 31 / 66

Random matrices and fuzzy field theories

JURAJ TEKEL CORRELATION FUNCTIONS IN FUZZY SCALAR FIELD THEORIES 32 / 66

• • = • • =

RANDOM MATRICES

[M.L. Mehta 2004; B. Eynard, T. Kimura, S. Ribault 2015; G. Livan, M. Novaes, P. Vivo 2017]

- Matrix model = ensemble of random matrices.
- An important example ensemble of $N \times N$ hermitian matrices with

$$P(M) \sim e^{-N \operatorname{Tr}(V(M))}$$
, usually $V(x) = \frac{1}{2}r x^2 + g x^4$

and

$$dM = \left[\prod_{i=1}^{N} M_{ii}
ight] \left[\prod_{i < j} \operatorname{Re} M_{ij} \operatorname{Im} M_{ij}
ight].$$

- Both the measure and the probability distribution are invariant under $M \rightarrow UMU^{\dagger}$ with $U \in SU(N)$.
- Requirement of such invariance is very restrictive. One is usually interested in the distribution of eigenvalues.

A = A = A = A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A
 A = A

 $V(x) = rx^2/2 + gx^4$ and r > 0

 $V(x) = rx^2/2 + gx^4$ and r << 0

KINETIC TERM EFFECTIVE ACTION

• Recall the action of the fuzzy scalar field theory

$$\mathcal{S}(\mathcal{M}) = rac{1}{2} \operatorname{Tr} \left(\mathcal{M}[\mathcal{L}_i, [\mathcal{L}_i, \mathcal{M}]] \right) + rac{1}{2} m^2 \operatorname{Tr} \left(\mathcal{M}^2
ight) + g \operatorname{Tr} \left(\mathcal{M}^4
ight) \; .$$

This is a particular case of a matrix model since we need

$$\int dM \, F(M) e^{-S(M)}$$

- The large N limit of the model with the kinetic term is not well understood. The key issue being that diagonalization $M = U \operatorname{diag}(\lambda_1, \dots, \lambda_N) U^{\dagger}$ no longer straightforward.
- Integrals like

$$\begin{split} \langle F \rangle &\sim \int d\Lambda \int dU \ F(\lambda_i, U) \ e^{-N^2 \left[\frac{1}{2} m^2 \frac{1}{N} \sum \lambda_i^2 + g \frac{1}{N} \sum \lambda_i^4 - \frac{2}{N^2} \sum_{i < j} \log |\lambda_i - \lambda_j| \right]} \\ &\times \ e^{-\frac{1}{2} \operatorname{Tr} \left(U \Lambda U^{\dagger} [L_i, [L_i, U \Lambda U^{\dagger}]] \right)} \,. \end{split}$$

PERTURBATIVE CALCULATION

$$e^{-N^2 S_{\text{eff}}(\Lambda)} = \int dU \, e^{-\varepsilon \frac{1}{2} \operatorname{Tr} \left(U \Lambda U^{\dagger} [L_i, [L_i, U \Lambda U^{\dagger}]] \right)}$$

- Perturbative calculation of the integral show that the S_{eff} contains products of traces of M. [O'Connor, Sämann 2007; Sämann 2010]
- The most recent result is [Sämann 2015]

$$\begin{split} S_{eff}(\Lambda) = & \frac{1}{2} \left[\varepsilon \frac{1}{2} \left(c_2 - c_1^2 \right) - \varepsilon^2 \frac{1}{24} \left(c_2 - c_1^2 \right)^2 + \varepsilon^4 \frac{1}{2880} \left(c_2 - c_1^2 \right)^4 \right] - \\ & - \varepsilon^4 \frac{1}{3456} \Big[\left(c_4 - 4c_3c_1 + 6c_2c_1^2 - 3c_1^4 \right) - 2 \left(c_2 - c_1^2 \right)^2 \Big]^2 - \\ & - \varepsilon^3 \frac{1}{432} \Big[c_3 - 3c_1c_2 + 2c_1^3 \Big]^2 \quad , \quad \text{where } c_n = \frac{1}{N} \sum_i \lambda_i^n \end{split}$$

• Standard treatment of such multitrace matrix model yields a very unpleasant behaviour close to the origin of the parameter space.

PERTURBATIVE CALCULATION

$$e^{-N^2 S_{eff}(\Lambda)} = \int dU \, e^{-\varepsilon \frac{1}{2} \operatorname{Tr} \left(U \Lambda U^{\dagger} [L_i, [L_i, U \Lambda U^{\dagger}]] \right)}$$

- Perturbative calculation of the integral show that the S_{eff} contains products of traces of M. [O'Connor, Sämann 2007; Sämann 2010]
- The most recent result is [Sämann 2015]

$$\begin{split} S_{eff}(\Lambda) = & \frac{1}{2} \left[\varepsilon \frac{1}{2} \left(c_2 - c_1^2 \right) - \varepsilon^2 \frac{1}{24} \left(c_2 - c_1^2 \right)^2 + \varepsilon^4 \frac{1}{2880} \left(c_2 - c_1^2 \right)^4 \right] - \\ & - \varepsilon^4 \frac{1}{3456} \Big[\left(c_4 - 4c_3c_1 + 6c_2c_1^2 - 3c_1^4 \right) - 2 \left(c_2 - c_1^2 \right)^2 \Big]^2 - \\ & - \varepsilon^3 \frac{1}{432} \Big[c_3 - 3c_1c_2 + 2c_1^3 \Big]^2 \quad , \quad \text{where } c_n = \frac{1}{N} \sum_i \lambda_i^n \end{split}$$

More reasonable for large values of m², g.
 [Rea, Sämann 2015]

×

SECOND MOMENT APPROXIMATION

- For the free theory g = 0 the kinetic term just rescales the eigenvalues. [Steinacker 2005]
- There is a unique parameter independent effective action that reconstructs this rescaling. [Polychronakos 2013]

$$S_{eff}(\Lambda) = rac{1}{2} \log\left(rac{c_2}{1-e^{-c_2}}
ight) + \mathcal{R} \; .$$

Can be generalized to more a more complicated kinetic term \mathcal{K} .

ullet Introducing the asymmetry $c_2
ightarrow c_2 - c_1^2$ we obtain a matrix model

$$S(M) = rac{1}{2}F(c_2 - c_1^2) + rac{1}{2}r\operatorname{Tr}(M^2) + g\operatorname{Tr}(M^4)$$
, $F(t) = \log\left(rac{t}{1 - e^{-t}}
ight)$

[Šubjaková, JT PoS CORFU2019]

SECOND MOMENT APPROXIMATION

JURAJ TEKEL CORRELATION FUNCTIONS IN FUZZY SCALAR FIELD THEORIES 41 / 66

イロト イヨト イヨト イヨト

3

Correlation functions

JURAJ TEKEL CORRELATION FUNCTIONS IN FUZZY SCALAR FIELD THEORIES 43 / 66

イロン イロン イヨン イヨ

• We need to define value of the fuzzy function at a "point"

 $\phi(x) \ , \ x \in S^2 \ .$

• One way to do that on a commutative space is

$$\phi(x) = \int dx \, \delta(x-y) \phi(y) \; .$$

Image: A matrix

• • = • • =

COHERENT STATES

 \bullet Natural basis in the auxiliary hilbert space ${\cal H}$ is the "spin" basis

$$|n\rangle = \left(\begin{array}{c} \vdots \\ 1 \\ \vdots \end{array}\right) , n = -s, \ldots, s ,$$

derived from the highest weight state $|s\rangle$.

• For any $x \in S^2$ with radius 1, choose some $g_x \in SO(3)$ such that $x = g_x \cdot p$, where p is the north pole on S^2 . We define [Perelomov 1986]

$$|x\rangle = g_x \cdot |s\rangle, \ g_x \in SU(2)$$

and call the set of all $|x\rangle$ the coherent states.

• $|x\rangle$ is located around x, but is an element of \mathcal{H} , and is a non-commutative analogue of the point x. [Steinacker 2020]

• Fuzzy δ -function $|x\rangle \langle x|$ the most localized object at point x. We define the value $\phi(x)$ as

$$\phi(\mathbf{x}) = \frac{4\pi}{N} \operatorname{Tr} \left(|\mathbf{x}\rangle \langle \mathbf{x} | \phi \right) = \langle \mathbf{x} | \phi | \mathbf{x} \rangle \ .$$

• Coherent states can be used to map (quantize) functions on S^2 on matrices

$$\phi(x) o M = \int d^2 x \, \phi(x) |x
angle \langle x| \; .$$

and matrices on functions (de-quantize)

$$M o \phi(x) = \langle x | M | x \rangle$$
.

COHERENT STATES

• They are orthogonal only in the large N limit

$$|\langle x|y \rangle|^2 = \left(\frac{1+x \cdot y}{2}\right)^{N-1}$$

• Some explicit formulas

$$egin{aligned} |x
angle &= \sum_{s=-J}^{J} \sqrt{\binom{2J}{J+s}} \left(\cosrac{ heta}{2}
ight)^{J+s} \left(\sinrac{ heta}{2}
ight)^{J-s} e^{i(J-s)arphi} \left|J,s
ight
angle \ , \ |z
angle &= rac{1}{\left(1+|z|^2
ight)^J} \sum_{s=-J}^{J} \sqrt{\binom{2J}{J+s}} z^{J-s} \left|J,s
ight
angle \ , \ z\in\mathbb{C} \ . \end{aligned}$$

JURAJ TEKEL CORRELATION FUNCTIONS IN FUZZY SCALAR FIELD THEORIES 47 / 66

.

CORRELATION FUNCTIONS

• The two-point function of the model is

$$\langle \phi(x)\phi(y)
angle = rac{1}{Z}\int d\phi\,\phi(x)\phi(y)e^{-S[\phi]}\;.$$

• We introduce the basis of polarization tensors

$$\phi_{ij} = \sum_{\mu} \operatorname{Tr} \left(\phi \, T_{\mu}
ight) \left(\, T_{\mu}
ight)_{ij} \; , \; \mu = 0, 1, \dots, N^2 - 1$$

and thus

$$\langle \phi(\mathbf{x})\phi(\mathbf{y})\rangle = x_i^* x_j y_k^* y_l \langle \phi_{ij}\phi_{kl}\rangle$$

with

$$\langle \phi_{ij}\phi_{kl}\rangle = (T_{\mu})_{ij} (T_{\nu})_{kl} \langle \operatorname{Tr} (\phi T_{\mu}) \operatorname{Tr} (\phi T_{\nu}) \rangle .$$

• We are after

$$\langle \operatorname{Tr} (\phi T_{\mu}) \operatorname{Tr} (\phi T_{\nu}) \rangle = \frac{1}{Z} \int d\Lambda e^{-S_{pot} - S_{vdm}} \int dU \operatorname{Tr} (U \Lambda U^{\dagger} T_{\mu}) \operatorname{Tr} (U \Lambda U^{\dagger} T_{\nu}) e^{-S_{kin}} .$$

CORRELATION FUNCTIONS

• Expand the kinetic part

$$\begin{split} \int dU \operatorname{Tr} \left(U \Lambda U^{\dagger} T_{\mu} \right) \operatorname{Tr} \left(U \Lambda U^{\dagger} T_{\nu} \right) \left[1 - \mathcal{K}_{\alpha\beta} \operatorname{Tr} \left(U \Lambda U^{\dagger} T_{\alpha} \right) \operatorname{Tr} \left(U \Lambda U^{\dagger} T_{\beta} \right) \right. \\ \left. + \frac{1}{2} \left(\mathcal{K}_{\alpha\beta} \operatorname{Tr} \left(U \Lambda U^{\dagger} T_{\alpha} \right) \operatorname{Tr} \left(U \Lambda U^{\dagger} T_{\beta} \right) \right)^{2} + \dots \right] \end{split}$$

with

$$\mathcal{K}_{\mu
u} \coloneqq rac{1}{2} \mathrm{Tr}\left(\mathcal{T}_{\mu}[\mathcal{L}_{a}, [\mathcal{L}_{a}, \mathcal{T}_{
u}]]
ight)$$

• We will need

$$egin{aligned} I_{\mu_{1}\dots\mu_{n}}(\Lambda) &= \int dU \underbrace{\mathrm{Tr}\left(U\Lambda U^{\dagger}\,T_{\mu_{1}}
ight)\dots\mathrm{Tr}\left(U\Lambda U^{\dagger}\,T_{\mu_{n}}
ight)}_{n} = \ &= \sum_{
ho} rac{1}{\dim(
ho)}\,\chi_{
ho}(\Lambda)\,\mathrm{tr}_{
ho}\left(T_{\mu_{1}}\otimes\dots\otimes T_{\mu_{n}}
ight) \ , \end{aligned}$$

JURAJ TEKEL CORRELATION FUNCTIONS IN FUZZY SCALAR FIELD THEORIES 49 / 66

CORRELATION FUNCTIONS, n = 2

• For n=2 and $c_k={
m Tr}\left(\phi^k
ight)/N$ we get

$$\begin{split} & T_{\mu_{1}\mu_{2}} = \operatorname{Tr}\left(T_{\mu_{1}}\right)\operatorname{Tr}\left(T_{\mu_{2}}\right)\left(\frac{c_{1}^{2}N^{2}}{N^{2}-1} - \frac{c_{2}}{N^{2}-1}\right) + \operatorname{Tr}\left(T_{\mu_{1}}T_{\mu_{2}}\right)\left(\frac{c_{2}N}{N^{2}-1} - \frac{c_{1}^{2}N}{N^{2}-1}\right) = \\ & = N\delta_{0\mu_{1}}\delta_{0\mu_{2}}\left(\frac{c_{1}^{2}N^{2}}{N^{2}-1} - \frac{c_{2}}{N^{2}-1}\right) + \delta_{\mu_{1}\mu_{2}}\left(\frac{c_{2}N}{N^{2}-1} - \frac{c_{1}^{2}N}{N^{2}-1}\right) \;, \end{split}$$

which leads to

$$\begin{split} \left\langle \phi_{ij}\phi_{kl} \right\rangle_{\text{pure potential}} &= \delta_{ij}\delta_{kl} \left(\frac{c_1^2 N^2}{N^2 - 1} - \frac{c_2}{N^2 - 1} \right) + \delta_{il}\delta_{jk} \left(\frac{c_2 N}{N^2 - 1} - \frac{c_1^2 N}{N^2 - 1} \right), \\ \left\langle \phi(\mathbf{x})(\mathbf{y}) \right\rangle_{\text{pure potential}} &= \frac{1}{N^2 - 1} \left(N^2 \left\langle c_1^2 \right\rangle - \left\langle c_2 \right\rangle \right) + \left| \left\langle \mathbf{x} | \mathbf{y} \right\rangle \right|^2 \frac{N}{N^2 - 1} \left(\left\langle c_2 \right\rangle - \left\langle c_1^2 \right\rangle \right) \,. \end{split}$$

JURAJ TEKEL CORRELATION FUNCTIONS IN FUZZY SCALAR FIELD THEORIES 50 / 66

Correlation functions, n = 2

- * ロ * * 母 * * 目 * * 目 * * の < や

JURAJ TEKEL CORRELATION FUNCTIONS IN FUZZY SCALAR FIELD THEORIES 51 / 66

Correlation functions, n = 2

Stripe phase 2-point function 2r = 0.3 N , g = 0.01 N , no kinetic term

JURAJ TEKEL CORRELATION FUNCTIONS IN FUZZY SCALAR FIELD THEORIES 52 / 66

Correlation functions, n = 4

• In the first order in the kinetic term, we get

$$\begin{split} \langle \phi(x)\phi(y)\rangle &= \frac{1}{Z} \int d\Lambda e^{-S_{pot}-S_{vdm}} \Big(x_i^* x_j y_k^* y_l (T_{\mu_1})_{ij} (T_{\mu_2})_{kl} I_{\mu_1\mu_2} \\ &- \varepsilon x_i^* x_j y_k^* y_l (T_{\mu_1})_{ij} (T_{\mu_2})_{kl} K_{\mu_3\mu_4} I_{\mu_1\mu_2\mu_3\mu_4} \Big) \;, \end{split}$$

but now

$$Z=\int d\Lambda e^{-S_{pot}-S_{vdm}-S_{eff}}$$

• This leads to

$$\langle \phi(x)\phi(y)
angle = rac{1}{Z}\int d\Lambda e^{-S_{pot}-S_{vdm}-S_{eff}}\left(I_2-\varepsilon I_4\right)\left(1+\varepsilon S_1\right) = \langle I_2-\varepsilon I_4+\varepsilon S_1I_2
angle \ .$$

• I_4 includes combinations of moments c_4 , c_1c_3 , $c_1^2c_2$, c_1^4 which need to be rescaled when doing the saddle point approximation.

.

CORRELATION FUNCTIONS, n = 4

JURAJ TEKEL CORRELATION FUNCTIONS IN FUZZY SCALAR FIELD THEORIES 54 / 66

・ロト ・四ト ・ヨト ・ヨト

- A direct application of the saddle point approximation leads to essentially the same formula as for pure potential. The difference gets smaller as we increase N.
- An angular behavior different from $\mathit{const} + \left| \langle x | y \rangle \right|^2$ comes from

 $k_a (T_a)_{ij} (T_a)_{lm} x_i^* x_j y_k^* y_l$

and

$$k_a d_{abc} d_{abd} \left(T_c \right)_{ij} \left(T_d \right)_{lm} x_i^* x_j y_k^* y_l \ .$$

Here

$$d_{abc} = \operatorname{Tr}\left(\{T_a, T_b\} T_c\right) \ .$$

• Both of these are very small compared to the other contributions.

Truncated Heisenberg algebra and Grosse-Wulkenhaar model

JURAJ TEKEL CORRELATION FUNCTIONS IN FUZZY SCALAR FIELD THEORIES 56 / 66

• Grosse-Wulkenhaar model [2000's]

$$\begin{split} S_{GW} &= \int d^2 x \bigg(\frac{1}{2} \partial_\mu \phi \star \partial^\mu \phi + \frac{1}{2} \Omega^2 (\tilde{x}_\mu \phi) \star (\tilde{x}^\mu \phi) + \frac{m^2}{2} \phi \star \phi + \frac{\lambda}{4!} \phi \star \phi \star \phi \bigg) \ , \\ \tilde{x}_\mu &= 2(\theta^{-1})_{\mu\nu} x^\nu \ . \end{split}$$

- This model is renormalizable.
- Described by a matrix model in terms of truncated Heisenberg algebra. [Burić, Wohlgenannt 2010]

TRUNCATED HEISENBERG ALGEBRA

• The NC plane coordinates can be realized by

$$X = \frac{1}{\sqrt{2}} \begin{pmatrix} +\sqrt{1} & +\sqrt{2} & & \\ +\sqrt{1} & +\sqrt{2} & & \\ & +\sqrt{2} & & \\ & & & \\ & &$$

then

[X,Y]=i.

• This algebra is then truncated to a finite dimension.

Image: A matrix

TRUNCATED HEISENBERG ALGEBRA

• Define finite matrices

$$X = \frac{1}{\sqrt{2}} \begin{pmatrix} & +\sqrt{1} & & & \\ & +\sqrt{1} & & & \\ & +\sqrt{2} & & & \\ & & +\sqrt{2} & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \sqrt{N-1} \end{pmatrix} , \ Y = \dots ,$$

which gives

$$[X, Y] = i(1 - Z) , Z = diag(0, ..., N) .$$

• Original algebra is recovered in the $N \rightarrow \infty$ limit or under the Z = 0 condition.

• The kinetic term becomes

$$rac{1}{2}\partial_\mu\phi\star\partial^\mu\phi o [X,M][X,M]+[Y,M][Y,M]\;.$$

GW MATRIX MODEL

• The harmonic potential becomes

$$rac{1}{2}\Omega^2(ilde{x}_\mu\phi)\star(ilde{x}^\mu\phi) o RM^2 \;,$$

where R is a fixed external matrix

$$R = \frac{15}{2} - 4Z^2 - 8(X^2 + Y^2) = \frac{31}{2} - 16\operatorname{diag}(1, 2, \dots, N - 1, 8N)$$

- Interpretation of coupling to the curvature of the space.
- We are thus left with a matrix model with action

$$S = \mathrm{Tr}\left(M[X,[X,M]] + M[Y,[Y,M]]
ight) - g_r \mathrm{Tr}\left(RM^2
ight) - g_2 \mathrm{Tr}\left(M^2
ight) + g_4 \mathrm{Tr}\left(M^4
ight) \; .$$

Removal of stripes – GW model

[Prekrat, Todorović-Vasović, Ranković '21; Prekrat '21]

• Numerical investigation of this matrix model leads to

Removal of stripes - GW model

[Prekrat, Todorović-Vasović, Ranković, Kováčik, JT '22]

• The effect of the curvature term

$$S(M) = \operatorname{Tr} (M\mathcal{K}M) - \operatorname{Tr} \left(g_r RM^2\right) - g_2 \operatorname{Tr} \left(M^2\right) + g_4 \operatorname{Tr} \left(M^4\right) \ .$$

• Effective action up to g_r^4

$$S(\Lambda) = N \operatorname{Tr} \left(-g_2 \Lambda^2 + 8g_r \Lambda^2 + g_4 \Lambda^4 - \frac{32}{3}g_r^2 \Lambda^4 \right) + \frac{1024}{45}g_r^4 \Lambda^8 + \frac{32}{3}g_r^2 \left(\operatorname{Tr} \left(\Lambda^2 \right) \right)^2 + \frac{1024}{15}g_r^4 \left(\operatorname{Tr} \left(\Lambda^4 \right) \right)^2 - \frac{4096}{45}g_r^4 \operatorname{Tr} \left(\Lambda^6 \right) \operatorname{Tr} \left(\Lambda^2 \right)$$

• This is a multitrace matrix model which can be analyzed.

.

PLANE KINETIC TERM EFFECTIVE ACTION MODEL

[Bukor, JT '23]

• The effect of the kinetic term

$$S(M) = \operatorname{Tr}(M\mathcal{K}M) - \operatorname{Tr}(g_r RM^2) - g_2 \operatorname{Tr}(M^2) + g_4 \operatorname{Tr}(M^4)$$
.

• This leads to the effective action

$$S_{eff}(\Lambda) = N^2 \left[\varepsilon t_2 - \varepsilon^2 \frac{2}{3} t_2^2 + \varepsilon^2 \frac{97}{120} \left(t_4 - 2t_2^2 \right)
ight] ,$$

where t's are symmetrized models

$$t_n = rac{1}{N} \operatorname{Tr} \left(\phi - rac{1}{N} \mathsf{tr} \left(\phi
ight)
ight)^n \; .$$

• This is a multitrace matrix model which can be analyzed, e.g. to obtain phase structure of the model.

• Going back to

$$\langle \phi(x)\phi(y)
angle = rac{1}{Z}\int d\Lambda e^{-S_{
m pot}-S_{
m vdm}-S_{
m eff}}\left(I_2-arepsilon I_4
ight)\left(1+arepsilon S_1
ight)$$

inputs and saddles change, but the formula and the idea stays.

Take home message

JURAJ TEKEL CORRELATION FUNCTIONS IN FUZZY SCALAR FIELD THEORIES 65 / 66

イロン イロン イヨン イヨン

TAKE HOME MESSAGE AND 2DO LIST

- Plenty of interesting things happen on spaces with quantum structure.
- Among these are the properties of the correlation function.
- Doing field theory on fuzzy spaces is straightforward since they are essentially matrix models.

TAKE HOME MESSAGE AND 2DO LIST

- Plenty of interesting things happen on spaces with quantum structure.
- Among these are the properties of the correlation function.
- Doing field theory on fuzzy spaces is straightforward since they are essentially matrix models.

- We need some non-perturbative approximation.
 - Pade approximation?
 - Trick similar to the kinetic term effective?
 - Generating function Z[J]?
- Entanglement entropy on fuzzy spaces.

TAKE HOME MESSAGE AND 2DO LIST

- Plenty of interesting things happen on spaces with quantum structure.
- Among these are the properties of the correlation function.
- Doing field theory on fuzzy spaces is straightforward since they are essentially matrix models.

- We need some non-perturbative approximation.
 - Pade approximation?
 - Trick similar to the kinetic term effective?
 - Generating function Z[J]?
- Entanglement entropy on fuzzy spaces.

Thank you for your attention!

