Correlation functions in fuzZy scalar field theories

Juraj Tekel

Department of theoretical physics
Faculty of Mathematics, Physics and Informatics
Comenius University, Bratislava

Corfu Summer Institute 2023, Corfu, Greece, 20. 9. 2023
work with: B. Bukor, D. Prekrat, S. Kováčik

IN SCIENCE \& TECHNOLOGY

Funded by
the European Union
supported by COST Action CA21109 CaLISTA
\downarrow 3rd Call for Dissemination Conference grants and Inclusiveness Target Country Conference grants [.pdf 145Kb]
Application deadline: 16 October 2023 Decision and notification: 27 October 2023 For missions between November 1 \& May 31st

Quick motivation

Quick motivation

quantum mechanics + gravity \Rightarrow short distance (quantum) structure of spacetime

Quick motivation

quantum mechanics + gravity \Rightarrow short distance (quantum) structure of spacetime [many talks this week]
[Doplicher, Fredenhagen, Roberts 1995; Hosenfelder: 1203.6191 [gr-qc]]

Quick motivation - CORrELATION Functions

Quick motivation - CORrelation Functions

PTEP

Correlation functions and renormalization in a scalar field theory on the fuzzy sphere

Kohta Hatakeyama* and Asato Tsuchiya*
Department of Physics, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan *E-mail: hatakeyama.kohta.15@shizuoka.ac.jp; tsuchiya.asato@shizuoka.ac.jp

Received March 30, 2017; Accepted April 28, 2017; Published June 6, 2017

PTEP
Prog. Theor. Exp. Phys. 2018, 063B05 (15 pages) DOI: 10.1093/ptep/pty064

Renormalization on the fuzzy sphere

Kohta Hatakeyama ${ }^{1,2, *}$, Asato Tsuchiya ${ }^{1,2, *}$, and Kazushi Yamashiro ${ }^{1, *}$
${ }^{1}$ Department of Physics, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
${ }^{2}$ Graduate School of Science and Technology. Shizuoka University. 3-5-1 Johoku. Naka-ku.
Hamamatsu 432-8011, Japan
"E-mail: hatakeyama.kohta.15@shizuoka.ac.jp, tsuchiya.asato@shizuoka.ac.jp,
yamashiro.kazushi.17@shizuoka.ac.jp
Received April 12, 2018; Accepted May 8, 2018; Published June 26, 2018

PROCEEDINGS
 of SCIENCE

Renormalization on the fuzzy sphere

```
Kohta Hatakeyama +1,2, Asato Tsuchiya}\mp@subsup{}{}{1.2}\mathrm{ and Kazushi Yamashiro }\mp@subsup{}{}{1
1 Department of Physics, Shizuoka University; 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
2}\mathrm{ Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku,
Hamamatsu 432-8011, Japan
E-mail: hatakeyama.kohta.15@shizuoka.ac.jp.
tsuchiya.asato@shizuoka.ac.jp
yamashiro.kazushi.17@shizuoka.ac.jp
```


Quick motivation - CORrelation Functions

[Hatakeyama, Tsuchiya, Yamashiro 2018]

Quick motivation - CORrelation Functions

Moreover, it was
observed that the behavior of the 2-point correlation functions is the same as that in a CFT at short distances and universally different from that at long distances. We consider the latter to be due to the UV/IR mixing.

The CFT observed at short distances seems to be different from the critical Ising model, because the value of $u / 2$ in (3.5) disagrees with the scaling dimension of the spin operator, $\Delta_{\text {Ising }}=$ $1 / 8$. This indicates that the universality classes of the scalar field theory on the fuzzy sphere are totally different from those of an ordinary field theory ${ }^{3}$.

[^0][Hatakeyama, Tsuchiya, Yamashiro 2018]

Take home message

TAKE HOME MESSAGE

- Plenty of interesting things happen on spaces with quantum structure.
- Among these are the properties of the correlation function.
- Doing field theory on fuzzy spaces is straightforward since they are essentially matrix models.

Fuzzy spaces

FuZZY SPACES

Fuzzy sphere [Hoppe '82; Madore '92; Grosse, Klimčík, Prešnajder 1990s]

- Functions on the usual sphere are given by

$$
f(\theta, \phi)=\sum_{l=0}^{\infty} \sum_{m=-1}^{l} c_{l m} Y_{l m}(\theta, \phi)
$$

where $Y_{l m}$ are the spherical harmonics

$$
\Delta Y_{l m}(\theta, \phi)=I(I+1) Y_{l m}(\theta, \phi)
$$

- To describe features at a small length scale we need $Y_{l m}$'s with a large I.

FuZZY SPACES

FuZZY SPACES

- If we truncate the possible values of l in the expansion

$$
f=\sum_{l=0}^{L} \sum_{m=-l}^{l} c_{l m} Y_{l m}(\theta, \phi)
$$

we will not be able to see any features of functions under certain length scales.

- Points on the sphere (as δ-functions) cease to exist.
- Expressions defined in this way are not closed under multiplication.

FuZZY SPACES

FuZZY SPACES

- Number of independent functions with $I \leq L$ is N^{2}, the same as the number of $N \times N$ hermitian matrices.
The idea is to map the former on the latter and borrow a closed product from there.
- In order to do so, we consider a $N \times N$ matrix as a product of two N-dimensional representations \underline{N} of the group $S U(2)$. It reduces to

$$
\begin{array}{rlccccccc}
\underline{N} \otimes \underline{N} & = & \underset{1}{\downarrow} & \oplus & \underline{3} & \oplus & \underline{5} & \oplus & \ldots \\
\downarrow & & \\
& =\left\{Y_{0 m}\right\} & \oplus & \left\{Y_{1 m}\right\} & \oplus & \left\{Y_{2 m}\right\} & \oplus & \ldots
\end{array}
$$

- We thus have a map $\varphi: Y_{I m} \rightarrow M$ and we define the product

$$
Y_{l m} \star Y_{l^{\prime} m^{\prime}}:=\varphi^{-1}\left(\varphi\left(Y_{l m}\right) \varphi\left(Y_{l^{\prime} m^{\prime}}\right)\right) .
$$

FUZZY SPACES

- We have a short distance structure, but the prize we had to pay was a noncommutative product * of functions. The space, for which this is the algebra of functions, is called the fuzzy sphere.
- Opposing to some lattice discretization this space still possess a full rotational symmetry

$$
Y_{l m} \star Y_{l^{\prime} m^{\prime}}:=\varphi^{-1}\left(\varphi\left(Y_{l m}\right) \varphi\left(Y_{l^{\prime} m^{\prime}}\right)\right) .
$$

- In the limit N or $L \rightarrow \infty$ we recover the original sphere.

FuZZY SPACES - AN ALTERNATIVE CONSTRUCTION

- We have divided the sphere into N cells. Function on the fuzzy sphere is given by a matrix M and the eigenvalues of ϕ represent the values of the function on these cells.

- However there are no sharp boundaries between the pieces and everything is blurred, or fuzzy.

FuZZY SPACES

- Regularization of infinities in the standard QFT.
[Heisenberg ~1930; Snyder 1947, Yang 1947]
- Regularization of field theories for numerical simulations.
[Panero 2016]
- An effective description of the open string dynamics in a magnetic background in the low energy limit.
[Seiberg Witten 1999; Douglas, Nekrasov 2001]
- Solutions of various matrix formulations of the string theory (IKKT, BFSS, BNM). [Steinacker 2013]
- Geometric unification of the particle physics and theory of gravity. [van Suijlekom 2015]
- An effective description of various systems in a certain limit (eg. QHE). [Karabali, Nair 2006]

FuZZY SPACES

- Regularization of infinities in the standard QFT.
[Heisenberg ~1930; Snyder 1947, Yang 1947]
- Regularization of field theories for numerical simulations.
[Panero 2016]
- An effective description of the open string dynamics in a magnetic background in the low energy limit.
[Seiberg, Witten 1999; Douglas, Nekrasov 2001]
- Solutions of various matrix formulations of the string theory (IKKT, BFSS, BNM). [many talks in this meeting, Steinacker 2013]
- Geometric unification of the particle physics and theory of gravity. [van Suijlekom 2015]
- An effective description of various systems in a certain limit (eg. QHE). [Karabali, Nair 2006]

FuZZY SPACES

- Regularization of infinities in the standard QFT.
[Heisenberg ~1930; Snyder 1947, Yang 1947]
- Regularization of field theories for numerical simulations.
[Panero 2016]
- An effective description of the open string dynamics in a magnetic background in the low energy limit.
[Seiberg Witten 1999; Douglas, Nekrasov 2001]
- Solutions of various matrix formulations of the string theory (IKKT, BFSS, BNM). [many talks in this meeting, Steinacker 2013]
- Geometric unification of the particle physics and theory of gravity. [van Suijlekom 2015]
- An effective description of various systems in a certain limit (eg. QHE). [Karabali, Nair 2006]
- Toy models of spaces with discrete quantum structure, which is expected to arise in quantum theory of gravity.

Fuzzy field theories

FuZZY SCALAR FIELD THEORY

- Commutative euclidean theory of a real scalar field is given by an action

$$
S(\Phi)=\int d^{2} x\left[\frac{1}{2} \Phi \Delta \Phi+\frac{1}{2} m^{2} \Phi^{2}+V(\Phi)\right]
$$

and path integral correlation functions

$$
\langle F\rangle=\frac{\int d \Phi F(\Phi) e^{-S(\Phi)}}{\int d \Phi e^{-S(\Phi)}} .
$$

- We construct the noncommutative theory as an analogue with
- field \rightarrow matrix,
- functional integral \rightarrow matrix integral,
- spacetime integral \rightarrow trace,
- derivative $\rightarrow L_{i}$ commutator.

FuZZY SCALAR FIELD THEORY

- Commutative

$$
\begin{gathered}
S(\Phi)=\int d^{2} x\left[\frac{1}{2} \Phi \Delta \Phi+\frac{1}{2} m^{2} \Phi^{2}+V(\Phi)\right], \\
\langle F\rangle=\frac{\int d \Phi F(\Phi) e^{-S(\Phi)}}{\int d \Phi e^{-S(\Phi)}}
\end{gathered}
$$

- Noncommutative (for S_{F}^{2})

$$
\begin{gathered}
S(M)=\frac{4 \pi R^{2}}{N} \operatorname{Tr}\left[\frac{1}{2} M \frac{1}{R^{2}}\left[L_{i},\left[L_{i}, M\right]\right]+\frac{1}{2} m^{2} M^{2}+V(M)\right], \\
\langle F\rangle=\frac{\int d M F(M) e^{-S(M)}}{\int d M e^{-S(M)}} .
\end{gathered}
$$

[Balachandran, Kürkçüoğlu, Vaidya 2005; Szabo 2003; Ydri 2016]

FUZZY SCALAR FIELD THEORY - UV/IR MIXING

- The key property of the noncommutative field theories is the UV/IR mixing phenomenon, which arises as a result of the nonlocality of the theory.
[Minwalla, Van Raamsdonk, Seiberg 2000; Vaidya 2001; Chu, Madore, Steinacker 2001]
- Very energetic fluctuations (UV physics) have consequences at large distances (IR physics).
- In terms of diagrams different properties of planar and non-planar ones. The (matrix) vertex is not invariant under permutation of incoming momenta.

PHASES OF FUZZY FIELD THEORIES

$$
S[\phi]=\int d^{2} \times\left(\frac{1}{2} \partial_{i} \phi \partial_{i} \Phi+\frac{1}{2} m^{2} \phi^{2}+\frac{\lambda}{4!} \phi^{4}\right)
$$

[Glimm, Jaffe 1974; Glimm, Jaffe, Spencer 1975; Chang 1976] [Loinaz, Willey 1998; Schaich, Loinaz 2009]

PHASES OF FUZZY FIELD THEORIES

- The phase diagram of noncommutative field theories has one more phase. It is a non-uniform order phase, or a striped phase.
[Gubser, Sondhi 2001; Chen, Wu 2002]
- In this phase, the field does not oscillate around one given value in the whole space. Translational symmetry is broken.
- This has been established in numerous numerical works for variety different spaces. [Martin 2004; García Flores, Martin, O'Connor 2006, 2009; Panero 2006, 2007; Ydri 2014; Bietenholz, F. Hofheinz, Mejía-Díaz, Panero 2014; Mejía-Díaz, Bietenholz, Panero 2014; Medina, Bietenholz, D. O'Connor 2008; Bietenholz, Hofheinz, Nishimura 2004; Lizzi, Spisso 2012; Ydri, Ramda, Rouag 2016; Kováčik, O'Connor 2018] [Panero 2015]

Phases of fuZZY field theories

[Mejía-Díaz, Bietenholz, Panero 2014] for \mathbb{R}_{θ}^{2}

$$
\begin{gathered}
S[M]=\operatorname{Tr}\left(\frac{1}{2} M\left[L_{i},\left[L_{i}, M\right]\right]+\frac{1}{2} m^{2} M^{2}+g M^{4}\right) \\
S=\int d^{2} \times\left(\frac{1}{2} \partial_{\mu} \phi \star \partial^{\mu} \phi+\frac{m^{2}}{2} \phi \star \phi+\frac{\lambda}{4!} \phi \star \phi \star \phi \star \phi\right)
\end{gathered}
$$

Random matrices and fuzzy field theories

Random matrices

[M.L. Mehta 2004; B. Eynard, T. Kimura, S. Ribault 2015; G. Livan, M. Novaes, P. Vivo 2017]

- Matrix model $=$ ensemble of random matrices.
- An important example - ensemble of $N \times N$ hermitian matrices with

$$
P(M) \sim e^{-N \operatorname{Tr}(V(M))}, \text { usually } V(x)=\frac{1}{2} r x^{2}+g x^{4}
$$

and

$$
d M=\left[\prod_{i=1}^{N} M_{i i}\right]\left[\prod_{i<j} \operatorname{Re} M_{i j} \operatorname{Im} M_{i j}\right]
$$

- Both the measure and the probability distribution are invariant under $M \rightarrow U M U^{\dagger}$ with $U \in S U(N)$.
- Requirement of such invariance is very restrictive. One is usually interested in the distribution of eigenvalues.

Random matrices - Quartic potential

$$
V(x)=r x^{2} / 2+g x^{4} \text { and } r>0
$$

Random matrices - Quartic potential

$$
V(x)=r x^{2} / 2+g x^{4} \text { and } r<0
$$

Random matrices - Quartic potential

$$
V(x)=r x^{2} / 2+g x^{4} \text { and } r<-4 \sqrt{g}
$$

Random matrices - Quartic potential

$$
V(x)=r x^{2} / 2+g x^{4} \text { and } r \ll 0
$$

Kinetic Term effective action

- Recall the action of the fuzzy scalar field theory

$$
S(M)=\frac{1}{2} \operatorname{Tr}\left(M\left[L_{i},\left[L_{i}, M\right]\right]\right)+\frac{1}{2} m^{2} \operatorname{Tr}\left(M^{2}\right)+g \operatorname{Tr}\left(M^{4}\right) .
$$

This is a particular case of a matrix model since we need

$$
\int d M F(M) e^{-S(M)}
$$

- The large N limit of the model with the kinetic term is not well understood. The key issue being that diagonalization $M=U \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right) U^{\dagger}$ no longer straightforward.
- Integrals like

$$
\begin{aligned}
& \langle F\rangle \sim \int d \Lambda \int d U F\left(\lambda_{i}, U\right) e^{-N^{2}\left[\frac{1}{2} m^{2} \frac{1}{N} \sum \lambda_{i}^{2}+g \frac{1}{N} \sum \lambda_{i}^{4}-\frac{2}{N^{2}} \sum_{i<j} \log \left|\lambda_{i}-\lambda_{j}\right|\right]} \\
& \times e^{-\frac{1}{2} \operatorname{Tr}\left(U \wedge U^{\dagger}\left[L L_{i},\left[L i, U \wedge U^{\dagger} \dagger\right]\right)\right.} \text {. }
\end{aligned}
$$

Perturbative calculation

$$
e^{-N^{2} S_{e f f}(\Lambda)}=\int d U e^{-\varepsilon \frac{1}{2} \operatorname{Tr}\left(U \wedge U^{\dagger}\left[L_{i} ;\left[L_{i}, U \wedge U^{\dagger}\right]\right]\right)}
$$

- Perturbative calculation of the integral show that the $S_{\text {eff }}$ contains products of traces of M. [O'Connor, Sämann 2007; Sämann 2010]
- The most recent result is
[Sämann 2015]

$$
\begin{aligned}
S_{e f f}(\Lambda)= & \frac{1}{2}\left[\varepsilon \frac{1}{2}\left(c_{2}-c_{1}^{2}\right)-\varepsilon^{2} \frac{1}{24}\left(c_{2}-c_{1}^{2}\right)^{2}+\varepsilon^{4} \frac{1}{2880}\left(c_{2}-c_{1}^{2}\right)^{4}\right]- \\
& -\varepsilon^{4} \frac{1}{3456}\left[\left(c_{4}-4 c_{3} c_{1}+6 c_{2} c_{1}^{2}-3 c_{1}^{4}\right)-2\left(c_{2}-c_{1}^{2}\right)^{2}\right]^{2}- \\
& -\varepsilon^{3} \frac{1}{432}\left[c_{3}-3 c_{1} c_{2}+2 c_{1}^{3}\right]^{2} \quad, \quad \text { where } c_{n}=\frac{1}{N} \sum_{i} \lambda_{i}^{n}
\end{aligned}
$$

- Standard treatment of such multitrace matrix model yields a very unpleasant behaviour close to the origin of the parameter space.

Perturbative calculation

$$
e^{-N^{2} S_{\text {eff }}(\Lambda)}=\int d U e^{-\varepsilon \frac{1}{2} \operatorname{Tr}\left(U \wedge U^{\dagger}\left[L_{i} ;\left[L_{i}, U \wedge U^{\dagger}\right]\right]\right)}
$$

- Perturbative calculation of the integral show that the $S_{\text {eff }}$ contains products of traces of M. [O'Connor, Sämann 2007; Sämann 2010]
- The most recent result is
[Sämann 2015]

$$
\begin{aligned}
S_{\text {eff }}(\Lambda)= & \frac{1}{2}\left[\varepsilon \frac{1}{2}\left(c_{2}-c_{1}^{2}\right)-\varepsilon^{2} \frac{1}{24}\left(c_{2}-c_{1}^{2}\right)^{2}+\varepsilon^{4} \frac{1}{2880}\left(c_{2}-c_{1}^{2}\right)^{4}\right]- \\
& -\varepsilon^{4} \frac{1}{3456}\left[\left(c_{4}-4 c_{3} c_{1}+6 c_{2} c_{1}^{2}-3 c_{1}^{4}\right)-2\left(c_{2}-c_{1}^{2}\right)^{2}\right]^{2}- \\
& -\varepsilon^{3} \frac{1}{432}\left[c_{3}-3 c_{1} c_{2}+2 c_{1}^{3}\right]^{2}, \quad \text { where } c_{n}=\frac{1}{N} \sum_{i} \lambda_{i}^{n}
\end{aligned}
$$

- More reasonable for large values of m^{2}, g. [Rea, Sämann 2015]

SECOND MOMENT APPROXIMATION

- For the free theory $g=0$ the kinetic term just rescales the eigenvalues.
[Steinacker 2005]
- There is a unique parameter independent effective action that reconstructs this rescaling. [Polychronakos 2013]

$$
S_{e f f}(\Lambda)=\frac{1}{2} \log \left(\frac{c_{2}}{1-e^{-c_{2}}}\right)+\mathcal{R} .
$$

Can be generalized to more a more complicated kinetic term \mathcal{K}.

- Introducing the asymmetry $c_{2} \rightarrow c_{2}-c_{1}^{2}$ we obtain a matrix model

$$
S(M)=\frac{1}{2} F\left(c_{2}-c_{1}^{2}\right)+\frac{1}{2} r \operatorname{Tr}\left(M^{2}\right)+g \operatorname{Tr}\left(M^{4}\right) \quad, \quad F(t)=\log \left(\frac{t}{1-e^{-t}}\right) .
$$

[Šubjaková, JT PoS CORFU2019]

SECOND MOMENT APPROXIMATION

Correlation functions

Coherent states

- We need to define value of the fuzzy function at a "point"

$$
\phi(x), x \in S^{2}
$$

- One way to do that on a commutative space is

$$
\phi(x)=\int d x \delta(x-y) \phi(y)
$$

Coherent states

- Natural basis in the auxiliary hilbert space \mathcal{H} is the "spin" basis

$$
|n\rangle=\left(\begin{array}{c}
\vdots \\
1 \\
\vdots
\end{array}\right), n=-s, \ldots, s
$$

derived from the highest weight state $|s\rangle$.

- For any $x \in S^{2}$ with radius 1 , choose some $g_{x} \in S O(3)$ such that $x=g_{x} \cdot p$, where p is the north pole on S^{2}. We define [Perelomov 1986]

$$
|x\rangle=g_{x} \cdot|s\rangle, g_{x} \in S U(2)
$$

and call the set of all $|x\rangle$ the coherent states.

- $|x\rangle$ is located around x, but is an element of \mathcal{H}, and is a non-commutative analogue of the point x. [Steinacker 2020]

Coherent states

- Fuzzy δ-function $|x\rangle\langle x|$ the most localized object at point x. We define the value $\phi(x)$ as

$$
\phi(x)=\frac{4 \pi}{N} \operatorname{Tr}(|x\rangle\langle x| \phi)=\langle x| \phi|x\rangle .
$$

- Coherent states can be used to map (quantize) functions on S^{2} on matrices

$$
\phi(x) \rightarrow M=\int d^{2} x \phi(x)|x\rangle\langle x| .
$$

and matrices on functions (de-quantize)

$$
M \rightarrow \phi(x)=\langle x| M|x\rangle .
$$

Coherent states

- They are orthogonal only in the large N limit

$$
|\langle x \mid y\rangle|^{2}=\left(\frac{1+x \cdot y}{2}\right)^{N-1}
$$

- Some explicit formulas

$$
\begin{aligned}
& |x\rangle=\sum_{s=-J}^{J} \sqrt{\binom{2 J}{J+s}}\left(\cos \frac{\theta}{2}\right)^{J+s}\left(\sin \frac{\theta}{2}\right)^{J-s} e^{i(J-s) \varphi}|J, s\rangle, \\
& |z\rangle=\frac{1}{\left(1+|z|^{2}\right)^{J}} \sum_{s=-J}^{J} \sqrt{\binom{2 J}{J+s}} z^{J-s}|J, s\rangle, \quad z \in \mathbb{C} .
\end{aligned}
$$

Correlation functions

- The two-point function of the model is

$$
\langle\phi(x) \phi(y)\rangle=\frac{1}{Z} \int d \phi \phi(x) \phi(y) e^{-S[\phi]} .
$$

- We introduce the basis of polarization tensors

$$
\phi_{i j}=\sum_{\mu} \operatorname{Tr}\left(\phi T_{\mu}\right)\left(T_{\mu}\right)_{i j}, \mu=0,1, \ldots, N^{2}-1
$$

and thus

$$
\langle\phi(x) \phi(y)\rangle=x_{i}^{*} x_{j} y_{k}^{*} y_{l}\left\langle\phi_{i j} \phi_{k l}\right\rangle
$$

with

$$
\left\langle\phi_{i j} \phi_{k l}\right\rangle=\left(T_{\mu}\right)_{i j}\left(T_{\nu}\right)_{k l}\left\langle\operatorname{Tr}\left(\phi T_{\mu}\right) \operatorname{Tr}\left(\phi T_{\nu}\right)\right\rangle .
$$

- We are after

$$
\left\langle\operatorname{Tr}\left(\phi T_{\mu}\right) \operatorname{Tr}\left(\phi T_{\nu}\right)\right\rangle=\frac{1}{Z} \int d \Lambda e^{-S_{\text {pot }}-S_{\text {vam }}} \int d U \operatorname{Tr}\left(U \wedge U^{\dagger} T_{\mu}\right) \operatorname{Tr}\left(U \wedge U^{\dagger} T_{\nu}\right) e^{-S_{\text {kin }}} .
$$

Correlation functions

- Expand the kinetic part

$$
\begin{aligned}
\int d U \operatorname{Tr}\left(U \wedge U^{\dagger} T_{\mu}\right) \operatorname{Tr}\left(U \wedge U^{\dagger} T_{\nu}\right) & {\left[1-K_{\alpha \beta} \operatorname{Tr}\left(U \wedge U^{\dagger} T_{\alpha}\right) \operatorname{Tr}\left(U \wedge U^{\dagger} T_{\beta}\right)\right.} \\
& \left.+\frac{1}{2}\left(K_{\alpha \beta} \operatorname{Tr}\left(U \wedge U^{\dagger} T_{\alpha}\right) \operatorname{Tr}\left(U \wedge U^{\dagger} T_{\beta}\right)\right)^{2}+\ldots\right]
\end{aligned}
$$

with

$$
K_{\mu \nu}:=\frac{1}{2} \operatorname{Tr}\left(T_{\mu}\left[L_{a},\left[L_{a}, T_{\nu}\right]\right]\right)
$$

- We will need

$$
\begin{aligned}
I_{\mu_{1} \ldots \mu_{n}}(\Lambda) & =\int d U \underbrace{\operatorname{Tr}\left(U \Lambda U^{\dagger} T_{\mu_{1}}\right) \ldots \operatorname{Tr}\left(U \Lambda U^{\dagger} T_{\mu_{n}}\right)}_{n}= \\
& =\sum_{\rho} \frac{1}{\operatorname{dim}(\rho)} \chi_{\rho}(\Lambda) \operatorname{tr}_{\rho}\left(T_{\mu_{1}} \otimes \ldots \otimes T_{\mu_{n}}\right)
\end{aligned}
$$

Correlation functions, $n=2$

- For $n=2$ and $c_{k}=\operatorname{Tr}\left(\phi^{k}\right) / N$ we get

$$
\begin{aligned}
I_{\mu_{1} \mu_{2}} & =\operatorname{Tr}\left(T_{\mu_{1}}\right) \operatorname{Tr}\left(T_{\mu_{2}}\right)\left(\frac{c_{1}^{2} N^{2}}{N^{2}-1}-\frac{c_{2}}{N^{2}-1}\right)+\operatorname{Tr}\left(T_{\mu_{1}} T_{\mu_{2}}\right)\left(\frac{c_{2} N}{N^{2}-1}-\frac{c_{1}^{2} N}{N^{2}-1}\right)= \\
& =N \delta_{0 \mu_{1}} \delta_{0 \mu_{2}}\left(\frac{c_{1}^{2} N^{2}}{N^{2}-1}-\frac{c_{2}}{N^{2}-1}\right)+\delta_{\mu_{1} \mu_{2}}\left(\frac{c_{2} N}{N^{2}-1}-\frac{c_{1}^{2} N}{N^{2}-1}\right)
\end{aligned}
$$

which leads to

$$
\begin{aligned}
\left\langle\phi_{i j} \phi_{k l}\right\rangle_{\text {pure potential }} & =\delta_{i j} \delta_{k l}\left(\frac{c_{1}^{2} N^{2}}{N^{2}-1}-\frac{c_{2}}{N^{2}-1}\right)+\delta_{i l} \delta_{j k}\left(\frac{c_{2} N}{N^{2}-1}-\frac{c_{1}^{2} N}{N^{2}-1}\right), \\
\langle\phi(x)(y)\rangle_{\text {pure potential }} & =\frac{1}{N^{2}-1}\left(N^{2}\left\langle c_{1}^{2}\right\rangle-\left\langle c_{2}\right\rangle\right)+|\langle x \mid y\rangle|^{2} \frac{N}{N^{2}-1}\left(\left\langle c_{2}\right\rangle-\left\langle c_{1}^{2}\right\rangle\right) .
\end{aligned}
$$

Correlation functions, $n=2$

Correlation functions, $n=2$

Stripe phase 2-point function
$2 \mathrm{r}=0.3 \mathrm{~N}^{3 / 2}, \mathrm{~g}=\mathbf{0 . 0 1} \mathrm{N} \quad 2$, no kinetic term

Correlation functions, $n=4$

- In the first order in the kinetic term, we get

$$
\begin{aligned}
\langle\phi(x) \phi(y)\rangle=\frac{1}{Z} \int d \Lambda e^{-S_{\text {pot }}-S_{v d m}} & \left(x_{i}^{*} x_{j} y_{k}^{*} y_{l}\left(T_{\mu_{1}}\right)_{i j}\left(T_{\mu_{2}}\right)_{k l} I_{\mu_{1} \mu_{2}}\right. \\
& \left.-\varepsilon x_{i}^{*} x_{j} y_{k}^{*} y_{l}\left(T_{\mu_{1}}\right)_{i j}\left(T_{\mu_{2}}\right)_{k l} K_{\mu_{3} \mu_{4}} I_{\mu_{1} \mu_{2} \mu_{3} \mu_{4}}\right),
\end{aligned}
$$

but now

$$
Z=\int d \Lambda e^{-S_{\text {pot }}-S_{v d m}-S_{\text {eff }}}
$$

- This leads to

$$
\langle\phi(x) \phi(y)\rangle=\frac{1}{Z} \int d \Lambda e^{-S_{\text {pot }}-S_{\text {vdm }}-S_{\text {eff }}}\left(I_{2}-\varepsilon I_{4}\right)\left(1+\varepsilon S_{1}\right)=\left\langle I_{2}-\varepsilon I_{4}+\varepsilon S_{1} I_{2}\right\rangle .
$$

- I_{4} includes combinations of moments $c_{4}, c_{1} c_{3}, c_{1}^{2} c_{2}, c_{1}^{4}$ which need to be rescaled when doing the saddle point approximation.

Correlation functions, $n=4$

Correlation functions, $n=4$

- A direct application of the saddle point approximation leads to essentially the same formula as for pure potential. The difference gets smaller as we increase N.
- An angular behavior different from const $+|\langle x \mid y\rangle|^{2}$ comes from

$$
k_{a}\left(T_{a}\right)_{i j}\left(T_{a}\right)_{l m} x_{i}^{*} x_{j} y_{k}^{*} y_{l}
$$

and

$$
k_{a} d_{a b c} d_{a b d}\left(T_{c}\right)_{i j}\left(T_{d}\right)_{l m} x_{i}^{*} x_{j} y_{k}^{*} y_{l} .
$$

Here

$$
d_{a b c}=\operatorname{Tr}\left(\left\{T_{a}, T_{b}\right\} T_{c}\right) .
$$

- Both of these are very small compared to the other contributions.

Truncated Heisenberg algebra and Grosse-Wulkenhaar model

GW MODEL

- Grosse-Wulkenhaar model [2000's]

$$
\begin{gathered}
S_{G W}=\int d^{2} \times\left(\frac{1}{2} \partial_{\mu} \phi \star \partial^{\mu} \phi+\frac{1}{2} \Omega^{2}\left(\tilde{x}_{\mu} \phi\right) \star\left(\tilde{x}^{\mu} \phi\right)+\frac{m^{2}}{2} \phi \star \phi+\frac{\lambda}{4!} \phi \star \phi \star \phi \star \phi\right), \\
\tilde{x}_{\mu}=2\left(\theta^{-1}\right)_{\mu \nu} x^{\nu} .
\end{gathered}
$$

- This model is renormalizable.
- Described by a matrix model in terms of truncated Heisenberg algebra.
[Burić, Wohlgenannt 2010]

Truncated Heisenberg algebra

- The NC plane coordinates can be realized by

$$
X=\frac{1}{\sqrt{2}}\left(\begin{array}{ccccc}
& +\sqrt{1} & & & \\
+\sqrt{1} & & +\sqrt{2} & & \\
& +\sqrt{2} & & \ddots & \\
& & \ddots & & \ddots \\
& & & \ddots &
\end{array}\right), Y=\frac{i}{\sqrt{2}}\left(\begin{array}{ccccc}
& -\sqrt{1} & & & \\
+\sqrt{1} & & -\sqrt{2} & & \\
& +\sqrt{2} & & \ddots & \\
& & \ddots & & \ddots \\
& & & \ddots &
\end{array}\right)
$$

then

$$
[X, Y]=i
$$

- This algebra is then truncated to a finite dimension.

Truncated Heisenberg algebra

- Define finite matrices

$$
X=\frac{1}{\sqrt{2}}\left(\begin{array}{ccccc}
& +\sqrt{1} & & & \\
+\sqrt{1} & & +\sqrt{2} & & \\
& +\sqrt{2} & & \ddots & \\
& & \ddots & & \sqrt{N-1}
\end{array}\right), Y=\ldots
$$

which gives

$$
[X, Y]=i(1-Z), Z=\operatorname{diag}(0, \ldots, N)
$$

- Original algebra is recovered in the $N \rightarrow \infty$ limit or under the $Z=0$ condition.
- The kinetic term becomes

$$
\frac{1}{2} \partial_{\mu} \phi \star \partial^{\mu} \phi \rightarrow[X, M][X, M]+[Y, M][Y, M]
$$

GW MATRIX MODEL

- The harmonic potential becomes

$$
\frac{1}{2} \Omega^{2}\left(\tilde{x}_{\mu} \phi\right) \star\left(\tilde{x}^{\mu} \phi\right) \rightarrow R M^{2}
$$

where R is a fixed external matrix

$$
R=\frac{15}{2}-4 Z^{2}-8\left(X^{2}+Y^{2}\right)=\frac{31}{2}-16 \operatorname{diag}(1,2, \ldots, N-1,8 N)
$$

- Interpretation of coupling to the curvature of the space.
- We are thus left with a matrix model with action

$$
S=\operatorname{Tr}(M[X,[X, M]]+M[Y,[Y, M]])-g_{r} \operatorname{Tr}\left(R M^{2}\right)-g_{2} \operatorname{Tr}\left(M^{2}\right)+g_{4} \operatorname{Tr}\left(M^{4}\right)
$$

Removal of stripes - GW model

[Prekrat, Todorović-Vasović, Ranković '21; Prekrat '21]

- Numerical investigation of this matrix model leads to

Removal of stripes - GW model

[Prekrat, Todorović-Vasović, Ranković, Kováčik, JT '22]

- The effect of the curvature term

$$
S(M)=\operatorname{Tr}(M \mathcal{K} M)-\operatorname{Tr}\left(g_{r} R M^{2}\right)-g_{2} \operatorname{Tr}\left(M^{2}\right)+g_{4} \operatorname{Tr}\left(M^{4}\right)
$$

- Effective action up to g_{r}^{4}

$$
\begin{aligned}
S(\Lambda)= & N \operatorname{Tr}\left(-g_{2} \Lambda^{2}+8 g_{r} \Lambda^{2}+g_{4} \Lambda^{4}-\frac{32}{3} g_{r}^{2} \Lambda^{4}\right)+\frac{1024}{45} g_{r}^{4} \Lambda^{8}+ \\
& +\frac{32}{3} g_{r}^{2}\left(\operatorname{Tr}\left(\Lambda^{2}\right)\right)^{2}+\frac{1024}{15} g_{r}^{4}\left(\operatorname{Tr}\left(\Lambda^{4}\right)\right)^{2}-\frac{4096}{45} g_{r}^{4} \operatorname{Tr}\left(\Lambda^{6}\right) \operatorname{Tr}\left(\Lambda^{2}\right)
\end{aligned}
$$

- This is a multitrace matrix model which can be analyzed.

Plane kinetic term effective action model

[Bukor, JT '23]

- The effect of the kinetic term

$$
S(M)=\operatorname{Tr}(M \mathcal{K} M)-\operatorname{Tr}\left(g_{r} R M^{2}\right)-g_{2} \operatorname{Tr}\left(M^{2}\right)+g_{4} \operatorname{Tr}\left(M^{4}\right) .
$$

- This leads to the effective action

$$
S_{e f f}(\Lambda)=N^{2}\left[\varepsilon t_{2}-\varepsilon^{2} \frac{2}{3} t_{2}^{2}+\varepsilon^{2} \frac{97}{120}\left(t_{4}-2 t_{2}^{2}\right)\right]
$$

where $t^{\prime} s$ are symmetrized models

$$
t_{n}=\frac{1}{N} \operatorname{Tr}\left(\phi-\frac{\mathbb{1}}{N} \operatorname{tr}(\phi)\right)^{n} .
$$

- This is a multitrace matrix model which can be analyzed, e.g. to obtain phase structure of the model.

Correlation functions in the GW model

- Going back to

$$
\langle\phi(x) \phi(y)\rangle=\frac{1}{Z} \int d \Lambda e^{-S_{\text {pot }}-S_{\text {vdm }}-S_{\text {eff }}}\left(I_{2}-\varepsilon I_{4}\right)\left(1+\varepsilon S_{1}\right)
$$

inputs and saddles change, but the formula and the idea stays.

Take home message

TAKE HOME MESSAGE AND 2DO LIST

- Plenty of interesting things happen on spaces with quantum structure.
- Among these are the properties of the correlation function.
- Doing field theory on fuzzy spaces is straightforward since they are essentially matrix models.

TAKE HOME MESSAGE AND 2DO LIST

- Plenty of interesting things happen on spaces with quantum structure.
- Among these are the properties of the correlation function.
- Doing field theory on fuzzy spaces is straightforward since they are essentially matrix models.
- We need some non-perturbative approximation.
- Pade approximation?
- Trick similar to the kinetic term effective?
- Generating function $Z[\mathrm{~J}]$?
- Entanglement entropy on fuzzy spaces.

TAKE HOME MESSAGE AND 2DO LIST

- Plenty of interesting things happen on spaces with quantum structure.
- Among these are the properties of the correlation function.
- Doing field theory on fuzzy spaces is straightforward since they are essentially matrix models.
- We need some non-perturbative approximation.
- Pade approximation?
- Trick similar to the kinetic term effective?
- Generating function $Z[\mathrm{~J}]$?
- Entanglement entropy on fuzzy spaces.

Thank you for your attention!

[^0]: ${ }^{3}$ It should be noted that $\Delta_{\text {ours }}=u / 2 \simeq 0.075=3 / 40$ coincides with the scaling dimension of the spin operator in the tricritical Ising model, which is the $(4,5)$ unitary minimal model.

