FUZZY PHYSICS AND MATRIX MODELS

Juraj Tekel

Department of theoretical physics Faculty of Mathematics, Physics and Informatics Comenius University, Bratislava

Group for Gravitation, Particle and Fields seminar, University of Belgrade work with: B. Bukor, D. Prekrat, S. Kováčik, others

supported by CEEPUS M-181129 - Quantum Spacetime, Gravitation and Cosmology

< □ > < @ > < 글 > < 글 > _ 글 = -

イロト イヨト イヨト イヨト ヨー のへで

Take home message

JURAJ TEKEL FUZZY PHYSICS AND MATRIX MODELS

э

イロト イヨト イヨト イヨト

- Quantization of gravity seems to lead to quantized spacetimes.
- Fuzzy spaces are examples of such spacetimes.
- Physics on such spaces is described by random matrix ensembles.

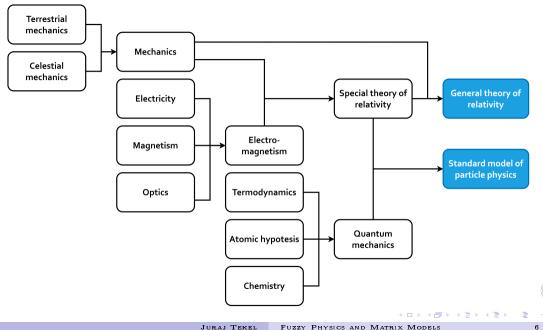
- Quantization of gravity seems to lead to quantized spacetimes.
- Fuzzy spaces are examples of such spacetimes.
- Physics on such spaces is described by random matrix ensembles.
- We do have PhD. and postdoc positions related to this in Bratislava.

Quick motivation

JURAJ TEKEL FUZZY PHYSICS AND MATRIX MODELS

э

イロト イヨト イヨト イヨト



- We need a quantum theory of gravity.
- Quantization of general relativity leads to a nonrenormalizable theory.
- We have reasons to believe that future theory of quantum gravity will have a different notion of spacetime.

No distinction between points under certain length scales. [Hossenfelder 1203.6191]

- Reasons:
 - gravitational Heisenberg microscope,
 - instability of quantum gravitational vacuum, [Doplicher, Fredenhagen, Roberts '95]
 - emergent spacetime.

Fuzzy spaces

JURAJ TEKEL FUZZY PHYSICS AND MATRIX MODELS

Ξ.

・ロン ・回と ・ヨン ・ヨン

Fuzzy sphere [Hoppe '82; Madore '92; Grosse, Klimčík, Prešnajder 1990s]

• Functions on the usual sphere are given by

$$f(heta, \phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} c_{lm} Y_{lm}(heta, \phi) \; ,$$

where Y_{lm} are the spherical harmonics

$$\Delta Y_{lm}(\theta,\phi) = l(l+1)Y_{lm}(\theta,\phi) \; .$$

• To describe features at a small length scale we need Y_{lm} 's with a large l.

FUZZY SPACES

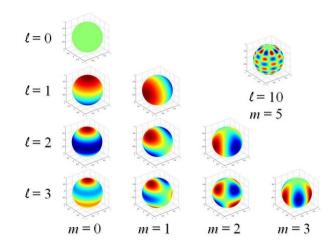


Image taken from http://principles.ou.edu/mag/earth.html

Ξ.

イロト イロト イヨト イヨト

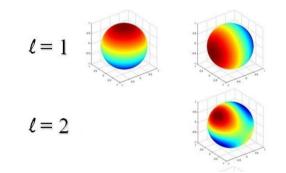
• If we truncate the possible values of *I* in the expansion

$$f = \sum_{l=0}^{L} \sum_{m=-l}^{l} c_{lm} Y_{lm}(\theta, \phi) ,$$

we will not be able to see any features of functions under certain length scales.

- Points on the sphere (as δ -functions) cease to exist.
- Expressions defined in this way are not closed under multiplication.

・ロト ・ 同ト ・ ヨト ・ ヨト



JURAJ TEKEL FUZZY PHYSICS AND MATRIX MODELS

2

• Number of independent functions with $I \leq L$ is N^2 , the same as the number of $N \times N$ hermitian matrices.

The idea is to map the former on the latter and borrow a closed product from there.

• In order to do so, we consider a $N \times N$ matrix as a product of two N-dimensional representations <u>N</u> of the group SU(2). It reduces to

$$\underbrace{\underline{N}} \otimes \underline{\underline{N}} = \underbrace{\underline{1}}_{\downarrow} \oplus \underbrace{\underline{3}}_{\downarrow} \oplus \underbrace{\underline{5}}_{\downarrow} \oplus \ldots \\ = \{\underline{Y}_{0m}\} \oplus \{\underline{Y}_{1m}\} \oplus \{\underline{Y}_{2m}\} \oplus \ldots$$

ullet We thus have a map $arphi: Y_{lm}
ightarrow M$ and we define the product

$$Y_{lm} \star Y_{l'm'} := \varphi^{-1} \left(\varphi \left(Y_{lm} \right) \varphi \left(Y_{l'm'} \right) \right) \; .$$

- We have a short distance structure, but the prize we had to pay was a noncommutative product \star of functions. The space, for which this is the algebra of functions, is called the fuzzy sphere.
- Opposing to some lattice discretization this space still possess a full rotational symmetry

$$Y_{lm} \star Y_{l'm'} := \varphi^{-1} \left(\varphi \left(Y_{lm} \right) \varphi \left(Y_{l'm'} \right) \right) \; .$$

• In the limit N or $L \to \infty$ we recover the original sphere.

• The regular sphere S^2 is given by the coordinates

$$x_i x_i = R^2$$
, $x_i x_j - x_j x_i = 0$, $i, j = 1, 2, 3$,

which generate the algebra of functions.

• For the fuzzy sphere S_N^2 we define

$$\hat{x}_i \hat{x}_i = r^2 \quad , \quad \hat{x}_i \hat{x}_j - \hat{x}_j \hat{x}_i = i\theta \varepsilon_{ijk} \hat{x}_k \ , \ i, j = 1, 2, 3 \ .$$

• Such \hat{x}_i 's generate a different, non-commutative, algebra and S_N^2 is an object, which has this algebra as an algebra of functions.

• The conditions can be realized as an N = 2s + 1 dimensional representation of SU(2)

$$\hat{x}_i = rac{2r}{\sqrt{N^2-1}} L_i \quad , \quad heta = rac{2r}{\sqrt{N^2-1}} \sim rac{2}{N} \quad , \quad
ho^2 = rac{4r^2}{N^2-1} s(s+1) = r^2 \; .$$

- The group SU(2) still acts on \hat{x}_i 's and this space enjoys a full rotational symmetry.
- In the limit $N \to \infty$ we recover the original sphere.

FUZZY SPACES - AN ALTERNATIVE CONSTRUCTION

• Most importantly nonzero commutators

$$\hat{x}_i \hat{x}_i = \rho^2$$
 , $\hat{x}_i \hat{x}_j - \hat{x}_j \hat{x}_i = i\theta \varepsilon_{ijk} \hat{x}_k$, $i = 1, 2, 3$.

imply uncertainty relations for positions

$$\Delta x_i \Delta x_j
eq 0$$
 .

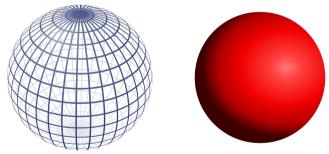
- Configuration space is analogous to phase space of quantum mechanics.
- In a similar fashion it is possible to construct an analogous deformation of the plane

$$\hat{x}_i \hat{x}_j - \hat{x}_j \hat{x}_i = i \theta \varepsilon_{ij} = i \theta_{ij}$$
, $i = 1, 2$.

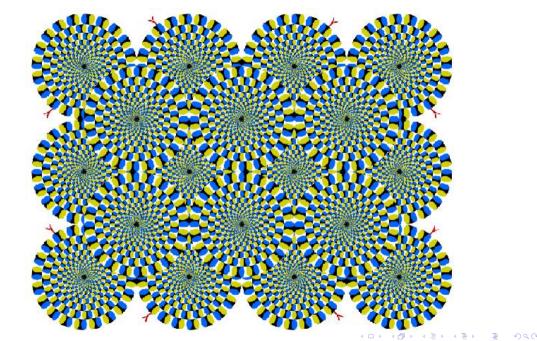
Construction uses the \star -product

$$f \star g = f e^{\frac{i}{2} \overline{\partial} \theta \, \overline{\partial}} g = fg + \frac{i \theta^{\mu\nu}}{2} \frac{\partial f}{\partial x^{\mu}} \frac{\partial g}{\partial x^{\nu}} + \cdots$$

• We have divided the sphere into N cells. Function on the fuzzy sphere is given by a matrix M and the eigenvalues of ϕ represent the values of the function on these cells.



• However there are no sharp boundaries between the pieces and everything is blurred, or fuzzy.



FUZZY SPACES

- Regularization of infinities in the standard QFT. [Heisenberg ~1930; Snyder 1947, Yang 1947]
- Regularization of field theories for numerical simulations. [Panero 2016]
- An effective description of the open string dynamics in a magnetic background in the low energy limit.

[Seiberg Witten 1999; Douglas, Nekrasov 2001]

- Solutions of various matrix formulations of the string theory (IKKT, BFSS, BNM). [Steinacker 2013]
- Geometric unification of the particle physics and theory of gravity. [van Suijlekom 2015]
- An effective description of various systems in a certain limit (eg. QHE). [Karabali, Nair 2006]
- Toy models of spaces with discrete quantum structure, which is expected to arise in quantum theory of gravity.

- ◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - ∽��♡

Fuzzy field theories

JURAJ TEKEL FUZZY PHYSICS AND MATRIX MODELS

イロト イヨト イヨト イヨト

FUZZY SCALAR FIELD THEORY

• Commutative euclidean theory of a real scalar field is given by an action

$$S(\Phi) = \int d^2x \left[rac{1}{2} \Phi \Delta \Phi + rac{1}{2} m^2 \Phi^2 + V(\Phi)
ight]$$

and path integral correlation functions

$$\langle F \rangle = rac{\int d\Phi F(\Phi) e^{-S(\Phi)}}{\int d\Phi e^{-S(\Phi)}}$$

• We construct the noncommutative theory as an analogue with

- field \rightarrow matrix,
- functional integral \rightarrow matrix integral,
- $\bullet\,$ spacetime integral $\rightarrow\,$ trace,
- derivative $\rightarrow L_i$ commutator.

FUZZY SCALAR FIELD THEORY

• Commutative

$$S(\Phi) = \int d^2 x \left[\frac{1}{2} \Phi \Delta \Phi + \frac{1}{2} m^2 \Phi^2 + V(\Phi) \right] ,$$
$$\langle F \rangle = \frac{\int d\Phi F(\Phi) e^{-S(\Phi)}}{\int d\Phi e^{-S(\Phi)}} .$$

• Noncommutative (for S_F^2)

$$S(M) = \frac{4\pi R^2}{N} \operatorname{Tr} \left[\frac{1}{2} M \frac{1}{R^2} [L_i, [L_i, M]] + \frac{1}{2} m^2 M^2 + V(M) \right] ,$$
$$\langle F \rangle = \frac{\int dM F(M) e^{-S(M)}}{\int dM e^{-S(M)}} .$$

[Balachandran, Kürkçüoğlu, Vaidya 2005; Szabo 2003; Ydri 2016]

・ロ・ ・ 日・ ・ ヨ・

Fuzzy scalar field theory - UV/IR mixing

 The key property of the noncommutative field theories is the UV/IR mixing phenomenon, which arises as a result of the nonlocality of the theory.

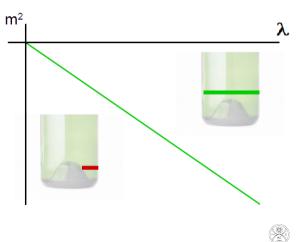
[Minwalla, Van Raamsdonk, Seiberg 2000; Vaidya 2001; Chu, Madore, Steinacker 2001]

- Very energetic fluctuations (UV physics) have consequences at large distances (IR physics).
- In terms of diagrams different properties of planar and non-planar ones. The (matrix) vertex is not invariant under permutation of incoming momenta.

PHASES OF FUZZY FIELD THEORIES

$$S[\phi] = \int d^2x \left(rac{1}{2}\partial_i \Phi \partial_i \Phi + rac{1}{2}m^2 \Phi^2 + rac{\lambda}{4!} \Phi^4
ight)$$

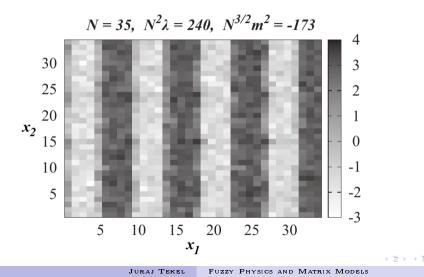
[Glimm, Jaffe 1974; Glimm, Jaffe, Spencer 1975; Chang 1976] [Loinaz, Willey 1998; Schaich, Loinaz 2009]

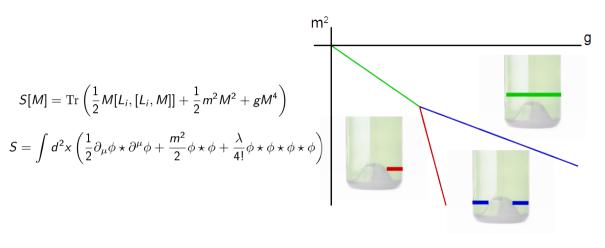


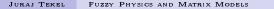
- The phase diagram of noncommutative field theories has one more phase. It is a non-uniform order phase, or a striped phase.
 - [Gubser, Sondhi 2001; Chen, Wu 2002]
- In this phase, the field does not oscillate around one given value in the whole space. Translational symmetry is broken.
- This has been established in numerous numerical works for variety different spaces.
 [Martin 2004; García Flores, Martin, O'Connor 2006, 2009; Panero 2006, 2007; Ydri 2014; Bietenholz, F. Hofheinz, Mejía-Díaz, Panero 2014; Mejía-Díaz, Bietenholz, Panero 2014; Medina, Bietenholz, D. O'Connor 2008; Bietenholz, Hofheinz, Nishimura 2004; Lizzi, Spisso 2012; Ydri, Ramda, Rouag 2016; Kováčik, O'Connor 2018]
 [Panero 2015]

PHASES OF FUZZY FIELD THEORIES

[Mejía-Díaz, Bietenholz, Panero 2014] for $\mathbb{R}^2_ heta$







- ◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - ∽��♡

Random matrices ...

JURAJ TEKEL FUZZY PHYSICS AND MATRIX MODELS

э

メロト メタト メヨト メヨト

RANDOM MATRICES

[M.L. Mehta 2004; B. Eynard, T. Kimura, S. Ribault 2015; G. Livan, M. Novaes, P. Vivo 2017]

- Matrix model = ensemble of random matrices.
- An important example ensemble of $N \times N$ hermitian matrices with

$$P(M) \sim e^{-N \operatorname{Tr}(V(M))}$$
, usually $V(x) = \frac{1}{2}r x^2 + g x^4$

and

$$dM = \left[\prod_{i=1}^{N} M_{ii}
ight] \left[\prod_{i < j} \operatorname{Re} M_{ij} \operatorname{Im} M_{ij}
ight].$$

- Both the measure and the probability distribution are invariant under $M \rightarrow UMU^{\dagger}$ with $U \in SU(N)$.
- Requirement of such invariance is very restrictive. One is usually interested in the distribution of eigenvalues.

・ロト ・ 同ト ・ ヨト ・ ヨト

RANDOM MATRICES - EIGENVALUE DECOMPOSITION

• If we ask invariant questions, we can turn

$$\langle f \rangle = rac{1}{Z} \int dM \, f(M) P(M)$$

into an eigenvalue problem by diagonalization $M = U \wedge U^{\dagger}$ for some $U \in SU(N)$ and $\Lambda = diag(\lambda_1, \ldots, \lambda_N)$, the integration measure becomes

$$dM = dU\left(\prod_{i=1}^N d\lambda_i\right) imes \prod_{i < j} (\lambda_i - \lambda_j)^2$$

• We are to compute integrals like

$$\langle f \rangle \sim \int \left(\prod_{i=1}^{N} d\lambda_i\right) f(\lambda_i) e^{-\left[\sum_i V(\lambda_i) - 2\sum_{i < j} \log |\lambda_i - \lambda_j|\right]} \times \int dU$$

RANDOM MATRICES - EIGENVALUE DECOMPOSITION

Term

$$2\sum_{i < j} \log |\lambda_i - \lambda_j|$$

 $\sum V(\lambda_i)$

is of order N^2 if $\lambda_i \sim 1$. Potential term

is of order N.

• We need to enhance the probability measure by a factor of N to

$$e^{-N^2 \left[\frac{1}{N}\sum_i V(\lambda_i) - \frac{2}{N^2}\sum_{i < j} \log |\lambda_i - \lambda_j|\right]}$$

• This makes the N^2 dependence explicit.

34 / 70

RANDOM MATRICES - EIGENVALUE DECOMPOSITION

• We introduce eigenvalue distribution

$$\rho(\lambda) = \frac{1}{N} \sum_{j} \delta(\lambda - \lambda_j)$$

which gives for the averages

$$\langle f
angle = \int d\lambda \,
ho(\lambda) f(\lambda) \; .$$

• The question is, how does do probability measure

$$e^{-N^2 \left[\frac{1}{N}\sum_i V(\lambda_i) - \frac{2}{N^2}\sum_{i < j} \log |\lambda_i - \lambda_j|\right]}$$

translate into eigenvalue distribution ρ .

- For finite N orthogonal polynomials method.
- $\bullet\,$ For $N\to\infty$ the question simplifies due to the factor N^2

$$e^{-N^2\left[\frac{1}{N}\sum_i V(\lambda_i) - \frac{2}{N^2}\sum_{i < j} \log |\lambda_i - \lambda_j|\right]}$$

• For large N only configurations with small exponent contribute significantly to the integral. In the limit $N \to \infty$ only the extremal configuration

$$V'(\lambda_i) - rac{2}{N}\sum_{j
eq i} rac{1}{\lambda_i - \lambda_j} = 0 \quad \forall i$$

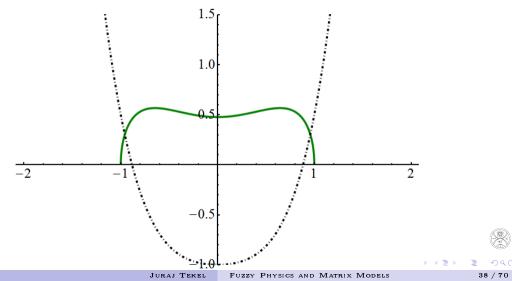
• Like a gas of particles with logarithmic repulsion. This gives us nice intuition.

• The simplest case

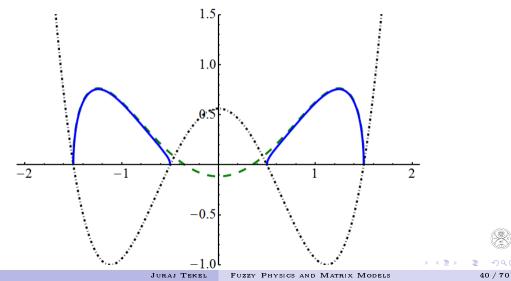
$$V(x) = \frac{1}{2}rx^2 + gx^4$$

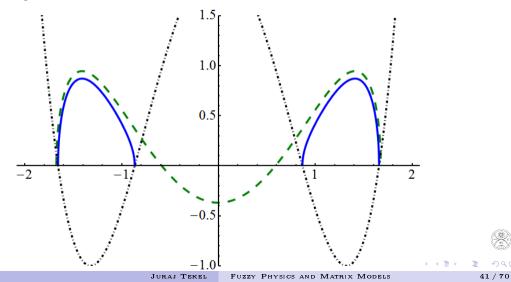
э

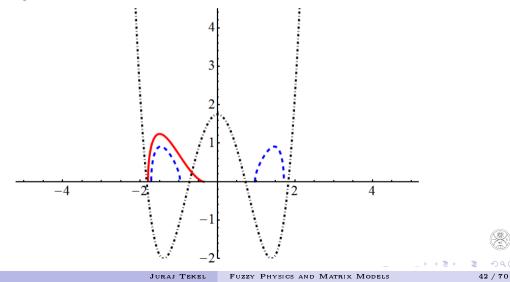
イロト イヨト イヨト イヨト



 $V(x) = rx^2/2 + gx^4$ and r > 01.5 1.0 0.5 -2 $^{-1}$ 2 -0.5-1.0FUZZY PHYSICS AND MATRIX MODELS JURAJ TEKEL 39 / 70







• If more than one solution is possible, the one with lower energy

$$\mathcal{F} = - \mathcal{N}^2 \left[rac{1}{\mathcal{N}} \sum_i \mathcal{V}(\lambda_i) - rac{2}{\mathcal{N}^2} \sum_{i < j} \log |\lambda_i - \lambda_j|
ight]$$

is the preferred one.

• The probability measure

$$e^{-N^2 \left[\frac{1}{N}\sum_i V(\lambda_i) - \frac{2}{N^2}\sum_{i < j} \log |\lambda_i - \lambda_j|\right]}$$

i.e. the more probable solution.

- ◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - ∽��♡

Random matrices and fuzzy field theories

JURAJ TEKEL FUZZY PHYSICS AND MATRIX MODELS

The

KINETIC TERM EFFECTIVE ACTION

• Recall the action of the fuzzy scalar field theory

$$\mathcal{S}(\mathcal{M}) = rac{1}{2} \operatorname{Tr} \left(\mathcal{M}[\mathcal{L}_i, [\mathcal{L}_i, \mathcal{M}]] \right) + rac{1}{2} m^2 \operatorname{Tr} \left(\mathcal{M}^2
ight) + g \operatorname{Tr} \left(\mathcal{M}^4
ight) \; .$$

This is a particular case of a matrix model since we need

$$\int dM \, F(M) e^{-S(M)}$$

- The large N limit of the model with the kinetic term is not well understood. The key issue being that diagonalization $M = U \operatorname{diag}(\lambda_1, \dots, \lambda_N) U^{\dagger}$ no longer straightforward.
- Integrals like

$$\begin{split} \langle F \rangle &\sim \int d\Lambda \int dU \ F(\lambda_i, U) \ e^{-N^2 \left[\frac{1}{2}m^2 \frac{1}{N}\sum \lambda_i^2 + g \frac{1}{N}\sum \lambda_i^4 - \frac{2}{N^2}\sum_{i < j} \log |\lambda_i - \lambda_j|\right]} \\ &\times \ e^{-\frac{1}{2} \operatorname{Tr} \left(U \wedge U^{\dagger} [L_i, [L_i, U \wedge U^{\dagger}]] \right)} \,. \end{split}$$

PERTURBATIVE CALCULATION

$$e^{-N^2 S_{\text{eff}}(\Lambda)} = \int dU \, e^{-\varepsilon \frac{1}{2} \operatorname{Tr} \left(U \Lambda U^{\dagger} [L_i, [L_i, U \Lambda U^{\dagger}]] \right)}$$

- Perturbative calculation of the integral show that the S_{eff} contains products of traces of M. [O'Connor, Sämann 2007; Sämann 2010]
- The most recent result is [Sämann 2015]

$$\begin{split} S_{eff}(\Lambda) = & \frac{1}{2} \left[\varepsilon \frac{1}{2} \left(c_2 - c_1^2 \right) - \varepsilon^2 \frac{1}{24} \left(c_2 - c_1^2 \right)^2 + \varepsilon^4 \frac{1}{2880} \left(c_2 - c_1^2 \right)^4 \right] - \\ & - \varepsilon^4 \frac{1}{3456} \Big[\left(c_4 - 4c_3c_1 + 6c_2c_1^2 - 3c_1^4 \right) - 2 \left(c_2 - c_1^2 \right)^2 \Big]^2 - \\ & - \varepsilon^3 \frac{1}{432} \Big[c_3 - 3c_1c_2 + 2c_1^3 \Big]^2 \quad , \quad \text{where } c_n = \frac{1}{N} \sum_i \lambda_i^n \end{split}$$

• Standard treatment of such multitrace matrix model yields a very unpleasant behaviour close to the origin of the parameter space.

PERTURBATIVE CALCULATION

$$e^{-N^2 S_{\text{eff}}(\Lambda)} = \int dU \, e^{-\varepsilon \frac{1}{2} \operatorname{Tr} \left(U \Lambda U^{\dagger} [L_i, [L_i, U \Lambda U^{\dagger}]] \right)}$$

- Perturbative calculation of the integral show that the S_{eff} contains products of traces of M. [O'Connor, Sämann 2007; Sämann 2010]
- The most recent result is [Sämann 2015]

$$\begin{split} S_{eff}(\Lambda) = & \frac{1}{2} \left[\varepsilon \frac{1}{2} \left(c_2 - c_1^2 \right) - \varepsilon^2 \frac{1}{24} \left(c_2 - c_1^2 \right)^2 + \varepsilon^4 \frac{1}{2880} \left(c_2 - c_1^2 \right)^4 \right] - \\ & - \varepsilon^4 \frac{1}{3456} \Big[\left(c_4 - 4c_3c_1 + 6c_2c_1^2 - 3c_1^4 \right) - 2 \left(c_2 - c_1^2 \right)^2 \Big]^2 - \\ & - \varepsilon^3 \frac{1}{432} \Big[c_3 - 3c_1c_2 + 2c_1^3 \Big]^2 \quad , \quad \text{where } c_n = \frac{1}{N} \sum_i \lambda_i^n \end{split}$$

More reasonable for large values of m², g.
 [Rea, Sämann 2015]

JURAJ TEKEL FUZZY PHYSICS AND MATRIX MODELS

SECOND MOMENT APPROXIMATION

- For the free theory g = 0 the kinetic term just rescales the eigenvalues. [Steinacker 2005]
- There is a unique parameter independent effective action that reconstructs this rescaling. [Polychronakos 2013]

$$S_{eff}(\Lambda) = rac{1}{2} \log\left(rac{c_2}{1-e^{-c_2}}
ight) + \mathcal{R} \; .$$

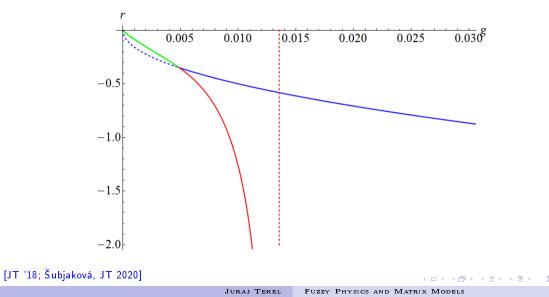
Can be generalized to more a more complicated kinetic term \mathcal{K} .

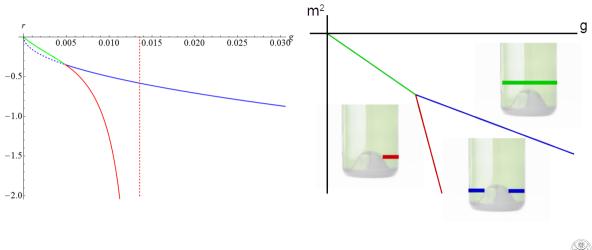
ullet Introducing the asymmetry $c_2
ightarrow c_2 - c_1^2$ we obtain a matrix model

$$S(M) = \frac{1}{2}F(c_2 - c_1^2) + \frac{1}{2}r \operatorname{Tr}(M^2) + g \operatorname{Tr}(M^4)$$
, $F(t) = \log\left(\frac{t}{1 - e^{-t}}\right)$

[Šubjaková, JT PoS CORFU2019]

SECOND MOMENT APPROXIMATION





Ξ.

・ロン ・回と ・ヨン ・ヨン

Truncated Heisenberg algebra and Grosse-Wulkenhaar model

JURAJ TEKEL FUZZY PHYSICS AND MATRIX MODELS

• Grosse-Wulkenhaar model [2000's]

$$\begin{split} S_{GW} &= \int d^2 x \left(\frac{1}{2} \partial_\mu \phi \star \partial^\mu \phi + \frac{1}{2} \Omega^2 (\tilde{x}_\mu \phi) \star (\tilde{x}^\mu \phi) + \frac{m^2}{2} \phi \star \phi + \frac{\lambda}{4!} \phi \star \phi \star \phi \right) \,, \\ \tilde{x}_\mu &= 2(\theta^{-1})_{\mu\nu} x^\nu \,\,. \end{split}$$

- This model is renormalizable.
- Described by a matrix model in terms of truncated Heisenberg algebra. [Burić, Wohlgenannt 2010]

TRUNCATED HEISENBERG ALGEBRA

• The NC plane coordinates can be realized by

$$X = \frac{1}{\sqrt{2}} \begin{pmatrix} +\sqrt{1} & +\sqrt{2} & & \\ +\sqrt{1} & +\sqrt{2} & & \\ & +\sqrt{2} & & \\ & & & \\ & &$$

then

 $[X,Y]=i \ .$

• This algebra is then truncated to a finite dimension.

Image: A matrix

Image: A (1)

TRUNCATED HEISENBERG ALGEBRA

• Define finite matrices

$$X = \frac{1}{\sqrt{2}} \begin{pmatrix} & +\sqrt{1} & & & \\ & +\sqrt{1} & & +\sqrt{2} & & \\ & & +\sqrt{2} & & & \\ & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \sqrt{N-1} \end{pmatrix} , \ Y = \dots ,$$

which gives

$$[X, Y] = i(1 - Z) , Z = diag(0, ..., N) .$$

• Original algebra is recovered in the $N \rightarrow \infty$ limit or under the Z = 0 condition.

• The kinetic term becomes

$$rac{1}{2}\partial_\mu\phi\star\partial^\mu\phi o [X,M][X,M]+[Y,M][Y,M]\;.$$

A D A A D A A D A

• • = •

GW matrix model

• The harmonic potential becomes

$$\frac{1}{2}\Omega^2(\tilde{x}_\mu\phi)\star(\tilde{x}^\mu\phi)\to RM^2 \ ,$$

where R is a fixed external matrix

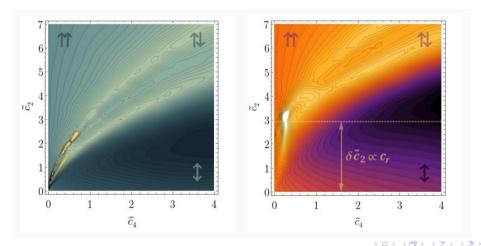
$$R = \frac{15}{2} - 4Z^2 - 8(X^2 + Y^2) = \frac{31}{2} - 16\operatorname{diag}(1, 2, \dots, N - 1, 8N)$$

- Interpretation of coupling to the curvature of the space.
- We are thus left with a matrix model with action

$$S = \mathrm{Tr}\left(M[X,[X,M]] + M[Y,[Y,M]]
ight) - g_r \mathrm{Tr}\left(RM^2
ight) - g_2 \mathrm{Tr}\left(M^2
ight) + g_4 \mathrm{Tr}\left(M^4
ight) \; .$$

[Prekrat, Todorović-Vasović, Ranković '21; Prekrat '21]

• Numerical investigation of this matrix model leads to



[Prekrat, Todorović-Vasović, Ranković, Kováčik, JT '22]

• The effect of the curvature term

$$S(M) = \operatorname{Tr} (M\mathcal{K}M) - \operatorname{Tr} \left(g_r RM^2\right) - g_2 \operatorname{Tr} \left(M^2\right) + g_4 \operatorname{Tr} \left(M^4\right) \ .$$

• Effective action up to g_r^4

$$S(\Lambda) = N \operatorname{Tr} \left(-g_2 \Lambda^2 + 8g_r \Lambda^2 + g_4 \Lambda^4 - \frac{32}{3}g_r^2 \Lambda^4 \right) + \frac{1024}{45}g_r^4 \Lambda^8 + \frac{32}{3}g_r^2 \left(\operatorname{Tr} \left(\Lambda^2 \right) \right)^2 + \frac{1024}{15}g_r^4 \left(\operatorname{Tr} \left(\Lambda^4 \right) \right)^2 - \frac{4096}{45}g_r^4 \operatorname{Tr} \left(\Lambda^6 \right) \operatorname{Tr} \left(\Lambda^2 \right)$$

• This is a multitrace matrix model which can be analyzed.

Image: A matrix

b) (4) (2) (5)

[Prekrat, Todorović-Vasović, Ranković, Kováčik, JT '22]

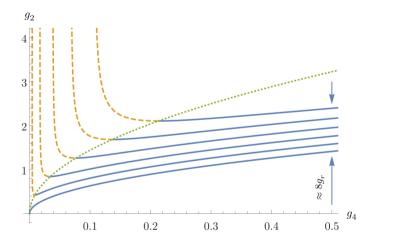
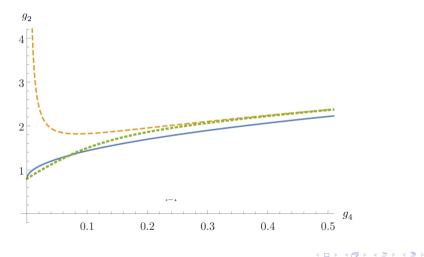


Image: A matrix

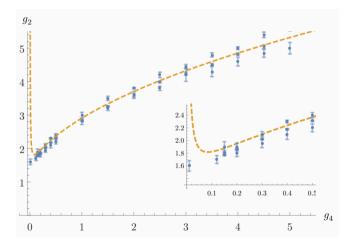
-

[Prekrat, Todorović-Vasović, Ranković, Kováčik, JT '22]



JURAJ TEKEL

[Prekrat, Todorović-Vasović, Ranković, Kováčik, JT '22]



JURAJ TEKEL

FUZZY PHYSICS AND MATRIX MODELS

PLANE KINETIC TERM EFFECTIVE ACTION MODEL

[Bukor, JT '23]

• The effect of the kinetic term

$$S(M) = \operatorname{Tr}(M\mathcal{K}M) - \operatorname{Tr}(g_r RM^2) - g_2 \operatorname{Tr}(M^2) + g_4 \operatorname{Tr}(M^4)$$
.

• This leads to the effective action

$$S_{eff}(\Lambda) = N^2 \left[\varepsilon t_2 - \varepsilon^2 \frac{2}{3} t_2^2 + \varepsilon^2 \frac{97}{120} \left(t_4 - 2t_2^2 \right)
ight] ,$$

where t's are symmetrized models

$$t_n = rac{1}{N} \operatorname{Tr} \left(\phi - rac{1}{N} \operatorname{tr} \left(\phi
ight)
ight)^n \; .$$

• This is a multitrace matrix model which can be analyzed, e.g. to obtain phase structure of the model.

- ◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - ∽��♡

The/A fuzzy onion

JURAJ TEKEL FUZZY PHYSICS AND MATRIX MODELS

э

メロト メタト メヨト メヨト

$T\mathrm{HE}/\mathrm{A}$ fuzzy onion

• Idea: construct a 3D non-commutative space as a series of concentric fuzzy spheres of increasing radius.

[Hammou, Lagraa, Sheikh-Jabbari 2002; Vitale, Wallet 2013; Scholtz et. al; Schupp, Solodukhin 2009; Prešnajder, Gáliková, Kováčik 2015]

• Ours is a bottom-up approach.

THE/A fuzzy onion

- Take *M* fuzzy spheres or radii $r = \lambda, 2\lambda, \dots, M\lambda$.
- Functions given by a matrix

$$\Psi = egin{pmatrix} \Phi^{(1)} & & & \ & \Phi^{(2)} & & \ & & \ddots & \ & & & \ddots & \ & & & & \Phi^{(M)} \end{pmatrix} \; .$$

• Recall the single layer expression

$$heta=rac{2r}{\sqrt{N^2-1}}$$
 .

• The dimension of this space is

$$d = \sum_{N=1}^{M} N^2 = rac{1}{6} M(M+1)(2M+1) \; .$$

$\rm THE/A$ fuzzy onion

ullet Recall the standard three-dimensional integration of a function ψ

$$\int d^3x \ \psi = \int r^2 \ dr \int d\Omega \ \psi \ .$$

• We change this to a version discrete in the radial direction

$$\sum_{N=1}^{M} (\lambda N)^2 \lambda \frac{4\pi}{N} \operatorname{tr}_N \Phi^{(N)} = \operatorname{Tr} \left(4\pi \lambda^2 r \Psi \right)$$

where we have defined the radial distance matrix r as

$$r = \begin{pmatrix} \lambda \ \mathbb{1}_{1 \times 1} & & & \\ & 2\lambda \ \mathbb{1}_{2 \times 2} & & & \\ & & & 3\lambda \ \mathbb{1}_{3 \times 3} & & \\ & & & & \ddots & \\ & & & & & M\lambda \ \mathbb{1}_{M \times M} \end{pmatrix}$$

• The angular part of the kinetic term defined layerwise

$$\mathcal{K}_{L}\Psi = r^{-2} \begin{pmatrix} \mathcal{K}^{(1)}\Phi^{(1)} & & & \\ & \mathcal{K}^{(2)}\Phi^{(2)} & & & \\ & & \mathcal{K}^{(3)}\Phi^{(3)} & & \\ & & & \ddots & \\ & & & & \mathcal{K}^{(M)}\Phi^{(M)} \end{pmatrix}$$

• What about the radial direction?

.

イロン イヨン イヨン

$$\text{for } \Phi^{(N)} = \sum_{l=0}^{N-1} \sum_{m=-l}^{l} c_{lm}^{(N)} Y_{lm}^{(N)} , \ \Phi^{(N+1)} = \sum_{l=0}^{N} \sum_{m=-l}^{l} c_{lm}^{(N+1)} Y_{lm}^{(N+1)}$$

$$\mathcal{D} : \Phi^{(N+1)} \to \Phi^{(N)} = \sum_{l=0}^{N-1} \sum_{m=-l}^{l} c_{lm}^{(N)} Y_{lm}^{(N)} , \ c_{lm}^{(N)} = c_{lm}^{(N+1)} \text{ for } l \leq N-1$$

$$\mathcal{U} : \Phi^{(N)} \to \Phi^{(N+1)} = \sum_{l=0}^{N} \sum_{m=-l}^{l} c_{lm}^{(N+1)} Y_{lm}^{(N+1)} , \ \begin{cases} c_{lm}^{(N+1)} = c_{lm}^{(N)} \text{ for } l \leq N-1 \\ c_{lm}^{(N+1)} = 0 \end{cases}$$

.

・ロト ・回ト ・ヨト ・ヨト

3

$\rm THE/A$ fuzzy onion

• Define the first and second radial derivatives

$$\partial_r^{(N)} \Phi^{(N)} = \frac{\mathcal{D} \Phi^{(N+1)} - \mathcal{U} \Phi^{(N-1)}}{2\lambda} ,$$

$$\partial_r^{2(N)} \Phi^{(N)} = \frac{\mathcal{D} \Phi^{(N+1)} - 2\Phi^{(N)} + \mathcal{U} \phi^{(N-1)}}{\lambda^2} .$$

.

• Define the radial part of Laplacian

Recall

$$\frac{f(x+\varepsilon)-f(x-\varepsilon)}{2\varepsilon} \to f'(x), \quad \frac{f(x+\varepsilon)-2f(x)+f(x-\varepsilon)}{\varepsilon^2} \to f''(x), \quad \Delta = r^{-2}\partial_r r^2 \partial_r + \Delta_\Omega \quad \text{equation}$$

•

$\rm THE/A$ fuzzy onion

• Define the first and second radial derivatives

$$\partial_r^{(N)} \Phi^{(N)} = \frac{\mathcal{D} \Phi^{(N+1)} - \mathcal{U} \Phi^{(N-1)}}{2\lambda} ,$$

$$\partial_r^{2(N)} \Phi^{(N)} = \frac{\mathcal{D} \Phi^{(N+1)} - 2\Phi^{(N)} + \mathcal{U} \phi^{(N-1)}}{\lambda^2} .$$

• Define the radial part of Laplacian

$$\mathcal{K}_{R}\Psi = \partial_{r}^{2}\Psi + 2r^{-1}\partial_{r}\Psi , \ \partial_{r}\Psi = \begin{pmatrix} \partial_{r}^{(1)}\Phi^{(1)} & & \\ & \partial_{r}^{(2)}\Phi^{(2)} & & \\ & & \partial_{r}^{(3)}\Phi^{(3)} & \\ & & & \ddots & \\ & & & & \partial_{r}^{(M)}\Phi^{(M)} \end{pmatrix}$$

• Laplace operator for the/a fuzzy onion

$$\mathcal{K}=\mathcal{K}_R+K_L \ .$$

.

Some onion physics

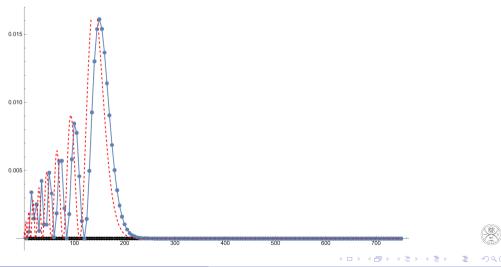
JURAJ TEKEL FUZZY PHYSICS AND MATRIX MODELS

э

イロト イヨト イヨト イヨト

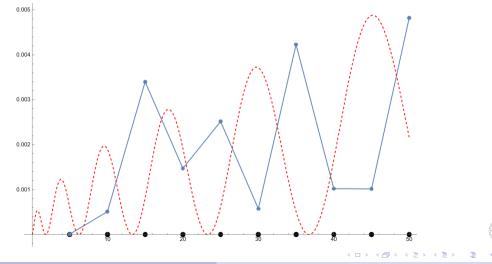
QUANTUM MECHANICAL HYDROGEN ATOM

 $M = 150, \lambda = 5, n = 9$



QUANTUM MECHANICAL HYDROGEN ATOM

 $M = 150, \lambda = 5, n = 9$



JURAJ TEKEL FUZZY PHYSICS AND MATRIX MODELS

Take home message

JURAJ TEKEL FUZZY PHYSICS AND MATRIX MODELS

æ

メロト メタト メヨト メヨト

- Quantization of gravity seems to lead to quantized spacetimes.
- Fuzzy spaces are examples of such spacetimes.
- Physics on such spaces is described by random matrix ensembles.

- Quantization of gravity seems to lead to quantized spacetimes.
- Fuzzy spaces are examples of such spacetimes.
- Physics on such spaces is described by random matrix ensembles.
- Phase structure of the full GW model.
- Phase structure of gauge theory GW-like model.
- A lot of onion physics.
- Random geometries.

- Quantization of gravity seems to lead to quantized spacetimes.
- Fuzzy spaces are examples of such spacetimes.
- Physics on such spaces is described by random matrix ensembles.
- Phase structure of the full GW model.
- Phase structure of gauge theory GW-like model.
- A lot of onion physics.
- Random geometries.
- We do have PhD. and postdoc positions related to this in Bratislava.

- Quantization of gravity seems to lead to quantized spacetimes.
- Fuzzy spaces are examples of such spacetimes.
- Physics on such spaces is described by random matrix ensembles.
- Phase structure of the full GW model.
- Phase structure of gauge theory GW-like model.
- A lot of onion physics.
- Random geometries.
- We do have PhD. and postdoc positions related to this in Bratislava.

Thank you for your attention!

