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Take home message

Quantization of gravity seems to lead to quantized spacetimes.

Fuzzy spaces are examples of such spacetimes.

Physics on such spaces is described by random matrix ensembles.

We do have PhD. and postdoc positions related to this in Bratislava.
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Quick motivation
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Quantum structure of spacetime

We need a quantum theory of gravity.

Quantization of general relativity leads to a nonrenormalizable theory.

We have reasons to believe that future theory of quantum gravity will have a di�erent notion of
spacetime.
No distinction between points under certain length scales. [Hossenfelder 1203.6191]

Reasons:

gravitational Heisenberg microscope,

instability of quantum gravitational vacuum, [Doplicher, Fredenhagen, Roberts '95]
emergent spacetime.
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Fuzzy spaces
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Fuzzy spaces

Fuzzy sphere [Hoppe '82; Madore '92; Grosse, Klim£ík, Pre²najder 1990s]

Functions on the usual sphere are given by

f (θ, φ) =
∞∑

l=0

l∑
m=−l

clmYlm(θ, φ) ,

where Ylm are the spherical harmonics

∆Ylm(θ, φ) = l(l + 1)Ylm(θ, φ) .

To describe features at a small length scale we need Ylm's with a large l .
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Fuzzy spaces

Image taken from http://principles.ou.edu/mag/earth.html
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Fuzzy spaces

If we truncate the possible values of l in the expansion

f =
L∑

l=0

l∑
m=−l

clmYlm(θ, φ) ,

we will not be able to see any features of functions under certain length scales.

Points on the sphere (as δ-functions) cease to exist.

Expressions de�ned in this way are not closed under multiplication.
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Fuzzy spaces
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Fuzzy spaces

Number of independent functions with l ≤ L is N2, the same as the number of N × N hermitian
matrices.
The idea is to map the former on the latter and borrow a closed product from there.

In order to do so, we consider a N × N matrix as a product of two N-dimensional representations
N of the group SU(2). It reduces to

N ⊗ N = 1 ⊕ 3 ⊕ 5 ⊕ . . .
↓ ↓ ↓

= {Y0m} ⊕ {Y1m} ⊕ {Y2m} ⊕ . . .

We thus have a map ϕ : Ylm → M and we de�ne the product

Ylm ? Yl′m′ := ϕ−1 (ϕ (Ylm)ϕ (Yl′m′)) .
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Fuzzy spaces

We have a short distance structure, but the prize we had to pay was a noncommutative product ?
of functions. The space, for which this is the algebra of functions, is called the fuzzy sphere.

Opposing to some lattice discretization this space still possess a full rotational symmetry

Ylm ? Yl′m′ := ϕ−1 (ϕ (Ylm)ϕ (Yl′m′)) .

In the limit N or L→∞ we recover the original sphere.
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Fuzzy spaces - an alternative construction

The regular sphere S2 is given by the coordinates

xixi = R2 , xixj − xjxi = 0 , i , j = 1, 2, 3 ,

which generate the algebra of functions.

For the fuzzy sphere S2
N we de�ne

x̂i x̂i = r2 , x̂i x̂j − x̂j x̂i = iθεijk x̂k , i , j = 1, 2, 3 .

Such x̂i 's generate a di�erent, non-commutative, algebra and S2
N is an object, which has this

algebra as an algebra of functions.
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Fuzzy spaces - an alternative construction

The conditions can be realized as an N = 2s + 1 dimensional representation of SU(2)

x̂i =
2r√

N2 − 1
Li , θ =

2r√
N2 − 1

∼ 2

N
, ρ2 =

4r2

N2 − 1
s(s + 1) = r2 .

The group SU(2) still acts on x̂i 's and this space enjoys a full rotational symmetry.

In the limit N →∞ we recover the original sphere.
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Fuzzy spaces - an alternative construction

Most importantly nonzero commutators

x̂i x̂i = ρ2 , x̂i x̂j − x̂j x̂i = iθεijk x̂k , i = 1, 2, 3 .

imply uncertainty relations for positions

∆xi ∆xj 6= 0 .

Con�guration space is analogous to phase space of quantum mechanics.

In a similar fashion it is possible to construct an analogous deformation of the plane

x̂i x̂j − x̂j x̂i = iθεij = iθij , i = 1, 2 .

Construction uses the ?-product

f ? g = f e
i
2

~∂ θ ~∂ g = fg +
iθµν

2

∂f

∂xµ
∂g

∂xν
+ · · ·
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Fuzzy spaces

We have divided the sphere into N cells. Function on the fuzzy sphere is given by a matrix M and
the eigenvalues of φ represent the values of the function on these cells.

However there are no sharp boundaries between the pieces and everything is blurred, or fuzzy.
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Fuzzy spaces

Regularization of in�nities in the standard QFT.
[Heisenberg ∼1930; Snyder 1947, Yang 1947]

Regularization of �eld theories for numerical simulations.
[Panero 2016]

An e�ective description of the open string dynamics in a magnetic background in the low energy
limit.
[Seiberg Witten 1999; Douglas, Nekrasov 2001]

Solutions of various matrix formulations of the string theory (IKKT, BFSS, BNM).
[Steinacker 2013]

Geometric uni�cation of the particle physics and theory of gravity.
[van Suijlekom 2015]

An e�ective description of various systems in a certain limit (eg. QHE).
[Karabali, Nair 2006]

Toy models of spaces with discrete quantum structure, which is expected to arise in quantum
theory of gravity.
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Fuzzy �eld theories
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Fuzzy scalar field theory

Commutative euclidean theory of a real scalar �eld is given by an action

S(Φ) =

∫
d2x

[
1

2
Φ∆Φ +

1

2
m2Φ2 + V (Φ)

]
and path integral correlation functions

〈F 〉 =

∫
dΦF (Φ)e−S(Φ)∫

dΦ e−S(Φ)
.

We construct the noncommutative theory as an analogue with

�eld → matrix,

functional integral → matrix integral,

spacetime integral → trace,

derivative → Li commutator.

Juraj Tekel Fuzzy Physics and Matrix Models 23 / 70



Fuzzy scalar field theory

Commutative

S(Φ) =

∫
d2x

[
1

2
Φ∆Φ +

1

2
m2Φ2 + V (Φ)

]
,

〈F 〉 =

∫
dΦF (Φ)e−S(Φ)∫

dΦ e−S(Φ)
.

Noncommutative (for S2
F )

S(M) =
4πR2

N
Tr

[
1

2
M

1

R2
[Li , [Li ,M]] +

1

2
m2M2 + V (M)

]
,

〈F 〉 =

∫
dM F (M)e−S(M)∫

dM e−S(M)
.

[Balachandran, Kürkçüo§lu, Vaidya 2005; Szabo 2003; Ydri 2016]
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Fuzzy scalar field theory - UV/IR mixing

The key property of the noncommutative �eld theories is the UV/IR mixing phenomenon, which
arises as a result of the nonlocality of the theory.
[Minwalla, Van Raamsdonk, Seiberg 2000; Vaidya 2001; Chu, Madore, Steinacker 2001]

Very energetic �uctuations (UV physics) have consequences at large distances (IR physics).

In terms of diagrams di�erent properties of planar and non-planar ones.
The (matrix) vertex is not invariant under permutation of incoming momenta.
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Phases of fuzzy field theories

S [φ] =

∫
d2x

(
1

2
∂i Φ∂i Φ +

1

2
m2Φ2 +

λ

4!
Φ4

)

[Glimm, Ja�e 1974; Glimm, Ja�e, Spencer 1975; Chang 1976]

[Loinaz, Willey 1998; Schaich, Loinaz 2009]
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Phases of fuzzy field theories

The phase diagram of noncommutative �eld theories has one more phase. It is a non-uniform order
phase, or a striped phase.
[Gubser, Sondhi 2001; Chen, Wu 2002]

In this phase, the �eld does not oscillate around one given value in the whole space. Translational
symmetry is broken.

This has been established in numerous numerical works for variety di�erent spaces.
[Martin 2004; García Flores, Martin, O'Connor 2006, 2009; Panero 2006, 2007; Ydri 2014; Bietenholz, F. Hofheinz,

Mejía-Díaz, Panero 2014; Mejía-Díaz, Bietenholz, Panero 2014; Medina, Bietenholz, D. O'Connor 2008; Bietenholz,

Hofheinz, Nishimura 2004; Lizzi, Spisso 2012; Ydri, Ramda, Rouag 2016; Ková£ik, O'Connor 2018]

[Panero 2015]
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Phases of fuzzy field theories

[Mejía-Díaz, Bietenholz, Panero 2014] for R2
θ
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S [M] = Tr

(
1

2
M[Li , [Li ,M]] +

1

2
m2M2 + gM4

)

S =

∫
d2x

(
1

2
∂µφ ? ∂

µφ+
m2

2
φ ? φ +

λ

4!
φ ? φ ? φ ? φ

)
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Random matrices ...
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Random matrices

[M.L. Mehta 2004; B. Eynard, T. Kimura, S. Ribault 2015; G. Livan, M. Novaes, P. Vivo 2017]

Matrix model = ensemble of random matrices.

An important example - ensemble of N × N hermitian matrices with

P(M) ∼ e−NTr(V (M)) , usually V (x) =
1

2
r x2 + g x4

and

dM =

[
N∏

i=1

Mii

][∏
i<j

Re Mij ImMij

]
.

Both the measure and the probability distribution are invariant under M → UMU† with
U ∈ SU(N).

Requirement of such invariance is very restrictive. One is usually interested in the distribution of
eigenvalues.
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Random matrices - eigenvalue decomposition

If we ask invariant questions, we can turn

〈f 〉 =
1

Z

∫
dM f (M)P(M)

into an eigenvalue problem by diagonalization M = UΛU† for some U ∈ SU(N) and
Λ = diag(λ1, . . . , λN ), the integration measure becomes

dM = dU

(
N∏

i=1

dλi

)
×
∏
i<j

(λi − λj )
2

We are to compute integrals like

〈f 〉 ∼
∫ ( N∏

i=1

dλi

)
f (λi ) e

−[
∑

i V (λi )−2
∑

i<j log |λi−λj |] ×
∫

dU
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Random matrices - eigenvalue decomposition

Term
2
∑
i<j

log |λi − λj |

is of order N2 if λi ∼ 1. Potential term ∑
i

V (λi )

is of order N.

We need to enhance the probability measure by a factor of N to

e−N2[ 1
N

∑
i V (λi )− 2

N2

∑
i<j log |λi−λj |]

This makes the N2 dependence explicit.

Juraj Tekel Fuzzy Physics and Matrix Models 34 / 70



Random matrices - eigenvalue decomposition

We introduce eigenvalue distribution

ρ(λ) =
1

N

∑
j

δ(λ− λj )

which gives for the averages

〈f 〉 =

∫
dλ ρ(λ)f (λ) .

The question is, how does do probability measure

e−N2[ 1
N

∑
i V (λi )− 2

N2

∑
i<j log |λi−λj |]

translate into eigenvalue distribution ρ.
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Random matrices - large N

For �nite N - orthogonal polynomials method.

For N →∞ the question simpli�es due to the factor N2

e−N2[ 1
N

∑
i V (λi )− 2

N2

∑
i<j log |λi−λj |] .

For large N only con�gurations with small exponent contribute signi�cantly to the integral. In the
limit N →∞ only the extremal con�guration

V ′(λi )−
2

N

∑
j 6=i

1

λi − λj
= 0 ∀i

Like a gas of particles with logarithmic repulsion. This gives us nice intuition.
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Random matrices - quartic potential

The simplest case

V (x) =
1

2
rx2 + gx4
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Random matrices - quartic potential

V (x) = rx2/2 + gx4 and r > 0
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Random matrices - quartic potential
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Random matrices - quartic potential

V (x) = rx2/2 + gx4 and r > 0
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Random matrices - quartic potential

If more than one solution is possible, the one with lower energy

F = −N2

 1

N

∑
i

V (λi )−
2

N2

∑
i<j

log |λi − λj |


is the preferred one.

The probability measure

e−N2[ 1
N

∑
i V (λi )− 2

N2

∑
i<j log |λi−λj |]

i.e. the more probable solution.
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Random matrices and fuzzy �eld theories
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Kinetic term effective action

Recall the action of the fuzzy scalar �eld theory

S(M) =
1

2
Tr (M[Li , [Li ,M]]) +

1

2
m2 Tr

(
M2
)

+ g Tr
(
M4
)
.

This is a particular case of a matrix model since we need∫
dM F (M)e−S(M) .

The large N limit of the model with the kinetic term is not well understood.
The key issue being that diagonalization M = U diag(λ1, . . . , λN )U† no longer straightforward.

Integrals like

〈F 〉 ∼
∫

dΛ

∫
dU F (λi ,U) e−N2[ 12 m2 1

N

∑
λ2i +g 1

N

∑
λ4i − 2

N2

∑
i<j log |λi−λj |]Seff (λi )+

× e−
1
2Tr(UΛU†[Li ,[Li ,UΛU†]]) .
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Perturbative calculation

e−N2Seff (Λ) =

∫
dU e−ε

1
2Tr(UΛU†[Li ,[Li ,UΛU†]])

Perturbative calculation of the integral show that the Seff contains products of traces of M.
[O'Connor, Sämann 2007; Sämann 2010]

The most recent result is
[Sämann 2015]

Seff (Λ) =
1

2

[
ε
1

2

(
c2 − c21

)
− ε2 1

24

(
c2 − c21

)2
+ ε4

1

2880

(
c2 − c21

)4]−
− ε4 1

3456

[ (
c4 − 4c3c1 + 6c2c

2
1 − 3c41

)
− 2

(
c2 − c21

)2 ]2−
− ε3 1

432

[
c3 − 3c1c2 + 2c31

]2
, where cn =

1

N

∑
i

λn
i

Standard treatment of such multitrace matrix model yields a very unpleasant behaviour
close to the origin of the parameter space.
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Perturbative calculation

e−N2Seff (Λ) =

∫
dU e−ε

1
2Tr(UΛU†[Li ,[Li ,UΛU†]])

Perturbative calculation of the integral show that the Seff contains products of traces of M.
[O'Connor, Sämann 2007; Sämann 2010]

The most recent result is
[Sämann 2015]

Seff (Λ) =
1

2

[
ε
1

2

(
c2 − c21

)
− ε2 1

24

(
c2 − c21

)2
+ ε4

1

2880

(
c2 − c21

)4]−
− ε4 1

3456

[ (
c4 − 4c3c1 + 6c2c

2
1 − 3c41

)
− 2

(
c2 − c21

)2 ]2−
− ε3 1

432

[
c3 − 3c1c2 + 2c31

]2
, where cn =

1

N

∑
i

λn
i

More reasonable for large values of m2, g .
[Rea, Sämann 2015]
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Second moment approximation

For the free theory g = 0 the kinetic term just rescales the eigenvalues.
[Steinacker 2005]

There is a unique parameter independent e�ective action that reconstructs this rescaling.
[Polychronakos 2013]

Seff (Λ) =
1

2
log

(
c2

1− e−c2

)
+R .

Can be generalized to more a more complicated kinetic term K.
Introducing the asymmetry c2 → c2 − c21 we obtain a matrix model

S(M) =
1

2
F (c2 − c21 ) +

1

2
r Tr

(
M2
)

+ g Tr
(
M4
)
, F (t) = log

(
t

1− e−t

)
.

[�ubjaková, JT PoS CORFU2019]
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Second moment approximation

[JT '18; �ubjaková, JT 2020]
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Truncated Heisenberg algebra and Grosse-Wulkenhaar model
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GW model

Grosse-Wulkenhaar model [2000's]

SGW =

∫
d2x

(
1

2
∂µφ ? ∂

µφ+
1

2
Ω2(x̃µφ) ? (x̃µφ) +

m2

2
φ ? φ+

λ

4!
φ ? φ ? φ ? φ

)
,

x̃µ = 2(θ−1)µνx
ν .

This model is renormalizable.

Described by a matrix model in terms of truncated Heisenberg algebra.
[Buri¢, Wohlgenannt 2010]
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Truncated Heisenberg algebra

The NC plane coordinates can be realized by

X =
1√
2



+
√
1

+
√
1 +

√
2

+
√
2

. . .
. . .

. . .
. . .


, Y =

i√
2



−
√
1

+
√
1 −

√
2

+
√
2

. . .
. . .

. . .
. . .


,

then
[X ,Y ] = i .

This algebra is then truncated to a �nite dimension.
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Truncated Heisenberg algebra

De�ne �nite matrices

X =
1√
2



+
√
1

+
√
1 +

√
2

+
√
2

. . .
. . .

√
N − 1√

N − 1

 , Y = . . . ,

which gives
[X ,Y ] = i(1− Z ) , Z = diag (0, . . . ,N) .

Original algebra is recovered in the N →∞ limit or under the Z = 0 condition.

The kinetic term becomes

1

2
∂µφ ? ∂

µφ→ [X ,M][X ,M] + [Y ,M][Y ,M] .
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GW matrix model

The harmonic potential becomes

1

2
Ω2(x̃µφ) ? (x̃µφ)→ RM2 ,

where R is a �xed external matrix

R =
15

2
− 4Z 2 − 8

(
X 2 + Y 2

)
=

31

2
− 16 diag (1, 2, . . . ,N − 1, 8N) .

Interpretation of coupling to the curvature of the space.

We are thus left with a matrix model with action

S = Tr (M[X , [X ,M]] + M[Y , [Y ,M]])− grTr
(
RM2

)
− g2Tr

(
M2
)

+ g4Tr
(
M4
)
.
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Removal of stripes � GW model

[Prekrat, Todorovi¢-Vasovi¢, Rankovi¢ '21; Prekrat '21]

Numerical investigation of this matrix model leads to
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Removal of stripes � GW model

[Prekrat, Todorovi¢-Vasovi¢, Rankovi¢, Ková£ik, JT '22]

The e�ect of the curvature term

S(M) = Tr (MKM)− Tr
(
grRM

2
)
− g2 Tr

(
M2
)

+ g4 Tr
(
M4
)
.

E�ective action up to g4
r

S(Λ) =N Tr
(
− g2Λ2 + 8gr Λ2 + g4Λ4 − 32

3
g2

r Λ4
)

+
1024

45
g4

r Λ8+

+
32

3
g2

r

(
Tr
(

Λ2
))2

+
1024

15
g4

r

(
Tr
(

Λ4
))2
− 4096

45
g4

r Tr
(

Λ6
)
Tr
(

Λ2
)
.

This is a multitrace matrix model which can be analyzed.
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Removal of stripes � GW model

[Prekrat, Todorovi¢-Vasovi¢, Rankovi¢, Ková£ik, JT '22]
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Removal of stripes � GW model

[Prekrat, Todorovi¢-Vasovi¢, Rankovi¢, Ková£ik, JT '22]
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Removal of stripes � GW model

[Prekrat, Todorovi¢-Vasovi¢, Rankovi¢, Ková£ik, JT '22]
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Plane kinetic term effective action model

[Bukor, JT '23]

The e�ect of the kinetic term

S(M) = Tr (MKM)−Tr
(
grRM

2
)
− g2 Tr

(
M2
)

+ g4 Tr
(
M4
)
.

This leads to the e�ective action

Seff (Λ) =N2

[
εt2 − ε2

2

3
t22 + ε2

97

120

(
t4 − 2t22

)]
,

where t ′s are symmetrized models

tn =
1

N
Tr

(
φ− 1

N
tr (φ)

)n

.

This is a multitrace matrix model which can be analyzed, e.g. to obtain phase structure of the
model.
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The/A fuzzy onion
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The/A fuzzy onion

Idea: construct a 3D non-commutative space as a series of concentric fuzzy spheres of increasing
radius.

[Hammou, Lagraa, Sheikh-Jabbari 2002; Vitale, Wallet 2013; Scholtz et. al; Schupp, Solodukhin 2009;

Pre²najder, Gáliková, Ková£ik 2015]

Ours is a bottom-up approach.
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The/A fuzzy onion

Take M fuzzy spheres or radii r = λ, 2λ, . . . ,Mλ.

Functions given by a matrix

Ψ =


Φ(1)

Φ(2)

. . .

Φ(M)

 .

Recall the single layer expression

θ =
2r√

N2 − 1
.

The dimension of this space is

d =
M∑

N=1

N2 =
1

6
M(M + 1)(2M + 1) .
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The/A fuzzy onion

Recall the standard three-dimensional integration of a function ψ∫
d3x ψ =

∫
r2 dr

∫
dΩ ψ .

We change this to a version discrete in the radial direction

M∑
N=1

(λN)2 λ
4π

N
trN Φ(N) = Tr

(
4πλ2r Ψ

)
where we have de�ned the radial distance matrix r as

r =


λ 1l1×1

2λ 1l2×2
3λ 1l3×3

. . .

Mλ 1lM×M


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The/A fuzzy onion

The angular part of the kinetic term de�ned layerwise

KLΨ = r−2


K(1)Φ(1)

K(2)Φ(2)

K(3)Φ(3)

. . .

K(M)Φ(M)

 .

What about the radial direction?
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The/A fuzzy onion

for Φ(N) =
N−1∑
l=0

l∑
m=−l

c
(N)
lm Y

(N)
lm , Φ(N+1) =

N∑
l=0

l∑
m=−l

c
(N+1)
lm Y

(N+1)
lm

D : Φ(N+1) →Φ(N) =
N−1∑
l=0

l∑
m=−l

c
(N)
lm Y

(N)
lm , c

(N)
lm = c

(N+1)
lm for l ≤ N − 1

U : Φ(N) →Φ(N+1) =
N∑

l=0

l∑
m=−l

c
(N+1)
lm Y

(N+1)
lm ,

{
c

(N+1)
lm = c

(N)
lm for l ≤ N − 1

c
(N+1)
Nm = 0

.
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The/A fuzzy onion

De�ne the �rst and second radial derivatives

∂(N)
r Φ(N) =

DΦ(N+1) − UΦ(N−1)

2λ
,

∂2 (N)
r Φ(N) =

DΦ(N+1) − 2Φ(N) + Uφ(N−1)

λ2
.

De�ne the radial part of Laplacian

KR Ψ = ∂2r Ψ + 2r−1∂r Ψ , ∂r Ψ =


∂

(1)
r Φ(1)

∂
(2)
r Φ(2)

∂
(3)
r Φ(3)

. . .

∂
(M)
r Φ(M)

 .

Recall

f (x + ε)− f (x − ε)

2ε
→ f ′(x),

f (x + ε)− 2f (x) + f (x − ε)

ε2
→ f ′′(x), ∆ = r−2∂r r

2∂r + ∆Ω .
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The/A fuzzy onion

De�ne the �rst and second radial derivatives

∂(N)
r Φ(N) =

DΦ(N+1) − UΦ(N−1)

2λ
,

∂2 (N)
r Φ(N) =

DΦ(N+1) − 2Φ(N) + Uφ(N−1)

λ2
.

De�ne the radial part of Laplacian

KR Ψ = ∂2r Ψ + 2r−1∂r Ψ , ∂r Ψ =


∂

(1)
r Φ(1)

∂
(2)
r Φ(2)

∂
(3)
r Φ(3)

. . .

∂
(M)
r Φ(M)

 .

Laplace operator for the/a fuzzy onion

K = KR + KL .
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Some onion physics
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Quantum mechanical hydrogen atom

M = 150, λ = 5, n = 9
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Quantum mechanical hydrogen atom
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Take home message
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Take home message and 2do list

Quantization of gravity seems to lead to quantized spacetimes.

Fuzzy spaces are examples of such spacetimes.

Physics on such spaces is described by random matrix ensembles.

Phase structure of the full GW model.

Phase structure of gauge theory GW-like model.

A lot of onion physics.

Random geometries.

We do have PhD. and postdoc positions related to this in Bratislava.

Thank you for your attention!
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