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QUANTUM STRUCTURE OF SPACETIME

We need a quantum theory of gravity.

Quantization of general relativity leads to a nonrenormalizable theory.

o We have reasons to believe that future theory of quantum gravity will have a different notion of
spacetime.

No distinction between points under certain length scales. [Hossenfelder 1203.6191]

Reasons:

o gravitational Heisenberg microscope,

o instability of quantum gravitational vacuum, [Doplicher, Fredenhagen, Roberts '95]
e emergent spacetimes.

Fuzzy spaces are very important examples of such spacetimes.

JURAJ TEKEL MATRIX ENSEMBLES FROM FUZZY PHYSICS 3 /86



Take home message
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TAKE HOME MESSAGE

o Fuzzy spaces are examples of spacetimes with quantum structure.
@ Plenty of interesting things happen on such spaces.

@ Physics is described by random matrix ensembles.
Analyzing these is technically challenging, but doable.
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TAKE HOME MESSAGE

o Fuzzy spaces are examples of spacetimes with quantum structure.
@ Plenty of interesting things happen on such spaces.

@ Physics is described by random matrix ensembles.
Analyzing these is technically challenging, but doable.

@ We can analyze toy models of path integrals over geometries.
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Fuzzy spaces
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Fuzzy SPACES

o We divide the space into N cells. Function on the fuzzy space is given by a matrix M and the
eigenvalues of M represent the values of the function on these cells.

.

@ However there are no sharp boundaries between the pieces and everything is blurred, or fuzzy.
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Fuzzy SPACES

@ Regularization of infinities in the standard QFT.
[Heisenberg ~1930; Snyder 1947, Yang 1947]

o Regularization of field theories for numerical simulations.
[Panero 2016]

o An effective description of the open string dynamics in a magnetic background in the low energy
limit.
[Seiberg Witten 1999; Douglas, Nekrasov 2001]

@ Solutions of various matrix formulations of the string theory (IKKT, BFSS, BMN).
[Steinacker 2013, 2024]

o Geometric unification of the particle physics and theory of gravity.
[van Suijlekom 2015]

o An effective description of various systems in a certain limit (eg. QHE).
[Karabali, Nair 2006]

e Toy models of spaces with discrete quantum structure.
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Fuzzy SPACES
Fuzzy sphere [Hoppe '82; Madore '92; Grosse, Klim&ik, Presnajder 1990s]
e Functions on the usual sphere are given by

[eS) i

F(0,0) = > cmYm(00),

1=0 m=—1

where Y}, are the spherical harmonics

Aylm(97¢) = /(/ + l)ylm((97¢) :

o If we truncate the possible values of / in the expansion

L i
Z Z Im\/lm 0 ¢)
/=0 m=—1

we will not be able to see any features of functions under certain length scales.
o Expressions defined in this way are not closed under multiplication.
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Fuzzy SPACES

o Number of independent functions with / < L is (L + 1)?, the same as the number of N x N
hermitian matrices.

We have a map ¢ : Y}, — M and we define the product
Yim* Yym = @71 (e (Yim) e (Yirm)) -

@ Opposing to some lattice discretization this space still possess a full rotational symmetry.

@ In the limit N or L — oo we recover the original sphere.
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Fuzzy SPACES

o For the fuzzy sphere S? we define
XiXi = 5 [)?,-,)A(j]:if)s,jk)?k 5 I.,_j:1,2,3 .
@ The conditions can be realized as an N = 2s 4+ 1 dimensional representation of SU(2)

2r 2r 2 5 4r? 5
. 3_7N2_1NN , p_7N2—1S(5+1)_r.

@ The group SU(2) still acts on X;'s and this space enjoys a full rotational symmetry. Most
importantly nonzero commutators imply uncertainty relations for positions Ax;Ax; # 0.

@ In a similar fashion it is possible to construct an analogous deformation of the plane
[%, %] = i6c; = i6; , i=1,2.

Construction uses the x-product

1503 0w of g
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Fuzzy SPACES
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Fuzzy field theories )|
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FUZzZY SCALAR FIELD THEORY

o Commutative euclidean theory of a real scalar field is given by an action
2 |1 L 542
S(¢)= [ d°x EdDACD—f— 5m o + V(9)

and path integral correlation functions

dod F(d)e=S(®)
<F> = f qu)(e)s(q;.)

e We construct the noncommutative theory as an analogue with
field — matrix,

functional integral — matrix integral,

spacetime integral — trace,

derivative — L; commutator.
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FUZzZY SCALAR FIELD THEORY

o Commutative ) )
S(®) = /d%{zcmcb + 5m2<1>2 + V(cb)} ,
F [ do F(d)e5(®)
Fl="Tapes®

o Noncommutative (for S?)

47R?_ 1 1 1 5, 5
S(M) = N Tr {2MR2[L,-, [Li,M]] + 5m M=+ V(/\/l)} ,
£y~ [ dM F(M)e=>M)
(F) = [ dM e=S(M)
[Balachandran, Kiirkgiioglu, Vaidya 2005; Szabo 2003; Ydri 2016]
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Random matrices ensembles )
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RANDOM MATRICES

[M.L. Mehta 2004; B. Eynard, T. Kimura, S. Ribault 2015; G. Livan, M. Novaes, P. Vivo 2017]

o Matrix model = ensemble of random matrices, e.g. ensemble of N x N hermitian matrices with

1
P(M) ~ e~ NTFVIM) " ysually V(x) = Erx2 +gx*

o Expectation values
(f) = %/dM P(M)f(M)

can be analyzed
e numerically using Hamiltonian Monte Carlo,
o analytically in the large N limit using saddle point equation.

@ One usually looks for eigenvalue distribution p(x).
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Fuzzy field theories ensembles |
Full matrix model J
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KINETIC TERM EFFECTIVE ACTION

@ Recall the action of the fuzzy scalar field theory

S(M) = 3T (MIL [Ls, M) + 5 m Tr (M?) +g Tx (M?)

This is a particular case of a matrix model since we need
/dM F(M)e5M)

@ "Matrix model begs to be put on a computer".
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g
1 L 2y 4
SM] =Tr EM[LI’ [Li, M]] + 5M M + gM
1 2 A
S= /d2x (28M¢*8“¢—|— %¢*¢+ 4'¢*¢*¢*¢>
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PHASES OF FUZZY FIELD THEORIES

o The phase diagram of noncommutative field theories has one more phase. It is a non-uniform order
phase, or a striped phase.
[Gubser, Sondhi 2001; Chen, Wu 2002]

@ In this phase, the field does not oscillate around one given value in the whole space. Translational
symmetry is spontaneously broken.

@ This has been established in numerous numerical works for variety different spaces.
[Martin 2004; Garcia Flores, Martin, O'Connor 2006, 2009; Panero 2006, 2007; Ydri 2014; Bietenholz, F. Hofheinz,
Mejia-Diaz, Panero 2014; Mejia-Diaz, Bietenholz, Panero 2014; Medina, Bietenholz, D. O'Connor 2008; Bietenholz,
Hofheinz, Nishimura 2004; Lizzi, Spisso 2012; Ydri, Ramda, Rouag 2016; Kovacik, O'Connor 2018]
[Panero 2015]
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PHASES OF FUZZY FIELD THEORIES

[Mejia-Diaz, Bietenholz, Panero 2014] for Rg

N =35, N°21=240, N?w?=-173
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PHASES OF FUZZY FIELD THEORIES

m2

1 1 A
Slol = [ d*x [ 20:90,4 + =m?d? + —o*
2 2 41
—
[Glimm, Jaffe 1974; Glimm, Jaffe, Spencer 1975; Chang 1976]
[Loinaz, Willey 1998; Schaich, Loinaz 2009]
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FUZZY SCALAR FIELD THEORY - UV/IR MIXING

@ The key property of the noncommutative field theories is the UV/IR mixing phenomenon, which
arises as a result of the nonlocality of the theory.
[Minwalla, Van Raamsdonk, Seiberg 2000; Vaidya 2001; Chu, Madore, Steinacker 2001]

o Very energetic fluctuations (UV physics) have consequences at large distances (IR physics).

@ In terms of diagrams different properties of planar and non-planar ones.
The (matrix) vertex is not invariant under permutation of incoming momenta.
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FUZZY SCALAR FIELD THEORY - UV/IR MIXING

[Chu, Madore, Steinacker '01]

N—1 .
2j+1 :
/NP _ IP _ Z __ )+ > (_1)/+J+N—1 / s s -1
j:Oj(j+1)+m j s s

@ N — oo limit of the effective action is different from the standard S? effective action.

@ The space (geometry) forgets where it came from, but the field theory (physics) remembers its
fuzzy origin.
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FUZZY SCALAR FIELD THEORY - UV/IR MIXING

2
5:/d2x (;8#¢*8“¢+ n;¢*¢+j\!¢*¢*¢*¢>

k k
4

Yo
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Fuzzy field theories ensembles II
Perturbative model J
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PERTURBATIVE CALCULATION
o N2Ser(N) _ /dU o= 3 T(UAUT[L [Li, UAUT]])

o Perturbative calculation of the integral show that the S.g contains products of traces of M.
[O’Connor, Sdmann 2007; Sdmann 2010]

@ The most recent result is
[Sdmann 2015]

2

1
(2 — c12)2 + &t (e — cf)4] -

R =

(2—c)—c¢

I\)M—l

Serr(N) :% [

2
a1 [ (ca —4escr + 60ac] —3ct) — 2 (2 — cf)ﬂ _

" 3456
e L [ 3ac +263]2 here ¢, 1 Z)\" (2)
. B P W = i
432 C3 162 1 ) N :
'
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MULTITRACE MATRIX MODELS

[Das, Dhar, Sengupta, Wadia '90; Cicuta, Montaldi '90]

e Varying multitrace action

1 1 .
S(M)=fla, e, )+ 5rTr (M?) + gTr (M*) | ¢, = NZA,

leads to saddle point equation

of
- oc,

1

. 2
AT N+ 4g) = NZ
i#j

o At large N solved by effective single trace model with selfconsitency conditions on moments c,.

o Multitrace terms introduce a new kind of interaction among the eigenvalues.
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PERTURBATIVE CALCULATION

o Model [vdri '14, '15]

1 5 1 2 1 4
Serr (A [ 5(cz—cl) 24 (2 —¢f) +542880 (2 — ) ]_
1 2
— E4ﬁ { (C4 —4cc + 6C2C12 - 3Cf) -2 (C2 - Cf)Q} o
2
oo -saei2d] . whoe e, ;;Ar )

yields a very unpleasant behaviour close to the origin of the parameter space. [JT '15]
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Fuzzy field theories ensembles 111
Nonperturbative model
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SECOND MOMENT APPROXIMATION

@ For the free theory g = 0 the kinetic term just rescales the eigenvalues.
[Steinacker 2005]

@ There is a unique parameter independent effective action that reconstructs this rescaling.
[Polychronakos 2013]

1 c
Seff(/\) :E IOg (]_ZQ> +R.

Can be generalized to more a more complicated kinetic term .

o Introducing the asymmetry ¢, — ¢ — ¢? we obtain a matrix model

S(M) = %F(cz — c12) + %rTr (IVIQ) + gTr (/\/14) , F(t) =log (ltet> . (4)

[Subjakova, JT PoS CORFU2019; JT '14 '15 '18; Subjakova, JT '20]
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SECOND MOMENT APPROXIMATION

16
4Dg+r+F' (D) =0, &

— 352 3
4535g_r_/__,<45+5g> =0,

)

0 |

44+1552g+2r5 o 5 (
3(4 +9%g)

64 + 1605°g + 1446%g® + 816%¢3 + 365gr +275°g%r) \ 0
64(4 + 902g) -
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SECOND MOMENT APPROXIMATION

r
0005 0010 0015 0020 0025  0.03¢°

_05 L

—10:

_15h

20k

[JT '18; Subjakova, JT 2020]
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BEYOND THE SECOND MOMENT APPROXIMATION
@ Taking a lesson from
1 5 1 9 4 t
we could try to complete the perturbative action

1 t
Seff:F[Cl,t27t3,t4—2t22} = 2|og<1_2 ) +F3(t3)+F4(t4—2t2) (5)

and
a2 e%;}
F4(}/4)=040|0g(}/4)+041+f+f2+... .
Y4 Y
o Any attempt to complete the perturbative expansion in the spirit of the non-perturbative model is
not capable of solving the above problems and does not lead to a phase diagram that is in

complete agreement with the numerical simulations. Most importantly the location of the tr|pIe
point can not be brought closer to the numerical value. [Subjakova, JT '22]
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Fuzzy field theories ensembles IV
Removal of stripes
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REMOVAL OF STRIPES — FUZZY SPHERE

@ We would like to analyse the more complicated model

S=Tr <;I\/I[L,-, [Li, M]] + 12gMQM + %rM + g/vl“) ,

where
N o2j+1 I s s
Tim = — = (-1 ’+f+’V1{. }—1} Tim -
o= | L i [0 D |

Q1)

e This removes the UV/IR mixing in the theory, essentially by removing the problematic part by brute
force.
[Dolan, O’Connor, Prednajder '01]
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REMOVAL OF STRIPES — FUZZY SPHERE

@ Operator Q can be expressed as a power series in C; = [L;, [L;,]]
Q=q1C2+q2C22+... .

@ As a starting point, it is interesting to see the phase structure of such simplified model.
[O’Connor, Sdman '07]

o This is the case of
K=(1+ag)C or K= (1+ag)C +bgC?.

with some complicated form of F(t).
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REMOVAL OF STRIPES — FUZZY SPHERE

[Subjakova, JT "20]

r
0.005 0.010 0.015 0.020 0.?2§

—0.5¢

—1.0}

-1.5¢

-2.0t

a=3e?2, b=0.
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REMOVAL OF STRIPES — FUZZY SPHERE

[Subjakova, JT "20]

= 0005 0.010 0.015 0.026°
1t
_al
73,
—ql

a=3e%%, b=—-4,-20,2,4.
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REMOVAL OF STRIPES — GW MODEL

o Grosse-Wulkenhaar model ['00's]
2 (1 1o ~i m? A
Sew = [ d°x Ea#¢*aﬂ¢+§§2 (x,,@)*(x‘go)+7¢*¢+E¢*¢*¢*¢ ,

%, =2(071)x" .
@ This model is renormalizable.

@ Described by a matrix model in terms of truncated Heisenberg algebra.
[Buri¢, Wohlgenannt '10]
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REMOVAL OF STRIPES — GW MODEL

@ The NC plane coordinates can be realized by

+V1 V1
+V1 +V2 +V1 V2
x=1 +v2 Cy— V2 7
V2 : . V2
then
X,Y]=i.
o This algebra is then truncated to a finite dimension.
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REMOVAL OF STRIPES — GW MODEL

o Define finite matrices

+V1
+v1 +v2

+v2 Y =...,
' N-1

1
X=—
V2

N—-1

which gives
X,Y]|=i(l-2), Z=diag(0,...,N) .

o Original algebra is recovered in the N — oo limit or under the Z = 0 condition.

1 1
R:;_422_8(X2+Y2):3?—16diag(1,2,...,N—1,8N) :
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REMOVAL OF STRIPES — GW MODEL

@ The kinetic term becomes
1
50up* 0" — [X, M][X, M] + [V, M][Y, M] .
and the harmonic potential becomes

1
5Q2(;,,¢>) * (%¢) — RM? ,

where X, Y, R are fixed external matrices.
@ Interpretation of R coupling to the curvature of the space.
@ We are thus left with a matrix model with action

S =Tr (M[X, [X, M]] + M[Y,[Y,M]]) — g,/ Tr (RM?) — g,Tr (M?) + g Tr (M*) .
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REMOVAL OF STRIPES — GW MODEL

[Prekrat, Todorovi¢-Vasovi¢, Rankovi¢ '21; Prekrat '21]

@ Numerical investigation of this matrix model leads to

™

1
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REMOVAL OF STRIPES — GW MODEL

[Bukor, JT 23]
o The effect of the kinetic term

S5(M) = Tr (MKM) — & Tr (M?) + g4 Tr (M*) .

o This leads to the effective action

2 97
2 2 2 2 2
Ser(N) =N [51’2 —3t < 5 (ts —2t2)} ,

where t's are symmetrized models

@ The same structure as before.
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REMOVAL OF STRIPES — GW MODEL

[Prekrat, Todorovi¢-Vasovi¢, Rankovi¢, Kovacik, JT '22; Bukor, Prekrat, JT '25]
@ We concentrate on the effect of the curvature term and discard the kinetic term

S(M) = —Tr (g:RM?) — g2 Tr (M?) + g4 Tr (M*) .

@ This leads to the angular integral
/dU eg,Tr(URUT/\Z)

which gives up to g°

1024 (8g,)°
S(N) =N | — - T A —
( ) ( &0+ + gacs + 45 8, Cs 2835 Cc1o | +
32 , , 1024 , , 409 , 2(8g,)® (8g:)® 2(8g,)® ,
+ 38 C + 15 & 2t 8, CeC2 + 45 2610 189 C4Cg + o7 G (8)
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REMOVAL OF STRIPES — GW MODEL

[Prekrat, Todorovi¢-Vasovi¢, Rankovi¢, Kovacik, JT '22]

92
[
F 3 i_--
H -
5H E_~ L4
20 l“’r‘
0 ’a" 1
i i,/% 1
45 -4 -
1] a7y
i i-"2
H - N
F .”’f 24 1 =
3 4 40 e 4
f . 22t ! “¢ %
f , 200 --"%
I -
|| ﬂf 20F 4 I- el -
2?\"' 18f ~-=% 8
.* lﬁ. [ ]
1r ’
r 0.1 0.2 0.3 0.4 0.5
S (S S S S E S S S R T
9a
0 1 2 3 4 5

JURAJ TEKEL MATRIX ENSEMBLES FROM FUZZY PHYSICS 52 / 86



REMOVAL OF STRIPES — GW MODEL

[Bukor, Prekrat, JT '25]

200/ !
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NEW PHASE IN GW MODEL?

[Bukor, Prekrat, JT '25]

02=0g,, g4=25g;

92250, 94=25¢;

92=10g,, g4=25g;

92=15g,, 9,=25g;

)

9,=0g, 94=5g;

92=50r, 94=5g

92=10g,, g,=5g;

92=15g,, 9,=5g;

92=0g,, g4=25g;

02=50r, 94=250"

92=10g,, g4=25g;

92=15g,, G4=2.5g;
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NEW PHASE IN GW MODEL?

[Bukor, Prekrat, JT '25]

9:=89,  g.=1g;

2.0
1.5
210
0.5
0.0
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[Bukor, Prekrat, JT '25]
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Fuzzy field theories ensembles V
Beyond phase structure
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CORRELATION FUNCTIONS

@ Analogues of points in the NC setting are coherent states |X).
@ "Value" of field ¢ at "point” X given by

K1) = o(x) -

e Behaviour of

©)o) = 5 [ do (31613 (71617 e 5

in the matrix model can be studied numerically.
[Hatakeyama, Tsuchiya '17; Hatakeyama, Tsuchiya, Yamashiro '18 '18]

o At the "standard” phase transition, the behaviour of the correlation functions at short distances
differs from the commutative theory and seems to agree with the tricritical Ising model.
A different behaviour at long distances.

e Quantity ¢(x)¢(y) is U dependent, so we need to figure out what to do with

/dU F(A,U) o= ¥Tr(UAUML,[L,UAUTY)
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ENTANGLEMENT ENTROPY

@ In local theories S(A) ~ A.
[Ryu, Takayanagi '06]

@ In non-local theories this can change.
[Barbon, Fuertes '08; Karczmarek, Rabideau '13; Shiba, Takayanagi '14]
@ Problem on the fuzzy sphere has been studied numerically.
[Karczmarek, Sabella-Garnier '13; Sabella-Garnier '14; Okuno, Suzuki, Tsuchiya '15; Suzuki, Tsuchiya '16;
Sabella-Garnier '17; Chen, Karczmarek '17]
o For free fields, the EE follows volume law rather than area law.
In the interacting case much smaller EE than in the free case.
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Fuzzy field theories ensembles VI
Other spaces J
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FUzzY SPHERE WITH A COMMUTATIVE TIME

e To study entanglement entropy, we need to extended the model to R x S2, i.e. M(t)
L2 1 L onp 4
S(M) = [ dtTx (~3MOEM + S ML, [Li, M]] + 5 m*M? + gM

[Medina, Bietenholz, O'Connor '07; Ihl, Sachse, Sémann '10]
@ This is matrix quantum mechanics, different but similar methods apply. [Jevicki, Sakita '80]

@ We are trying to apply the second moment approximation here. For EE free theory where R =0, is

enough. [Bukor, JT work in progress]
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OTHER SPACES

o The field theory on other spaces differs in the definition of the kinetic term.
1 L opp 4
S(M)="Tr EMICM+§mI\/I +gM* ) .

Second moment approximation applicable.
o Numerical results available for fuzzy disc [Lizzi, Spisso '12] and torus [Mejia-Diaz, Bietenholz, Panero '14].
o Perturbative models have been derived for CP2, CP3 [Simann '10], disc [Rea, Simann '15].
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c1c3 model )
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c1¢c3 MODEL

@ Simple cubic mutitrace model
1
S(M)=N Sre +ga | +tac
with effective potential
1
Ver(M) = Er/\/l2 + gM* + tcy M3 + tesM .
o Analyzed numerically in the context of emerging NC geometry

[Ydri, Ahlam, Khaled '16; Ydri, Khaled, Soudani '21; Khaled '22].
o Interesting things happen for t < 0 and we set t = —1.
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¢1¢3 MODEL - PHASE STRUCTURE

[Bukor, JT '25]

0= 2D%+3Ddg+ 3Dr+ (3c3+3aD?>+3ci6)t,

1= 3D%g + 36%g + 6r + 3 Dot
a = 3D%g+3Ds%g+ 1Dsr+ (3aD*5+ Sad?)t,
s = 3D%g+ 2 D3%g+ §D3g + 1D30r + 2 D6*r +

( C1D4(5 + *C1D252 + %Clé‘g) t
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¢1¢3 MODEL - PHASE STRUCTURE

[Bukor, JT '25]
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¢1¢3 MODEL - RESPONSE FUNCTIONS

[Bukor, JT '25]

g=15 C g=24 C
. - - 0.8} 0.8
’J 06y T 0.6/

04| | 0.4"

- _Lepal | NG T2

-10 =8 -6 -4 =2 w8 =10 =8 =B =4 -2
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Cc1¢3 - RESPONSE FUNCTIONS

[Bukor, JT '25]

g=15 X

-10 -8 -6

JURAJ TEKEL

g=24

16;
14}
12}
10f

N A~ O ®

-14 -12 -10
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Dirac ensembles and random fuzzy geometries J
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QUANTUM DYNAMICS OF FINITE SPECTRAL TRIPLES

o Noncommutative geometry can be described by a spectral triple [Connes '94]
(A, D,H) .

e For certain finite geometries the Dirac operator can be constructed using (anti)commutators with p
hermitian and g antihermitian matrices (and some Clifford module baggage) to form a (p, q)
geometry [Barrett '15].

o Path integral over geometries given by weight

/ dDe3(P)

and becomes (multi)matrix integral. The simplest nontrivial choice is S(D) = Tr (g D* + D*).
[Barrett, Glaser '16; Khalkhali '20s; D'Arcangelo '22; Glaser '23]

@ Toy model of fluctuating dynamical geometry.
/‘\
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(1,0) DIRAC ENSEMBLE

[Khalkhali, Pagliaroli '21; Bukor, Kovacik, Magdolenova, Pagliaroli, JT work in progress]
@ In the simplest (1,0) case the Dirac operator is given by

D-={M,}.
@ Then simply dD = dM. The action for M is given by
S(M)=N(2gc+2c)+2g cl2 +8ci1c3 + 6c22 .

Simpler model analyzed before [Bukor, JT '25].
e Can be analyzed ...
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(1,0) DIRAC ENSEMBLE

. numerically ...

g=-8.5 g=-8 g=-75 g=-7. g=-6.5
20 20 20! 2.0 2.0
15| 15 15| 1.5 15
10| 1.0 1.0, 1.0 1.0
5 05 05 05 05
i AN L. : ELN o
-1:0.8.00.51.01.822.0 -2-01:61:00.6.(0.51.0 -2:01-61:60.6.00.51.0 -2:01-6100.8.00.51.0 —2.01 .51-00.5.00.51.0
9=-6. g=-5.5 = =-4.5 =d.
20 2.0, g= i g
15 15 15 15} bl
10| 10 10, 10 10
05 05! 05! 0.5/ 05|
P, L . n ; . 0 S N, N A i

2:01:51:00.5.00.51.0 -2:0161:60.6.00.51.0 2:01:610.8.00.51.0 _1.51.90.9.00.51.0 —1.51.00.9.00.51.0

g=—3‘.5 gz‘?’- g:—‘2.5 g:I—Z. g=-15
2 08! 2 ' i
X} 06!
5 04/

-1.61.80.0.00.51.0 21 4 0'50.0 0.5 1.0-1-0-0.50.0 0.5 1.0-1.0-0.50.0 0.5 1.0-1.0-0.50.0 0.5 1.0
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analytically ...

35

34

33

32

-08
10l
40> «Fr «Zr» «E>» -




(1,0) DIRAC ENSEMBLE

.. and using bootstrap.

g=-3.5

1.5 4
=
8
w 1.0 1
£
3
5 0.5 4
o
m

0.0 4

-2 -1 0 1
X
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(1,0) DIRAC ENSEMBLE

@ The ensamble
S(M) = N (2gco + 2c4) + 2gc? + 8cycs + 6¢2
has a stable asymmetric 2-cut regime for g < —3.18702.
o Similar results obtained numerically before [D'Arcangelo '22].

m
1.2t

1.0f
0.8f
0.6¢
0.4¢
0.2¢

N W A 00 e

-10 -8 -6 -4 -2 - -8 -6 -4 -2
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(1,0) DIRAC ENSEMBLE

@ The ensamble
S(M) = N (2gc + 2c1) + 2gc? + 8cics + 62
has a stable asymmetric 2-cut regime for g < —3.18702.

o Similar results obtained numerically before [D'Arcangelo '22].
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-3.198

-3.194

-3.19

[m]

=

MATRIX ENSEMBLES FROM FUZZY PHYSICS

DA

79 / 86



(1,0) DIRAC ENSEMBLE

@ What does this mean for the geometry?
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(1,0) DIRAC ENSEMBLE

@ What does this mean for the geometry?

@ Not sure. Nobody knows.
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(1,0) DIRAC ENSEMBLE

What does this mean for the geometry?

Not sure. Nobody knows.

@ Points are pure states of the algebra
¢:C—=C, |lg][=1.

o Distance determined by D in terms of

d(¢1, ¢2) = :gf‘{\éﬁl(a) —¢(a)|, |[[D,a]]| <1} .

Other geometrical properties given by

o0
Tr (e*tD2> — t—9/2 Z aith .
k=1
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(1,3) DIRAC ENSEMBLE IS FUZZY SPHERE

@ More complicated spaces are described by multi matrix models. Symetric regime has been analyzed
before, but no results for asymmetric regime.

(1,3) (12)

geometry is the fuzzy sphere!
@ A four matrix model, not much hope for analytical results. But bootstrap might be useful.
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One final ensemble - gauge theory on NC plane J
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GAUGE THEORY ON NC PLANE

[Buric, Grosse, Madore '10]

- start with the 3-dim action on e-tHA:

S = ﬁ%?tr(F(*FH(*F)F;

1

“compactification”toz=0

!

g P, + (D) + (5 — )¢’ —

1 (1
SYN\ = itr(

-201- -;7}%'92@5 — 4eFad’ + (P + QA'(;b}z) (13)

where

Dath = i[Py + GAq, $] Fiy = igLP1, Ay] = ig[ P2, Al + ig” [ A1, Ag]

JURAJ TEKEL

[X,Y] = ie (1 -2)

ePy=Y
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GAUGE THEORY ON NC PLANE

e Standard analysis of this model suggests that it is not renormalizable even with the GW trick
[Buric, Nenadovic, Prekrat '16].

@ A rather complicated three matrix model.

o Can we see that in the phase structure of the corresponding matrix model — is there a striped
phase? [work in progress]
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TAKE HOME MESSAGE AND 2DO LIST

Fuzzy spaces are examples of spacetimes with quantum structure.

Plenty of interesting things happen on such spaces.

Physics is described by random matrix ensembles.
Analyzing these is technically challenging, but doable.

@ We can analyze toy models of path integrals over geometries.

JURAJ TEKEL MATRIX ENSEMBLES FROM FUZZY PHYSICS 86 / 86



TAKE HOME MESSAGE AND 2DO LIST

o Fuzzy spaces are examples of spacetimes with quantum structure.
o Plenty of interesting things happen on such spaces.

@ Physics is described by random matrix ensembles.
Analyzing these is technically challenging, but doable.

@ We can analyze toy models of path integrals over geometries.

o Beyond fuzzy sphere.

o Correlation functions, entanglement entropy.

@ Dirac ensembles and random fuzzy geometries.
e U(1) gauge theory on NC plane.

@ More on kinetic term effective action.
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TAKE HOME MESSAGE AND 2DO LIST

o Fuzzy spaces are examples of spacetimes with quantum structure.
o Plenty of interesting things happen on such spaces.

@ Physics is described by random matrix ensembles.
Analyzing these is technically challenging, but doable.

@ We can analyze toy models of path integrals over geometries.

o Beyond fuzzy sphere.

o Correlation functions, entanglement entropy.

@ Dirac ensembles and random fuzzy geometries.
e U(1) gauge theory on NC plane.

@ More on kinetic term effective action.

:
Thank you for your attention!
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