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Take home message
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TAKE HOME MESSAGE

o Quantization of gravity seems to lead to quantized spacetimes.
@ Fuzzy onion is a three dimensional model of such a space.

o It is rather straightforward to work with so it is a nice toy model / playground to check the
consequences of quantum structure.
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TAKE HOME MESSAGE

Quantization of gravity seems to lead to quantized spacetimes.

@ Fuzzy onion is a three dimensional model of such a space.

It is rather straightforward to work with so it is a nice toy model / playground to check the
consequences of quantum structure.

We do have PhD. and postdoc positions related to this and more in Bratislava.
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Quick motivation
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QUANTUM STRUCTURE OF SPACETIME

@ We need a quantum theory of gravity.
e Quantization of general relativity leads to a nonrenormalizable theory.

@ We have reasons to believe that future theory of quantum gravity will have a different notion of
spacetime.
No distinction between points under certain length scales. [Hossenfelder 1203.6191]
@ Reasons:
e gravitational Heisenberg microscope,

o instability of quantum gravitational vacuum, [Doplicher, Fredenhagen, Roberts '95]
e emergent spacetime.
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Fuzzy spaces
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Fuzzy SPHERE

@ The sphere is divided into N cells. Function on the fuzzy sphere is given by a matrix ® and the
eigenvalues of ® represent the values of the function on these cells.

.

@ However there are no sharp boundaries between the pieces and everything is blurred, or fuzzy.
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Fuzzy SPHERE

o The regular sphere S? is given by the coordinates
XiXi:R2 ’ X,'Xj*XJ'X,'IO, iaj:172737

which generate the algebra of functions.
o For the fuzzy sphere S? we define

[Ri&ki=r" , XX — X% =0k, i,j=1,2,3.

o Such %s generate a different, non-commutative, algebra and S is an object, which has this
algebra as an algebra of functions.
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Fuzzy SPHERE

@ The conditions can be realized as an N = 2s 4+ 1 dimensional representation of SU(2)

R 2r 2r 2 2 4r?
Xi=—F—=L , 0=—F— P:m

N2—1 N s(s+1)=r*.

The group SU(2) still acts on X;'s and this space enjoys a full rotational symmetry.

(Matrix) geometry encoded in the Laplacian

1
Ko = S[Li (L, o] -

Analogue of the integral is the trace
4rr?

N
In the limit N — oo we recover the original sphere.

tr/\/ (CD) .
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Fuzzy SPHERE

@ Most importantly nonzero commutators

A

imply uncertainty relations for positions
AxiAx; #0 .

o Configuration space is analogous to phase space of quantum mechanics.

@ In a similar fashion it is possible to construct an analogous deformation of the plane

Rikj — X% = i0ejj =10 , i=1,2.
Construction uses the x-product

505 9" of Og
frg=rfe:d¥0g—fgy 7L
*8 y g=%+ 2 Oxt Ox¥
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Fuzzy SPACES

@ Regularization of infinities in the standard QFT.
[Heisenberg ~1930; Snyder 1947, Yang 1947]

o Regularization of field theories for numerical simulations.
[Panero 2016]
o An effective description of the open string dynamics in a magnetic background in the low energy
limit.
[Seiberg Witten 1999; Douglas, Nekrasov 2001]
@ Solutions of various matrix formulations of the string theory (IKKT, BFSS, BNM).
[Steinacker 2013]
o Geometric unification of the particle physics and theory of gravity.
[van Suijlekom 2015]
o An effective description of various systems in a certain limit (eg. QHE).
[Karabali, Nair 2006]
e Toy models of spaces with discrete quantum structure, which is expected to arise in quantum
theory of gravity. =
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The/A fuzzy onion )




THE/A FUZZY ONION

@ Idea: construct a 3D non-commutative space as a series of concentric fuzzy spheres of increasing
radius.

[Hammou, Lagraa, Sheikh-Jabbari 2002; Vitale, Wallet 2013; Scholtz et. al; Schupp, Solodukhin 2009;
Presnajder, Galikova, Kovacik 2015]

JURAJ TEKEL FuzzY ONION STRIKES BACK 19 /75



THE/A FUZZY ONION

Construction of [Presnajder, Galikova, Kovacik 2015; Scholtz et. al].

e Start with

[X,',Xj] = 2)\1.6,'1'ka
o Explicitly realize by

o0

Xj = Eaaaaﬁa[g .

where
[aaaaﬁ] - 6(1[3, [aavaﬁ] - [a a[}] =0.

@ Free Hamiltonian, i.e. the Laplacian

HO\U - 7[30/7 [aom \U]] ’ - (ajlaa + 1) .

@ Spectrum of hydrogen atom

h megA 2
I _ e
Ex,= mo\2 1 1+( h2n)
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THE/A FUZZY ONION

Ours is a bottom-up approach.

o Take M fuzzy spheres or radii r = A\, 2,..., M.
@ Functions given by a matrix
@)
®(?)
\II =
dM)
@ Recall the single layer expression
2r
= —.
N2 —1

@ The dimension of this space is

M 1

d=)Y N*=_-M(M+1)2M+1).
>0 = GM(M -+ 1)(2M +1)
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THE/A FUZZY ONION

@ Recall the standard three-dimensional integration of a function 1)

/d3x1/):/ r2dr/de.

@ We change this to a version discrete in the radial direction

M

4
DOONP2AT try@™) = Tr (4rX2r ¥)
N=1

where we have defined the radial distance matrix r as

Al
2\ Iryo
3\ 1343

M 1pxm
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THE/A FUZZY ONION

@ The angular part of the kinetic term defined layerwise

KO )
K@)
KW =r2 KB p®3)

M) p(M)

o What about the radial direction?
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THE/A FUZZY ONION

N-1 |/
forCD C,;V m 7 N+1 (N+1)Y(N+1
gm; gm—z—l
N-1 |/

D: oV _; oM :Z Z i Vi + Sl = i for [ <N -1

N (N+1) _ <N-
U o) _y p(N+1) Z Z Cnl:/H Y(N+1)’ { c,(%ﬂ) 0 N for | < N —1
Nm

1=0 m=—1
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THE/A FUZZY ONION

o Define the first and second radial derivatives
wy _ DOV — (V1)

(N)
e 2) ’
g2 Mgy _ DO — 200 4 4N
r - )\2 .
@ Define the radial part of Laplacian
oMo
0P o)

KrW = 82V +2r19,W | 9,V = o o)

o Recall
~f(x— _ _
f(x+£)2 f(x—¢) (%), f(x+¢) 2);(QX)+f(X £) P, A = 20,20, + D
5

oM M)
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THE/A FUZZY ONION

o Define the first and second radial derivatives
) DPN+1) _ 14p(N-1)

(Mo

o 2\ ’
2wy _ DO — 200 4 4N
g2 M) — > .

o Define the radial part of Laplacian

FISE
oo
KrW = 2V +2r 19,W | 9,V = o)
o Laplace operator for the/a fuzzy onion
K=Kr+ K.
el Foiy onionStrines SAGK

A (M)
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Some onion physics )




Quantum mechanical problems ]
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QUANTUM MECHANICAL PROBLEMS — HYDROGEN ATOM

o Hamiltonian
h2

H=-
2me

K—qrt

with h = me = g = 1, i.e. eigenvalue problem
HV = EV .
o We can express H as a matrix acting on vectors

T
2 2
¢’ = (C(go)7 C(go)a C:{ )1» C1(0)7 Cil)v . )

with ¢'s from the decomposition

(N) Z Z Clm lm

1=0 m=—1
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QUANTUM MECHANICAL PROBLEMS — HYDROGEN ATOM

@ Hamiltonian is now expressed as a d x d matrix
1

H=—-—Z-K-rt.
2

@ We can make restriction to / = 0 sector thanks to rotational symmetry to make it M x M.
o Look for eigenvalues of H.
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QUANTUM MECHANICAL PROBLEMS — HYDROGEN ATOM

M=50and A=1

E, -0.4142 | -0.1180 | -0.0541 | -0.0307 | -0.0179 | -0.0031
El -0.4142 | -0.1180 | -0.0541 | -0.0307 | -0.0198 | -0.0138
ELeM -0.5 -0.125 | -0.0556 | -0.0313 | -0.02 | -0.0139
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QUANTUM MECHANICAL PROBLEMS — HYDROGEN ATOM

M A=0.1 A=001 | \=0.001
50 || 6.24-1073 N/A N/A
100 || 1.27-10°° N/A N/A
200 || 1.97-10718 2.81 N/A
400 |[ 1.56-1071 | 3.41-1072 N/A
800 || 5.22-107% [ 49-10°° N/A
1600 || 4.8-107* [ 1.13-1071 N/A
3200 || 9.02-1071° [ 575-10712 [ 1.26- 101

JURAJ TEKEL
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QUANTUM MECHANICAL PROBLEMS — HYDROGEN ATOM

o It seems that in the limit M — oo we recover the construction of [Presnajder, Galikova, Kovacik 2015].
@ We can go further and look at the wavefunctions.
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QUANTUM MECHANICAL PROBLEMS — HYDROGEN ATOM

M=50,\A=1n=3

010

0.08-

&0 40 %ﬁﬁ
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QUANTUM MECHANICAL PROBLEMS — HYDROGEN ATOM

M=50,A=1n=6

30 40 %ﬁﬁ
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QUANTUM MECHANICAL PROBLEMS — HYDROGEN ATOM

M=50,A=01n=1
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QUANTUM MECHANICAL PROBLEMS — HYDROGEN ATOM

M=150,A=1,n=7
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QUANTUM MECHANICAL PROBLEMS — HYDROGEN ATOM

M=150,A=1,n=7

0.001
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QUANTUM MECHANICAL PROBLEMS — HYDROGEN ATOM

M =50,A=5n=2
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QUANTUM MECHANICAL PROBLEMS — HYDROGEN ATOM

M =150,A=5,n=9
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QUANTUM MECHANICAL PROBLEMS — HYDROGEN ATOM

M =150,A=5,n=9
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QUANTUM MECHANICAL PROBLEMS — HARMONIC OSCILLATOR

@ The same Hamiltonian with 1 )
H=-K+-r
2T ar

describes three dimensional harmonic oscillator.
@ This can not be solved analytically in the previous approach. M =100, A =1, /=0,1

n 0 1 2 3 4 5

E, | 1.4984 | 3.4922 | 5.4809 | 7.4645 | 9.4431 | 11.4166
ELeM 15 35 55 75 95 115

n 0 1 2 3 4 5

E, | 2.5005 | 4.4979 | 6.491 | 8.4795 | 10.4632 | 12.4422
ECRM I 25 4.5 6.5 8.5 10.5 12.5
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QUANTUM MECHANICAL PROBLEMS

@ In principle any potential can be analyzed exactly.
@ The only problem is how to recover the limit of classical (and infinite) space.
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QUANTUM MECHANICAL PROBLEMS — FUZZY CAVITY

@ Fuzzy onion is a regularization of a spherical cavity. In the limit M — 0o, A — 0, MA — R we
recover continuous cavity of radius R.

@ In chemical literature this models atoms under pressure. [refs in [2]]
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QUANTUM MECHANICAL PROBLEMS — FUZZY CAVITY

S orbital [2]
rn\M oo as a reference 100 1000 10000
0.5 | 14.747970030350280 | 14.406037740780091 | 14.713401904425357 | 14.744509454556344
1 2.373990866103664 | 2.300565723232022 | 2.366554263053759 | 2.373246264259394
3 -0.423967287733454 | -0.427225951376656 | -0.424313148630359 | -0.424002075109953
10 | -0.499999263281525 | -0.498755577647694 | -0.499986776756742 | -0.499999139626354
20 | -0.499999999999994 | -0.495097567963923 | -0.499950009998093 | -0.499999499991737
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QUANTUM MECHANICAL PROBLEMS — FUZZY CAVITY

P orbitals [2]

rn\M oo as a reference 100 1000 10000

0.5 | 72.672039190463577 | 71.154357099658682 | 72.520341020495181 | 72.656870688127995
1 16.570256093469736 | 16.206670008470599 | 16.533894253548414 | 16.566620019574611
3 1.111684737436364 | 1.078613638687640 | 1.108361257317863 | 1.111352239065044
10 | -0.112806210295841 | -0.113415153701996 | -0.112878188197422 | -0.112813520180460
20 | -0.124987114312918 | -0.124677720985899 | -0.124984183578311 | -0.124987102906836

n\M oo as a reference 100 1000 10000

0.5 | 36.658875880189399 | 35.160313617726310 | 36.505181049931707 | 36.643467765541793
1 8.223138316160864 | 7.866678332336676 | 8.186560245882733 | 8.219471198758979
3 0.481250312526643 | 0.449669060926531 | 0.478000341365532 | 0.480924423219991
10 | -0.118859544853860 | -0.119527885630338 | -0.118934647870327 | -0.118867073891238
20 | -0.124994606647078 | -0.124692831261815 | -0.124995259742673 | -0.124994633404707_
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QUANTUM MECHANICAL PROBLEMS — FUZZY CAVITY

(2]

Hypergeometric (n=4, E=0.01671)
Numerical (Eigenvalue 0.01489,
—  Numerical (Eigenvalue 0.01653,
—~ Hwithout cavity (n=4, 1=0)

014

°

.10

.08

Normalized Probability Density
°

6.0
Radial distance r [Bohr]
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Scalar field theory )




SCALAR FIELD THEORY

o Defined by the (euclidean) action
S[W] = 47XTr [r (a VKV + b W2 + ¢ U*)]
and expectation values
OW)) = = / dveSOOW) . av— [ doi |
z 7 N=1

@ Hybrid Monte Carlo evolution of a field configuration.[1]
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SCALAR FIELD THEORY
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SCALAR FIELD THEORY




SCALAR FIELD THEORY

o Radial part of the Laplacian couples the oscillations in also in radial direction.
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SCALAR FIELD THEORY

o Radial part of the Laplacian couples the oscillations in also in radial direction.

o What about symmetry breaking? How — if at all — do the phases on layers align? Is the derivative
enough or do we need something further?
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DIFFERENT LAPLACIANS

o Recall that the definition of Laplacian using

D(D (N+1) Z/{(D (N-1)

(M p(N) —
ar 2A )
2y DO — 20N 4 11 (N-1)
3, ¢' == A2 )
and

KrY =02V +2r719,w

was in some sense arbitrary.
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DIFFERENT LAPLACIANS

o Recall that the definition of Laplacian using

D(D (N+1) Z/{(D (N-1)

(M p(N) —
ar 2A )
2y DO — 20N 4 11 (N-1)
3, ¢' == A2 )
and

KrY =02V +2r719,w

was in some sense arbitrary.

e What are consequences of other choices? Any preferred choice?

1
Kr—~19
r
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Fuzzy radial coordinate )




FUzZzZY RADIAL COORDINATE

@ Angular coordinates on layers are properly fuzzy. The radial coordinate is discrete and lattice-like.
@ This calls for improvement. Several possible ways how to do this.
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FUZZY RADIAL COORDINATE — SMEARING

[Kovacik, Prekrat, JT work in progress]
¢(N) + Z o (uigb(Nfi) + Di¢(N+i))

(V) —
5¢ 14+ > a;

e This procedure simply smears the values of fields ®(™) over neighboring layers.
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FUZZY RADIAL COORDINATE — SMEARING

[Kovacik, Prekrat, JT work in progress]
¢(N) + Z o (uigb(Nfi) + Di¢(N+i))

(V) —
5¢ 14+ > a;

e This procedure simply smears the values of fields ®(™) over neighboring layers.
e What does this do?
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FUzZzZY RADIAL COORDINATE — STRING STATES

@ Functions on the fuzzy sphere are matrices acting on H
s
O= > Opy|m)(n| .
m,n=—s

o We can express the matrix ® in a similar fashion using the coherent states

o (N)Q/dzxdw(x,y) ) 1 -

4r
o Objects [Iso, Kawai, Kitazawa 2000; Steinacker 2016; Steinacker, JT '22]
X
y

form a basis of functions on the fuzzy sphere and we will call them the string modes.

x) {y| =
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FUzZzZY RADIAL COORDINATE — STRING STATES

o In onion construction, for x and y on the same layer these for matrices (V).

@ For x and y on different layers these naturally fit into the off-diagonal blocks of

d(M)
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FUzZzZY RADIAL COORDINATE — STRING STATES

o In onion construction, for x and y on the same layer these for matrices (V).

@ For x and y on different layers these naturally fit into the off-diagonal blocks of
oM o
o« 012

d(M)

o What is the effect of off-diagonal blocks? What is their correct dynamics? Is this with or instead of
the radial derivative?

Can we define physics of the onion in terms of the whole matrix W?
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FUzZzZY RADIAL COORDINATE — STRING STATES

o A simplified model of two spheres with the same N
(P A
\IJF - (A]L ¢2 .
e We take A to be identity and get
L 2 4 1 2 4 1 2 4
Tr Er\ll + V| = 5(r + d)try (¢1) + try (¢1) + E(r + d)try ((1)2) + try (¢2) + dtry (P19,)

e This is a solvable two matrix model related to Ising model.
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FUZzZY RADIAL COORDINATE — SPECTRAL TRIPLES

o There is a different and more mathematical description of noncommutative spaces.
@ Uses notion of spectral triples
(A, D, H) .

o Construction for fuzzy sphere available, construction of a lattice like set of points available.
[Barrett '15]
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FUZzZY RADIAL COORDINATE — SPECTRAL TRIPLES

o There is a different and more mathematical description of noncommutative spaces.
@ Uses notion of spectral triples
(A, D, H) .

Construction for fuzzy sphere available, construction of a lattice like set of points available.
[Barrett '15]

o Can we put these two together? Any other (better) version for radial direction? Does this lead to
any canonical structures on the onion?
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Onion as a spacetime solution in matrix models |
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ONION AS A SPACETIME SOLUTION IN MATRIX MODELS
e Matrix models formulations of string theory usually have action along the lines

1
S= ETr [—[Xa, Xo][X2, XP] + .. ]
with matrices X, describing spacetime degrees of freedom. [Steinacker '24]
o Equations of motion
[Xa, [XZ3, Xp]] = - -

lead to solutions in form of fuzzy spaces. The simplest case is set of fuzzy spheres of various radii

LgNl)

LgNM)

e Hmmmmmmmm.
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ONION AS A SPACETIME SOLUTION IN MATRIX MODELS
e Matrix models formulations of string theory usually have action along the lines
1

S= ?Tr [—[Xa, Xo][X2, XP] + .. ]

with matrices X, describing spacetime degrees of freedom. [Steinacker '24]

o Equations of motion
[Xa, [XZ3, Xp]] = - -

lead to solutions in form of fuzzy spaces. The simplest case is set of fuzzy spheres of various radii

LgNl)

LgNM)

e Hmmmmmmmm.
o What does this tell us about the construction of fuzzy onion? What about the off-diagonal blocks?
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Model of dynamical spacetime ]
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MODEL OF DYNAMICAL SPACETIME

@ In the construction A is a constant. Does not need be and in principle we could have A(r) and a
deformed onion — curvature.

o This deformation does not need to be constant in time.

@ Perhaps also possibility of making A dependent on the angular direction.
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MODEL OF DYNAMICAL SPACETIME

In the construction A is a constant. Does not need be and in principle we could have A(r) and a
deformed onion — curvature.

o This deformation does not need to be constant in time.
Perhaps also possibility of making A dependent on the angular direction.

What kind of dynamics of space can we define? What is the effect on physics happening on the
onion?
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TOY MODEL OF EXPANDING UNIVERSE

o If we interpret the radial coordinate as time, fuzzy onion is a model of expanding universe with
quantized time.

o Each time step one cell of spacetime is created.
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TOY MODEL OF EXPANDING UNIVERSE

o If we interpret the radial coordinate as time, fuzzy onion is a model of expanding universe with
quantized time.
o Each time step one cell of spacetime is created.

o What are the consequences?
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Phenomenology of infalling matter J
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PHENOMENOLOGY OF INFALLING MATTER

o Properties of black holes in quantum spacetimes are different, no singularity present.
@ We can analyze collapse of matter creating a black hole by writing the corresponding equations.
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PHENOMENOLOGY OF INFALLING MATTER

o Properties of black holes in quantum spacetimes are different, no singularity present.

@ We can analyze collapse of matter creating a black hole by writing the corresponding equations.

@ Is the collapse stopped by outward pressure? What is the dissipation mechanism? What is fate of
the horizon? Any bounces?

o Comparison with numerical results in loop quantum gravity.
[Modesto '08; Husain, Kelly, Santacruz, Wilson-Ewing '22]
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Classical applications )




CLASSICAL APPLICATIONS

@ The cells of the "quantum’” space need to to arise from fundamental physics.

@ Flow of granular materials or heat flow in such materials.[Saitou, Bamba, Sugamot '14]

@ Structure of neutron stars.

o Applicable in situations where granularity is due to lack of precise knowledge — atmospheric physics.

JURAJ TEKEL FuzzY ONION STRIKES BACK 69 /75



Take home message and 2do list ]
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TAKE HOME MESSAGE AND 2DO LIST

o Quantization of gravity seems to lead to quantized spacetimes.
@ Fuzzy onion is a three dimensional model of such a space.

o It is rather straightforward to work with so it is a nice toy model / playground to check the
consequences of quantum structure.
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TAKE HOME MESSAGE AND 2DO LIST

Quantization of gravity seems to lead to quantized spacetimes.
@ Fuzzy onion is a three dimensional model of such a space.

o It is rather straightforward to work with so it is a nice toy model / playground to check the
consequences of quantum structure.

@ Symmetry breaking in field theory, different Laplacians, fuzzy radial coordinate, spacetime solution
in matrix models, model of dynamical spacetime, phenomenology of infalling matter, classical
applications, classical space with a fuzzy region close to origin.
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TAKE HOME MESSAGE AND 2DO LIST

Quantization of gravity seems to lead to quantized spacetimes.
@ Fuzzy onion is a three dimensional model of such a space.

o It is rather straightforward to work with so it is a nice toy model / playground to check the
consequences of quantum structure.

@ Symmetry breaking in field theory, different Laplacians, fuzzy radial coordinate, spacetime solution
in matrix models, model of dynamical spacetime, phenomenology of infalling matter, classical
applications, classical space with a fuzzy region close to origin.

@ We do have PhD. and postdoc positions related to this and more in Bratislava.
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TAKE HOME MESSAGE AND 2DO LIST

Quantization of gravity seems to lead to quantized spacetimes.

@ Fuzzy onion is a three dimensional model of such a space.

o It is rather straightforward to work with so it is a nice toy model / playground to check the
consequences of quantum structure.

@ Symmetry breaking in field theory, different Laplacians, fuzzy radial coordinate, spacetime solution
in matrix models, model of dynamical spacetime, phenomenology of infalling matter, classical
applications, classical space with a fuzzy region close to origin.

@ We do have PhD. and postdoc positions related to this and more in Bratislava.

Thank you for your attention!
Yy y

JURAJ TEKEL FuzzY ONION STRIKES BACK 71/ 75



o

3

E ="

Q¥



If time permits |




FIELD THEORY AS A VECTOR MODEL

o Reformulation in terms of vector C and operators as d x d matrices.
@ Is this useful for the field theory in any way?

@ Action turns out to be

S =4xTr r (aWKV + bW2 4 c W) =

M

- %c Pl C 4 43 Nz::l N [41/\/ (e -c<N>)2 + % (™6™ -c<N>)2] ,

1 -1
P = m (2arK + 2br)

6= (o ) (o), = ({70 70 7
a

a
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FIELD THEORY AS A VECTOR MODEL

e What are consequences of writing

S= %c PTL.C 4 Ame)d E(c C)? + %(c -Ga -0)2}

instead of
1 1 i\ Loy pm)? L (e v o0\,
SZEC-P -C+4m) NEICNLN(C -C ) +§<C -Gy - C )]
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