FUZZY ONION STRIKES BACK

Juraj Tekel

Department of theoretical physics Faculty of Mathematics, Physics and Informatics Comenius University, Bratislava

Group for Gravitation, Particle physics and Fields seminar, University of Belgrade work with: S. Kováčik, M. Hrmo, P. Rusnák, A. Kubiš, R. Vizerová, D. Prekrat and others arXiv: 2309.00576 [hep-th], 2503.10227 [hep-th]

supported by M-RS-1514-2425 - Quantum Spacetime, Gravitation and Cosmology

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

イロト イヨト イヨト イヨト ヨー のくぐ

Take home message

JURAJ TEKEL FUZZY ONION STRIKES BACK

æ

イロン イロン イヨン イヨン

- Quantization of gravity seems to lead to quantized spacetimes.
- Fuzzy onion is a three dimensional model of such a space.
- It is rather straightforward to work with so it is a nice toy model / playground to check the consequences of quantum structure.

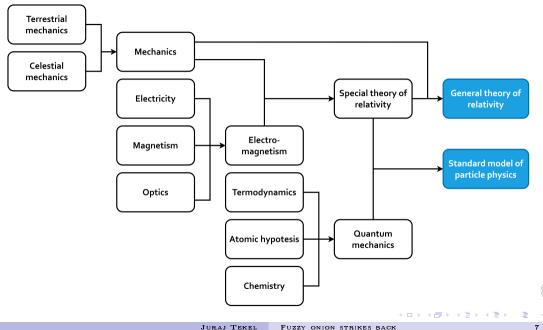
- Quantization of gravity seems to lead to quantized spacetimes.
- Fuzzy onion is a three dimensional model of such a space.
- It is rather straightforward to work with so it is a nice toy model / playground to check the consequences of quantum structure.
- We do have PhD. and postdoc positions related to this and more in Bratislava.

Quick motivation

JURAJ TEKEL FUZZY ONION STRIKES BACK

Ξ.

メロン メタン メヨン メヨン



- We need a quantum theory of gravity.
- Quantization of general relativity leads to a nonrenormalizable theory.
- We have reasons to believe that future theory of quantum gravity will have a different notion of spacetime.

No distinction between points under certain length scales. [Hossenfelder 1203.6191]

- Reasons:
 - gravitational Heisenberg microscope,
 - instability of quantum gravitational vacuum, [Doplicher, Fredenhagen, Roberts '95]
 - emergent spacetime.

(D) (A) (A) (A) (A)

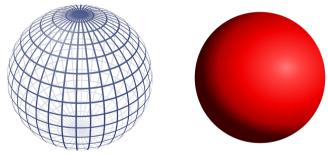
Fuzzy spaces

JURAJ TEKEL FUZZY ONION STRIKES BACK

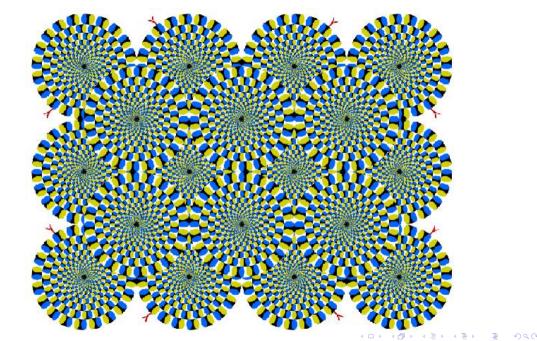
(日) (四) (三) (三) (三)

FUZZY SPHERE

• The sphere is divided into N cells. Function on the fuzzy sphere is given by a matrix Φ and the eigenvalues of Φ represent the values of the function on these cells.



• However there are no sharp boundaries between the pieces and everything is blurred, or fuzzy.



• The regular sphere S^2 is given by the coordinates

$$x_i x_i = R^2$$
, $x_i x_j - x_j x_i = 0$, $i, j = 1, 2, 3$,

which generate the algebra of functions.

• For the fuzzy sphere S_N^2 we define

$$\hat{x}_i \hat{x}_i = r^2 \quad , \quad \hat{x}_i \hat{x}_j - \hat{x}_j \hat{x}_i = i\theta \varepsilon_{ijk} \hat{x}_k \ , \ i, j = 1, 2, 3 \ .$$

• Such \hat{x}_i 's generate a different, non-commutative, algebra and S_N^2 is an object, which has this algebra as an algebra of functions.

FUZZY SPHERE

• The conditions can be realized as an N = 2s + 1 dimensional representation of SU(2)

$$\hat{x}_i = rac{2r}{\sqrt{N^2-1}} L_i \quad , \quad heta = rac{2r}{\sqrt{N^2-1}} \sim rac{2}{N} \quad , \quad
ho^2 = rac{4r^2}{N^2-1} s(s+1) = r^2 \; .$$

- The group SU(2) still acts on \hat{x}_i 's and this space enjoys a full rotational symmetry.
- (Matrix) geometry encoded in the Laplacian

$$\mathcal{K}\Phi=rac{1}{r^2}[L_i,[L_i,\Phi]]\;.$$

Analogue of the integral is the trace

$$\frac{4\pi r^2}{N} \operatorname{tr}_N(\Phi)$$

• In the limit $N \to \infty$ we recover the original sphere.

FUZZY SPHERE

• Most importantly nonzero commutators

$$\hat{x}_i \hat{x}_i = \rho^2$$
 , $\hat{x}_i \hat{x}_j - \hat{x}_j \hat{x}_i = i\theta \varepsilon_{ijk} \hat{x}_k$, $i = 1, 2, 3$.

imply uncertainty relations for positions

$$\Delta x_i \Delta x_j
eq 0$$
 .

- Configuration space is analogous to phase space of quantum mechanics.
- In a similar fashion it is possible to construct an analogous deformation of the plane

$$\hat{x}_i \hat{x}_j - \hat{x}_j \hat{x}_i = i \theta \varepsilon_{ij} = i \theta_{ij}$$
, $i = 1, 2$.

Construction uses the \star -product

$$f \star g = f e^{\frac{i}{2} \overline{\partial} \theta \overline{\partial}} g = fg + \frac{i\theta^{\mu\nu}}{2} \frac{\partial f}{\partial x^{\mu}} \frac{\partial g}{\partial x^{\nu}} + \cdots$$

・ロト ・ 同ト ・ ヨト ・ ヨト

FUZZY SPACES

- Regularization of infinities in the standard QFT. [Heisenberg ~1930; Snyder 1947, Yang 1947]
- Regularization of field theories for numerical simulations. [Panero 2016]
- An effective description of the open string dynamics in a magnetic background in the low energy limit.

[Seiberg Witten 1999; Douglas, Nekrasov 2001]

- Solutions of various matrix formulations of the string theory (IKKT, BFSS, BNM). [Steinacker 2013]
- Geometric unification of the particle physics and theory of gravity. [van Suijlekom 2015]
- An effective description of various systems in a certain limit (eg. QHE). [Karabali, Nair 2006]
- Toy models of spaces with discrete quantum structure, which is expected to arise in quantum theory of gravity.

- ◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - ∽��♡

The/A fuzzy onion

JURAJ TEKEL FUZZY ONION STRIKES BACK

18 / 75

æ

メロン メタン メヨン メヨン

$T\mathrm{HE}/\mathrm{A}$ fuzzy onion

• Idea: construct a 3D non-commutative space as a series of concentric fuzzy spheres of increasing radius.

[Hammou, Lagraa, Sheikh-Jabbari 2002; Vitale, Wallet 2013; Scholtz et. al; Schupp, Solodukhin 2009; Prešnajder, Gáliková, Kováčik 2015]

THE/A FUZZY ONION

Construction of [Prešnajder, Gáliková, Kováčik 2015; Scholtz et. al].

Start with

$$[x_i, x_j] = 2\lambda i \varepsilon_{ijk} x_k$$

• Explicitly realize by

$$\hat{x}_i = rac{ heta}{2} \mathsf{a}^\dagger_lpha \sigma^i_{lphaeta} \mathsf{a}_eta ~.$$

where

$$[\mathsf{a}_{lpha},\mathsf{a}_{eta}^{\dagger}]\,=\,\delta_{lphaeta},\;\; [\mathsf{a}_{lpha},\mathsf{a}_{eta}]\,=\, [\mathsf{a}_{lpha}^{\dagger},\mathsf{a}_{eta}^{\dagger}]\,=\,\mathsf{0}\;.$$

• Free Hamiltonian, i.e. the Laplacian

$$\mathsf{H}_{0}\Psi = rac{1}{2\lambda r}[\mathsf{a}_{lpha}^{\dagger},[\mathsf{a}_{lpha},\Psi]] \;,\; r = \lambda \left(\mathsf{a}_{lpha}^{\dagger}\mathsf{a}_{lpha}+1
ight) \;.$$

• Spectrum of hydrogen atom

$$E_{\lambda n}^{\prime} = rac{\hbar}{m_e \lambda^2} \left(1 - \sqrt{1 + \left(rac{m_e q \lambda}{\hbar^2 n}
ight)^2}
ight) \; .$$

$T \ensuremath{\text{He}}/A$ fuzzy onion

- Ours is a bottom-up approach.
- Take M fuzzy spheres or radii $r = \lambda, 2\lambda, \dots, M\lambda$.
- Functions given by a matrix

$$\Psi = egin{pmatrix} \Phi^{(1)} & & & \ & \Phi^{(2)} & & \ & & & \ & & & \ddots & \ & & & & \Phi^{(M)} \end{pmatrix}$$

• Recall the single layer expression

$$\theta = \frac{2r}{\sqrt{N^2 - 1}} \; .$$

• The dimension of this space is

$$d = \sum_{N=1}^{M} N^2 = rac{1}{6} M(M+1)(2M+1) \; .$$

.

< 口 > < 団 > < 臣 > < 臣 >

THE/A fuzzy onion

ullet Recall the standard three-dimensional integration of a function ψ

$$\int d^3x \ \psi = \int r^2 \ dr \int d\Omega \ \psi \ .$$

• We change this to a version discrete in the radial direction

$$\sum_{N=1}^{M} (\lambda N)^2 \lambda \frac{4\pi}{N} \operatorname{tr}_N \Phi^{(N)} = \operatorname{Tr} \left(4\pi \lambda^2 r \Psi \right)$$

where we have defined the radial distance matrix r as

$$r = \begin{pmatrix} \lambda \ \mathbb{1}_{1 \times 1} & & & \\ & 2\lambda \ \mathbb{1}_{2 \times 2} & & & \\ & & & 3\lambda \ \mathbb{1}_{3 \times 3} & & \\ & & & & \ddots & \\ & & & & & M\lambda \ \mathbb{1}_{M \times M} \end{pmatrix}$$

• The angular part of the kinetic term defined layerwise

$$\mathcal{K}_{L}\Psi = r^{-2} \begin{pmatrix} \mathcal{K}^{(1)}\Phi^{(1)} & & & \\ & \mathcal{K}^{(2)}\Phi^{(2)} & & & \\ & & \mathcal{K}^{(3)}\Phi^{(3)} & & \\ & & & \ddots & \\ & & & & \mathcal{K}^{(M)}\Phi^{(M)} \end{pmatrix}$$

• What about the radial direction?

.

イロト イヨト イヨト イヨト

$$\text{for } \Phi^{(N)} = \sum_{l=0}^{N-1} \sum_{m=-l}^{l} c_{lm}^{(N)} Y_{lm}^{(N)} , \ \Phi^{(N+1)} = \sum_{l=0}^{N} \sum_{m=-l}^{l} c_{lm}^{(N+1)} Y_{lm}^{(N+1)}$$
$$\mathcal{D} : \Phi^{(N+1)} \to \Phi^{(N)} = \sum_{l=0}^{N-1} \sum_{m=-l}^{l} c_{lm}^{(N)} Y_{lm}^{(N)} , \ c_{lm}^{(N)} = c_{lm}^{(N+1)} \text{ for } l \leq N-1$$
$$\mathcal{U} : \Phi^{(N)} \to \Phi^{(N+1)} = \sum_{l=0}^{N} \sum_{m=-l}^{l} c_{lm}^{(N+1)} Y_{lm}^{(N+1)} , \ \begin{cases} c_{lm}^{(N+1)} = c_{lm}^{(N)} \text{ for } l \leq N-1 \\ c_{lm}^{(N+1)} = 0 \end{cases}$$

×

.

$\rm THE/A$ fuzzy onion

• Define the first and second radial derivatives

$$\partial_r^{(N)} \Phi^{(N)} = \frac{\mathcal{D} \Phi^{(N+1)} - \mathcal{U} \Phi^{(N-1)}}{2\lambda} ,$$

$$\partial_r^{2(N)} \Phi^{(N)} = \frac{\mathcal{D} \Phi^{(N+1)} - 2\Phi^{(N)} + \mathcal{U} \phi^{(N-1)}}{\lambda^2}$$

• Define the radial part of Laplacian

$$\mathcal{K}_{R}\Psi = \partial_{r}^{2}\Psi + 2r^{-1}\partial_{r}\Psi , \ \partial_{r}\Psi = \begin{pmatrix} \partial_{r}^{(1)}\Phi^{(1)} & & \\ & \partial_{r}^{(2)}\Phi^{(2)} & & \\ & & \partial_{r}^{(3)}\Phi^{(3)} & \\ & & & \ddots & \\ & & & & \partial_{r}^{(M)}\Phi^{(M)} \end{pmatrix}$$

Recall

$$\frac{(x+\varepsilon)-f(x-\varepsilon)}{2\varepsilon} \to f'(x), \ \frac{f(x+\varepsilon)-2f(x)+f(x-\varepsilon)}{\varepsilon^2} \to f''(x), \ \Delta = r^{-2}\partial_r r^2 \partial_r + \Delta_\Omega$$

.

.

$\rm THE/A$ fuzzy onion

• Define the first and second radial derivatives

$$\partial_r^{(N)} \Phi^{(N)} = \frac{\mathcal{D} \Phi^{(N+1)} - \mathcal{U} \Phi^{(N-1)}}{2\lambda} ,$$

$$\partial_r^{2(N)} \Phi^{(N)} = \frac{\mathcal{D} \Phi^{(N+1)} - 2\Phi^{(N)} + \mathcal{U} \phi^{(N-1)}}{\lambda^2} .$$

• Define the radial part of Laplacian

$$\mathcal{K}_{R}\Psi = \partial_{r}^{2}\Psi + 2r^{-1}\partial_{r}\Psi , \ \partial_{r}\Psi = \begin{pmatrix} \partial_{r}^{(1)}\Phi^{(1)} & & \\ & \partial_{r}^{(2)}\Phi^{(2)} & & \\ & & \partial_{r}^{(3)}\Phi^{(3)} & \\ & & & \ddots & \\ & & & & \partial_{r}^{(M)}\Phi^{(M)} \end{pmatrix}$$

• Laplace operator for the/a fuzzy onion

$$\mathcal{K} = \mathcal{K}_R + \mathcal{K}_L$$
.

.

Some onion physics

JURAJ TEKEL FUZZY ONION STRIKES BACK

æ

メロン メタン メヨン メヨン

Quantum mechanical problems

JURAJ TEKEL FUZZY ONION STRIKES BACK

イロト イヨト イヨト イヨト

QUANTUM MECHANICAL PROBLEMS - HYDROGEN ATOM

Hamiltonian

$$H = -\frac{\hbar^2}{2m_e}\mathcal{K} - qr^{-1}$$

with $\hbar = m_e = q = 1$, i.e. eigenvalue problem

$$H\Psi = E\Psi$$
 .

• We can express H as a matrix acting on vectors

$$\mathcal{C}^{\mathsf{T}} = \left(c_{00}^{(1)}, c_{00}^{(2)}, c_{1-1}^{(2)}, c_{10}^{(2)}, c_{11}^{(2)}, \ldots\right)^{\mathsf{T}}$$

with c's from the decomposition

$$\Phi^{(N)} = \sum_{l=0}^{N-1} \sum_{m=-l}^{l} c_{lm}^{(N)} Y_{lm}^{(N)} .$$

• Hamiltonian is now expressed as a $d \times d$ matrix

$$H = -\frac{1}{2}K - r^{-1}$$

- We can make restriction to I = 0 sector thanks to rotational symmetry to make it $M \times M$.
- Look for eigenvalues of H.

M=50 and $\lambda=1$

	n	1	2	3	4	5	6
E		-0.4142					
E	l λn	-0.4142	-0.1180	-0.0541	-0.0307	-0.0198	-0.0138
E_n^C	.QM	-0.5	-0.125	-0.0556	-0.0313	-0.02	-0.0139

・ロト ・四ト ・ヨト ・ヨト

QUANTUM MECHANICAL PROBLEMS - HYDROGEN ATOM

n = 1

Μ	$\lambda = 0.1$	$\lambda=0.01$	$\lambda=0.001$
50	$6.24 \cdot 10^{-3}$	N/A	N/A
100	$1.27 \cdot 10^{-6}$	N/A	N/A
200	$1.97 \cdot 10^{-13}$	2.81	N/A
400	$1.56 \cdot 10^{-13}$	$3.41 \cdot 10^{-2}$	N/A
800	$5.22 \cdot 10^{-13}$	$4.9 \cdot 10^{-5}$	N/A
1600	$4.8 \cdot 10^{-14}$	$1.13 \cdot 10^{-11}$	N/A
3200	$9.02 \cdot 10^{-15}$	$5.75 \cdot 10^{-12}$	$1.26 \cdot 10^{-1}$

3

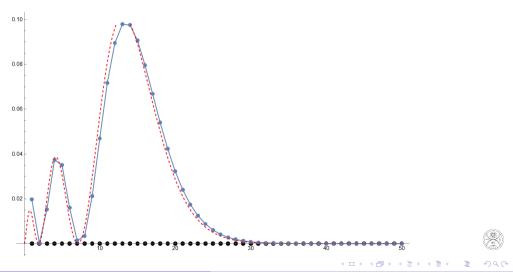
イロン イロン イヨン イヨン

QUANTUM MECHANICAL PROBLEMS – HYDROGEN ATOM

- It seems that in the limit $M o \infty$ we recover the construction of [Prešnajder, Gáliková, Kováčik 2015].
- We can go further and look at the wavefunctions.

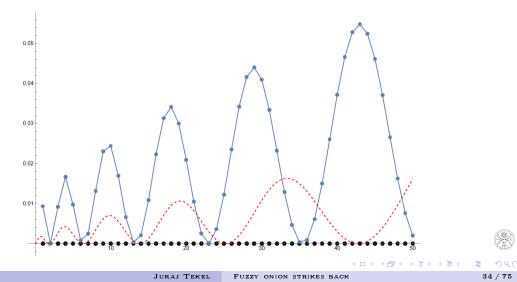
QUANTUM MECHANICAL PROBLEMS - HYDROGEN ATOM

 $M = 50, \lambda = 1, n = 3$

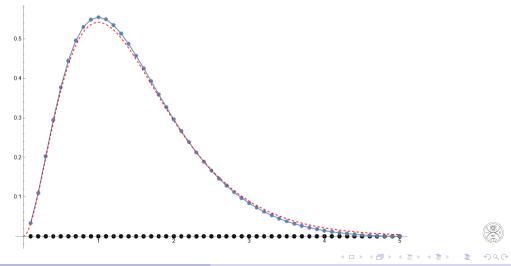


QUANTUM MECHANICAL PROBLEMS - HYDROGEN ATOM

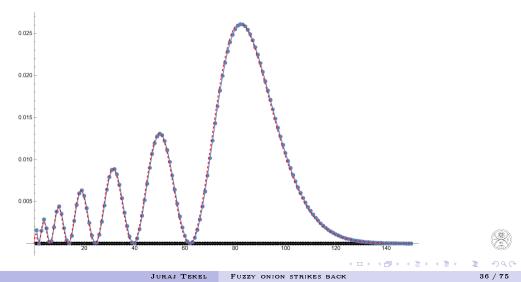
 $M = 50, \lambda = 1, n = 6$



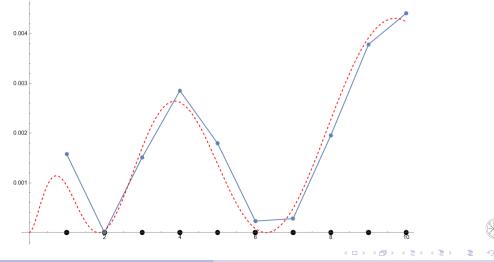
 $M = 50, \lambda = 0.1, n = 1$



 $M = 150, \lambda = 1, n = 7$



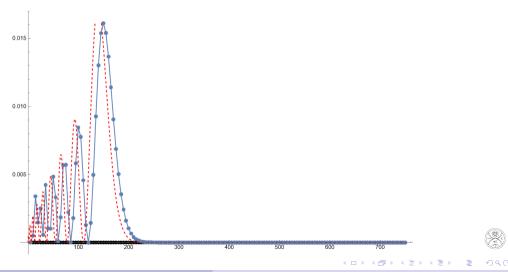
 $M = 150, \lambda = 1, n = 7$



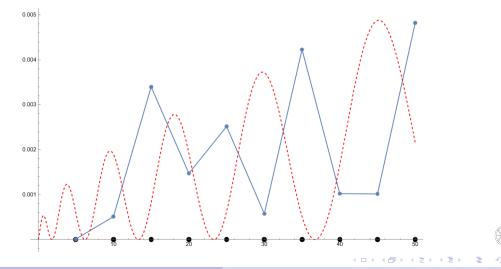
 $M = 50, \lambda = 5, n = 2$ 0.20 0.15 0.10 0.05 5 i < A JURAJ TEKEL FUZZY ONION STRIKES BACK

38 / 75

 $M = 150, \lambda = 5, n = 9$



 $M = 150, \lambda = 5, n = 9$



JURAJ TEKEL

• The same Hamiltonian with

$$\mathsf{H} = -\frac{1}{2}\mathsf{K} + \frac{1}{2}r^2$$

describes three dimensional harmonic oscillator.

ullet This can not be solved analytically in the previous approach. M=100 , $\,\lambda=1$, $\,l=0,1$

n	0	1	2	3	4	5
En	1.4984	3.4922	5.4809	7.4645	9.4431	11.4166
E_n^{CQM}	1.5	3.5	5.5	7.5	9.5	11.5

n	0	1	2	3	4	5
En	2.5005	4.4979	6.491	8.4795	10.4632	12.4422
E_n^{CQM}	2.5	4.5	6.5	8.5	10.5	12.5

- In principle any potential can be analyzed exactly.
- The only problem is how to recover the limit of classical (and infinite) space.

(D) (A) (A) (A) (A)

- Fuzzy onion is a regularization of a spherical cavity. In the limit $M \to \infty, \lambda \to 0, M\lambda \to R$ we recover continuous cavity of radius R.
- In chemical literature this models atoms under pressure. [refs in [2]]

(D) (A) (A) (A) (A)

S orbital [2]

$r_0 \setminus M$	∞ as a reference	100	1000	10000
0.5	14.747970030350280	14.406037740780091	14.713401904425357	14.744509454556344
1	2.373990866103664	2.300565723232022	2.366554263053759	2.373246264259394
3	-0.423967287733454	-0.427225951376656	-0.424313148630359	-0.424002075109953
10	-0.499999263281525	-0.498755577647694	-0.499986776756742	-0.499999139626354
20	-0.4999999999999994	-0.495097567963923	-0.499950009998093	-0.499999499991737

э

イロト イロト イヨト イヨト

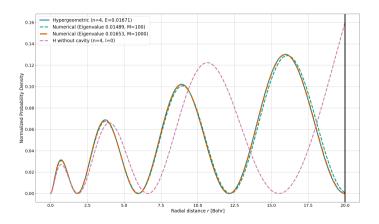
P orbitals [2]

$r_0 \setminus M$	∞ as a reference	100	1000	10000
0.5	72.672039190463577	71.154357099658682	72.520341020495181	72.656870688127995
1	16.570256093469736	16.206670008470599	16.533894253548414	16.566620019574611
3	1.111684737436364	1.078613638687640	1.108361257317863	1.111352239065044
10	-0.112806210295841	-0.113415153701996	-0.112878188197422	-0.112813520180460
20	-0.124987114312918	-0.124677720985899	-0.124984183578311	-0.124987102906836

$r_0 \setminus M$	∞ as a reference	100	1000	10000
0.5	36.658875880189399	35.160313617726310	36.505181049931707	36.643467765541793
1	8.223138316160864	7.866678332336676	8.186560245882733	8.219471198758979
3	0.481250312526643	0.449669060926531	0.478000341365532	0.480924423219991
10	-0.118859544853860	-0.119527885630338	-0.118934647870327	-0.118867073891238
20	-0.124994606647078	-0.124692831261815	-0.124995259742673	-0.124994633404707

QUANTUM MECHANICAL PROBLEMS – FUZZY CAVITY

[2]



JURAJ TEKEL

イロン イロン イヨン イヨン 三日

Scalar field theory

JURAJ TEKEL FUZZY ONION STRIKES BACK

æ

イロト イロト イヨト イヨト

• Defined by the (euclidean) action

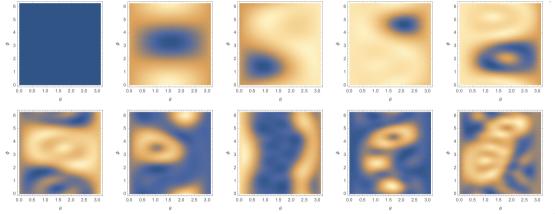
$$S[\Psi] = 4\pi\lambda^2 \mathrm{Tr}\left[r\left(a \ \Psi \mathcal{K} \Psi + b \ \Psi^2 + c \ \Psi^4
ight)
ight]$$

and expectation values

$$\langle {\cal O}(\Psi)
angle = {1\over Z} \int d\Psi e^{-S(\Psi)} {\cal O}(\Psi) \;,\; d\Psi = \prod_{N=1}^M d\Phi^{(N)} \;.$$

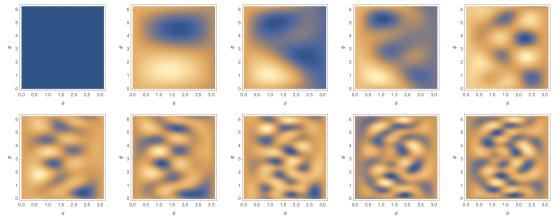
• Hybrid Monte Carlo evolution of a field configuration.[1]

SCALAR FIELD THEORY



JURAJ TEKEL FUZZY ONION STRIKES BACK

SCALAR FIELD THEORY



JURAJ TEKEL FUZZY ONION STRIKES BACK

• Radial part of the Laplacian couples the oscillations in also in radial direction.

イロン イヨン イヨン イヨン

- Radial part of the Laplacian couples the oscillations in also in radial direction.
- What about symmetry breaking? How if at all do the phases on layers align? Is the derivative enough or do we need something further?

< ロ > < 同 > < 回 > < 回 >

Different Laplacians

JURAJ TEKEL FUZZY ONION STRIKES BACK

э

メロト メタト メヨト メヨト

DIFFERENT LAPLACIANS

• Recall that the definition of Laplacian using

$$\begin{split} \partial_r^{(N)} \Phi^{(N)} &= \frac{\mathcal{D} \Phi^{(N+1)} - \mathcal{U} \Phi^{(N-1)}}{2\lambda} ,\\ \partial_r^{2(N)} \Phi^{(N)} &= \frac{\mathcal{D} \Phi^{(N+1)} - 2\Phi^{(N)} + \mathcal{U} \phi^{(N-1)}}{\lambda^2} ,\\ \text{and} \\ \mathcal{K}_R \Psi &= \partial_r^2 \Psi + 2r^{-1} \partial_r \Psi \end{split}$$

was in some sense arbitrary.

イロト イヨト イヨト イヨト

DIFFERENT LAPLACIANS

• Recall that the definition of Laplacian using

$$\begin{split} \partial_r^{(N)} \Phi^{(N)} &= \frac{\mathcal{D} \Phi^{(N+1)} - \mathcal{U} \Phi^{(N-1)}}{2\lambda} ,\\ \partial_r^{2(N)} \Phi^{(N)} &= \frac{\mathcal{D} \Phi^{(N+1)} - 2\Phi^{(N)} + \mathcal{U} \phi^{(N-1)}}{\lambda^2} ,\\ \text{and} \\ \mathcal{K}_R \Psi &= \partial_r^2 \Psi + 2r^{-1} \partial_r \Psi \end{split}$$

was in some sense arbitrary.

• What are consequences of other choices? Any preferred choice?

$$\mathcal{K}_R \frac{1}{r} \sim \delta$$

Fuzzy radial coordinate

JURAJ TEKEL FUZZY ONION STRIKES BACK

54 / 75

э

イロト イヨト イヨト イヨト

- Angular coordinates on layers are properly fuzzy. The radial coordinate is discrete and lattice-like.
- This calls for improvement. Several possible ways how to do this.

< ロ > < 同 > < 回 > < 回 >

[Kovacik, Prekrat, JT work in progress]

$$S\phi^{(N)} = \frac{\phi^{(N)} + \sum_{i} \alpha_{i} \left(\mathcal{U}^{i} \phi^{(N-i)} + \mathcal{D}^{i} \phi^{(N+i)} \right)}{1 + \sum_{i} \alpha_{i}}$$

• This procedure simply smears the values of fields $\Phi^{(N)}$ over neighboring layers.

・ロ・ ・ 日・ ・ ヨ・

[Kovacik, Prekrat, JT work in progress]

$$S\phi^{(N)} = \frac{\phi^{(N)} + \sum_{i} \alpha_{i} \left(\mathcal{U}^{i} \phi^{(N-i)} + \mathcal{D}^{i} \phi^{(N+i)} \right)}{1 + \sum_{i} \alpha_{i}}$$

- This procedure simply smears the values of fields $\Phi^{(N)}$ over neighboring layers.
- What does this do?

FUZZY RADIAL COORDINATE - STRING STATES

 \bullet Functions on the fuzzy sphere are matrices acting on ${\cal H}$

$$\Phi = \sum_{m,n=-s}^{s} \Phi_{mn} \ket{m} ig\langle n
vert \; .$$

 \bullet We can express the matrix Φ in a similar fashion using the coherent states

$$\Phi = \left(rac{N}{4\pi}
ight)^2 \int d^2x\, d^2y\, \phi(x,y) \ket{x}ig\langle y \mid \; .$$

• Objects [Iso, Kawai, Kitazawa 2000; Steinacker 2016; Steinacker, JT '22]

$$|x\rangle \langle y| =: \begin{vmatrix} x \\ y \end{pmatrix}$$

form a basis of functions on the fuzzy sphere and we will call them the string modes.

FUZZY RADIAL COORDINATE - STRING STATES

- In onion construction, for x and y on the same layer these for matrices $\Phi^{(N)}$.
- For x and y on different layers these naturally fit into the off-diagonal blocks of

.

(D) (A) (A) (A) (A)

FUZZY RADIAL COORDINATE - STRING STATES

- In onion construction, for x and y on the same layer these for matrices $\Phi^{(N)}$.
- For x and y on different layers these naturally fit into the off-diagonal blocks of

.

- What is the effect of off-diagonal blocks? What is their correct dynamics? Is this with or instead of the radial derivative?
- Can we define physics of the onion in terms of the whole matrix Ψ ?

• A simplified model of two spheres with the same N

$$\Psi_F = egin{pmatrix} \phi_1 & A \ A^\dagger & \phi_2 \end{pmatrix} \; .$$

• We take A to be identity and get

$$\operatorname{Tr}\left[\frac{1}{2}r\Psi^{2}+\Psi^{4}\right]=\frac{1}{2}(r+4)\operatorname{tr}_{N}\left(\Phi_{1}^{2}\right)+\operatorname{tr}_{N}\left(\Phi_{1}^{4}\right)+\frac{1}{2}(r+4)\operatorname{tr}_{N}\left(\Phi_{2}^{2}\right)+\operatorname{tr}_{N}\left(\Phi_{2}^{4}\right)+4\operatorname{tr}_{N}\left(\Phi_{1}\Phi_{2}\right)$$

• This is a solvable two matrix model related to Ising model.

< ロ > < 同 > < 回 > < 回 >

- There is a different and more mathematical description of noncommutative spaces.
- Uses notion of spectral triples

 $(\mathcal{A},\mathcal{D},\mathcal{H})$.

• Construction for fuzzy sphere available, construction of a lattice like set of points available. [Barrett '15]

- There is a different and more mathematical description of noncommutative spaces.
- Uses notion of spectral triples

 $(\mathcal{A},\mathcal{D},\mathcal{H})$.

- Construction for fuzzy sphere available, construction of a lattice like set of points available. [Barrett '15]
- Can we put these two together? Any other (better) version for radial direction? Does this lead to any canonical structures on the onion?

Onion as a spacetime solution in matrix models

Image: A 1 = 1

ONION AS A SPACETIME SOLUTION IN MATRIX MODELS

• Matrix models formulations of string theory usually have action along the lines

$$S = \frac{1}{g^2} \operatorname{Tr} \left[-[X_a, X_b][X^a, X^b] + \ldots \right]$$

with matrices X_a describing spacetime degrees of freedom. [Steinacker '24]

• Equations of motion

 $[X_a, [X^a, X_b]] = \dots$

lead to solutions in form of fuzzy spaces. The simplest case is set of fuzzy spheres of various radii

$$X_{a} = \begin{pmatrix} L_{a}^{(N_{1})} & & \\ & L_{a}^{(N_{2})} & & \\ & & \ddots & \\ & & & \ddots & \\ & & & & L_{a}^{(N_{M})} \end{pmatrix}$$

Hmmmmmmmm.

ONION AS A SPACETIME SOLUTION IN MATRIX MODELS

• Matrix models formulations of string theory usually have action along the lines

$$S = \frac{1}{g^2} \operatorname{Tr} \left[-[X_a, X_b][X^a, X^b] + \ldots \right]$$

with matrices X_a describing spacetime degrees of freedom. [Steinacker '24]

• Equations of motion

 $[X_a, [X^a, X_b]] = \dots$

lead to solutions in form of fuzzy spaces. The simplest case is set of fuzzy spheres of various radii

$$X_{a} = \begin{pmatrix} L_{a}^{(N_{1})} & & \\ & L_{a}^{(N_{2})} & & \\ & & \ddots & \\ & & & \ddots & \\ & & & & L_{a}^{(N_{M})} \end{pmatrix}$$

- Hmmmmmmmm.
- What does this tell us about the construction of fuzzy onion? What about the off-diagonal blocks?

Model of dynamical spacetime

JURAJ TEKEL FUZZY ONION STRIKES BACK

イロト イポト イヨト イヨ

- In the construction λ is a constant. Does not need be and in principle we could have $\lambda(r)$ and a deformed onion curvature.
- This deformation does not need to be constant in time.
- ullet Perhaps also possibility of making λ dependent on the angular direction.

(D) (A) (A) (A) (A)

- In the construction λ is a constant. Does not need be and in principle we could have $\lambda(r)$ and a deformed onion curvature.
- This deformation does not need to be constant in time.
- ullet Perhaps also possibility of making λ dependent on the angular direction.
- What kind of dynamics of space can we define? What is the effect on physics happening on the onion?

・ロト ・ 同ト ・ ヨト ・ ヨト

- If we interpret the radial coordinate as time, fuzzy onion is a model of expanding universe with quantized time.
- Each time step one cell of spacetime is created.

・ロト ・ 同ト ・ ヨト ・ ヨト

- If we interpret the radial coordinate as time, fuzzy onion is a model of expanding universe with quantized time.
- Each time step one cell of spacetime is created.
- What are the consequences?

Phenomenology of infalling matter

JURAJ TEKEL FUZZY ONION STRIKES BACK

- Properties of black holes in quantum spacetimes are different, no singularity present.
- We can analyze collapse of matter creating a black hole by writing the corresponding equations.

Image: A math a math

- Properties of black holes in quantum spacetimes are different, no singularity present.
- We can analyze collapse of matter creating a black hole by writing the corresponding equations.
- Is the collapse stopped by outward pressure? What is the dissipation mechanism? What is fate of the horizon? Any bounces?
- Comparison with numerical results in loop quantum gravity. [Modesto '08; Husain, Kelly, Santacruz, Wilson-Ewing '22]

Classical applications

JURAJ TEKEL FUZZY ONION STRIKES BACK

э

イロト イヨト イヨト イヨト

- The cells of the "quantum" space need to to arise from fundamental physics.
- Flow of granular materials or heat flow in such materials. [Saitou, Bamba, Sugamot '14]
- Structure of neutron stars.
- Applicable in situations where granularity is due to lack of precise knowledge atmospheric physics.

< ロ > < 同 > < 回 > < 回 >

Take home message and 2do list

JURAJ TEKEL FUZZY ONION STRIKES BACK

イロン イ団 と イヨン イヨン

- Quantization of gravity seems to lead to quantized spacetimes.
- Fuzzy onion is a three dimensional model of such a space.
- It is rather straightforward to work with so it is a nice toy model / playground to check the consequences of quantum structure.

医子宫 医白

- Quantization of gravity seems to lead to quantized spacetimes.
- Fuzzy onion is a three dimensional model of such a space.
- It is rather straightforward to work with so it is a nice toy model / playground to check the consequences of quantum structure.
- Symmetry breaking in field theory, different Laplacians, fuzzy radial coordinate, spacetime solution in matrix models, model of dynamical spacetime, phenomenology of infalling matter, classical applications, classical space with a fuzzy region close to origin.

・ロト ・ 同ト ・ ヨト ・ ヨト

- Quantization of gravity seems to lead to quantized spacetimes.
- Fuzzy onion is a three dimensional model of such a space.
- It is rather straightforward to work with so it is a nice toy model / playground to check the consequences of quantum structure.
- Symmetry breaking in field theory, different Laplacians, fuzzy radial coordinate, spacetime solution in matrix models, model of dynamical spacetime, phenomenology of infalling matter, classical applications, classical space with a fuzzy region close to origin.
- We do have PhD. and postdoc positions related to this and more in Bratislava.

< ロ > < 同 > < 回 > < 回 >

- Quantization of gravity seems to lead to quantized spacetimes.
- Fuzzy onion is a three dimensional model of such a space.
- It is rather straightforward to work with so it is a nice toy model / playground to check the consequences of quantum structure.
- Symmetry breaking in field theory, different Laplacians, fuzzy radial coordinate, spacetime solution in matrix models, model of dynamical spacetime, phenomenology of infalling matter, classical applications, classical space with a fuzzy region close to origin.
- We do have PhD. and postdoc positions related to this and more in Bratislava.

Thank you for your attention!

(_) (_) (_) (_) (_)

- ◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - ∽��♡

If time permits

JURAJ TEKEL FUZZY ONION STRIKES BACK

Ξ.

・ロン ・回と ・ヨン ・ヨン

FIELD THEORY AS A VECTOR MODEL

- Reformulation in terms of vector ${\mathcal C}$ and operators as d imes d matrices.
- Is this useful for the field theory in any way?
- Action turns out to be

$$S = 4\pi \operatorname{Tr} r \left(a\Psi \mathcal{K}\Psi + b\Psi^2 + c\Psi^4 \right) =$$

= $\frac{1}{2}\mathcal{C} \cdot \mathsf{P}^{-1} \cdot \mathcal{C} + 4\pi\lambda^3 \sum_{N=1}^{M} cN \left[\frac{1}{4N} \left(\mathcal{C}^{(N)} \cdot \mathcal{C}^{(N)} \right)^2 + \frac{1}{8} \left(\mathcal{C}^{(N)} \cdot \mathsf{G}_a^{(N)} \cdot \mathcal{C}^{(N)} \right)^2 \right] ,$
= $\frac{1}{4\pi\lambda^2} \left(2ar\mathsf{K} + 2br \right)^{-1}$

where

$$\mathbf{G}_{a}^{(N)} = \left(\begin{array}{cc} 0 & (v_{a}^{(N)})^{T} \\ v_{a}^{(N)} & D_{a}^{(N)} \end{array}\right) \ , \ \left(D_{a}^{(N)}\right)_{ij} = 2 \operatorname{tr}_{N}\left(\left\{T_{i}^{(N)}, T_{j}^{(N)}\right\} T_{a}^{(N)}\right) \ , \ (v_{a}^{(N)})_{b} = \sqrt{\frac{2}{N}} \delta_{ab} \ .$$

・ロ・ ・ 日・ ・ ヨ・

• What are consequences of writing

$$S = rac{1}{2} \mathcal{C} \cdot \mathsf{P}^{-1} \cdot \mathcal{C} + 4\pi c \lambda^3 \left[rac{1}{4} (\mathcal{C} \cdot \mathcal{C})^2 + rac{1}{8} (\mathcal{C} \cdot \mathsf{G}_{\mathcal{A}} \cdot \mathcal{C})^2
ight]$$

instead of

$$S = \frac{1}{2}\mathcal{C} \cdot \mathsf{P}^{-1} \cdot \mathcal{C} + 4\pi\lambda^{3} \sum_{N=1}^{M} cN \left[\frac{1}{4N} \left(\mathcal{C}^{(N)} \cdot \mathcal{C}^{(N)} \right)^{2} + \frac{1}{8} \left(\mathcal{C}^{(N)} \cdot \mathsf{G}_{\mathsf{a}}^{(N)} \cdot \mathcal{C}^{(N)} \right)^{2} \right]?$$

э