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Take home message
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Take home message

Quantization of gravity seems to lead to quantized spacetimes.

Fuzzy spaces are examples of such spacetimes.

Plenty of interesting things happen on spaces with quantum structure.

Physics on such spaces is described by random matrix ensembles.
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Quick motivation
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Quantum structure of spacetime

We need a quantum theory of gravity.

Quantization of general relativity leads to a nonrenormalizable theory.

We have reasons to believe that future theory of quantum gravity will have a di�erent notion of
spacetime.
No distinction between points under certain length scales. [Hossenfelder 1203.6191]

Reasons:

gravitational Heisenberg microscope,
instability of quantum gravitational vacuum, [Doplicher, Fredenhagen, Roberts '95]
emergent spacetimes.

Fuzzy spaces are examples of such spacetimes.
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Fuzzy spaces
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Fuzzy spaces

Regularization of in�nities in the standard QFT.
[Heisenberg ∼1930; Snyder 1947, Yang 1947]

Regularization of �eld theories for numerical simulations.
[Panero 2016]

An e�ective description of the open string dynamics in a magnetic background in the low energy
limit.
[Seiberg Witten 1999; Douglas, Nekrasov 2001]

Solutions of various matrix formulations of the string theory (IKKT, BFSS, BNM).
[Steinacker 2013]

Geometric uni�cation of the particle physics and theory of gravity.
[van Suijlekom 2015]

An e�ective description of various systems in a certain limit (eg. QHE).
[Karabali, Nair 2006]

Toy models of spaces with discrete quantum structure, which is expected to arise in quantum
theory of gravity.
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Fuzzy spaces

Fuzzy sphere [Hoppe '82; Madore '92; Grosse, Klim£ík, Pre²najder 1990s]

Functions on the usual sphere are given by

f (θ, φ) =
∞∑

l=0

l∑
m=−l

clmYlm(θ, φ) ,

where Ylm are the spherical harmonics

∆Ylm(θ, φ) = l(l + 1)Ylm(θ, φ) .

To describe features at a small length scale we need Ylm's with a large l .
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Fuzzy spaces

Image taken from http://principles.ou.edu/mag/earth.html
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Fuzzy spaces

If we truncate the possible values of l in the expansion

f =
L∑

l=0

l∑
m=−l

clmYlm(θ, φ) ,

we will not be able to see any features of functions under certain length scales.

Points on the sphere (as δ-functions) cease to exist.

Expressions de�ned in this way are not closed under multiplication.
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Fuzzy spaces
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Fuzzy spaces

Number of independent functions with l ≤ L is (L + 1)2, the same as the number of N × N
hermitian matrices.

We have a map ϕ : Ylm → M and we de�ne the product

Ylm ? Yl′m′ := ϕ−1 (ϕ (Ylm)ϕ (Yl′m′)) .

Opposing to some lattice discretization this space still possess a full rotational symmetry.

In the limit N or L→∞ we recover the original sphere.
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Fuzzy spaces - an alternative construction

For the fuzzy sphere S2
N we de�ne

x̂i x̂i = r2 , [x̂i , x̂j ] = iθεijk x̂k , i , j = 1, 2, 3 .

The conditions can be realized as an N = 2s + 1 dimensional representation of SU(2)

x̂i =
2r√

N2 − 1
Li , θ =

2r√
N2 − 1

∼ 2

N
, ρ2 =

4r2

N2 − 1
s(s + 1) = r2 .

The group SU(2) still acts on x̂i 's and this space enjoys a full rotational symmetry. Most
importantly nonzero commutators imply uncertainty relations for positions ∆xi ∆xj 6= 0.

In a similar fashion it is possible to construct an analogous deformation of the plane

x̂i , x̂j ] = iθεij = iθij , i = 1, 2 .

Construction uses the ?-product

f ? g = f e
i
2

~∂ θ ~∂ g = fg +
iθµν

2

∂f

∂xµ
∂g

∂xν
+ · · ·
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Fuzzy spaces

We have divided the sphere into N cells. Function on the fuzzy sphere is given by a matrix M and
the eigenvalues of φ represent the values of the function on these cells.

However there are no sharp boundaries between the pieces and everything is blurred, or fuzzy.
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Fuzzy �eld theories
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Fuzzy scalar field theory

Commutative euclidean theory of a real scalar �eld is given by an action

S(Φ) =

∫
d2x

[
1

2
Φ∆Φ +

1

2
m2Φ2 + V (Φ)

]
and path integral correlation functions

〈F 〉 =

∫
dΦF (Φ)e−S(Φ)∫

dΦ e−S(Φ)
.

We construct the noncommutative theory as an analogue with

�eld → matrix,
functional integral → matrix integral,
spacetime integral → trace,
derivative → Li commutator.
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Fuzzy scalar field theory

Commutative

S(Φ) =

∫
d2x

[
1

2
Φ∆Φ +

1

2
m2Φ2 + V (Φ)

]
,

〈F 〉 =

∫
dΦF (Φ)e−S(Φ)∫

dΦ e−S(Φ)
.

Noncommutative (for S2
F )

S(M) =
4πR2

N
Tr

[
1

2
M

1

R2
[Li , [Li ,M]] +

1

2
m2M2 + V (M)

]
,

〈F 〉 =

∫
dM F (M)e−S(M)∫

dM e−S(M)
.

[Balachandran, Kürkçüo§lu, Vaidya 2005; Szabo 2003; Ydri 2016]
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Phases of fuzzy field theories

S [φ] =

∫
d2x

(
1

2
∂i Φ∂i Φ +

1

2
m2Φ2 +

λ

4!
Φ4

)

[Glimm, Ja�e 1974; Glimm, Ja�e, Spencer 1975; Chang 1976]

[Loinaz, Willey 1998; Schaich, Loinaz 2009]
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Phases of fuzzy field theories

The phase diagram of noncommutative �eld theories has one more phase. It is a non-uniform order
phase, or a striped phase.
[Gubser, Sondhi 2001; Chen, Wu 2002]

In this phase, the �eld does not oscillate around one given value in the whole space. Translational
symmetry is spontaneously broken.

This has been established in numerous numerical works for variety di�erent spaces.
[Martin 2004; García Flores, Martin, O'Connor 2006, 2009; Panero 2006, 2007; Ydri 2014; Bietenholz, F. Hofheinz,

Mejía-Díaz, Panero 2014; Mejía-Díaz, Bietenholz, Panero 2014; Medina, Bietenholz, D. O'Connor 2008; Bietenholz,

Hofheinz, Nishimura 2004; Lizzi, Spisso 2012; Ydri, Ramda, Rouag 2016; Ková£ik, O'Connor 2018]

[Panero 2015]
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Phases of fuzzy field theories

[Mejía-Díaz, Bietenholz, Panero 2014] for R2
θ
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S [M] = Tr

(
1

2
M[Li , [Li ,M]] +

1

2
m2M2 + gM4

)

S =

∫
d2x

(
1

2
∂µφ ? ∂

µφ+
m2

2
φ ? φ +

λ

4!
φ ? φ ? φ ? φ

)
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Fuzzy scalar field theory - UV/IR mixing

The key property of the noncommutative �eld theories is the UV/IR mixing phenomenon, which
arises as a result of the nonlocality of the theory.
[Minwalla, Van Raamsdonk, Seiberg 2000; Vaidya 2001; Chu, Madore, Steinacker 2001]

Very energetic �uctuations (UV physics) have consequences at large distances (IR physics).

In terms of diagrams di�erent properties of planar and non-planar ones.
The (matrix) vertex is not invariant under permutation of incoming momenta.

Juraj Tekel Fuzzy field theories and matrix models 24 / 104



Fuzzy scalar field theory - UV/IR mixing

[Chu, Madore, Steinacker '01]

INP − IP =
N−1∑
j=0

2j + 1

j(j + 1) + m2

[
(−1)l+j+N−1

{
l s s
j s s

}
− 1

]

N →∞ limit of the e�ective action is di�erent from the standard S2 e�ective action.

The space (geometry) forgets where it came from, but the �eld theory (physics) remembers its
fuzzy origin.
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Fuzzy scalar field theory - UV/IR mixing

S =

∫
d2x

(
1

2
∂µφ ? ∂

µφ+
m2

2
φ ? φ +

λ

4!
φ ? φ ? φ ? φ

)
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Random matrices and fuzzy �eld theories
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Kinetic term effective action

Recall the action of the fuzzy scalar �eld theory

S(M) =
1

2
Tr (M[Li , [Li ,M]]) +

1

2
m2 Tr

(
M2
)

+ g Tr
(
M4
)
.

This is a particular case of a matrix model since we need∫
dM F (M)e−S(M) .

The large N limit of the model with the kinetic term is not well understood.
The key issue being that diagonalization M = U diag(λ1, . . . , λN )U† no longer straightforward.

Integrals like

〈F 〉 ∼
∫

dΛ

∫
dU F (λi ,U) e−N2[ 12 m2 1

N

∑
λ2i +g 1

N

∑
λ4i − 2

N2

∑
i<j log |λi−λj |]Seff (λi )+

× e−
1
2Tr(UΛU†[Li ,[Li ,UΛU†]]) .
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Perturbative calculation

e−N2Seff (Λ) =

∫
dU e−ε

1
2Tr(UΛU†[Li ,[Li ,UΛU†]])

Perturbative calculation of the integral show that the Seff contains products of traces of M.
[O'Connor, Sämann 2007; Sämann 2010]

The most recent result is
[Sämann 2015]

Seff (Λ) =
1

2

[
ε
1

2

(
c2 − c21

)
− ε2 1

24

(
c2 − c21

)2
+ ε4

1

2880

(
c2 − c21

)4]−
− ε4 1

3456

[ (
c4 − 4c3c1 + 6c2c

2
1 − 3c41

)
− 2

(
c2 − c21

)2 ]2−
− ε3 1

432

[
c3 − 3c1c2 + 2c31

]2
, where cn =

1

N

∑
i

λn
i

Standard treatment of such multitrace matrix model yields a very unpleasant behaviour
close to the origin of the parameter space.
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The �rst set of results
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Second moment approximation

For the free theory g = 0 the kinetic term just rescales the eigenvalues.
[Steinacker 2005]

There is a unique parameter independent e�ective action that reconstructs this rescaling.
[Polychronakos 2013]

Seff (Λ) =
1

2
log

(
c2

1− e−c2

)
+R .

Can be generalized to more a more complicated kinetic term K.
Introducing the asymmetry c2 → c2 − c21 we obtain a matrix model

S(M) =
1

2
F (c2 − c21 ) +

1

2
r Tr

(
M2
)

+ g Tr
(
M4
)
, F (t) = log

(
t

1− e−t

)
.

[�ubjaková, JT PoS CORFU2019; JT '14 '15 '18; �ubjaková, JT '20]
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Second moment approximation

[JT '18; �ubjaková, JT 2020]
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Beyond the second moment approximation

Taking a lesson from

S(M) =
1

2
F (c2 − c21 ) +

1

2
r Tr

(
M2
)

+ g Tr
(
M4
)
, F (t) = log

(
t

1− e−t

)
we could try to complete the perturbative action

Seff = F
[
c1, t2, t3, t4 − 2t22

]
=

1

2
log

(
t2

1− e−t2

)
+ F3(t3) + F4(t4 − 2t22 )

and
F4(y4) = α0 log(y4) + α1 +

α2
y4

+
α3
y24

+ . . . .

Any attempt to complete the perturbative expansion in the spirit of the non-perturbative model is
not capable of solving the above problems and does not lead to a phase diagram that is in
complete agreement with the numerical simulations. Most importantly the location of the triple
point can not be brought closer to the numerical value. [�ubjaková, JT '22]
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The second set of results
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Removal of stripes � fuzzy sphere

We would like to analyse the more complicated model

S = Tr

(
1

2
M[Li , [Li ,M]] + 12gMQM +

1

2
rM + gM4

)
,

where

QTlm = −

N−1∑
j=0

2j + 1

j(j + 1) + r

[
(−1)l+j+N−1

{
l s s
j s s

}
− 1

]
︸ ︷︷ ︸

Q(l)

Tlm .

This removes the UV/IR mixing in the theory, essentially by removing the problematic part by brute
force.
[Dolan, O'Connor, Pre²najder '01]
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Removal of stripes � fuzzy sphere

Operator Q can be expressed as a power series in C2 = [Li , [Li , ·]]

Q = q1C2 + q2C
2
2 + . . . .

As a starting point, it is interesting to see the phase structure of such simpli�ed model.
[O'Connor, Säman '07]

This is the case of
K = (1 + ag)C2 or K = (1 + ag)C2 + bg C 2

2 .
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Removal of stripes � fuzzy sphere

[�ubjaková, JT '20]

a = 3e3/2 , b = 0 .
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Removal of stripes � fuzzy sphere

[�ubjaková, JT '20]

a = 3e3/2 , b = −4,−2, 0, 2, 4 .
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Removal of stripes � GW model

Grosse-Wulkenhaar model ['00's]

SGW =

∫
d2x

(
1

2
∂µφ ? ∂

µφ+
1

2
Ω2(x̃µφ) ? (x̃µφ) +

m2

2
φ ? φ+

λ

4!
φ ? φ ? φ ? φ

)
,

x̃µ = 2(θ−1)µνx
ν .

This model is renormalizable.

Described by a matrix model in terms of truncated Heisenberg algebra.
[Buri¢, Wohlgenannt '10]
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Removal of stripes � GW model

The kinetic term becomes

1

2
∂µφ ? ∂

µφ→ [X ,M][X ,M] + [Y ,M][Y ,M] .

and the harmonic potential becomes

1

2
Ω2(x̃µφ) ? (x̃µφ)→ RM2 ,

where X ,Y ,R are �xed external matrices.

Interpretation of R coupling to the curvature of the space.

We are thus left with a matrix model with action

S = Tr (M[X , [X ,M]] + M[Y , [Y ,M]])− grTr
(
RM2

)
− g2Tr

(
M2
)

+ g4Tr
(
M4
)
.
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Removal of stripes � GW model

[Prekrat, Todorovi¢-Vasovi¢, Rankovi¢, Ková£ik, JT '22]

We concentrate on the e�ect of the curvature term and discard the kinetic term

S(M) = Tr (MKM)− Tr
(
grRM

2
)
− g2 Tr

(
M2
)

+ g4 Tr
(
M4
)
.

This leads to the angular integral ∫
dU egrTr(URU†Λ2) ,

which gives up to g4
r

S(Λ) =N Tr
(
− g2Λ2 + 8gr Λ2 + g4Λ4 − 32

3
g2

r Λ4
)

+
1024

45
g4

r Λ8+

+
32

3
g2

r

(
Tr
(

Λ2
))2

+
1024

15
g4

r

(
Tr
(

Λ4
))2
− 4096

45
g4

r Tr
(

Λ6
)
Tr
(

Λ2
)
.

This is a multitrace matrix model which can be analyzed.
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Removal of stripes � GW model

[Prekrat, Todorovi¢-Vasovi¢, Rankovi¢, Ková£ik, JT '22]
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Removal of stripes � GW model

[Prekrat, Todorovi¢-Vasovi¢, Rankovi¢, Ková£ik, JT '22]
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The third set of results
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String modes - representation of functions on S2
F

Functions on the fuzzy sphere are matrices acting on H

M =
s∑

m,n=−s

Mmn |m〉 〈n| .

We can express the matrix M in a similar fashion using the coherent states

M =

(
N

4π

)2 ∫
d2x d2y φ(x , y) |x〉 〈y | .

Objects [Iso, Kawai, Kitazawa 2000; Steinacker 2016]

|x〉 〈y | =:
∣∣∣xy)

form a basis of functions on the fuzzy sphere and we will call them the string modes.
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String modes - representation of functions on S2
F

∣∣∣xy)
Short modes for |x − y | < 1/

√
N can be shown to represent localized wave-packets with

momentum ∼ N|x − y |.
This is the classical regime.

Particularly string mode
∣∣∣xx) represents a maximal localized function around point x , i.e. a fuzzy

version of δ-function.
Functions with φ(x , y) = φ(x)δ(x , y) are local and become the standard functions on S2 in the
commutative limit.

Long modes for |x − y | > 1/
√
N are non-local and have no classical analogue.

This is the non-commutative regime.
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String modes - representation of operators on functions

A general representation of operators on matrices in terms of the string modes is straightforward

O =

(
N

4π

)4 ∫
d2x d2x ′ d2y d2y ′

∣∣∣xy)O(x , y ; x ′, y ′)
(

x′

y ′

∣∣∣ .
For the propagator

1

2+ m2
=

(
N

4π

)2 ∫
d2x d2y

∣∣∣xy)OD
P (x , y)

(
x
y

∣∣∣
where (

x
y

∣∣∣ 1

2+ m2

∣∣∣xy) ≈ 1
N2

4
|x − y |2 + m2

.

For any function of the 2 operator f (2) we have(
x
y

∣∣∣f (2)
∣∣∣xy) =

1

N

∑
k,l

(2k + 1)(2l + 1)(−1)l+k+2s f
(
k(k + 1)

){ l s s
k s s

}
e−l2/NPl (cosϑ)
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Loop computations and (non)locality in fuzzy QFT

[Steinacker 2016; Steinacker, JT 2022]

Feynman rules in string modes formalism - propagator

=
(

x2
y2

∣∣∣ 1

2+ m2

∣∣∣x1y1

)
≈ 1

N2

4
|x − y |2 + m2

δ(x1, x2)δ(y1, y2)

Compare with the pure matrix models propagator

∼ 1

m2
δilδjk .

and �eld theory action

S(M) =
4π

N
Tr

[
1

2
M[Li , [Li ,M]] +

1

2
m2M2 + g M4

]
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Loop computations and (non)locality in fuzzy QFT

Feynman rules in string modes formalism - vertex

= g 〈y1|x2〉 〈y2|x3〉 〈y3|x4〉 〈y4|x1〉 ≈ g δ(y1, x2)δ(y2, x3)δ(y3, x4)δ(y4, x1) .
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One-loop two-point function and effective action
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One-loop two-point function and effective action
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One-loop two-point function and effective action

We obtain the one-loop e�ective action for the classical �elds φ(x , y) = φ(x)δ(x , y)

Se� =

∫
dxφ(x)

1

2
(2+ µ2)φ(x) +

g

3

1

4π

∫
dx φ(x)2µ2N +

+
g

6

(
N

4π

)2 ∫
dx dy φ(x)φ(y)

1
N2

4
|x − y |2 + m2

.

It this is equivalent to the previous formula, but with a di�erent interpretation.
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Two-loop two-point function and effective action
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Two-loop two-point function and effective action

Juraj Tekel Fuzzy field theories and matrix models 56 / 104



Take home message
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Take home message and 2do list

Quantization of gravity seems to lead to quantized spacetimes.

Fuzzy spaces are examples of such spacetimes.

Plenty of interesting things happen on spaces with quantum structure.

Physics on such spaces is described by random matrix ensembles.

Beyond fuzzy sphere.

More on kinetic term e�ective action.

Correlation functions, entanglement entropy.

Multitrace models in emergent and random fuzzy geometries.

Some other things that Samuel will talk about.

...
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Fuzzy spaces - an alternative construction

The regular sphere S2 is given by the coordinates

xixi = R2 , xixj − xjxi = 0 , i , j = 1, 2, 3 ,

which generate the algebra of functions.

For the fuzzy sphere S2
N we de�ne

x̂i x̂i = r2 , x̂i x̂j − x̂j x̂i = iθεijk x̂k , i , j = 1, 2, 3 .

Such x̂i 's generate a di�erent, non-commutative, algebra and S2
N is an object, which has this

algebra as an algebra of functions.
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Fuzzy spaces - an alternative construction

The conditions can be realized as an N = 2s + 1 dimensional representation of SU(2)

x̂i =
2r√

N2 − 1
Li , θ =

2r√
N2 − 1

∼ 2

N
, ρ2 =

4r2

N2 − 1
s(s + 1) = r2 .

The group SU(2) still acts on x̂i 's and this space enjoys a full rotational symmetry.

In the limit N →∞ we recover the original sphere.
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Fuzzy spaces - an alternative construction

Most importantly nonzero commutators

x̂i x̂i = ρ2 , x̂i x̂j − x̂j x̂i = iθεijk x̂k , i = 1, 2, 3 .

imply uncertainty relations for positions

∆xi ∆xj 6= 0 .

Con�guration space is analogous to phase space of quantum mechanics.

In a similar fashion it is possible to construct an analogous deformation of the plane

x̂i x̂j − x̂j x̂i = iθεij = iθij , i = 1, 2 .

Construction uses the ?-product

f ? g = f e
i
2

~∂ θ ~∂ g = fg +
iθµν

2

∂f

∂xµ
∂g

∂xν
+ · · ·
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Random matrices ...
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Random matrices

[M.L. Mehta 2004; B. Eynard, T. Kimura, S. Ribault 2015; G. Livan, M. Novaes, P. Vivo 2017]

Matrix model = ensemble of random matrices.

An important example - ensemble of N × N hermitian matrices with

P(M) ∼ e−NTr(V (M)) , usually V (x) =
1

2
r x2 + g x4

and

dM =

[
N∏

i=1

Mii

][∏
i<j

Re Mij ImMij

]
.

Both the measure and the probability distribution are invariant under M → UMU† with
U ∈ SU(N).

Requirement of such invariance is very restrictive. One is usually interested in the distribution of
eigenvalues.
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Random matrices - eigenvalue decomposition

If we ask invariant questions, we can turn

〈f 〉 =
1

Z

∫
dM f (M)P(M)

into an eigenvalue problem by diagonalization M = UΛU† for some U ∈ SU(N) and
Λ = diag(λ1, . . . , λN ), the integration measure becomes

dM = dU

(
N∏

i=1

dλi

)
×
∏
i<j

(λi − λj )
2

We are to compute integrals like

〈f 〉 ∼
∫ ( N∏

i=1

dλi

)
f (λi ) e

−[
∑

i V (λi )−2
∑

i<j log |λi−λj |] ×
∫

dU
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Random matrices - eigenvalue decomposition

Term
2
∑
i<j

log |λi − λj |

is of order N2 if λi ∼ 1. Potential term ∑
i

V (λi )

is of order N.

We need to enhance the probability measure by a factor of N to

e−N2[ 1
N

∑
i V (λi )− 2

N2

∑
i<j log |λi−λj |]

This makes the N2 dependence explicit.
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Random matrices - eigenvalue decomposition

We introduce eigenvalue distribution

ρ(λ) =
1

N

∑
j

δ(λ− λj )

which gives for the averages

〈f 〉 =

∫
dλ ρ(λ)f (λ) .

The question is, how does do probability measure

e−N2[ 1
N

∑
i V (λi )− 2

N2

∑
i<j log |λi−λj |]

translate into eigenvalue distribution ρ.
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Random matrices - large N

For �nite N - orthogonal polynomials method.

For N →∞ the question simpli�es due to the factor N2

e−N2[ 1
N

∑
i V (λi )− 2

N2

∑
i<j log |λi−λj |] .

For large N only con�gurations with small exponent contribute signi�cantly to the integral. In the
limit N →∞ only the extremal con�guration

V ′(λi )−
2

N

∑
j 6=i

1

λi − λj
= 0 ∀i

Like a gas of particles with logarithmic repulsion. This gives us nice intuition.
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Random matrices - quartic potential

The simplest case

V (x) =
1

2
rx2 + gx4
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Random matrices - quartic potential

V (x) = rx2/2 + gx4 and r > 0
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Random matrices - quartic potential

V (x) = rx2/2 + gx4 and r > 0
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Random matrices - quartic potential

V (x) = rx2/2 + gx4 and r > 0
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Random matrices - quartic potential

V (x) = rx2/2 + gx4 and r > 0
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Random matrices - quartic potential

V (x) = rx2/2 + gx4 and r > 0
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Random matrices - quartic potential

If more than one solution is possible, the one with lower energy

F = −N2

 1

N

∑
i

V (λi )−
2

N2

∑
i<j

log |λi − λj |


is the preferred one.

The probability measure

e−N2[ 1
N

∑
i V (λi )− 2

N2

∑
i<j log |λi−λj |]

i.e. the more probable solution.
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Second moment approximation

4− 3δ2g

δ
− r − F ′

(
4δ + δ3g

16

)
= 0 ,

4Dg + r + F ′ (D) = 0 , δ2 =
1

g
= 0 ,

4
4 + 15δ2g + 2rδ

δ(4 + 9δ2g)
− F ′

(
δ
(
64 + 160δ2g + 144δ4g2 + 81δ6g3 + 36δ3gr + 27δ5g2r

)
64(4 + 9δ2g)

)
= 0 .
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More on GW model
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Removal of stripes � GW model

The NC plane coordinates can be realized by

X =
1√
2



+
√
1

+
√
1 +

√
2

+
√
2

. . .
. . .

. . .
. . .


, Y =

i√
2



−
√
1

+
√
1 −

√
2

+
√
2

. . .
. . .

. . .
. . .


,

then
[X ,Y ] = i .

This algebra is then truncated to a �nite dimension.
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Removal of stripes � GW model

De�ne �nite matrices

X =
1√
2



+
√
1

+
√
1 +

√
2

+
√
2

. . .
. . .

√
N − 1√

N − 1

 , Y = . . . ,

which gives
[X ,Y ] = i(1− Z ) , Z = diag (0, . . . ,N) .

Original algebra is recovered in the N →∞ limit or under the Z = 0 condition.

R =
15

2
− 4Z 2 − 8

(
X 2 + Y 2

)
=

31

2
− 16 diag (1, 2, . . . ,N − 1, 8N) .
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Removal of stripes � GW model

[Prekrat, Todorovi¢-Vasovi¢, Rankovi¢ '21; Prekrat '21]

Numerical investigation of this matrix model leads to
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Fuzzy �eld theories in the string modes formalism
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String modes - coherent states

Natural basis in the auxiliary hilbert space H is the �spin� basis

|n〉 =


...
1
...

 , n = −s, . . . , s ,

derived from the highest weight state |s〉.
For any x ∈ S2 with radius 1, choose some gx ∈ SO(3) such that x = gx · p, where p is the north
pole on S2. We de�ne [Perelomov 1986]

|x〉 = gx · |s〉 , gx ∈ SU(2)

and call the set of all |x〉 the coherent states.
|x〉 is located around x , but is an element of H, and is a noncommutative analogue
of the point x . [Steinacker 2020]

Juraj Tekel Fuzzy field theories and matrix models 82 / 104



String modes - coherent states

They form an over-complete set in H and

1l =
N

4π

∫
d2x |x〉 〈x | , 1l =

∑
n

|n〉 〈n| .

They are orthogonal only in the large N limit

|〈x |y〉|2 =

(
1 + x · y

2

)N−1

.
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String modes - coherent states

Coherent states can be used to map (quantize) functions on S2 on matrices

φ(x)→ M =

∫
d2x φ(x)|x〉〈x | .

and matrices on functions (de-quantize)

M → φ(x) = 〈x |M |x〉 .

This maps Tlm on Ylm up to normalization

Tlm → 〈x |Tlm |x〉 =
1

cl
Ylm(x) , c2l =

1

4π

(N − 1− l)!(N + l)!

((N − 1)!)2
∼ N

4π
e

l2

N .

For l <
√
N coe�cients cl are approximately constant, quantization and de-quantization are inverse

of each other.
For l >

√
N coe�cient cl grows extremely fast and the-quantized matrices are misleading.
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String modes - representation of functions on S2
F

Functions on the fuzzy sphere are matrices acting on H

M =
s∑

m,n=−s

Mmn |m〉 〈n| .

We can express the matrix M in a similar fashion using the coherent states

M =

(
N

4π

)2 ∫
d2x d2y φ(x , y) |x〉 〈y | .

Objects [Iso, Kawai, Kitazawa 2000; Steinacker 2016]

|x〉 〈y | =:
∣∣∣xy)

form a basis of functions on the fuzzy sphere and we will call them the string modes.
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String modes - representation of functions on S2
F

Such representation of matrix M by function φ(x , y) seems to be not unique (way more functions
than matrices).
But one can show that derivatives of φ(x , y) are bounded by

√
N, which means that the Fourier

modes of φ to be restricted by lx , ly ≤
√
N.

Functions φ(x , y) that represent functions on the fuzzy sphere have rather mild behavior. The
coherent states are spread out over an area ∼ 4π/N and average out any larger oscillations.

Large momentum UV wavelengths are smoothed out on the fuzzy sphere. But the price we pay is
non-local string modes.
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String modes - representation of functions on S2
F

∣∣∣xy)
Short modes for |x − y | < 1/

√
N can be shown to represent localized wave-packets with

momentum ∼ N|x − y |.
This is the classical regime.

Particularly string mode
∣∣∣xx) represents a maximal localized function around point x , i.e. a fuzzy

version of δ-function.
Functions with φ(x , y) = φ(x)δ(x , y) are local and become the standard functions on S2 in the
commutative limit.

Long modes for |x − y | > 1/
√
N are non-local and have no classical analogue.

This is the non-commutative regime.
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String modes - representation of operators on functions

When working with functions we encounter operators

O : M → O(M) .

For example the kinetic term of the �eld theory or the propagator of the theory

[Li , [Li ,M]] =: 2M ,
1

2+ m2
.

String modes are eigenfunctions of 2

2

∣∣∣xy) =

(
N2

4
|x − y |2 + N

) ∣∣∣xy) .
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String modes - representation of operators on functions

[Steinacker, T work in progress]

A general representation of such operators in terms of the string modes is straightforward

O =

(
N

4π

)4 ∫
d2x d2x ′ d2y d2y ′

∣∣∣xy)O(x , y ; x ′, y ′)
(

x′

y ′

∣∣∣ .
There are two special cases

Local

O =

(
N

4π

)
2 ∫

d2x d2y
∣∣∣xx)OL(x , y)

(
y
y

∣∣∣ .
Non-local, but diagonal,

O =

(
N

4π

)
2 ∫

d2x d2y
∣∣∣xy)OD(x , y)

(
x
y

∣∣∣ .
Functions OL and OD may have very di�erent behavior for di�erent operators (oscillation,
singularity). Local representations are typically highly oscillatory, non-local representations are
better behaved.
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String modes - representation of operators on functions

Operator traces

TrO =

(
N

4π

)2 ∫
d2x d2y

(
x
y

∣∣∣O∣∣∣xy) .
[used in the �I don't have time to show you details� part of Harold's talk @ Humboldt Kolleg]
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String modes - representation of operators on functions

For the propagator

1

2+ m2
=

(
N

4π

)2 ∫
d2x d2y

∣∣∣xy)OD
P (x , y)

(
x
y

∣∣∣
where

OD
P (x , y) =

(
x
y

∣∣∣ 1

2+ m2

∣∣∣xy) .
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String modes - representation of operators on functions

For any function of the 2 operator f (2) we have(
x
x

∣∣∣f (2)
∣∣∣yy) =

1

N

∑
l

(2l + 1)f
(
k(k + 1)

)
e−l2/NPl (cosϑ)

(
x
y

∣∣∣f (2)
∣∣∣xy) =

1

N

∑
k,l

(2k + 1)(2l + 1)(−1)l+k+2s f
(
k(k + 1)

){ l s s
k s s

}
e−l2/NPl (cosϑ)

where the curly bracket is the 6j-symbol and cosϑ = x · y .
For the propagator we obtain (

x
y

∣∣∣ 1

2+ m2

∣∣∣xy) ≈ 1
N2

4
|x − y |2 + m2

.
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String modes - representation of operators on functions

Trace of propagator

Tr
1

2+ m2
=

N2

(4π)2

∫
d2x d2y

(
x
y

∣∣∣ 1

2+ m2

∣∣∣xy) =
N2

(4π)2

∫
1

N2

4
|x − y |2 + m2

=

=
N2

2

∫ 1

−1
du

1
N2

2
(1− u) + m2

∼ 2 log (N) .

This is consistent with

Tr
1

2+ m2
=

N−1∑
l=0

2l + 1

l(l + 1) + m2
∼ N

∫ 1

0

2Nx

N2x2 + m2
∼ 2 log (N) .
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Loop computations and (non)locality in fuzzy QFT

[Steinacker 2016; Steinacker, T work in progress]

Feynman rules in string modes formalism - propagator

=
(

x2
y2

∣∣∣ 1

2+ m2

∣∣∣x1y1

)
≈ 1

N2

4
|x − y |2 + m2

δ(x1, x2)δ(y1, y2)

Compare with the pure matrix models propagator

∼ 1

m2
δilδjk .

and �eld theory action

S(M) =
4π

N
Tr

[
1

2
M[Li , [Li ,M]] +

1

2
m2M2 + g M4

]
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Loop computations and (non)locality in fuzzy QFT

Feynman rules in string modes formalism - vertex

= g 〈y1|x2〉 〈y2|x3〉 〈y3|x4〉 〈y4|x1〉 ≈ g δ(y1, x2)δ(y2, x3)δ(y3, x4)δ(y4, x1) .

Juraj Tekel Fuzzy field theories and matrix models 95 / 104



Loop computations and (non)locality in fuzzy QFT

String modes bring, in the large N limit, the best from the two worlds. They diagonalize the kinetic
term and keep a simple structure of the vertices.

Similar to the standard QFT calculations, but regular thanks to the e�ective noncommutative
cuto�. No singularities and no issues when computing loop diagrams in position space.
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Loop computations and (non)locality in fuzzy QFT
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Loop computations and (non)locality in fuzzy QFT
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Correlation functions
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Correlation functions

Analogues of points in the NC setting are coherent states |~x〉.
�Value� of �eld φ at �point� ~x given by

〈~x |φ |~x〉 = φ(x) .

Behaviour of

〈φ(x)φ(y)〉 =
1

Z

∫
dφ 〈~x |φ |~x〉 〈~y |φ |~y〉 e−S(M)

in the matrix model can be studied numerically.
[Hatakeyama, Tsuchiya '17; Hatakeyama, Tsuchiya, Yamashiro '18 '18]

At the �standard� phase transition, the behaviour of the correlation functions at short distances
di�ers from the commutative theory and seems to agree with the tricritical Ising model.
A di�erent behaviour at long distances.
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Entanglement entropy
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Entanglement entropy

In local theories S(A) ∼ A.
[Ryu, Takayanagi '06]

In non-local theories this can change.
[Barbon, Fuertes '08; Karczmarek, Rabideau '13; Shiba, Takayanagi '14]

Problem on the fuzzy sphere has been studied numerically.
[Karczmarek, Sabella-Garnier '13; Sabella-Garnier '14; Okuno, Suzuki, Tsuchiya '15; Suzuki, Tsuchiya '16;

Sabella-Garnier '17; Chen, Karczmarek '17]

For free �elds, the EE follows volume law rather than area law.
In the interacting case much smaller EE than in the free case.
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Challenges
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Challenges

Correlation functions

Quantity 〈φ(x)φ(y)〉 is U dependent, so we need to �gure out what to do with∫
dU F (Λ,U) e−

1
2Tr(UΛU†[Li ,[Li ,UΛU†]]) .

Entanglement entropy

We need to extended the model to R× S2
F , i.e. M(t)

S(M) =

∫
dtTr

(
−1
2
M∂2t M +

1

2
M[Li , [Li ,M]] +

1

2
m2M2 + gM4

)
[Medina, Bietenholz, O'Connor '07; Ihl, Sachse, Sämann '10]

Also the U dependence will play a role, but free theory where R = 0, is enough.

Juraj Tekel Fuzzy field theories and matrix models 104 / 104


