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Priklad 1
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Solutmn 1.10. .In plane-polar ceardmates the Lagrang:an fur a par-
ticle moving in a central potcutml V(r) is : '

L= gm@ 4 -ve), - (108)

~ where m is the mass of the particle The putentm] is given in the
question as - | - '

k

Ve =-f4lmt o (1000)
The 6- -component of La.grange 3 equatmn is - o |
o oL.. | o
S = m'r. 6= consta.nt =1 - L (10.91)
The ha;.mi.lton,ian ofl our system is t_hen.
CH= ;’3 + E V)= Pf '+ Veg(r),  (1092)
™ 21‘.\"!,1"2 Ve : -
| with p, = ;rnf and o : I
ﬂ(r) - 2er Ve (10.99)

The term. F{?mr is referrcd to as an “angular momentum barricr.”
Solving the equations of motion for this hamiltonian is cquwa.lent to
: solvmg Lagrange s equatmns for the Lagrangla.n C

L:-z-mraneﬁ(r)J. - (10.94)



This is a completely general result for the motion of a particle in a
central potential and could easily have bn-.n our. starting pomt in thm
~ problem (e.g., Goldstein, Chapter 3).

It may seem unnecessa.nly long-winded to go t-hmugh this proce-
dure, but note that the sign of the angular momentum barrier in (10.94)
is opposite to what we would have gotten if we had naively replaced 6
with {/mr? in the Lagrangian (10. 89). This is due to the fact that the
Lagrangian is a function of the time dcnvahve of the position, and nol:.

of the canonical momentum.

The equatmn of motion from {1[] 94) is

Vﬁ(r) L (10.98)

If the pa.rhc]e is in a circular nrbut at r = 1o we I'Equll'!: that the force
on it at that radnis shnuld vanish, .

e_ﬁ" L . ' _
- s =0, | - (10.96)

-Using our expresamn for V., E(IU 93}, we derive an cxprcssmn relating
the angular momentum [ to the radius of the orbit ro: :

— - —bre=0. - (1097)

We are interest;:d n j:erturbatiuns. about this circular orbit. Provided
the perturbation remains small, we can expand Vzﬂ{‘"} about To;

v, ﬂ{r}-'= v ﬁ{?’ﬂ.) —f— (r -'rn]Vﬂ{rg] + l{r —1p)* t:jﬂ{r‘:'] + [lﬂ 98)

If we usé this cxpansion in the Lﬂ.gra.ngm.n (10.94) together with the
condition (10.96), we find
1 ., 1 _ o :
Lr = Emrz _ —(1‘ —"?‘n)zl-'rﬂ{ -}, . o (].D 59)

where we have dropped a constant term. This is just the Lagrangian
for a simple harmonic oscillator descnbmg a particle undergoing radial
osullatmns w1th frequency

=iVl (10100

D:ffcrcntiatmg v, ﬂ{r ) twice gn.rc.s us

3 2k '.5 o,
mrg 13 mw (10.101

frc:qucnc]r of radial ﬂsctlla.tmn

ko a\ |

We -can climinate | between equations (10. 1[}1] and (lﬂ 9?] to give thl



* L £

To find the rate of precession of the pgrihélion,,.m_:: nced to knov

* the period of the orbit. From the definition of angular momentum [
equation (10.91), we have an equation for the orbital angular velocits

W, . .
= oe—= B ! . 1 5 '
“ dt = mr? o { 0.103

Let us write r(t) = ro + €(t), where ¢(t) is sinusoidal with frequency o
and average value zero. We substitute r(t) into equation’ (10.103) anc
expand in e(t): ' '

1 % ,)-' SR .
—=—(1-2i0e).  ou0r
dt  mrd -(1 To _+ {:}(E ) : (10.104,

To zeroth order in the small quantities br3/k and €/ro, the period of Lhe
“orbit T} is the same as the period of oscillations T} = 27 fw. Thereforc
we can average € over T; rather than Tj and still get zcro, to within
terms of second order, which we are neglecting. The average angular
velocity is therefore =

5= T o = v‘ + — A(10.105
wl -Tl rg rua L . ( }

where we have made use of (10.97). - , L

Now consider one complete period of the radial oscillation. This
takes place in time T3 = 2w /w. In this time the particle travels along
its orbit through an angle of : ' ' '

@y k/mrd + b/m - —
'&gzn-‘i’iz-zw\/’! o A | ?)
~@ Jkfmrd + 4bjm o _

a

o =R g
In'other '-wéf&:s',:._hhq _p._a.r'tir;le doé_s-nat quite orbit through 21 before .
‘the radial escillation is’ completed. Each time around the perihelion -
- Precesses backwards through an angle S e d T

T b

and __it-. géts_.é:rl:rund in ﬂ_rhe T3, so the'iﬁ;e-ciassinn rate is

a3 80 3nbr3\/k/mr3 + 4bjm

'T: _: ko _ _ 27 _ '
) mkl oL ,{_10;_1!:};} 2



Priklad 2

(a) The electric potential V' satisfies the Laplace equation, V2V = 0. Given
the boundary conditions

Viz.y=0)=0=V(z,y =0), and Viz=0,y) =15,
the solution is of the form

V(zx,y) = Vpsin (%) pikz

Inserting this solution into the Laplace equation, we have

()0

or k = txiw/a. Thus, the solution (for x > 0) is

V(z,y) = Vpsin (E) Sl )
a

(We can ignore x > L/2 since e P4/20 « 1 for L/a>> 1.)

(b) To find the ch_gl,rge density o at the surface of the conductors, we need
the electric field E at the surface. The latter can be obtained from the
potential V(z,y) as

E=-VV = TFTVD [Sil'l (?) T — cos (%) ﬁ] pr L

At the surfaces of the conducting plates at ¥y = 0 and y = a, the induced
charge densities are the same. with

ED?TVUE—WIM

cr[imy:[i}zcr(:l:,yzﬂ}=EDE-ﬁ=— " =0
for both plates.
(c) Force exerted on a conductor is given by
F= [oEudn,
integrated over the surface area of the conductor, with Eo = Egqf = E /2.

On the upper plate (and z = 0),
N L{2—00 §
i L/ drcr{r,y:&]~§E(I,y:ﬂ}
0
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Including also the part from = < (. the total force exerted on the top plate
I8 T
Fupp-er — —Efﬂif'bz.[r ’;t:,|'f

i.e., the top plate is attracted towards the lower plate.

By symmetry, the lower plate is attracted towards the upper plate with force
of the same magnitude, i.e.,

Priklad 3

The potential due to a uniformal spherical volume with net charge e and
radius rg is '
et 3e

23  2ry’

[
;, (?‘ = 7'1])

U = - (r <)

where the constant of integration in the first expression has been chosen to
make [/ continuous at rq. '

The perturbation V in the Hydrogen atom potential is

2,.2 % 2 2
e‘r Je e
&!a’ = _3__+_5 {r{ru}

o 2ry 2 o
=0, (T}Tﬂ)

where the constant of integration in the first expression has been chosen to
make U7 continuous at ra. )

The perturbation V' in the Hyvdrogen atom potential is

2.2 g2 2
el 3e &
ﬂv = _—— — _— <7
] 2?-% 2ra + -’ {:I" TEI:'

= 0, (r = 7o)

The energy shift i=
AE = (AV})

to first order in perturbation theory. For the 1s state,

) i -
AR = f|¢|ﬂay=f drridr || AV
LU

Since 1y < ap, the typical scale of variation of the wavefunction, @ == ¥(0),
and

-EE:I"Q 3-22 2

o EE ] e 2 5 3
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For the 1s state, .

Le-fr’% |
=
2¢*r} 2 e* Iﬁ

AF m ——a = =—=
B adl  Bogal

The ground state energy of H is —E?;’(Eanj = —136 eV, and ap = 0.529 =
107", so

AR =

t’.:llh}

2
(2 % ldbe\.’]—_ =39x 10V
aj

The wavefunction of the 2p state vanishes at the orgin. This 511pprf-1'sz=q
AE by an additional factor of v*/a? ~ 10710

Priklad 4
SOLUTION: For a non-interacting ideal gas,

0
B=—2zNing,

where ( is the single-molecule partition function

o0

(=Y (n+1)exp(—fne).

n=0

This partition function can be evaluated as follows (z = [3¢):

o0 i
i e

d
c- il _Ezﬁnzz{]exp ( — [:n.—{— ]_j;[:) = —g% E? [1 == BXP(—IBE)]_Q

Hence, the sought contribution to the energy is

B 2Ne
~ exp(e/kT) —1°

Alternatively, one can reproduce this result as follows. One can imagine that
every molecule has two independent internal degrees of freedom of harmonic
oscilator type, with energy spacing = each. It is easy to see that this model
gives the same spectrum and degeneracies if the energy is counted from the
ground state. With this convention, the average energy of a single harmonic
oscillator is enpg(c), where ng(c) is the Bose-Einstein occupation number.
Therefore, for the entire gas we get E' = 2Nenp(g), in agreement with the
first derivation.



