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Priklad 1

SOLUTION:

{a) From Maxwell, we have
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and since V - (V = B) =, it follows that ¥V - J = 0.

(b) From ¥V - E = 4xp, we have E — t;l-i-,-’:r'2 for a spherical distribution of
charges. Thus,
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Note that W - j; = I'd{r), which vanishes outside the sphere. Since
V -3 = 0 outside the sphere as well, we have that ¥V -J =0.

(¢} From axial symmetry, we expect circular magnetic field lines. So use
the intezral form of Ampére’s law,

fﬁ-df: :IT'T ddn-J,
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where Y is anv two-dimensional surface, and n is the local surface
normal. Consider the B field along a circular loop a distance r from
the center of the sphere, at an angle 8 with respect to the wire's axis:
Since there is no physical charge flowing through the loop, the total

current is just the displacement current from part (h). Let X be the

cap of a sphere of radius r, subtending a solid angle £2. We therefore
have
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where rzin#f is the radius of the loop, and £ — 27 (1 — cosf) is the
solid angle subtended by the loop. We therefore have
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Note that there are two choices we could make for our cap. The
complementary region XY would subtend solid angle 4w — £}, and is
pierced by the wire. In this case, both 7 and j; contribute to J, and
after considering the opposite orientation of n and + on X', we obtain
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as before.



(d] Near the wire, we have § — 7, and cosf — 1, and we recover the
familiar expression
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where H = rsin# 18 the perpendicular distance from the wire.

Priklad 2

SOLUTION: We use Fermi's Golden Rule for the transition rate,

2

I = = |<f|?{w}}i>fﬂé(-€f — Ei — hw) ,

valid for harmonic perturbations of the form V() = V(w) e ™", (For a real
harmonie potential, sum over positive and negative frequency components. )
Our potential is

Vi(t) = —eEy - r cos(wt) ,

s0 V(w) = V(—w) = —eEg - r. The matrix element we seek is then
M = —e(¥|Eo - r|yy)
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where we take Ey = Epe. We may, without loss of generality, take k to lie
along z. Writing » and & in polar coordinates, we then have
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where (#,¢) and (7, ¢) are the polar and azimuthal angles for r and e,
respectively. The last term integrates to zero. The matrix element is then
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The double integral is straightforward:
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The matrix element must be squared. then summed over all final k states.
Recalling the relation
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we obtain for the total transmission rate
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where wy = h-fﬁma-ﬁ = me? f?ﬁg is the lowest ionization frequency. Note
that I' — 0 at the ionization edge, w = wy. The approximation of ionized

states by plane waves is accurate only for w % w.
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