METÓDY RIEŠENIA FYZIKÁLNYCH ÚLOH 3 leto19 – Príklady 2

VZOROVÉ RIEŠENIA

Cvičenie 21.3.2019, prezentovanie 28.3.2019

Príklad 1

SOLUTION:

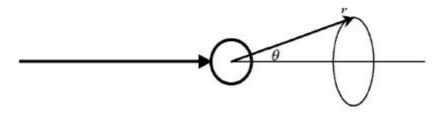
(a) From Maxwell, we have

$$\mathbf{\nabla} \times \mathbf{B} = \frac{4\pi}{c} \mathbf{j} + \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t}$$

= $\frac{4\pi}{c} (\mathbf{j} + \mathbf{j}_{d})$,

and since $\nabla \cdot (\nabla \times B) = 0$, it follows that $\nabla \cdot J = 0$.

(b) From ∇ · E = 4πρ, we have E = q r̂/r² for a spherical distribution of charges. Thus,


$$j_{\mathrm{d}} = \frac{I}{4\pi r^2} \hat{r}$$
.

Note that $\nabla \cdot \mathbf{j_d} = I \, \delta(\mathbf{r})$, which vanishes outside the sphere. Since $\nabla \cdot \mathbf{j} = 0$ outside the sphere as well, we have that $\nabla \cdot \mathbf{J} = 0$.

(c) From axial symmetry, we expect circular magnetic field lines. So use the integral form of Ampère's law,

$$\oint\limits_{\partial \Sigma} \boldsymbol{B} \cdot d\boldsymbol{\ell} = \frac{4\pi}{c} \int\limits_{\Sigma} \!\! dA \; \hat{\boldsymbol{n}} \cdot \boldsymbol{J} \; , \label{eq:Beta}$$

where Σ is any two-dimensional surface, and \hat{n} is the local surface normal. Consider the B field along a circular loop a distance r from the center of the sphere, at an angle θ with respect to the wire's axis: Since there is no physical charge flowing through the loop, the total

current is just the displacement current from part (b). Let Σ be the

cap of a sphere of radius r, subtending a solid angle Ω . We therefore have

$$2\pi Br\sin\theta = \frac{4\pi}{c} \cdot \frac{\Omega}{4\pi} \cdot I = \frac{\Omega I}{c} ,$$

where $r \sin \theta$ is the radius of the loop, and $\Omega = 2\pi(1 - \cos \theta)$ is the solid angle subtended by the loop. We therefore have

$$B(r, \theta) = \frac{(1 - \cos \theta)I}{cr \sin \theta} = \frac{I}{cr} \tan(\frac{1}{2}\theta)$$
.

Note that there are two choices we could make for our cap. The complementary region Σ' would subtend solid angle $4\pi - \Omega$, and is pierced by the wire. In this case, both j and $j_{\rm d}$ contribute to J, and after considering the opposite orientation of \hat{n} and \hat{r} on Σ' , we obtain

$$2\pi Br\sin\theta = \frac{4\pi}{c} \bigg\{ -\frac{4\pi-\Omega}{4\pi} \cdot I + I \bigg\} = \frac{\Omega \, I}{c} \ ,$$

as before.

(d) Near the wire, we have $\theta \to \pi$, and $\cos \theta \to 1$, and we recover the familiar expression

$$B(r, \theta) \approx \frac{2I}{cr \sin \theta} = \frac{2I}{cR}$$
,

where $R = r \sin \theta$ is the perpendicular distance from the wire.

Príklad 2

SOLUTION: We use Fermi's Golden Rule for the transition rate,

$$\Gamma_{i \to f} = \frac{2\pi}{\hbar} \left| \left\langle f \middle| \hat{V}(\omega) \middle| i \right\rangle \right|^2 \delta(E_f - E_i - \hbar \omega) ,$$

valid for harmonic perturbations of the form $V(t) = \hat{V}(\omega) e^{-i\omega t}$. (For a real harmonic potential, sum over positive and negative frequency components.) Our potential is

$$V(t) = -e\mathbf{E}_0 \cdot \mathbf{r} \cos(\omega t) ,$$

so $\hat{V}(\omega) = \hat{V}(-\omega) = -e\mathbf{E}_0 \cdot \mathbf{r}$. The matrix element we seek is then

$$\mathcal{M} = -e \langle \psi_k | \mathbf{E}_0 \cdot \mathbf{r} | \psi_0 \rangle$$

= $-e E_0 (\pi a_B^3)^{-1/2} V^{-1/2} \int d^3 r \, e^{-r/a_B} \, e^{-i\mathbf{k}\cdot\mathbf{r}} \, \hat{\mathbf{e}} \cdot \mathbf{r} ,$

where we take $E_0 = E_0 \hat{e}$. We may, without loss of generality, take k to lie along \hat{z} . Writing r and \hat{e} in polar coordinates, we then have

$$\hat{e} \cdot r = r \cos \theta \cos \theta + r \sin \theta \sin \theta \cos (\phi - \varphi) ,$$

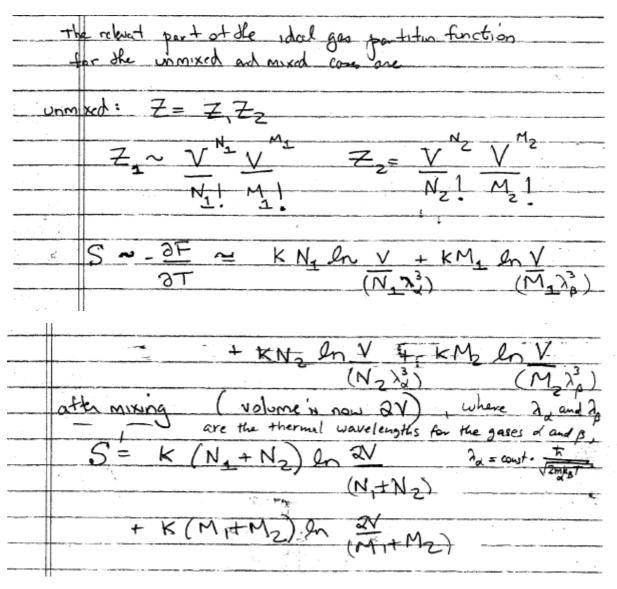
where (θ, ϕ) and (ϑ, φ) are the polar and azimuthal angles for r and \hat{e} , respectively. The last term integrates to zero. The matrix element is then

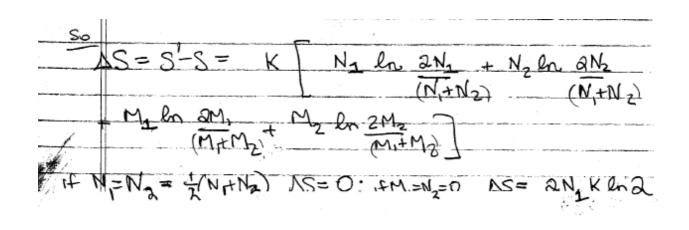
$$\mathcal{M} = -2\pi e E_0 (\pi a_{\rm B}^3 V)^{-1/2} \cos\vartheta \int\limits_0^\infty \!\! dr \, r^2 \! \int\limits_0^\pi \!\! d\theta \, \sin\theta \, r \cos\theta \, e^{-r/a_{\rm B}} \, e^{-ikr\cos\theta} \; . \label{eq:model}$$

The double integral is straightforward:

$$\begin{split} \int_{-1}^{1} \!\! d\mu \, \mu \int\limits_{0}^{\infty} \!\! dr \, r^3 \, e^{-(a_{\rm B}^{-1} + ik\mu)r} &= 6 \int\limits_{-1}^{1} \!\! d\mu \, \frac{\mu}{(a_{\rm B}^{-1} + ik\mu)^4} \\ &= -\frac{6}{k^2} \int\limits_{a_{\rm B}^{-1} - ik}^{a_{\rm B}^{-1} + ik} \frac{s - a_{\rm B}^{-1}}{s^4} \\ &= -\frac{16i \, k \, a_{\rm B}^{-1}}{(a_{\rm B}^{-2} + k^2)^3} \; . \end{split}$$

The matrix element must be squared, then summed over all final \boldsymbol{k} states. Recalling the relation


$$\sum_{\mathbf{k}} A(\mathbf{k}) = V \int \frac{d^3k}{(2\pi)^3} A(\mathbf{k}) ,$$


we obtain for the total transmission rate

$$\begin{split} \Gamma &= \frac{2\pi}{\hbar} \int\limits_0^\infty \!\! \frac{dk\,k^2}{4\pi^2} \int\limits_0^\pi \!\! d\vartheta \, \sin\vartheta \cdot \frac{4\pi^2\,e^2 E_0^2\cos^2\vartheta}{\pi a_{\rm B}^3} \cdot \frac{256\,k^2\,a_{\rm B}^{-2}}{(a_{\rm B}^{-2}+k^2)^6} \cdot \delta \bigg(\frac{\hbar k^2}{2m} - \hbar\omega + \frac{\hbar^2}{2ma_{\rm B}^2}\bigg) \\ &= \frac{256}{3\hbar}\,e^2 E_0^2\,a_{\rm B}^3\,\bigg(\frac{\omega_0}{\omega}\bigg)^3 \bigg(\frac{\omega}{\omega_0} - 1\bigg)^{3/2} \;, \end{split}$$

where $\omega_0 \equiv \hbar/2ma_{\rm B}^2 = me^4/2\hbar^3$ is the lowest ionization frequency. Note that $\Gamma \to 0$ at the ionization edge, $\omega = \omega_0$. The approximation of ionized states by plane waves is accurate only for $\omega \gg \omega_0$.

Príklad 3

