METÓDY RIEŠENIA FYZIKÁLNYCH ÚLOH 3 leto19 – Príklady 2

Cvičenie 7.3.2019

Príklad 1

<u>Problem 1.</u> [Classical Mechanics] Brad Majors and Janet Weiss go bowling. Ever observant, Brad notes that his bowling ball initially skids down the alley, and only slowly begins to roll.

- a) Briefly, and in words, why does a ball that initially skids down the alley eventually start to roll down the alley?
- b) The bowling ball has radius R. What mathematical constraint holds when the ball begins to roll without slipping?
- c) The ball is released with an initial translational speed of v_0 and an initial rotational speed of zero. The coefficient of kinetic friction between the ball and the alley is μ and the mass of the ball is M. Derive an expression for the time, denoted T, between the release of the ball and the onset of rolling without slipping [minor help: $I_{\text{sphere}} = (2/5)MR^2$].

Príklad 2

<u>Problem 3.</u> [Electromagnetism] A parallel-plate capacitor, at rest in S_0 and tilted at a 45° angle to the x-axis, carries charge densities $\pm \sigma_0$ on the two plates. System S is moving along the x-axis at speed ν relative to S_0 .

- (a) Find E₀, the field in S₀.
- (b) Find E, the field in S.
- (c) What angle do the plates make with the x axis?
- (d) Is the field perpendicular to the plates in S?

Hint: If you don't remember how electric field components transform, the electromagnetic field

tensor is
$$F^{\mu\nu} = \begin{cases} 0 & E_x/c & E_y/c & E_z/c \\ -E_x/c & 0 & B_z & -B_y \\ -E_y/c & -B_z & 0 & B_x \\ -E_z/c & B_y & -B_x & 0 \end{cases}$$

Príklad 3

<u>Problem 5.</u> [Statistical Mechanics/Thermodynamics] Consider an ideal gas of N identical particles confined to a tall cylinder (i.e., mgL >> kBT) of cross-sectional area A, oriented parallel to a gravitational field of strength g. The bottom of the container is at $z = z_0$, and the system is at temperature T.

- a) Write down the partition function for this system;
- b) Use this partition function to calculate the mean energy and the heat capacity, C_v , of the gas;
- c) Use the partition function to compute the force on the bottom of the container

Príklad 4

Problem 8. [Quantum Mechanics] Particles with angular momentum 1 are passed through a Stern-Gerlach apparatus, which separates them according to the z-component of their angular momentum. Only the m=-1 component is allowed to pass through the apparatus. A second apparatus separates the beam according to its angular momentum component along the u-axis. The u-axis and the z-axis are both perpendicular to the beam direction but have an angle θ between them. Find the relative intensities of the three beams separated in the second apparatus.