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Priklad 1
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Salulibn 1.10. .In plane-polar ceardmates the Lagrang:an fur a par-
ticle moving in a central pntcutml V(r) is - |

= —m(r -1-1'292) V(T‘) I_: __ l ._ | (1089) |

where m is the mass of the particle The putentm] is given in the
question as - | - :

k

V(r) sk —br’ S (1090)
The 6- -component of La.grange s’ equation is h ¥ |
L. 1 t't " e B
Mgt 0 s an e (10.91)
The hamiltonian of our system is then
=, H-= o + 2mr’ + V(r) = + l",.ﬂ(ll'),_ (10.92) .
| with p, = m# and o . i o
ﬂ(r) = 2ﬁ1.r-3 fV(r) ' - (10.93)

The term. I*,f?mr is referred to as an “angular momentum barricr.”
Solving the equations of motion for this harmltoman is cquwa.lent to
: solvmg Lagrange s equatmns for the Lagrangla.n "

L:-z-mrn._—.Veﬁ(r), s (10.94)



This is a completely general result for the motion of a particle in a
central potential and could easily have bucn our starting pomt n thxs
- problem (e.g., Goldstein, Chapter 3).

It. may seem unnecessanly long-winded to go thmugh this prnce—
dure, but note that the sign of the angular momentum barrier in (10.94)
is appasﬂe to what we would have gotten if we had naively replaced §
with {/mr? in the Lagrangian (10.89). This is due to the fact that the
Lagrangian is a function of the time denvatwe of the position, and not
of the canonical momentum. -

The equa.tmn of motion from (10, 94) is

:'__vﬁ(r) - o(10.98)

If the pa.rtmle is in a circular orbit at r = ry we mqulrc that the force
on it at that radius shnuld vanish, .
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' Using our expression for v, ﬂ-(lﬂ 93], we derive an r:xprcsalan relating -
the angular momentum I to the radius of the orbit ro: =

I .
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We are interested in f:erturbatiuns. about this circular orbit. Provided
‘the perturbation remains small, we can expand Vzﬂ{"} about o,

Vv ﬂ{‘r} :V ﬂ(?"ﬂ) —f— (1"' bt Tn]V’lﬂ{f‘g] + —{T‘—T‘o)g é:B{Tg] + (lﬂ 93}
If we use I;h:s cxpansion in the La.gra.ngm.n (10.94) together with the
condition (10.96), we find

% y y | . .
L = Emrz - —{1‘ —'T{}):Vﬂ’{ '}! g T {ID 99)

where we have dropped a constant term. This is just the Lagrangian
for a simple harmonic oscillator, describing a particle undergoing radial
oscillations with frequency :

w’:%l“:ﬂ(rn). SR (10.100)

D:Eemntiatmg V. ﬂ{r ) twice gnrts us
R 3B %k E '
§ = o3 +b=mwt, | (10.101

mru Th -

Wc can climinate | between equations (10. 1D1] and .{IU-HT]_ to give th
f"“’»‘lUEIlcy of radial GEﬁlIa.tmns : : g



» b £

G .8 To find the _r_.itc'r.:f precession of the p_érihe'lion,_.wg need to knov
" the period of the orbit.” From the definition of angular momentum {
equation (10.91), we have an equation for the orbital angular velocits

W'y,

Let us write r(t) = ro + €(t), where ¢(t) is sinusoidal with frequency o
and average value zero. We substitute r(t) into equation’ (10.103) anc
expand in e(t): ' :
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To zeroth order in the small quantities brg/k and €/ro, the period of Lhe
“orbit T} is the same as the period of oscillations T, = 27 /w. Thereforc
Wwe can average € over 17 rather than T, and still get zcro, to within
terms of second order, which we are neglecting. The average angular
velocity is therefore
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where we have made use of (10.97). - _ ot
Now consider one complete period of the radial oscillation. This
takes place in time T3 = 27 /w. In this time the particle travels along

its orbit through an angle of
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" In'other '-w@fd:s',_'._'thg.pz'_ar'tic;le dné_s-not quite orbit through 2x before ..
‘the radial oscillation is completed. Each time around the perihelion
. precesses B_aﬁkjvard_s' through an angle el L .

~(10.10)

-and it gets around in ﬁ_rhe T;, so the precession rate is
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Priklad 2

(a) The electric potential V satisfies the Laplace equation, V2V = 0. Given
the houndary conditions

Viz,y=0)=0=V{(z,y =a), and Viz=0,y)=Vp
the solution is of the form
Viz,y) = Vpsin (?) T
Inserting this solution into the Laplace equation, we have

Ty 2 5
()
or k = tiw/a. Thus, the solution (for & = 0) is
V{z,y) = Vysin (E) e *r/a,
a

(We can ignore x > L/2 since e PL/28 « 1 for Lia> 1.)

(b) To find the ch_grge density o at the surface of the conductors, we need
the electric field E at the surface. The latter can be obtained from the
potential V' (z,y) as

B=-Ny= TTT% [si_u (T') — cos (F;y) ﬁr] T8,

At the surfaces of the conducting plates at ¥y = 0 and y = a, the induced
charge densities are the same, with

enTVo _
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G'{:I!fy=l]}=U{T,y=ﬂ}=EDE-ﬁ=— =

for both plates.

(c) Force exerted on a conductor is given by
F= ngfmdAﬁ

integrated over the surface area of the conductor, with E., = Egy = E /2.

On the upper plate (and x = 0),
- Ll.'rq—r‘_}{,
i = L/ dro(x,y=a)- E{xy—a}
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Including also the part from x < 0, the total force exerted on the top plate
is
i.e,, the top plate is attracted towards the lower plate.

By symmetry, the lower plate is attracted towards the upper plate with force
of the same magnitude, i.e.,

- m i =
Fiover = +5€0Vi L 9.
Priklad 3

The potential due to a uniformal spherical volume with net charge e and
radius rg is '
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where the constant of integration in the first expression has been chosen to
make U continuous at ro. '

The perturbation V in the Hydrogen atom potential is

2.2 ) 2
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AV = — - — 4+ — it i
7y 2y ( 0)

v 4, (r > 1q)

where the constant of integration in the first expression has been chosen to
make U7 continuous at rg.

The perturbation ¥ in the Hydrogen atom potential is

gdp2 t gal 2

e
AV = ﬁ_ET'U_F?J {T{Tﬂj

= 0, {r = o)

The energy shift is
AE = (AV})
to first order in perturbation theory. For the ls state,
% Gl -
AR = fhbﬁ AV = f arridr || AV
o

Since 1y < ag, the typical scale of variation of the wavefunction, 3 == {0},
and
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For the 1s state, .

5 al =5ugr.l§

The ground state energy of H is —e®/(2ap) = —13.6 €V, and ap = 0.529 x
10~ m, so

S

T,

AE = %[z % 13.6eV)=2 =39 x 107%eV
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- The wavefunction of the 2p state vanishes at the u-rg,:n This EUPPFPSSE.‘E
AFE by an additional factor of r*/a3 ~ 10717

Priklad 4

SOLUTION: For a non-interacting ideal gas,

a
E=—g5NI¢,

where ( is the single-molecule partition function

o0

¢ = Z(n + 1) exp(—Bne) .

n=0

This partition function can be evaluated as follows (x = [3¢):

o ad y_ _ 28 E_I B e
(=—¢€ dl_nzzuexp( (n+1)z) = Bd.rl = [1 — exp(—Pe)] ~.

Hence, the sought contribution to the energy is

o 2Ne
— exp(e/kT) —1°

Alternatively, one can reproduce this result as follows. One can imagine that
every molecule has two independent internal degrees of freedom of harmonic
oscilator type, with energy spacing = each. It is easy to see that this model
gives the same spectrum and degeneracies if the energy is counted from the
ground state. With this convention, the average energy of a single harmonic
oscillator is enpg(c), where ng(s) is the Bose-Einstein oceupation number.
Therefore, for the entire gas we get £ = 2Nenp(g), in agreement with the
first derivation.



