METÓDY RIEŠENIA FYZIKÁLNYCH ÚLOH 3 leto19 – Príklady 2

VZOROVÉ RIEŠENIA

Cvičenie 10.3.2020

Príklad 1

2. (a) Since elements are independent, we can compute the partition function for one element, $Z_1 = 1 + e^{-\beta\epsilon}$, and then compute $Z_N = (1 + e^{-\beta\epsilon})^N$. Since the energy is just proportional to the number of elements in state b, we can compute

$$\langle N_B \rangle = -\frac{\partial \ln Z}{\partial \beta \epsilon} = \frac{N}{e^{\beta \epsilon} + 1}$$

Note that $\langle N_A \rangle = N - \langle N_B \rangle$, so

$$\langle L \rangle = a \langle N_A \rangle + b \langle N_B \rangle = Na + \frac{N(b-a)}{e^{\beta \epsilon} + 1}$$

(b)
$$\langle L^2 \rangle = \left\langle (aN_A + bN_B)^2 \right\rangle = \left\langle (aN + (b-a)N_B)^2 \right\rangle$$

$$= a^2N^2 + 2a(b-a)N \langle N_B \rangle + (b-a)^2 \langle N_B^2 \rangle$$

$$\langle L \rangle^2 = [aN + (b-a)\langle N_B \rangle]^2 = a^2N^2 + (b-a)^2 \langle N_B \rangle^2 + 2a(b-a)N \langle N_B \rangle$$
so
$$\langle L^2 \rangle - \langle L \rangle^2 = (b-a)^2 \left[\langle N_B^2 \rangle - \langle N_B \rangle^2 \right]$$

and

$$\left\langle N_B^2 \right\rangle - \left\langle N_B \right\rangle^2 = \frac{\partial^2}{\partial (\beta \epsilon)^2} \ln Z = \frac{N e^{\beta \epsilon}}{(e^{\beta \epsilon} + 1)^2}$$

giving RMS fluctuation

$$\sqrt{\langle L^2 \rangle - \langle L \rangle^2} = \frac{\sqrt{N}(b-a)}{e^{\beta \epsilon/2} + e^{-\beta \epsilon/2}}$$

(c) If we force length to be L we force $N_B = (L - Na)/(b - a)$. The energy is $E = N_B \epsilon$, and the entropy is just the log of the number of ways to choose N_B of the monomers to be in state b, $S = k_B \ln \binom{N}{N_B}$. So,

$$S = k_B \ln \frac{N!}{N_B!(N - N_B)!}$$

which can be written in the large N and N_B limit as

$$S = k_B \left[N_B \ln \frac{N}{N_B} + (N - N_B) \ln \frac{N}{N - N_B} \right]$$

SO

$$F = E - ST = N_B \epsilon + k_B T \left[N_B \ln \frac{N_B}{N} + (N - N_B) \ln \frac{N - N_B}{N} \right]$$

where $N_B/N = (L - Na)/[N(b-a)]$ and where $1 - N_B/N = (Nb - L)/[N(b-a)]$.

(d) Force is given by L derivative of free energy at fixed temperature

$$f = \left(\frac{\partial F}{\partial L}\right)_T = \left(\frac{\partial N_B}{\partial L}\right) \left(\frac{\partial F}{\partial N_B}\right)$$

$$f = (\epsilon + k_B T [\ln N_B/N - \ln(1 - N_B/N)])/(b - a)$$

or

$$f = \frac{\epsilon + k_B T \ln \frac{L - Na}{Nb - L}}{b - a}$$

Note force diverges to infinite tension if $L \to Nb$; also force diverges to infinite compression if $L \to Na$.

Príklad 2

- (a) Easily checked by substitution.
- (b) We find

$$a = \frac{\pi_x + i\pi_y}{\sqrt{2}\,\hbar}\,\ell\,, \quad a^\dagger = \frac{\pi_x - i\pi_y}{\sqrt{2}\,\hbar}\,\ell\,.$$

(c) Let $\varepsilon_1 = \sqrt{2\hbar v}/\ell$, then the Schrödinger equation becomes

$$\frac{\varepsilon}{\varepsilon_1}\psi_A = a^{\dagger}\psi_B$$
, $\frac{\varepsilon}{\varepsilon_1}\psi_B = a\psi_A$, or $\frac{\varepsilon^2}{\varepsilon_1^2}\psi_A = a^{\dagger}a\psi_A$, $\frac{\varepsilon^2}{\varepsilon_1^2}\psi_B = aa^{\dagger}\psi_B$.

(d) By the indicated analogy $\varepsilon_n^2/\varepsilon_1^2$ must be a nonnegative integer. We can write the set of energy levels (which includes $\varepsilon_n < 0$) as

$$\varepsilon_n = \operatorname{sign}(n) \frac{\hbar v}{\ell} |2n|^{1/2}, \quad n \in \mathbb{Z}.$$

Príklad 3

(a) Show that the potential Φ = VR/r satisfies the required boundary conditions on the plane C separating dielectrics as well as on the sphere.

Solution:

$$D = \varepsilon_{1,2}E$$
 and $E = -\nabla \Phi = VR\hat{r}/r^2$.
On the plane: $(D_1)_n = (D_2)_n = 0$ and $(E_1)_t = (E_2)_t = VR/r^2$.
On the sphere: $\Phi|_{r=R} = V$.

(b) Find the free charge density σ on the surface of the conducting sphere and the total amount of free charge Q on it.

Solution:
$$\sigma = D_{\tau} = \varepsilon_{1,2}V/R$$
.
Total charge $Q = 2\pi R^2(\sigma_1 + \sigma_2) = 2\pi(\varepsilon_1 + \varepsilon_2)VR$.

(c) Find the bound charge densities σ_b on the spherical boundaries A and B of the dielectrics.

Solution:
$$\sigma_b|_{AB} = -P_r = (\varepsilon_0 E - D)_r = (\varepsilon_0 - \varepsilon_{1,2})E_r = -(\varepsilon_{1,2} - \varepsilon_0)V/R$$

(d) Find the bound charge density σ_b on the flat boundary C between the dielectrics.

Solution: ([...] denotes discontinuity) $\sigma_b|_C = -[P_n] = [\varepsilon_0 E_n] = 0$.

Príklad 4

In cylindrical coordinates the length element is $ds = \sqrt{dr^2 + r^2 d\phi^2 + dz^2}$ and since the mountain is described by the equation z = -r then the length element on the mountain is given by

$$ds = \sqrt{2dr^2 + r^2d\phi^2}. (1)$$

To find the optimal path we need to minimize the functional

$$\mathcal{P}[r(\phi)] = \int \sqrt{2dr^2 + r^2d\phi^2} = \int d\phi \,\sqrt{r^2 + 2\dot{r}^2} = \int d\phi \,\mathcal{L}(r, \dot{r}, \phi) \,. \tag{2}$$

Consequently, the shortest path is the solution of

$$\frac{d}{d\phi}\frac{\partial \mathcal{L}}{\partial \dot{r}} - \frac{\partial \mathcal{L}}{\partial r} = 0 \tag{3}$$

$$\frac{2\ddot{r}}{\sqrt{r^2 + 2\dot{r}^2}} - \frac{2\dot{r}\left(\dot{r}r + 2\ddot{r}\dot{r}\right)}{\left(r^2 + 2\dot{r}^2\right)^{3/2}} - \frac{r}{\sqrt{r^2 + 2\dot{r}^2}} = 0 \tag{4}$$

$$2\ddot{r}\left(r^{2}+2\dot{r}^{2}\right)-2\dot{r}\left(\dot{r}r+2\ddot{r}\dot{r}\right)-r\left(r^{2}+2\dot{r}^{2}\right)=0\tag{5}$$

$$r^2 + 4\dot{r}^2 - 2\ddot{r}r = 0. (6)$$

With r=1/u then $\dot{r}=-\dot{u}/u^2$ and $\ddot{r}=2\dot{u}^2/u^3-\ddot{u}/u^2$ which leads to

$$\frac{1}{u^2} + \frac{4\dot{u}^2}{u^4} - \frac{2}{u} \left(\frac{2\dot{u}^2}{u^3} - \frac{\ddot{u}}{u^2} \right) = 0, \quad \frac{1}{u^2} + \frac{2\ddot{u}}{u^3} = 0, \quad \ddot{u} + \frac{1}{2}u = 0.$$
 (7)

The general solution for the optimal path is thus $u(\phi) = A\cos\frac{\phi}{\sqrt{2}} + B\sin\frac{\phi}{\sqrt{2}}$. From the initial position constraint $(r_0, \phi_0) = (1, 0)$, we obtain u(0) = A which leads to A = 1. Similarly, from the final position constraint $(r_1, \phi_1) = (1, \pi)$ we obtain $u(\pi) = \cos\frac{\pi}{\sqrt{2}} + B\sin\frac{\pi}{\sqrt{2}}$ giving $B = (1 - \cos\frac{\pi}{\sqrt{2}})/\sin\frac{\pi}{\sqrt{2}}$. Putting everything together we obtain that the shortest path to the refuge is the one described by the equation

$$r(\phi) = \cos\frac{\pi}{2\sqrt{2}}\sec\frac{\pi - 2\phi}{2\sqrt{2}}.$$
 (8)