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Priklad 1

2. (a) Since elements are independent, we can compute the partition function for one
element, Z; = 1 4+ €77, and then compute Zy = (1 + e ?)V. Since the energy is just
proportional to the number of elements in state b, we can compute
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Note that (N4} = N — {Ng}, so
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giving RMS fluctuation
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(c) If we force length to be L we force Ng = (L — Na)/(b— a). The energy is E = Npge,
and the entropy 1s just the log of the number of ways to choose Ng of the monomers to
e frsbdled. &= kyin (‘,{:ji ) So.
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which can be written in the large N and Ng limit as
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where Ng/N = (L — Na)/[N(b— a)] and where 1 — Ng/N = (Nb—L)/[N(b— a)].



(d) Force is given by L derivative of free energy at fixed temperature
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Note force diverges to infinite tension if L — Nb; also force diverges to infinite compression
if L — Na.

Priklad 2
(a) Easily checked by substitution.

(b) We find
| T ATy 4 e — Wy

a=——4, a' =—F7-—7
V2 h V2h
(¢) Let g1 = /Zhv /£, then the Schrodinger equation becomes
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E—ﬂ’.q =a'Yp, —Yp=ayy, or mPy=a'ayy, —V¥p=aa'vp.
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(d) By the indicated analogy EE ;’.r::f must be a nonnegative integer. We can
write the set of energy levels (which includes £, < 0) as

En = sigﬂ{n.}% ]2?11”9 , mned.

Priklad 3

(a) Show that the potential @ = V R/r satisfies the required boundary conditions on the
plane C separating dielectrics as well as on the sphere,

Soalotion:
D==zisF and E= V& =VERs/r
Un the T (1 1 | 'r'l'_::'r: [} amad |Jr.| I I."'.-_ni,- | |rr1'

O the sphere: | _p =1

(b) Find the free charge density & on the surface of the conducting sphere and the total

amount of free charge {} on it.
Solution: o= 0, =c12V/H

Total charge Q = 2oy + o3 (s +29) VAL

(C} Fmd the bound charge densities oy on the spherical boundaries .4 and B of the dielectrics.

Sohttion: oylig——F ={5E — D), = (55 — £18)E, = —[eg19—59)V/R.



(d) Find the bound charge density o on the flat boundary C between the dielectrics.

Priklad 4

In cylindrical coordinates the length element is ds = \/dr? + r2d¢? + dz2 and since
the mountain is described by the equation z = —r then the length element on the

mountain is given by
ds = \/2dr? + r2dg¢?. (1)

To find the optimal path we need to minimize the functional

Pir(8)] = / Ny / i VT = / dpL(r,7g). ()

Consequently, the shortest path is the solution of
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27 (1% + 27%) — 2 (Fr + 277) — 7 (r* + 27%) = 0 (5)
r? 4+ 472 — 2Fr = 0. (6)

With 7 = 1/u then 7 = —u/u? and 7 = 242 /u® — i/u® which leads to
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The general solution for the optimal path is thus u(¢) = Acos % + Bsin —\%. From
the initial position constraint (rg,¢p) = (1,0), we obtain u(0) = A which leads
to A = 1. Similarly, from the final position constraint (r;,¢;) = (1,7) we obtain
u(rm) = cos Js+Bsin Zs giving B = (1 — cos %) / sin Z5. Putting everything together
we obtain that the shortest path to the refuge is the one described by the equation

r(¢) = cos 5.7 Sec 772:/2;’. (8)



