METODY RIESENIA FYZIKALNYCH ULOH 3 leto20 - Priklady 3

VZOROVE RIESENIA

Cvicenie 17.3.2020

Priklad 1

(a) Since A and B are Hermitian, we have that (A+B )? is also Hermitian. But 2 AB is Hermitian
if and only if A commutes with B. Therefore we have that (A + B)?> = A*+ B* +2AB =2AB
(where the first equality uses [4, B] = 0), and hence A* + B? = 0. Taking the expectation of both
sides of this last equation in an arbitrary state |1) yields (Aw)|Av) + (By|Byp) = 0, where we have
used the Hermiticity of A and B. Since both terms on the LHS of this equation are > 0 for any A
and 1), we see that (Ay|Ay) = (By|By) = 0. But (¢|¢) = 0 if and only if the vector |¢) is the
zero vector |0). Hence A |¢) = B |¢) = |0) for all states |1}, which shows that A= B =0.

(b) Let |¢) be a unit vector in H which is orthogonal to [¢). (The vector |¢) is unique up to
an overall phase.) Then {|¥),|#)} is an orthonormal basis for H. We can now (for example)
choose A = (i) (8] + |#) (¥|) and B = B(|¢) (¢| — |¢) (¢]), where a and ( are non-zero real
numbers. The eigenvalues of A are £a, and the state of the system after the first measurement is
Ix+) = —‘/'-3(|1,b) + |#)) if the value £ is obtained (each occurs with probability 1/2). We want to
show that if we now measure B (whose cigenvalues are +4), there will be a non-zero probability
of obtaining the value —8, in which case the state of the system after the measurement will be
|¢) (which is orthogonal to |)). But it is immediate from the form of the states |x+) that the
probability of obtaining —/8 in the measurement of B is 1/2, regardless of the outcome of the first
measurement,

Priklad 2
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Priklad 3
a)

. 32 o
P = ( 2JTkBT) e"p(_ 2ksT )
b) Due to the equipartition theorem
N o S
<E>— 2<V >— 2[\.BT

and hence
Eg = (E) = %J\UCBT

c)We instantaneously removed all particles with a kinetic energy

Ekin = %mv2 > nkgT

The number of remaining particle, Ny, 18 given by

= = V 11 e rnﬂ mv2
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I next perform the variable transformation

where
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Mext, we compute the remaining energy that is contained in the system after the particles
are temoved.
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I next perform the vanable transformation

_ LB m '25?3?1 [ 2mx

AT iy oy = = T o
and thus
ET) : 2
Tt m m |k31_ [E)“ 372 =
Em._}»[;.(,r k’gfj 24 "ll m ﬂa‘x o ' exp[—x]
=No Ekﬂjr[ ax x372 exp[—x]
1l-‘ =

- No ,f’ji [347 erf(/n ) — 6./ exp(—n) — 4n*? exp(-n) ]

After equilibration, the new temperature is given by
Epew = %J‘"rrnmhi.?-an'

o1
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and thus

n=1527



Priklad 4

(a) The total energy is E = (M + m~)c® where v = 1/4/1 — (v/c)2, and the total
By ) i
momentum is P = muv~y. Since E? — P?c? is Lorentz invariant, the energy in the
center of mass frame E' is given by

E' =VEI— P22 = o/ (M + m~)22 — m2v2y2 = VM2 + 2mM~y + m?2.

After the fission, half of E' is carried by one of the daughter nuclei with momentum

P whose energy is ¢\/(p')2 + (M')2c2. Equating the two gives

p= %\/fl-f'—’ + 2mM~y +m2 — 4(M')2.

(b) Let the magnitude of the momentum of either ¢~ or 7, be po. From momen-
tum conservation, we have 2pscosf!l = p; and energy conservation gives 2pge +

cy/ P+ nae = mnc’. Eliminating ps from the first equation, and using the

second, we get
m

mnc — 4/ (p1)? + mic?

cosf =

The expression on the right-hand side 15 a monotonically increasing function of
pi. Since 0 < cosfl < 1, we have

2 2
(my, —m)e

0< <
s = G,

When p; =0, we have # = 7/2 and ¢~ and #, are back to back. In the other limit
when p1 = (mj —m2)e/(2my) we have # = 0 and (e, D) pair and the proton
are back to back.



