METÓDY RIEŠENIA FYZIKÁLNYCH ÚLOH 3 leto20 – Príklady 4

Cvičenie 28.4.2020

Príklad 1

Two small spherical objects, each of radius r and uniform density ρ are a distance a from a large mass M. Note that $r/a \ll 1$. Find the critical density ρ_c above which the two small objects will not be pulled apart by M.

Príklad 2

7. Two equal containers, each of volume V, contain ideal gases at temperature T, pressure p. In container 1, the gas consists of N₁ molecules of gas α and M₁ of gas β in container 2, N₂ and M₂ respectively - note that N₁ + M₁ = N₂ + M₂. Derive an expression for the entropy of mixing, i.e. the entropy gain obtained by allowing the containers to freely mix. Evaluate the two limiting cases (1) N₁ = N₂ and (2) N₁ = M₂.

Príklad 3

PROBLEM: A long, straight cylindrical wire, of radius a carries a uniformly distributed current I. It emits an electron from r=a, with initial, relativistic velocity v_0 parallel to its axis. Find the maximum distance r_{max} from the axis of the wire which the electrons can reach, treating everything relativistically.

Príklad 4

PROBLEM: A mathematical function has the integral representation

$$F_{\nu}(x) = \frac{1}{2} \left(\frac{x}{2}\right)^{\nu} \int_{0}^{\infty} \exp(-t - \frac{x^{2}}{4t}) t^{-\nu - 1} dt,$$

where ν and x may be regarded as real, positive numbers.

With ν fixed, determine the asymptotic behavior of this function for $x \gg 1$.