METÓDY RIEŠENIA FYZIKÁLNYCH ÚLOH zima20 – Príklady 5

VZOROVÉ RIEŠENIA

Cvičenie 3.12.2020

Príklad 1

Príklad 2

SOLUTION: The initial speed of the block is v=0 and the initial speed of the board is $V=v_0$. The total momentum of the system is conserved, because the surface is frictionless. Thus, the total momentum is $P=MV+mv=Mv_0$ at all times. Now while the total momentum P is conserved, the total energy E is not, due to the friction between the board and the block. The kinetic energy of the system is given by $E=\frac{1}{2}MV^2+\frac{1}{2}mv^2$ and must be equal to E_0-W , where $E_0=\frac{1}{2}Mv_0^2$ is the initial kinetic energy of the system and $W=\mu mgd$ is the work done against friction for the block to slide a distance d to the left relative to the board. The minimum value of v_0 must occur when V=v and d=L. Thus, we have two equations in the two unknowns (v_0,v) :

$$(M + m)v = Mv_0$$

 $\frac{1}{2}(M + m)v^2 = \frac{1}{2}Mv_0^2 - \mu mgL$.

The solution is

$$v_0 = \sqrt{2\mu g L \Big(1 + \frac{m}{M}\Big)} \ .$$

Príklad 4

SOLUTION: Find $\vec{B} = \hat{\phi} 2I/rc$ and then $\vec{A} = -\hat{z}(2I/c)\ln(r/a)$, so the electrons have

$$L = -mc^{2}\sqrt{1 - v^{2}/c^{2}} + (2I|e|/c^{2})v_{z}\ln(r/a).$$

The energy and p_z are conserved:

$$p_z = \frac{\partial L}{\partial v_z} = \gamma m v_z + (2I|e|/c^2) \ln(r/a) = \gamma_0 m v_0.$$

$$H = \gamma mc^2 = \gamma_0 mc^2$$

with $\gamma = 1/\sqrt{1-v^2/c^2}$ and $\gamma_0 \equiv 1/\sqrt{1-v_0^2/c^2}$. So $\gamma = \gamma_0$ and r_{max} is where $\dot{r} = 0$, which means that $v_z = -v_0$ (half-period of cyclotron rotation), which gives

$$r_{max} = a \exp(\gamma_0 m v_0 c^2 / I|e|).$$