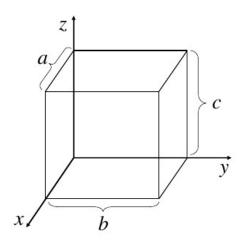

Cvičenie 26.11.2020

Príklad 1

An automobile drag racer drives a car with acceleration a and instantaneous velocity v. The tires (of radius r_0) are not slipping.

- (a) Derive an equation for the position of a point on the bearing surface of the tire as a function of time.
- (b) Find which point on the tire has the greatest acceleration relative to the ground. What is this acceleration?

Príklad 2



#1: UNDERGRADUATE MECHANICS

PROBLEM: A board of length L and mass M can slide frictionlessly along a horizontal surface. A small block of mass m initially rests on the board at its right end, as shown in the figure. The coefficient of friction between the block and the board is μ . Starting from rest, the board is set in motion to the right with initial speed v_0 . What is the smallest value of v_0 such that the block ends up sliding off the left end of the board? Assume the small block is sufficiently narrow relative to L that its width can be neglected.

Príklad 3

4. Consider a box with side lengths a, b, and c along the x, y, and z axes. Suppose there is no electric charge inside the box and that φ = 0 on the surface of the box except at z = 0 where φ = V₁ sin (πx/a) sin (πy/b), and at z = c where φ = V₂ sin (2πx/a) sin (2πy/b). Find φ everywhere inside the box.

Príklad 4

PROBLEM: A long, straight cylindrical wire, of radius a carries a uniformly distributed current I. It emits an electron from r=a, with initial, relativistic velocity v_0 parallel to its axis. Find the maximum distance r_{max} from the axis of the wire which the electrons can reach, treating everything relativistically.