# METÓDY RIEŠENIA FYZIKÁLNYCH ÚLOH 3 leto21 – Príklady 3

Cvičenie 4.3.2021

#### Príklad 1

Extensible molecule: Consider a long molecule which is composed of N chemical units ('monomers'), each of which can be in one of two states, of different lengths a and b, with b > a. The whole molecule therefore can be between Na and Nb in length. The energy of a monomer in the longer state is  $\epsilon$  larger than a monomer in the shorter state. You may consider the thermodynamic limit N >> 1 to simplify the calculations.

- (a) Calculate the equilibrium length of the entire molecule as a function of temperature T.
- (b) Calculate the root-mean-square fluctuation in the length of the entire molecule as a function of temperature T.
- (c) Now, suppose that the molecule is forced to be a fixed length L(Na < L < Nb), so that (L Na)/(b a) of its monomers are in the stretched (length b) state. Find the internal energy E(N, L) and the entropy S(N, T, L).
- (d) From (c) calculate the Helmholtz free energy F(N, T, L), and finally the force needed to extend the molecule to to length L at fixed temperature T.

### Príklad 2

Electron states in graphene are described by the two-component Schrödinger equation

$$\begin{bmatrix} -\varepsilon & v(\pi_x - i\pi_y) \\ v(\pi_x + i\pi_y) & -\varepsilon \end{bmatrix} \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad v \approx \frac{c}{300}.$$

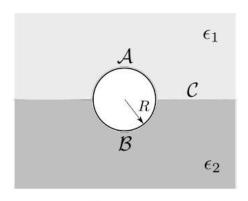
When a uniform magnetic field  $-\hat{\mathbf{z}}B$  is present, the generalized momentum operators are

$$\pi_x = -i\hbar\partial_x + \frac{e}{c}A_x\,, \quad \pi_y = -i\hbar\partial_y + \frac{e}{c}A_y\,,$$

and the vector potential obeys  $\partial_x A_y - \partial_y A_x = -B$ , as usual.

- (a) Verify that that  $[\pi_x, \pi_y] = i\hbar^2/\ell^2$ , where  $\ell = \sqrt{\hbar c/eB}$ .
- (b) Construct an operator a and its Hermitian conjugate  $a^{\dagger}$  from  $\pi_x$  and  $i\pi_y$  such that  $[a, a^{\dagger}] = 1$ .
- (c) Rewrite the Schrödinger equation above in terms of a and  $a^{\dagger}$  and convert it into two independent equations for  $\psi_A$  and  $\psi_B$ .
- (d) Using an analogy to the harmonic oscillator problem, find the quantized energy levels  $\varepsilon_n$  (known as Landau levels). Can  $\varepsilon_n$  be negative?

## Príklad 3



The center of a conducting sphere of radius R is located on the flat boundary between two dielectrics each filling half of the whole space outside the sphere. The dielectric permittivities are  $\varepsilon_1$  and  $\varepsilon_2$ . The conducting sphere is held at potential V. Consider the space outside of the conducting sphere.

- (a) Show that the potential  $\Phi = VR/r$  satisfies the required boundary conditions on the plane  $\mathcal{C}$  separating dielectrics as well as on the sphere.
- (b) Find the free charge density  $\sigma$  on the surface of the conducting sphere and the total amount of free charge Q on it.
- (c) Find the bound charge densities  $\sigma_b$  on the spherical boundaries  $\mathcal{A}$  and  $\mathcal{B}$  of the dielectrics.
- (d) Find the bound charge density  $\sigma_b$  on the flat boundary  $\mathcal{C}$  between the dielectrics.

### Príklad 4

You are mountain climbing on a conical peak described by the equation  $z = -\sqrt{x^2 + y^2}$ . There is a storm coming and you need to take refuge quickly. What is the equation of the shortest path to the refuge at position (-1, 0, -1) if you are now located at (1, 0, -1).