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Priklad 1
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We'll use scaling arguments and parallel axis theorem, but instead of taking out
parts of the triangle, we'll reverse the procedure and we’ll be building our shape
starting from some tiny-tiny (presumably) trangle of mass mg with side length £.
The moment of inertia of this ‘elementary’ building block is Iy = C'mpf - and it
turns out that the exact coefficient here ' ~ 1 does not matter in the end! (It kind
of makes sense because after infinite number of triangle ‘dilutions’ it is not guite clear
what kind of elementary block we get!)

Now we step by step will be building our shape, and in n — oo limit we'll get the
needed result. Assume at some building level n we know the mass, size and moment
of inertia of our shape, so their values at the next level will be
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where a, = £,/ V3 is the distance between the center of the figure at level n and the
center of the new figure.
For mass and size at level n we have
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The moment of inertia at this level is found by iterations,
I, = 3Cmgfa + mats = (3C + 1ymoty
I =35 - my 8} = (32C 4+ 3+ 12)migh3
I3 = 315 +mofs = (33C + 3% + 3 % 12+ 12%)ymyf5
Iy = (12" 4 127723 oo 4 3™ 4 37 Chmp 2 (1)

Take limit n — oo of
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the last term, dependent on €', plays no role in the infinite series which results in
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As an exercise do a similar sealing analysis to determine mumerical value of coet-
ficient ' in moment of inertias [ = (C'mL? of solid triangle and solid square of mass
m and length of the side £. Check your answer by direct integration.




Priklad 2

a) Since the problem has an azinmuthal symmetry. we have
$(7.6) = Y (4" + Bir~#1)Pi(cosh)
=0

Using that
Palcos@®) =1
Py(cosf) = 3-[3cos’ - 1]
we obfain
#(0) = docos’@ = %[3?1(1:059]+ 1]= %[7 1(cosf) + Po(cosf)]
And thus
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If we want to evaluate the potential inside of the sphere. we need to set B; = 0 and obtain
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For the potential outside of the sphere. we set 4; = 0 and obtain
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9(r.6) = 22 £ py(cosd) + 222 (L) Pr(cosh)

b) The electric field inside the sphere is then given by

E = _Vj(r.0) = _Fw _6l 3p(r.8)
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¢) Using Gauss” law inside the shere
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Thus. no charges are contained inside the sphere.
Priklad 3

SOLUTION: Find B = ¢2I /rc and then A = —3(2I/¢)In(r/a), so the elec-
trons have

L=-mc/1— v?/c? + {21|e|/c2)1-'3 In(r/a).
The energy and p. are conserved:
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H = ymc? = vome?

with v = 1/y/1T—v2/c and 79 = 1//1 —v3/c2. So v = g and Tpnae is

where 7 = 0, which means that v, = —vg (half-period of cyclotron rotation)
which gives
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