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Priklad 1

Mechanics Solution - Tuts
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Priklad 2

Solution Example:

If B is larger than the angle of total internal reflection at
point A, then the beam will stay inside the glass plate,
consequently we have the condition:
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The ,6' angle is the is minimized when x = 0, providing the
critical condition for the laser beam to stay inside the
~ R glass. Thus, the ratio of the larger radius to the smaller
— Q 13, radius must remain below the index of refraction of the
T glass plate.
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Consequently, the R
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r condition is always sufficient to ensure
good quality for a light guide (e.g., for a radio where the front panel is
far from the laser diode used as indicator on the PCB). LEDs have
broader angular emission than lasers, therefore the question is slightly
more complicated for LEDs. However the result is still a decent rule of
thumb for nice laboratory design.
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Consider a three-dimensional box with sides of length L. It contains an ideal gas of
non-interacting spin-less particles each with kinetic energy
- my?
2
The temperature of the gas is 7, and the particles are uniformly distributed throughout the
box.
a) What is the normalized velocity distribution of the gas?
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b) We now open one side of the box (the one facing the +x-direction) for a given time Ar.
Using the result from (a), compute the number of particles that escape from the box in
time At. To this end, consider these two steps: (i) Divide the box into slices of width dx
and compute first the number of particles in a given slice at a distance x from the opening
that have escape through the opening in time At.
The number of particles contained in this slice is given by
%der = ¥
In order for a particle from this slice to escape in time A, its velocity in the +x-direction
needs to satisfy vy > . The number of particles contained in the slice with velocity
vx 2 & is given by

In order for a particle from this slice to escape in time At, its velocity in the +x-direction
needs to satisfy vx > -f-. The number of particles contained in the slice with velocity
vz 2 4 is given by
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(ii) In order to find the total number of escaped particles, integrate the result you obtained
in (i).
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c) How does the total number of escaped particles depend on At in the limit At + 07?
This limit corresponds to z — < and I obtain
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Thus, the number of escaped particles is directly proportional to At
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2. (a) Since A and B are Hermitian, we have that (A+B )2 is also Hermitian. But 2 AB is Hermitian
if and only if A commutes with B. Therefore we have that (4 + B)? = A*4- B? + 2AB = 2AB
(where the first equality uses [A, B] = 0), and hence A2 4+ B? = 0. Taking the expectation of both
sides of this last equation in an arbitrary state |9 yields (Ay|Ay) + (B|Bv) = 0, where we have
used the Hermiticity of A and B. Since both terms on the LHS of this equation are > 0 for any A
and |1}, we see that (Ap|Ay) = (By|By) = 0. But (§|¢) = 0 if and only if the vector |#) is the
zero vector |0). Hence A |y} = B |tb) = |0} for all states [}, which shows that A =B = 0.

(b) Let |¢) be a unit vector in H which is orthogonal to |¢). (The vector l¢) is unique up to
an overall phase.) Then {|y),|#}} is an orthonormal basis for H. We can now (for example)
choose A = a (|¢) (¢] + |¢) (¢]) and B = B(|4) (] — |¢) (¢]), where o and [ are non-zero real
numbers. The eigenvalues of A are +a, and the state of the system after the first measurement is
Ix+) = —J—§(|¢) + |¢)) if the value %« is obtained {each occurs with probability 1/2). We want to
show that if we now measure B (whose eigenvalues are £0), there will be a non-zera probability
of obtaining the value —3, in which case the state of the system after the measurement will be
|#) (which is orthogonal to |¥)). But it is immediate from the form of the states |x4+) that the
probability of obtaining —/ in the measurement of B is 1 /2, regardless of the outcome of the first
measurement.



