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SOLUTION:

fa) From Maxwell, we have

4 |1 88
VeB=—j+-—
% c'?+::r5'f
dare.
_c L?‘I'Jd}a
and since ¥ - (W x B) =0, it follows that ¥ -J =0,

(b) From ¥V - E = 4wp, we have E = r11i-,-"1'2 for a spherical distribution of
charges, Thus,
= gt
Note that W - j; = I d{r), which vanishes outside the sphere. Since
WV -3 = [ outside the sphere as well, wiz have that ¥ -7 =0,

(¢} From axial symmetry, we expéct circular magnetic feld lines. So use
the integral form of Ampére's law,

f;B-a{E &= fwr,
c
BE x
where X 1= any two-dimensional surface, and n 15 the local surface
normal. Consider the B field along a circular loop a distance r from

the center of the sphere, at an angle # with respect to the wire’s axis:
Since there is no physical charge fowing through the loop, the total

current is just the displacement current from part (b). Let X be the

cap of a sphere of radius r. subtending a solid angle 3. 'We therefore

B am @

2rBreinfl =

c 4w T
where rsinf is the radius of the loop, and 2 = 27(1 — cos#) is the
solid angle subtended by the loop. We therefore have

Bir.8) = ﬂ & tan({i4) .

cr sin d cr o
Note that there are two choices we could make for onr cap. The
complementary region X' would subtend solid angle 47 — £}, and is
pierced by the wire. In this case, both 7 and j; contribute to J, and
after considering the opposite orientation of n and + on X7, we obtain

EWBrsina_—.‘l—T{— 4'”4_51 -!+;} = %.

L T

as before.
(d) Near the wire, we have # — @, and cosfl — 1, and we recover the
familiar expression
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where R = rsin# iz the perpendicular distance from the wire.
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SOLUTION: The surface consists of N horizontal steps, Ny upward steps,

and

N, downward steps. The degrees of freedom the system possesses are

whether after each horizontal step the surface goes upward. downward. or
remains at the same level. Let us represent these three possibilities by a
scalar variable o = +1, 0, or —1, respectively. We further label each step

by a

(a)

(b)

(e)

(d)

subseript i € {1,...,N }.

With H == ".(1+ rrf]._ the energy is written as a sum over the N
columns. The contribution from each column is £ if ¢ = 0, die. if
there is no step, and 2¢ if ¢ = +1, i.e. if there is a step in either
direction. Since each step adds an extra lattice length to the length of
the surface, this Hamiltonian properly accounts for the surface energy
of £ per lattice length.

The partition function is a sum over all confipurations. This may be
represented as a product over the steps. viz.

7 — Tre H/ksT _ H Z E—t1+|:r V kgT

i=1 ;=

o e—an'irEa"'R'BT (1 s EE—Eka'T)JM

The free energy is

F=kThZ
— Ne— NkgTln (1 + 27 </%T)

In the low temperature regime kT < ¢, we have F == Ne¢, which is the
energy of a fAat surface, whose length is the minimim value possible,
N. In the high temperature regime kT % £, we have —Nk;T In 3,
which reflects the fact that the surface is completely randomized. with
3V equally probable configurations yielding an entropy § = Nkgln 3,
as T — oc. The entropy term —7T'S dominates the average energy E
at these high temperatures.

The total surface length is L=N 4+ Ny + N, = N - (1 + 2p). where p
is the probability for an upward or downward step:
o—=/kaT

P T ae/lT

Thus, (L)y_o =N, while (L)y._. = 3N.
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1. The state vector is

L _ |
¥ [‘iﬂl

end the Schridinger equation is
ihiyp = gy
iy = —igyy + Ay
from which it fallows that
—hPy = gPiy 4+ dhA Yy
and therefore, since ¥o(0) = 1 and v, (0) =
1||!"] t] A {F—Wﬂ‘ —Iuiﬂ}

for some constant 4 and
_ A A g*
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From the Schrédinger equation for 1y we can now deduce that
%{:] — L‘J ( l :—1:'&':* L5 ie—{h"}l)
i

iy

and therefore

or

The desired probability is

Em2 2};1,#11-43 -

[y (87 = |AI® [2 — 2cos(wy — wp)t
14 W

2. Continuous measurement of D forces the system to stay in one eigenstate of ). From the initial
condition, this eigenstate is
1
E

If you have the solution to the first part in hand, then you can consider a sequence of measurements
separated in time by €; we eventually take the limit € — 0. For sufficiently small ¢, the probability that

the first measurement yields one is

g2
1= -7
T
so the probability of remaining in the initial state is
g‘lc?.



All we really need is that p; o €2, which is a consequence of the Schridinger equation; the detailed
solution is not necessary. After n measurements, the probability of still being in the initial state is at
least pf. For fixed time ¢ > 0, choose € = t/n. Then the probability of being in initial state at time ¢ is

242 4 1
gt

B> (1-

°“—( 4&%2)

and, for continuous measurement,

1 1 EPII 1 g - ) -
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We have lim,, .., Py(t) = 1, and the system never leaves the initial state.



