METÓDY RIEŠENIA FYZIKÁLNYCH ÚLOH 3 leto22 – Príklady 1

Cvičenie 16.2.2022

Príklad 1

A bead of mass m moves along a frictionless wire AB. The wire is fixed at point A and rotates with angular frequency ω about the z axis. θ is fixed

- a. Determine the Lagrangian in terms of r, θ and azimuthal angle
- b. Determine the Lagrange equation as a function of m, $\frac{dr}{dt}$, ω , r and θ .
- c. Solve the equation of motion.

Príklad 2

PROBLEM: As shown in the figure, two parallel conducting plates of dimension $L \times L$ are separated by a distance $a \ll L \to \infty$ and are at electrical potential V=0. A thin charged membrane of height a and length L is inserted perpendicular to the plates at x=0. The potential on this membrane is $V(0,y)=V_0\sin(\pi y/a)$. The plates and the membrane extend a distance L in the direction perpendicular to the plane of the figure.

- (a) Find the electrical potential, V(x,y), in the region between the plates to the right of the membrane (i.e., for x > 0). (You may ignore values of $x \ge L/2$.)
- (b) Find the sign and magnitude of the charge density, $\sigma(x)$, on the conducting plates at y=0 and y=a to the right of the membrane, x>0.
- (c) Find the magnitudes and directions of the forces on the entire upper and lower plates.

PROBLEM: In studying the hydrogen atom one takes the proton to be a point charge with mass M. Suppose instead that the proton charge is distributed uniformly within the volume of a sphere with radius $r_0 = 10^{-15}$ m.

- (a) Using perturbation theory, calculate the shift in energy of the 1s level of hydrogen to first order in the perturbation.
- (b) Give an order of magnitude estimate of the ratio of the 2p and 1s level shifts.

Príklad 4

PROBLEM: Molecules of an ideal gas have internal energy levels that are equidistant, $E_n = n\varepsilon$, where $n = 0, 1, \ldots$ and ε is the level spacing. The degeneracy of nth level is n + 1. Find the contribution of these internal states to the energy of the gas of N molecules at temperature T.