METÓDY RIEŠENIA FYZIKÁLNYCH ÚLOH 3 leto22 – Príklady 2

Cvičenie 3.3.2022

Príklad 1

A block of mass m_2 slides inside a cavity of length L inside a second block of mass m_1 which rests on a horizontal table. The masses m_1 and m_2 are connected by a massless spring with spring constant k and equilibrium length $l \ll L$. Initially both blocks are at rest and located at $x_1 = 0$ and $x_2 = l - \Delta l$ where Δl specifies the initial compression of the spring.

- (a) If the mass m_1 slides without friction on the table and m_2 slides without friction on the second block, find $x_1(t)$ and $x_2(t)$ as a function of time.
- (b) If the mass m_1 exerts a frictional force on m_2 proportional to their relative velocity, $F_{1 \text{ on } 2} = -\sigma(\dot{x}_2 \dot{x}_1)$, again determine the resulting motion of the two masses.
- (c) If m_2 slides on m_1 without friction but m_1 experiences a similar frictional force from the table, $F_1 = -\sigma \dot{x}_1$, find the resulting complex frequencies to first order in σ assuming σ to be small. What do those frequencies imply about the resulting motion?

Príklad 2

A positive point charge q is fixed 1 cm above a horizontal, grounded conducting x-y plane. An equal negative charge -q can be moved along the perpendicular dropped from q to the plane.

- (a) Where should -q be placed for the total force on it to be zero?
- (b) Taking the distance between q and the plane equal to b, and the distance from -q to the plane equal to be a, what is the surface charge density, $\sigma(x, y)$, on the conductor? Express your answer in terms of a, b, q, x and y.

Príklad 3

Neutron Star: Consider a neutron star, a macroscopic body composed of neutrons, at a density of 10^{14} g/cm³. The temperature of the star's interior is approximately 10^7 K. For this problem you should consider the star to be a noninteracting Fermi gas of neutrons.

- (a) Determine whether the neutrons are relativistic or nonrelativistic, by estimating their kinetic energy.
- (b) Determine whether or not the neutrons are reasonably well considered to be a zero-temperature Fermi gas.
- (c) Estimate the pressure in the neutron star.
- (d) Use (c) to estimate the mass of this neutron star.

Príklad 4

A particle of mass m is contained within an impenetrable one-dimensional well extending from $x = -\frac{L}{2}$ to $x = +\frac{L}{2}$. The particle is in its ground state.

- (a) Find the eigenfunctions of the ground state and the first excited state.
- (b) The walls of the well are instantaneously moved outward to form a new well extending from -L < x < +L. Calculate the probability that the particle will stay in the ground state (of the new well configuration) during this sudden expansion.
- (c) Calculate the probability that the particle jumps from the initial ground state to the first excited final state.
- (d) Find the probability od jumping from a general initial state n to a general final state m.