Cvičenie 27.4.2021

Príklad 1

<u>Problem 1.</u> [Classical Mechanics] Brad Majors and Janet Weiss go bowling. Ever observant, Brad notes that his bowling ball initially skids down the alley, and only slowly begins to roll.

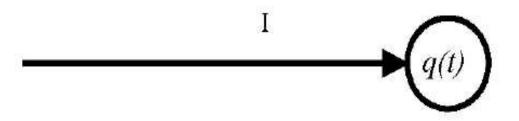
- a) Briefly, and in words, why does a ball that initially skids down the alley eventually start to roll down the alley?
- b) The bowling ball has radius R. What mathematical constraint holds when the ball begins to roll without slipping?
- c) The ball is released with an initial translational speed of v_0 and an initial rotational speed of zero. The coefficient of kinetic friction between the ball and the alley is μ and the mass of the ball is M. Derive an expression for the time, denoted T, between the release of the ball and the onset of rolling without slipping [minor help: $I_{\text{sphere}} = (2/5)MR^2$].

Príklad 2

PROBLEM: This problem deals with displacement current.

- (a) Consider the displacement current j_d = 1/4π ∂E/∂E of an electromagnetic field, and using Maxwell's equations show that the sum J = j + j_d is divergenceless: ∇ · J = 0. (Here, j is the current of charges.)
- (b) A conducting sphere of radius a is being charged through a straight wire, carrying current I, so that the charge on the sphere q obeys q

 q = I. Assuming a symmetric distribution of charge over the sphere's surface, find the electric field outside the sphere. Determine also the displacement current, and verify the conservation law ∇ · J = 0.
- (c) Using the Ampére-Maxwell law in the form ∇ × B = ^{4π}/_cJ, and taking advantage of the cylindrical symmetry in this problem, find the magnetic field everywhere in space.
- (d) By appropriately limiting your result from (c), verify that close to the wire, the answer has the familiar form for an infinite straight wire.



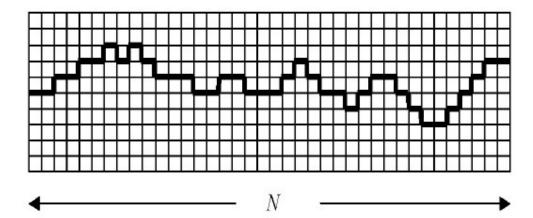
Príklad 3

PROBLEM: The figure below illustrates a simple model of the surface of a two-dimensional 'solid' confined to a square lattice. The two ends of the surface are N lattice sites apart, with $N\gg 1$. The surface energy is proportional to the surface length, with energy $\varepsilon>0$ per lattice length. The surface height can change by at most one lattice length at a time. (Overlaps are forbidden, so that outward-pointing surface normals never point downward.) Thus, the surface can be modeled by a Hamiltonian

$$H = \varepsilon \sum_{i=1}^{N} (1 + \sigma_i^2) ,$$

where $\sigma_i = +1$, 0, or -1 depending on whether the i^{th} 'column' contains a step up, no step, or a step down for the surface.

- (a) Explain why this is Hamiltonian properly reflects the surface energy described above.
- (b) Find the partition function Z(T) for the surface.
- (c) Find the free energy F(T) for the surface, and sketch its temperature dependence. Physically interpret your result in the limits $k_{\rm B}T \ll \varepsilon$ and $k_{\rm B}T \gg \varepsilon$.
- (d) Find the total length of the surface as a function of temperature, and sketch its temperature dependence.



A two level system has as its Hamiltonian

$$\mathcal{H} = \begin{pmatrix} 0 & ig \\ -ig & \Delta \end{pmatrix}$$

in some basis. At time zero, the quantity D, described by

$$D = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix},$$

is measured and found to have the value zero.

- 1. What is the probability that a measurement of D at a later time t will yield the value one?
- 2. If a measuring apparatus monitors the value of D continuously, what is the probability that its value will be one at the later time t?