METÓDY RIEŠENIA FYZIKÁLNYCH ÚLOH zima20 – Príklady 5

VZOROVÉ RIEŠENIA

Cvičenie 1.12.2022

Príklad 1

4. Two blocks and two pulleys (Question from Dave, solution from Peter)

Most straightforward to use Lagrangian with constraint for fixed length of rope:

$$L = \frac{1}{2} \left(m_1 \dot{x}^2 + m_2 \dot{y}^2 \right) + m_1 g x$$
 where (referring to the diagram with the problem) x $g(x,y) = 0 = x + 2y + d - l$

increases downward and y increases to the right. The rope has length / and d accounts for all the rope not taken up by x and y. Also from the constraint, we have $\ddot{x}=-2\ddot{y}$. Using the Euler-Lagrange equations with undetermined multiplier gives

$$\begin{array}{c} m_1\ddot{x}-m_1g+\lambda=0\\ m_2\ddot{y}+2\lambda=0 \end{array} \Rightarrow \begin{array}{c} -2m_1\ddot{x}+2m_1g-2\lambda=0\\ -\frac{m_2\ddot{x}}{2}+2\lambda=0 \end{array} \Rightarrow \ddot{x}=\frac{4m_1g}{4m_1+m_2}$$

Check limits: $m_1 >> m_2$, acceleration is g_1 : $m_1 << m_2$, acceleration goes to zero.

(.	GMm GMm (4+x)	Z FROM M
	$\frac{Gm^2}{(24)^2} = \frac{Gm^2}{(24)^2}$	PROM FACHOTHER
	$\frac{Gm^2}{(24)^2} \frac{Gm}{(24)^2}$	
	CITY, FORCE TO TH	
		LESS THAN THE THE RIGHT OBJECT
GM7	$\frac{n}{r} - \frac{Gm^2}{4\pi^2} < \frac{G}{k}$	$\frac{M_m}{9+1)^2} + \frac{GM_m}{4r^2} $

$$\frac{M}{(a^{2}-r^{2})^{2}(a+r)^{2}} - \frac{M}{(a^{2}-r^{2})^{2}}(a-r)^{2} < \frac{m}{2r^{2}}$$

$$\frac{M}{(a^{2}-r^{2})^{2}}(a+r)^{2} - \frac{M}{(a^{2}-r^{2})^{2}}(a-r)^{2} < \frac{m}{2r^{2}}$$

$$\frac{M}{4ar} - \frac{M}{a^{4}} < \frac{m}{2r^{2}}$$

$$\frac{8mr^{3}}{a^{3}} < m = \frac{4}{3}\pi r^{3} \rho$$

$$\frac{6}{\pi} - \frac{M}{a^{3}} < \rho$$

$$\frac{6}{\pi} - \frac{M}{a^{3}} < \rho$$

Príklad 2

- 3. Current carrying wire (Question and solution from Peter)
 - a) Take loop of radius r around wire and use Ampere's law: $\oint \vec{B} \cdot d\vec{l} = \frac{4\pi}{c} I \Rightarrow \vec{B} = B(r) \hat{\phi} = \frac{2I}{rc} \hat{\phi} \Rightarrow \vec{F} = q \frac{\vec{v}}{c} \times \vec{B} = \frac{2Ive}{rc^2} \hat{\rho} \text{ where } \hat{\rho} \text{ is radial direction in cylindrical coordinates.}$
 - b) If F'moves along wire with v, then particle is at rest in F'and the Lorentz force is zero. Transform force from F:

$$F_{\perp} = \frac{dp_{\perp}}{dt} = \frac{dp'_{\perp}}{\gamma dt' - \beta \gamma dx'} = \frac{dp'_{\perp}}{\gamma + \beta \gamma dx'_{/dt'}} = \frac{F'_{\perp}}{\gamma} \Rightarrow F'_{\perp} = \gamma \frac{2Ive}{rc^2}. \text{ Can also do}$$

problem by transforming currents and charge densities.

Príklad 3

SOLUTION: For a non-interacting ideal gas,

$$E = -\frac{\partial}{\partial \beta} N \ln \zeta \,,$$

where ζ is the single-molecule partition function

$$\zeta = \sum_{n=0}^{\infty} (n+1) \exp(-\beta n\varepsilon).$$

This partition function can be evaluated as follows $(x \equiv \beta \varepsilon)$:

$$\zeta = -e^x \frac{d}{dx} \sum_{n=0}^{\infty} \exp\left(-(n+1)x\right) = -e^x \frac{d}{dx} \frac{e^{-x}}{1 - e^{-x}} = [1 - \exp(-\beta\varepsilon)]^{-2}.$$

Hence, the sought contribution to the energy is

$$E = \frac{2N\varepsilon}{\exp(\varepsilon/kT) - 1}.$$

Alternatively, one can reproduce this result as follows. One can imagine that every molecule has two independent internal degrees of freedom of harmonic oscilator type, with energy spacing ε each. It is easy to see that this model gives the same spectrum and degeneracies if the energy is counted from the ground state. With this convention, the average energy of a single harmonic oscillator is $\varepsilon n_B(\varepsilon)$, where $n_B(\varepsilon)$ is the Bose-Einstein occupation number. Therefore, for the entire gas we get $E = 2N\varepsilon n_B(\varepsilon)$, in agreement with the first derivation.