METÓDY RIEŠENIA FYZIKÁLNYCH ÚLOH zima22 – Príklady 4

Cvičenie 3.11.2022

Príklad 1

A block of mass M_h slides without friction on a horizontal table. It is connected by a massless rope passing over a massless frictionless pulley to a second hanging mass M_v pulled downward by gravity. A sphere of mass m and radius R, initially at rest, rolls without sliding on the top surface of the first block. Find the resulting acceleration of the mass M_v and the center of mass of the sphere.

Two uniform cylinders spin independently about their axes (the axes are parallel to each other). The first has radius r_1 and mass m_1 , the other has radius r_2 and mass m_2 . Initially they rotate in the same sense of rotation with angular speeds ω_1 and ω_2 respectively. They are then brought together so that they touch. After the steady state is achieved, what is the final angular velocity of cylinder 1, ω_1' ?

Príklad 2

PROBLEM: An electric field $\boldsymbol{E}=E_0\,\hat{\boldsymbol{x}}\,e^{-i\omega t}$ is applied at the interface of a vacuum (z>0) and a conductor (z<0) of conductivity σ . (The conductor is nonmagnetic, *i.e.* $\mu=1$.)

- (a) For $\sigma \gg \omega$, calculate how deeply the electric field penetrates into the conductor. (*I.e.* calculate the depth at which the electric field has decreased to 1/e of its amplitude at the surface.)
- (b) Calculate the power dissipated per unit area of the conductor.

Príklad 3

PROBLEM: A point charge -2q is at the origin, $\mathbf{r} = 0$, and two point charges, each +q, are at $\mathbf{r} = \pm a\hat{z}$. Consider the limit $a \to 0$, with $Q = qa^2$ held fixed.

- (a) Find the scalar potential φ(r) in spherical coordinates.
- (b) This system of charges is now placed inside a grounded, conducting spherical shell, of radius b (with $b \gg a$). Now find the scalar potential $\phi(\mathbf{r})$ everywhere, both inside and outside of the shell (again, in spherical coordinates).