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Priklad 1
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We'll use scaling arguments and parallel axis theorem, but instead of taking out
parts of the triangle, we'll reverse the procedure and we’ll be building our shape
starting from some tiny-tiny (presumably) trangle of mass mg with side length £.
The moment of inertia of this ‘elementary’ building block is Iy = C'mpf - and it
turns out that the exact coefficient here ' ~ 1 does not matter in the end! (It kind
of makes sense because after infinite number of triangle ‘dilutions’ it is not guite clear
what kind of elementary block we get!)

Now we step by step will be building our shape, and in n — oo limit we'll get the
needed result. Assume at some building level n we know the mass, size and moment
of inertia of our shape, so their values at the next level will be
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where a, = £,/ V3 is the distance between the center of the figure at level n and the
center of the new figure.
For mass and size at level n we have
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The moment of inertia at this level is found by iterations,
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Take limit n — oo of
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the last term, dependent on €', plays no role in the infinite series which results in
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As an exercise do a similar sealing analysis to determine mumerical value of coet-
ficient ' in moment of inertias [ = (C'mL? of solid triangle and solid square of mass
m and length of the side £. Check your answer by direct integration.




Priklad 2

Laplace’s equation in spherical polars

We now come to an equation that is very widely applicable in physical science,
namely V2u = 0 in spherical polar coordinates:
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Our method of procedure will be as before; we try a solution of the form
u(r,0,¢) = R(r)@(0)D().

Substituting this in (21.38), dividing through by 4 = RO® and multiplying by r.
we obtain

il L LR W P B (21.39)
Rdr dr Osin0do do Osin20dp? £k

The first term depends only on r and the second and third terms (taken together)
depend only on € and ¢. Thus (21.39) is equivalent to the two equations
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Equation (21.40) is a homogeneous equation,

za' R dR _0,
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which can be reduced, by the substitution r = expt (and writing R(r) = S(t)), to
s ds
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This has the straightforward solution
S(t) = Aexp At + Bexpiat,
and so the solution to the radial equation is

R(r) = Ar*' + Br™,



where A} + 42 = —1 and A;4; = —A. We can thus take 4; and 4; as given by ¢
and —(¢ + 1); A then has the form #(/ 4+ 1). (It should be noted that at this stage
nothing has been either assumed or proved about whether / is an integer.)

Hence we have obtained some information about the first factor in the
separated-variable solution, which will now have the form

ulr,0, ) = [Ar’ + Br="*1] ©(0)d(¢), (21.42)

where ® and @ must satisfy (21.41) with 4 = £(£ + 1).
The next step is to take (21.41) turther. Multiplying through by sin” @ and
substituting for A. it too takes a separated form:
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. . 2 . . .
Taking the separation constant as m~, the equation in the azimuthal angle ¢
has the same solution as in cylindrical polars, namely

D(¢p) = C cosme¢ + D sinmd.

As before, single-valuedness of u requires that m is an integer; for m = 0 we again
have ®(¢p) = Cp + D.

Having settled the form of ®(¢), we are left only with the equation satisfied by
O(0), which is
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A change of independent variable from 6 to yu = cosf will reduce this to a
form for which solutions are known, and of which some study has been made in
chapter 16. Putting
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the equation for M(u) = ®(0) reads
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This equation is the associated Legendre equation, which was mentioned in sub-
section 18.2 in the context of Sturm—Liouville equations.

We recall that for the case m = 0, (21.45) reduces to Legendre’s equation, which
was studied at length in chapter 16, and has the solution

Mip) = EPs() + FOs (). (21.46)

We have not solved (21.45) explicitly for general m, but the solutions were given
in subsection 18.2 and are the associated Legendre functions P/"(u) and QV(u),
where
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and similarly for Q% (¢). We then have

M) = EP"(u) + FQ" () (21.48)

here m must be an integer, 0 < |m| < /. We note that if we require solutions to
Laplace’s equation that are finite when y = cosf) = +1 (i.e. on the polar axis
where # = 0,z), then we must have F = 0 in (21.46) and (21.48) since OQ7(u)
diverges at u = +1.

It will be remembered that one of the important conditions for obtaining
finite polynomial solutions of Legendre’s equation is that # is an integer > 0.
This condition therefore applies also to the solutions (21.46) and (21.48) and is
reflected back into the radial part of the general solution given in (21.42).

Now that the solutions of each of the three ordinary differential equations
governing R, ® and @ have been obtained, we may assemble a complete separated-
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variable solution of Laplace’s equation in spherical polars. It is

u(r,0, ¢) = (Ar’ + Br“*1)(C cosm¢ + D sin m¢p)[E P (cos ) + FQ"(cos 0)],
(21.49)

where the three bracketted factors are connected only through the integer pa-
rameters 7 and m, 0 < |m| < /. As before. a general solution may be obtained
by superposing solutions of this form for the allowed values of the separation
constants ¢ and m. As mentioned above, if the solution is required to be finite on
the polar axis then F =0 for all # and m.



a) Since the problem has an azinmuthal symmetry. we have
$(7.6) = Y (4" + Bir~#1)Pi(cosh)
=0

Using that
Palcos@®) =1
Py(cosf) = 3-[3cos’ - 1]

we obtain
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If we want to evaluate the potential inside of the sphere. we need to set B; = 0 and obtain
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For the potential outside of the sphere. we set 4; = 0 and obtain
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9(r.6) = 22 £ py(cosd) + 222 (L) Pr(cosh)

b) The electric field inside the sphere is then given by

E = _Vj(r.0) = _Fw _6l 3p(r.8)

(5.2
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¢) Using Gauss” law inside the shere

§E.dd- 4;“;"’ Ly [d¢| d(cosB)Ps(cos®) = 0

Thus. no charges are contained inside the sphere.
Priklad 3

SOLUTION: Find B = ¢2I /rc and then A = —3(2I/¢)In(r/a), so the elec-
trons have

L=-mc/1— v?/c? + {21|e|/c2)1-'3 In(r/a).
The energy and p. are conserved:

JL
L =+ (QII;EUCQ)IH(T/R) = ~pmuy.
Uz

Pz =

H = ymc? = vome?

with v = 1/y/1T—v2/c and 79 = 1//1 —v3/c2. So v = g and Tpnae is

where 7 = 0, which means that v, = —vg (half-period of cyclotron rotation)
which gives

T'maz =— QXD ('}’Dﬂu’ﬂcgﬁlﬂeij-
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