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1 Motivation

This work is describing a combination of two ideas: the geometric Batalin-Vilkovisky (BV) for-
malism and the symplectic category. I will first explain these two ideas and their relationship
to physics. Then, I will state our result: a mathematically rigorous definition of a general-
ized Lagrangian relation. The talk will therefore start more informally, and then switch to
mathematics.

1.1 Idea 1: Geometric BV formalism

following [BV81], [Sch93], [Khu04] and [Šev04]

Batalin-Vilkovisky formalism is a formal method to manipulate the Feynman path integral,
especially relevant for theories with (higher) gauge symmetries (see e.g. [KSV25] for a recent
application). The basic ingredients are

1. The BV space of fields (i.e. the space of all possible configurations of fields and their
antifields on the spacetime), denoted MBV.

For a real scalar field theory, MBV = C∞(M,R)×C∞(M,R)[−1], where M is the space-
time; an element of MBV is a pair (ϕ, ϕ∗) of two functions on M , the scalar field and its
antifield. The symbol [−1] means that the antifield has ghost1 degree 1, and consequently
it has Fermi statistics (i.e. it is anticommuting).

For Chern-Simons theory, MBV = Ω•(M, g)[1], with a field A being an inhomogeneous
form A = c+A+A∗+c∗ valued in the Lie algebra g, and the spacetime M 3-dimensional.

2. A (−1)-shifted symplectic form ω on MBV: saying it is (−1)-shifted means that it is
nonzero only on vectors of total degree 1.

1It is a common convention for a shift V [n] to mean that the elements of V are placed in degree −n; the
coordinates (elements of the dual of V [n]) are then of degree n. Regarding motivation for ghosts number: in
gauge theories, it is often useful to extend the space of usual physical fields to include new fields, and moreover
it is often possible to include a consistent grading of these fields by integers, their ghost number. In this talk,
the statistics of the field is determined by the parity of this ghost number.
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For the scalar field theory, we need to choose a volume form on the spacetime M ; the
symplectic form is then given by2

ω(ϕ, ϕ∗) =

∫
M

ϕ(x)ϕ∗(x)dvol, ω(ϕ1, ϕ2) = ω(ϕ∗
1, ϕ

∗
2) = 0.

while for Chern-Simons theory

ω(A1,A2) =
1

2

∫
M

tr(A1 ∧ A2) =

∫
M

tr(c ∧ c∗ + A ∧ A∗)

where we see the Lie algebra as a matrix algebra; the ∧ involves the product of matrices
(with entries being smooth forms) and the trace of this product gives a 3-form one can
integrate over M

3. An action functional S on MBV satisfying the quantum master equation3∫
M

δ2

δφi(x)δφ∗
i (x)︸ ︷︷ ︸

∆

eiS/ℏ = 0

where φi(x) are all the fields of the theory and φ∗
i (x) are their antifields.

For the scalar theory, one can choose S[ϕ, ϕ∗] to be an arbitrary functional of ϕ; depen-
dence on ϕ∗ is not possible due to degree reasons; it satisfies the quantum master equation
since S does not depend on the antifield. For Chern-Simons theory, we have

S[A] =
∫
M

1

2
tr(A ∧ dA) + 1

6
tr(A ∧ [A,A]]).

The quantum master equation follows from the gauge invariance of the Chern-Simons
action.

Theories written in the BRST formalism can be easily encoded in BV formalism (by
adding antifields to all fields, ghosts etc.). The BV actions obtained in this way are linear
in antifields.

4. Finally, a Lagrangian submanifold L ⊂ MBV. Lagrangian means that the symplectic form
vanishes on this submanifold and it has “half” of the dimension on MBV (equivalently,
one can require that it is maximal among submanifolds on which the symplectic form
vanishes, i.e. not contained in any other bigger such submanifold.)

For scalar field theory, the only reasonable possibility is L = {ϕ(x) arbitrary, ϕ∗(x) = 0}.
For Chern-Simons theory, the choice of the Lagrangian submanifold corresponds to the
choice of the propagator; an example of the Lorentz gauge is given by the condition d∗A =
0. See the book of Mnëv [Mne19, Sec. 4.9, 5.2] for more details

With these ingredients in place, the BV path integral for the partition function is written as4

Z =

∫
L⊂MBV

eiS/ℏ (1)

2Since both our examples of MBV are vector spaces, I identify the tangent space at any point with MBV
itself. In general, the BV symplectic form is a smooth closed non-degenerate two-form.

3For infinite-dimensional MBV the BV operator ∆ is typically singular; a consistent definition involves the
discussion of renormalization and was done by Costello [Cos11].

4In reality, it turns out that the exponential factor eiS/ℏ should be accompanied with a choice of half-density,
since half-densities are the natural geometric object one can integrate over Lagrangian submanifolds. I will not
emphasize this difference too much.
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The main result of BV formalism is that, if the quantum master equation is satisfied, then the
partition function Z does not change if we deform L. The advantage of BV formalism for gauge
theories is that the BV action functional S can be written fully covariantly, without choosing a
gauge; the different choices of gauge fixings give different Lagrangians5 L. The gauge invariance
of the path integral then follows from the main result of BV formalism. Usually, the Lagrangian
is chosen in such a way that we can compute the partition functions (or expectation values, if
wished) using convenient perturbative expansions.

In the case of the scalar field theory, the BV integral reduces to the usual path integral over
ϕ ∈ C∞(M,R). In Chern-Simons, we recover the path integral using the propagator related to
L.

Finally, we can state the first main idea of our work:

As pointed out by Pavol Ševera [Šev04] that one should see both the Lagrangian L
and the integrand eiS/ℏ as a objects of the same kind: distributional half-densities; with
the former being a Dirac-like δL with support on L. Alternatively, we can see eiS/ℏ as a
generalized Lagrangian, obtained by smearing. We use the the term generalized Lagrangian
in this talk and in [JPZ25]. With this in mind, we rewrite the BV integral as

Z =

∫
L⊂MBV

eiS/ℏ =: ⟨δL|eiS/ℏ⟩

1.1.1 Analogy between complex integrals and Batalin-Vilkovisky formalism

following Domenico Fiorenza [Fio]

Let me finish this section by mentioning that a similar philosophy to computing integrals is
taught in standard complex analysis:

complex analysis BV formalism

definite integrals of f(x) over R the usual path integral of iSnot BV/ℏ over
the space of fields M

replacing R with C (adding imaginary
direction)

replacing M with MBV (adding anti-
fields)

extending the function f(x) to f(z) extending the action Snot BV to the BV
action S

the condition that f(z) is holomorphic the quantum master equation ∆eiS/ℏ

choosing the integration contour γ choosing the Lagrangian L
the integral

∫
γ
f does not change if we

deform γ
the integral

∫
L e

iS/ℏ does not change if
we deform L

1.2 Idea 2: Relations between BV theories

following [Wei06], [GS79] and [Šev04]

Here, we try to answer the question “How to relate different QFTs in the Batalin-Vilkovisky
formalism?”. On the level of (−1)-shifted symplectic spaces of fields, the obvious guess is that a

5It is common (and sometimes confusing) to shorten “Lagrangian submanifold” to just “Lagrangian”.
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map between BV spaces of fields should be a function ψ : MBV → NBV such that the pullback
of the symplectic form on the right hand side agrees with the symplectic form on the left. This
turns out to be too restrictive, and a famous answer, due to Weinstein (extracted from the work
of Hörmander on Fourier integral operators [Hör71]), is that as relations, one should consider
Lagrangian submanifolds of MBV ×NBV, where the symplectic form is −ωM + ωN .

Examples of such relations are

• If ψ : MBV → NBV is a symplectic isomorphism, then {(m,ψ(m))) | m ∈ MBV} ⊂
MBV ×NBV is a Lagragian submanifold, i.e. a Lagrangian relation MBV → NBV.

• If µ : MBV → g∗ is a moment map, then the subset {(m,m mod G) | m ∈ µ−1(0)} ⊂
MBV × [µ−1(0)/G] is a Lagrangian relation MBV → µ−1(0)/G. Notice that in this case,
there is no function MBV → µ−1(0)/G, as the relation is only defined for m such that
µ(m) = 0.

Now, let’s add half-densities to the mix, following [Šev04]: a generalized Lagrangian relation
MBV → NBV is a generalized Lagrangian submanifold of (distributional half-density on) MBV×
NBV. Thus, we additionally allow for smooth half-densities on the product, and more generally
for half-densities which are distributional only in some directions.

There are some obvious problems. First, it is not clear what I mean by distributional half-
densities. In addition, how to define a composition of such generalized Lagrangian relations?

In our work, we answer these questions with the following simplifying assumptions: we
assume that V := MBV is a finite-dimensional vector space (which corresponds to discretiz-
ing the spacetime to a finite number of points), and that the (distributional) directions of
the generalized Lagrangians are vector subspaces.

2 Background and Results

2.1 Symplectic linear algebra

Let me now built some of the background necessary to present our results.

Definition 2.1. A (−1)-shifted symplectic vector space is a Z-graded vector space V with a
non-degenerate, antisymmetric map V ⊗ V → R of degree −1, i.e. it vanishes if its inputs are
of total degree different than 1.

For a (graded) vector subspace X ⊂ V , its symplectic complement is defined by

Xω = {v ∈ V such that ω(v, x) = 0, ∀x ∈ X}.

Unlike for a scalar product, the symplectic complement can intersect the original space. We
will make use of two important cases:

• A vector subspace C ⊂ V is called coisotropic if Cω ⊂ C.

• A vector subspace L ⊂ V is called Lagrangian if Lω = L.

One can always find a basis {pi, qi}i=1...N of V such that ω(pi, qj) = δji and ω(pi, pj) =
ω(qi, qj) = 0. A typical example of a coisotropic subspace is one spanned by all q’s and some
of the p’s, say p1, . . . , pk. The symplectic complement is spanned by qk+1, . . . , qN , and we see
that the quotient C/Cω is given by {pi, qi}i=1...k.
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Proposition 2.2. For an arbitrary coisotropic subspace C ⊂ V , the quotient RC := C/Cω is
again (−1)-shifted symplectic, with the symplectic form given by ωRC

(c mod Cω, c′ mod Cω) =
ω(c, c′). This subquotient RC is called the coisotropic reduction of C.

There are two noteworthy special cases of coisotropic subspaces, C = V and C Lagrangian.
The coisotropic reductions are V and {0}, respectively.

2.2 Generalized Lagrangians

Our main definition, of a generalized Lagrangian, is as follows:

Definition 2.3 ([JPZ25]). A generalized Lagrangian subspace of V is a pair of

• a coisotropic subspace C ⊂ V

• a half-density6 ρ on RC = C/Cω

A generalized Lagrangian relation between V1 and V2 is a generalized Lagrangian subspace of
(V1 × V2,−ω1 + ω2).

There are two extremal cases of generalized Lagrangians:

• if C = L is Lagrangian, the coisotropic reduction RL is the zero-dimensional vector space,
and the half-density is a number. This represents the distributional half-density ρ · δL
from the beginning,

• if C = V , the coisotropic reduction is V again, and ρ is a smooth half-density on V .

In general, a generalized Lagrangian (C, ρ) should be understood as the tensor product of the
smooth half-density ρ on RC and distributional half-density δCω , where Cω is a Lagrangian
subspace in a (non-canonical) complement to RC in V .

Finally, let me collect our results in the following omnibus theorem.

Theorem 2.4 (Jurčo–P.–Zika). Given two relations

V1
(C,ρ)−−−→ V2

(C′,ρ′)−−−→ V3

such that the total quadratic part of ρρ′ is nondegenerate on a suitable7 KC,C′ ⊂ RC×RC′, there

is a generalized Lagrangian relation V1
(C′,ρ′)◦(C,ρ)−−−−−−−→ V3, with the coisotropic subspace given by

C ′ ◦C and the half-density given by a fiber BV integral of ρρ′. This composition of generalized
Lagrangians is unital, associative, compatible with the BV operator, and in the following case

• (V,eiS/ℏ)−−−−−→ V
(L,1)−−−→ •

the composition is equal8 to the BV integral (1) from the beginning.
6As mentioned above, I will not dwell much on half-densities. In coordinates xi, a half-density can be uniquely

written as ρ(x) ⊗
√
dx, and the second factor transforms with (detAeven/ detAodd)

1/2, were the matrices A
describe the change of the even and the odd basis vectors.

7See Section 4 of our paper [JPZ25] for details. In the paper, we separate the quadratic part of the action,
and thus generalized Lagrangians in [JPZ25] are triples (C, Sfree, ρ), with Sfree a quadratic function on RC .
In this talk, we would understand this triple as the generalized Lagrangian (C, eSfree/ℏρ). The fact that the
composition is not always defined means that we get a “partial” category as a result.

8The composition is a half-density on the zero-dimensional vector space •, i.e. a number (a formal power
series in ℏ in our formalism)
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Other examples of compositions or generalized Lagrangians are

• If the original field theory on V has zero modes, then instead of computing the partition
function, we can only compute an effective action functional, depending on the fields in
the cohomology H of the differential {Sfree,−}. In order to do this, one needs to choose
a Lagrangian relation K between V and H (this is related to a choice of propagator,
or a special deformation retract). Then the effective action W on H is given by the
composition (the diagonal arrow below)

• V

H

(V,eiS/ℏ)

(H,eiW/ℏ)
δK=(K,1)

If S satisfies the quantum master equation, it defines a so-called quantum L∞ algebra on
V ; this procedure computes a “homotopy transfer” of this quantum L∞ algebra to the
homology H.

• In [CM09], Cattaneo and Mnëv notice that relaxing the notion of a “special deformation
retract” from the previous point (specifically, not requiring that the homotopy squares to
zero) changes K to a non-trivial generalized Lagrangian relation, with both smooth and
distributional directions.
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