
Ro£níkový projekt (ZS)

1 Práca po£as ZS

Po£as zimného semestra som robil prvú £as´ projektu, tvorba gramatiky pre syntax YARA pravidiel. Toto
bol potrebný krok pred za£atím vývoja samotného editora, lebo korektná gramatika neexistovala a bez nej
nie je moºné robi´ kontrolu syntaxe.

2 Postup

Hlavnou prekáºkou bola absencia akejko©vek presnej o�ciálnej ²peci�kácie syntaxe.
Po£as h©adania £i existuje nejaké open-source rie²enie s vyuºitím Tree-sitter, ktoré korektne popisuje

gramatiku, som na²iel jednu implementáciu. Tá v²ak pokrývala len £as´ syntaxe a gramatiku bolo potrebné
roz²íri´, aby re²pektovala pravidlá syntaxe aktuálnej verzie Yara pravidiel.

Ako najpriate©nej²ie rie²enie sa javilo ru£ne odvodi´ gramatiku z tutoriálu Writing YARA rules. Toto
rie²enie sa nakoniec ukázalo ako celkom validné.

Tree-sitter dokáºe ako vstup zobra´ gramatiku napísanú v ²peciálnom DSL a ako výstup da´ parser, ktorý
následne vie vypo£íta´ syntaktický strom pre nejaký zdrojový súbor. Po£as písania gramatiky som parser
testoval na príkladoch z tutoriálu, aby som overil správnos´ písaných pravidiel. Po prechode celého tutoriálu
som parser otestoval aj na dlh²ích a zloºitej²ích pravidlách, presnej²ie na v²etkých pravidlách z repozitáru
Yara-Rules.

3 Výsledok

O�ciálna ²peci�kácia Yara syntaxe neexistuje, a preto parser ur£ite ne²peci�kuje úplnú Yara syntax. Môj
repozitár obsahuje dosiahnutý stav parsera a gramatiky de�novanej pomocou Tree-sitter JavaScript DSL.

4 Moje príspevky

Zdrojové súbory Yara pravidiel obsahujú rôzne sekcie. Na existujúcej gramatike som vykonal mnoho opráv i
ro²írení, ale vä£²ina z nich sa týkala najmä sekcii Strings a Condition.

4.1 Roz²írenia syntaxe pre Strings sekciu

Pridaná syntax pre:

� sekvencie bytov v hex string alternatívach

� nibble-wise wildcard v hex string

� operátor not (~) v hex string

� skoky (jumps) v hex string

� rozsahy (ranges) ako parameter xor modi�kátora

� riadiace/²peciálne znaky (escape sequence) v text string

� private modi�kátor

1

https://github.com/egibs/tree-sitter-yara/
https://yara.readthedocs.io/en/stable/writingrules.html
https://github.com/Yara-Rules/rules
https://github.com/celstur/tree-sitter-yara/

4.2 Roz²írenia syntaxe pre Condition sekciu

Pridaná syntax pre:

� po£et výskytov (count) stringov v ur£itom rozsahu adries

� výskyt stringu na ur£itej adrese (at operátor)

� výskyt stringu v ur£itom rozsahu adries (in operátor)

� premenné z modulov

� volania funkcií £ítajúcich celo£íselné hodnoty z adresy

� volania funkcií z modulov

� mnoºiny stringov

� ²peciálne výrazy typu of a for...of

� iterátory:
for <quantifier> <variables> in <iterable> : (<podmienka pouºívajúca variables>)

� necelé £ísla (�oat)

� referencie na iné Yara pravidlá

� bitwise operátory AND (&), OR (|), XOR (^), NOT (~), shift (<<, >>)

Odstránená syntax pre:

� nepodporované k©ú£ové slovo entrypoint

4.3 Iné vylep²enia

Napríklad:

� lep²ie pomenovanie pravidiel v gramatike

� správna priorita operátorov

� lep²ie spracovanie komentárov

� oddelenie podmnoºiny výrazov ako £íselné výrazy, string výrazy

� podpora pre anonymné mená stringov ($ namiesto $a)

2

5 Ukáºka

Niº²ie je ukáºka súboru, ktorý vyuºíva ve©kú £as´ spomenutých roz²írení syntaxe.
example.yar:

1 import "pe"

2 import "math"

3

4 private rule DEMO1

5 {

6 meta:

7 desc = "Demo1 rule. Hex alternatives , wildcards , not , jumps , string modifiers"

8 strings:

9 $h1 = { 90 ~F? [6] ?? (4F?1 82 | A0 CE~03) [2-5]DE}

10 $s2 = "line1\nline2\t\"quote \"" xor(0x01 -0xff) ascii private

11 condition:

12 #h1 in (0..100) >= 1 and

13 ($s2 at pe.entry_point) or (any of ($s2 , $h1) in (0..512))

14 }

15

16 rule DEMO2 : trojan loader

17 {

18 meta:

19 desc = "Demo2 showcasing condition features , references Demo1 rule"

20 num1 = 34

21 num2 = 009436

22 num3 = 000

23 strings:

24 $http = "http ://" nocase

25 $sig = { 6A ?? 68 }

26 $magic = { 4D 5A }

27 condition:

28 uint16 (0) == 0x5A4D and pe.is_pe and math.entropy(0, filesize) > 6.5 and

29 (1 of ($http , $sig) or any of ($http , $sig) in (0.. filesize \2)) and

30 #sig in (0.. filesize) >= 1 and $sig in (100..2000) and $magic at 0 and

31 for any i in (0..# sig - 1) : (@sig[i] < filesize) and

32 for any sec in pe.sections : (sec.virtual_size > 1000 and

33 (sec.characteristics & 0x20000000) != 0) and DEMO1

34 }

Výstup parsera pri spracovaní de�nície $h1:

example.yar

1 ...

2 private rule DEMO1

3 {

4 ...

5 strings:

6 $h1 = { 90 ~F? [6] ?? (4F?1 82 | A0

CE~03) [2-5]DE}

7 ...

8 }

1 (strings_section [7, 2] - [9, 64]

2 (string_definition [8, 4] - [8, 56]

3 name: (string_identifier [8, 4] - [8, 7])

4 value: (hex_string [8, 10] - [8, 56]

5 (hex_seq [8, 12] - [8, 18])

6 (hex_jump [8, 19] - [8, 22]

7 (integer_decimal_positive [8, 20] - [8, 21])

)

8 (hex_seq [8, 23] - [8, 25])

9 (hex_alternative [8, 26] - [8, 47]

10 (hex_seq [8, 28] - [8, 35])

11 (hex_seq [8, 38] - [8, 46]))

12 (hex_jump [8, 48] - [8, 53]

13 (integer_decimal_positive [8, 49] - [8, 50])

14 (integer_decimal_positive [8, 51] - [8, 52])

)

3

Výstup parsera pri spracovaní sekcie condition:

example.yar

1 ...

2 private rule DEMO1

3 {

4 ...

5 condition:

6 #h1 in (0..100) >= 1 and

7 ($s2 at pe.entry_point) or (any of (

$s2 , $h1) in (0..512))

8 ...

9 }

1 (condition_section [10, 2] - [12, 62]

2 (binary_expression [11, 4] - [12, 62]

3 left: (binary_expression [11, 4] - [12, 27]

4 left: (binary_expression [11, 4] - [11, 24]

5 left: (string_count [11, 4] - [11, 19]

6 (range [11, 11] - [11, 19]

7 (integer_zero [11, 12] - [11, 13])

8 (integer_decimal_positive [11, 15] -

[11, 18])))

9 right: (integer_decimal_positive [11, 23] -

[11, 24]))

10 right: (parenthesized_expression [12, 4] -

[12, 27]

11 (string_at_offset [12, 5] - [12, 26]

12 (string_identifier [12, 5] - [12, 8])

13 (module_var_or_func [12, 12] - [12, 26]

14 (module_identifier [12, 12] - [12, 14])

15 (identifier [12, 15] - [12, 26])))))

16 right: (parenthesized_expression [12, 31] - [12,

62]

17 (string_at_range [12, 32] - [12, 61]

18 (of_expression [12, 32] - [12, 49]

19 (quantifier [12, 32] - [12, 35])

20 (string_set [12, 39] - [12, 49]

21 (string_identifier [12, 40] - [12, 43])

22 (string_identifier [12, 45] - [12, 48]))

)

23 (range [12, 53] - [12, 61]

24 (integer_zero [12, 54] - [12, 55])

25 (integer_decimal_positive [12, 57] - [12,

60]))))))))

4

	Práca počas ZS
	Postup
	Výsledok
	Moje príspevky
	Rozšírenia syntaxe pre Strings sekciu
	Rozšírenia syntaxe pre Condition sekciu
	Iné vylepšenia

	Ukážka

