
Accurate plasmid reconstruction from metagenomics data using assembly-alignment1

graphs and contrastive learning2

3

AUTHORS4

Pau Piera Líndez1, Lasse Schnell Danielsen1, Iva Kovačić 2, Marc Pielies Avellí1, Joseph Nesme 2,5

Lars Juhl Jensen3, Jakob Nybo Nissen1*, Søren Johannes Sørensen2,*, Simon Rasmussen1,*6

7
1Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical8

Sciences, University of Copenhagen, Denmark9
2 Section of Microbiology, Department of Biology, University of Copenhagen,10

Universitetsparken 15, DK-2100, Copenhagen, Denmark11
3 Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical12

Sciences, University of Copenhagen, Copenhagen, Denmark13

14

* To whom correspondence should be addressed. Email: jakob.nissen@sund.ku.dk,15

sjs@bio.ku.dk, srasmuss@sund.ku.dk16

17

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 4, 2025. ; https://doi.org/10.1101/2025.02.26.640269doi: bioRxiv preprint 



ABSTRACT18

Plasmids are extrachromosomal DNA molecules that enable horizontal gene transfer in19

bacteria, often conferring advantages such as antibiotic resistance. Despite their significance,20

plasmids are underrepresented in genomic databases due to challenges in assembling them,21

caused by mosaicism and micro-diversity. Current plasmid assemblers rely on detecting22

circular paths in single-sample assembly graphs, but face limitations due to graph23

fragmentation and entanglement, and low coverage. We introduce PlasMAAG (Plasmid and24

organism Metagenomic binning using Assembly Alignment Graphs), a framework to recover25

plasmids and organisms from metagenomic samples that leverages an approach that we call26

"assembly-alignment graphs” alongside common binning features. On synthetic benchmark27

datasets, PlasMAAG reconstructed 50–121% more near-complete plasmids than competing28

methods and improved the Matthews Correlation Coefficient of geNomad contig classification29

by 28–106%. On hospital sewage samples, PlasMAAG outperformed all other methods,30

reconstructing 33% more plasmid sequences. PlasMAAG enables the study of organism-31

plasmid associations and intra-plasmid diversity across samples, offering state-of-the-art32

plasmid reconstruction with reduced computational costs.33

INTRODUCTION34

Plasmids are extrachromosomal DNA molecules within a host cell that are physically separated35

from chromosomal DNA and can replicate independently (1–3). Plasmids differ in genome36

length, copy number, replication mechanism, and conjugation mode. The part of the plasmid37

that encodes the core replication machinery is typically contiguous and is called the ‘backbone’.38

The replication and maintenance of plasmids incur a metabolic burden for the host, and to39

avoid purifying selection, the plasmid must carry additional ‘cargo’ genes that increase the40

fitness of either the host or the plasmid (4). This may be genes that confer antibiotic resistance41

(5–7).42

Approximately 50% of bacteria carry one or more plasmids (8). Nonetheless, in databases,43

sequences from plasmids remain underrepresented compared to those from cellular genomes.44

For instance, RefSeq contains 82,471 bacterial genomes, but only 7,892 plasmids (9).45

Characterization of environmental plasmids in in vitro conditions is inherently limited by the46

so called “cultivation bottleneck” (10, 11), where laboratory conditions modify microbial47
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diversity, offering a poor representation of the original composition. Therefore, despite the48

great number of plasmid-related studies, most studies have investigated plasmid virulence49

and properties in isolated strains (8, 12–14). This mismatch between estimated plasmid50

prevalence in bacteria and plasmid representation in the databases emphasizes our51

incomplete understanding of the plasmid genetic structure, diversity, and function (2).52

Metagenomic offers culture free alternative techniques; however, the genetic complexity of53

environmental samples complicates the process (10, 11, 15). Besides the challenges of54

assembling bacterial chromosomes, assembly of plasmids bring additional challenges: a)55

plasmids undergo frequent recombination, creating groups of plasmids that share a ‘backbone’56

but diverge on their ‘cargo’ sequence (12); b) plasmids at high copy number have higher57

mutation rates than chromosomes, which increases micro-diversity and makes them difficult58

to assemble with de Bruijn-graph based assemblers (16) and c) plasmids are enriched for59

repeated sequences associated with transposable elements (2). A consequence of this is that60

plasmid sequences will be fragmented across assemblies and entangled by sharing the same61

‘backbone’ and repeated genetic elements (12, 17).62

To overcome these challenges, dedicated metagenomic plasmid assemblers such as Recycler,63

metaplasmidSPAdes, and SCAPP have been developed (18–20). These methods rely on the64

assembly graph, a data structure used by metagenome assemblers, that represents overlaps65

between sequencing reads. Assembly graphs represent contiguous sequences (contigs) as66

nodes and overlaps between these as edges (21). By leveraging assembly graphs, plasmid67

assemblers can identify connected sequences and resolve complex genomic regions (22).68

Recycler re-interprets the metagenomic assembly graph, leveraging paired-reads information,69

and attempting to extract subgraph cycles with uniform coverage from the graph, in a process70

named graph ‘peeling’ also used by SCAPP (18). MetaplasmidSPAdes iteratively extracts cyclic71

subgraphs from the assembly graph with uniform coverage, filtering the subgraphs with72

plasmidVerify (19), a tool that classifies sequences into plasmidic and chromosomal based on73

gene content using a profile-HMM (19). Finally, SCAPP tries to find plasmid cyclic paths in74

assembly graphs based on paired read mappings, presence of plasmid-specific genes,75

sequence length, coverage, and plasmid sequence score annotation based on PlasClass (18,76

23). Common to the methods is that they operate on single-sample assembly graphs, use the77

circularity of plasmids, and contig coverage. However, the methods have fundamental78
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limitations. First, low coverage causes the “fragmentation problem”, where some plasmids79

appear disconnected in the graph, making them impossible to identify by graph peeling (14,80

24). Second, the high recombination rate of plasmids causes entangled assembly graph81

components where circularity is hard to identify (25). Finally, SCAPP and metaplasmidSPAdes82

leverage plasmid gene signatures to guide the plasmid candidate’s path extraction from the83

assembly graph.84

Binning is a computational strategy used to reconstruct genomes by grouping contigs based85

on their genome of origin, providing an alternative to assembly graph-based methods.86

Modern binners typically integrate several sequence features, including k-mer composition87

(26–31), abundance patterns across samples (26–31), assembly graph connectivity (32), and88

taxonomic markers or annotations (28, 30, 33). Most of these features can be computed on a89

per-sequence basis and are therefore not vulnerable to the fragmentation problem suffered90

by assembly graphs with low coverage. Furthermore, it has been shown how binning91

information can be used to refine contig classification, using binning features to guide92

classification rather than contig classification to reconstruct the original sequences (34, 35).93

We have previously developed the binning tool VAMB, which combines several of these94

features using a variational autoencoder into a latent space which is clustered to form bins (26,95

36).96

In this paper, we introduce assembly-alignment graphs (AAGs), which combine the intra-97

sample sequence overlaps recorded by assembly graphs, with cross-sample overlaps detected98

by ordinary sequence alignment. Using a contrastive learning approach, we were able to99

effectively integrate the AAG with ordinary binning features in a new binning framework called100

PlasMAAG that can reconstruct both plasmids and cellular genomes. We evaluated PlasMAAG101

on simulated data, where it reconstructed 9-70% more near-complete (≥0.95 precision, ≥0.9102

recall) (NC) plasmids and cellular genomes than SemiBin2, ComeBin, MetaBAT2, MetaDecoder,103

and VAMB. Regarding only plasmids, PlasMAAG reconstructed at least 50-121% more NC104

plasmids than any other binner, and 14-40%more NC plasmids than the unfiltered set of cycles105

from SCAPP cycles in 4/5 benchmark datasets. When using a confident threshold PlasMAAG106

reconstructed 21-212% more confident NC plasmids than SCAPP confident. PlasMAAG107

achieved excellent performance on hospital sewage samples, reconstructing at least 33%more108

plasmid sequences than any other tool, as evaluated with a robust paired long-read short-109
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read validation setup. Using PlasMAAG’s ability to reconstruct plasmids and hosts, we studied110

host-plasmid associations in hospital sewage samples and intra-plasmid diversity across111

samples. To our knowledge, PlasMAAG is the only method that enables ‘multi-sample’112

characterization of both plasmids and cellular genomes, achieving state-of-the-art plasmid113

reconstruction with reduced computational resource requirements than current plasmid114

binners.115

RESULTS116

PlasMAAG: Combining assembly graphs, alignment graphs, TNFs, and co-abundances117

for binning118

PlasMAAG is a new deep learning binning algorithm designed to reconstruct cellular and119

plasmid genomes (Figure 1). Compared to our previous developed binning algorithm VAMB,120

PlasMAAG introduces three novelties. First, we combine multi-sample assembly graphs with121

contig alignment graphs into a single graph called ‘assembly-alignment graph’. The assembly-122

alignment graph is then projected to an embedding space with fastnode2vec (37), from which123

communities of contigs can be extracted. Second, we enhanced the training of the variational124

autoencoder (VAE) by adding contrastive learning, based on information from the assembly-125

alignment graph. Finally, we leverage binning to ensemble geNomad (38) contig annotation126

scores across bins to classify the bins into plasmid or cellular genomes.127
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128
Figure 1. PlasMAAG workflow overview. PlasMAAG leverages assembly graphs, alignment graphs, k-mer signal, and contig co-129
abundances for binning, with a final step where bins are classified as cellular or plasmid bins based upon refined geNomad predictions. a.130
Per-sample assembly graphs are merged with the between-sample alignment graph, generating the assembly-alignment graph. b.131
Fastnode2vec is used to generate contig embeddings from the assembly-alignment graph, from where contig communities are extracted.132
Communities are expanded, merged, and purified using a variational autoencoder with contrastive loss that push communities towards133
be preserved in the embedding. c. Plasmid and cellular candidate bins are extracted from the VAE embedding based on their geNomad134
scores, using distinct plasmid and cellular clustering strategies.135

PlasMAAG reconstructed 21-212% more plasmid bins compared to SCAPP confident136

To develop and test PlasMAAG we re-assembled the simulated CAMI2 short-read human137

microbiome toy datasets. Re-assembly of CAMI2 was required because the original CAMI2138

plasmids were not simulated as independent entities from their hosts cellular genomes, and139

because assembly graphs were not available (see Methods). We found that PlasMAAG140
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reconstructed 5-64% more NC bins over all 5 benchmark datasets compared to VAMB, the141

second best performing binner on the benchmark data (Figure 2.A). The improvement in142

binning performance was driven by increased reconstruction of plasmids, where PlasMAAG143

reconstructed at least 50-121% more NC plasmids candidate bins compared to SemiBin2,144

ComeBin, MetaBAT2, MetaDecoder, and VAMB across all benchmark datasets. When145

comparing to SCAPP, PlasMAAG reconstructed 14-40% more NC plasmids than SCAPP cycles146

over 4/5 benchmark datasets (Figure 2.B). When evaluating confident plasmids bins147

generated by PlasMAAG (above 0.95 geNomad plasmid threshold), PlasMAAG reconstructed148

21-212% more NC plasmid bins than SCAPP confident (Figure 2.C). Furthermore, PlasMAAG149

spanned a larger variation of plasmids, since the unique set of confident PlasMAAG plasmids150

across the benchmark datasets included 172 NC plasmid bins and 223 medium-quality (≥0.9151

precision, ≥0.5 recall) (MQ) plasmid bins not reconstructed by SCAPP confident. In contrast,152

SCAPP confident reconstructed 64 NC plasmid bins and 68 MQ plasmid bins not reconstructed153

by PlasMAAG. The intersecting set of plasmids reconstructed by both methods was 164 NC,154

and 185 MQ plasmid bins, respectively (Figure 2.D-E). Considering cellular binning, PlasMAAG155

was also competitive, reconstructing 0.7-9% less NC cellular bins than VAMB, the best cellular156

binner on benchmark datasets (Figure 2.F). The set of PlasMAAG confident plasmids offered157

a better balance than SCAPP confident between the true positive and true negative plasmids158

present in the benchmark datasets, with a 14-43% improvement in F1 (Figure 2.G-H,159

Supplementary Figure 1, Supplementary Note 1). By averaging geNomad scores across160

PlasMAAG’s clusters, we can detect plasmids more accurately than applying geNomad on161

individual contigs, yielding an improvement over the plasmid/non-plasmid contig162

classification Area Under Precision-Recall Curve (AUPRC) and Matthews correlation coefficient163

(MCC) of between 28-69% and 42-131%, respectively (Figure 2.I-J, Supplementary Note 2,164

Supplementary Figure 2, Supplementary Table 1).165
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166
Figure 2. PlasMAAG binning and classification performance across the benchmark datasets. a. NC bins (cellular + plasmids)167
reconstructed from the five benchmark datasets for VAMB (blue), MetaBAT2 (green), SemiBin2 (red), MetaDecoder (brown), ComeBin168
(grey), SCAPP cycles (yellow), and PlasMAAG (purple). b. NC plasmid bins reconstructed by all methods. c. NC plasmids reconstructed by169
SCAPP confident (yellow dotted) and PlasMAAG confident (purple dotted). d. Set of NC complete unique plasmids reconstructed only by170
PlasMAAG confident (red), only by SCAPP confident (green), and by both methods (light brown) across all datasets. e. Same than d but171
for MQ plasmid bins. f. NC cellular bins reconstructed by all methods except SCAPP confident. g. Plasmid sample precision-recall (see172
Methods) from the Airways dataset for PlasMAAG across geNomad thresholds (purple), PlasMAAG confident (purple star), geNomad173
across thresholds (green), geNomad at the default plasmid threshold (green cross), SCAPP cycles (light yellow), and SCAPP confident (dark174
yellow). h. Sample F1 across the five benchmark datasets for geNomad at the default plasmid threshold (green), SCAPP confident (yellow),175
and PlasMAAG confident (purple). i. Area Under Precision-Recall Curve (AUPRC) for the classification of plasmids by geNomad (green) and176
when aggregating the geNomad scores per PlasMAAG community-based clusters (purple). j. Matthew correlation coefficient (MCC) for177
the classification of plasmids by geNomad (green) and when aggregating the geNomad scores per PlasMAAG community-based clusters178
(purple).179

Assembly graphs have a strong signal for binning180

In assembly graphs, edges represent sequence overlaps between contigs. Therefore, it has181

long been known that they are informative for binning (32, 39). To quantify how informative182

edges were, we weighted them by normalized linkage (see Methods), based on the number of183

overlapping k-mers, and the length of the contigs. Normalized linkage showed a positive184

correlation with edge accuracy at genome (species) level, with Spearman correlation185
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coefficients 0.49-0.93 (0.86-0.98) across all benchmark datasets (Figure 3.A, Supplementary186

Figure 3). Additionally, normalized linkage was evaluated for correlation with edge accuracy187

(i.e. how often two contigs linked by an edge belong to the same genome) by calculating the188

Area Under Precision-Recall Curve (AUPRC). The resulting AUPRC ranged from 0.66 to 0.74 at189

the genome level and 0.81 to 0.90 at the species level across the benchmark datasets (Figure190

3.B, Supplementary Figure 3). We concluded that the assembly graph contains useful signals191

for binning.192

Alignment graphs contain taxonomic information across samples193

PlasMAAG uses the multi-split binning workflow due to its superior accuracy (26, 36), where194

samples are assembled individually. Therefore, assembly graphs only inform about overlaps195

between intra-sample contigs. To also include between-sample contig overlap information, we196

aligned contigs across samples with strict criteria to accept a hit (see Methods). The alignments197

were highly precise with an accuracy at genome (species) level of 57-95% (95-99%) (Figure198

3.C, Supplementary Figure 4). By adding alignments between pairs of contigs as edges to199

the assembly graph, we created an alignment-assembly graph (AAG), where we weighed each200

edge by either alignment metrics (for alignment edges) and normalized linkage (for assembly201

graph edges, see Methods). Alignment edge weight between two contigs correlated with202

taxonomic relatedness of the contig’s genomes, showing an 82-98 (98-100) Area Under203

Precision-Recall Curve (AUPRC) across the benchmark datasets at genome (species) taxonomic204

level (Figure 3.D, Supplementary Figure 5). Furthermore, there was a positive correlation205

between the averaged alignment graph edges and the average accuracy, with a Spearman206

correlation coefficient of 0.71-0.95 across all benchmark datasets (Figure 3.E, Supplementary207

Figure 5).208

Assembly-alignment graphs integrate alignments and assembly graphs209

The complementarity between cross-sample alignments and the intra-sample assembly graph210

connections in the AAG enabled us to integrate these in a unified graph, resulting in a211

combined graph that we named ‘assembly-alignment graph’. We evaluated the edges in the212

assembly-alignment graphs across the benchmark datasets to assess whether higher edge213

weights correspond to contigs that are taxonomically close, such as those from the same214

genome. The edge weights in the assembly-alignment graph reflect taxonomic relationship215
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between sequences, consistent with the original assembly and alignment graphs, achieving a216

AUPRC of 0.69-0.90 (0.93-0.97) across the benchmark datasets at genome (species) taxonomic217

level (Figure 3.F, Supplementary Figure 6). Consistently with the AUPRC findings, we found218

a positive correlation between the averaged edge weights and the average edge accuracy at219

genome taxonomic level, with 0.20-0.97 Spearman correlation coefficients across benchmark220

datasets (Figure 3.G, Supplementary Figure 6). The assembly-alignment graph integrates221

assembly graphs and alignment information across samples into a unified object, where edge222

weights reflect taxonomic relationships.223

224
Figure 3. Assembly graph, alignment graph, and assembly-alignment graph-based features for binning. a. Average precision of the225
assembly graph edges from the Airways benchmark dataset, sorted by edge weight and grouped into 5% bins, is shown for genome (blue),226
species (orange), and genus (green) taxonomic levels. b. Precision-recall curve of the assembly graph edge weights from the Airways227
benchmark dataset at genome (blue), species (orange), and genus (green) taxonomic levels. c. Alignment accuracy when increasing228
minimum identity thresholds across benchmark datasets. Results are shown only for restrictive alignments (see Methods) between contigs229
from different samples. d. Precision-recall curve of the alignment graph edge weights from the Airways benchmark dataset at genome230
(blue), species (orange), and genus (green) taxonomic levels. e. Average precision of the alignment graph edges from the Airways231
benchmark dataset, sorted by weight and grouped into 5% bins is shown for genome (blue), species (orange), and genus (green) taxonomic232
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levels. f. Precision-recall curve of the assembly-alignment graph edge weights from the Airways benchmark dataset at genome (blue),233
species (orange), and genus (green) taxonomic levels. g. Average precision of assembly-alignment graph edges from the Airways234
benchmark dataset, sorted by weight and grouped into 5% bins is shown for genome (blue), species (orange), and genus (green) taxonomic235
levels. h. Precision distribution of communities extracted using FastNode2Vec from assembly-alignment graphs across the five benchmark236
datasets at genome taxonomic level.237

Extracting high precision, low completeness communities from the assembly-alignment238

graph239

The majority of contigs are too short to contain a stable signal for binning, but the AAG240

cohesion depends on the nodes representing short contigs. Therefore, we condensed the AAG241

into a set of node communities using fastnode2vec (see Methods). We found that the242

extracted communities from this graph embedding had high purity, with an average precision243

at genome (species) level of 86-95% (95-97%) across the benchmark datasets, and where 63-244

84% (85-91%) of communities had a precision at genome (species) level (Figure 3.H,245

Supplementary Table 2). However, we observed that communities were composed of rather246

few contigs, with 85-91% of the communities were composed of 10 or less contigs across the247

benchmark datasets. Furthermore, microbial genomes were fragmented in, on average, 12.2-248

32.8 communities, and plasmids somewhat were less fragmented, split between 1.6-2.5249

communities on average (Supplementary Figure 7, Supplementary Table 2). We also250

noticed that only 31-47% of contigs in the datasets belonged to any community251

(Supplementary Table 2). In conclusion, the communities extracted from the AAG using252

fastnode2vec were precise, but incomplete and fragmented.253

Contrastive variational autoencoders improve binning through aggregating, merging254

and splitting communities255

To address the fragmentation of AAG communities, we leveraged traditional binning features256

such as contig k-mer composition and abundances (40). In the VAMB framework, these contig257

features are embedded using a variational autoencoder (VAE), and these embeddings are then258

used to cluster contigs together. PlasMAAG follows the same approach but also considers259

community structure during the embedding and clustering process. To encourage contigs of260

the same community to be close in the embedding, we added an extra term to the loss261

function of the VAE which penalized high embedding distance between contigs of the same262

community. We call this term ‘contrastive loss’. We then applied a clustering strategy on the263

contrastive VAMB embeddings, consisting of three key steps: (1) Merging – Communities close264
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in the embedding were merged to reduce genome fragmentation, and increase genome recall.265

(2) Splitting – Communities with contigs placed far apart in the embedding were split up to266

increase precision. (3) Expansion – Unassigned contigs located close to a community in latent267

space were added to the community to improve recall. We refer to these three steps as268

‘community-based’ clustering (see Methods, Supplementary Figure 8). This community-269

based clustering resulted in a 46–102% increase in genome recall across benchmark datasets270

compared to the raw communities, confirming the effectiveness of the community merging271

step. The splitting step improved precision by 0.03–1% (Supplementary Figure 9, Table 3),272

indicating minor but positive impact without compromising recall. On the other hand,273

community expansion had limited effect, with only a 1–3% increase in community size274

(Supplementary Table 3), suggesting that step 3 had a smaller impact. Since recall increased275

and precision slightly improved, F1 scores also increased, along with the number of276

reconstructed near-complete (NC) bins.277

Contrastive loss had a positive impact on binning278

To better understand the importance of the contrastive loss on the latent representations, we279

evaluated how it impacted community-based clustering and clustering from the original VAMB,280

which we call ‘density-based’ clustering. Community-based clustering with contrastive loss281

achieved 28–63% higher average F1 scores compared to clustering without the contrastive282

loss, reconstructing 7–45% more NC bins across the benchmark datasets (Supplementary283

Figures 10–11). Contrastive loss also improved density-based clustering, causing a 57–162%284

increase in F1 scores across all benchmark datasets (Supplementary Figure 10), but did not285

uniformly increase the number of NC bins. NC bin recovery was increased by 1–6% in 4 out of286

5 datasets but led to 16% fewer NC bins in one dataset due to a small decrease in precision287

(Supplementary Figure 11). Overall, the contrastive loss boosted recall and led to significantly288

higher F1 scores in both clustering approaches, whereas its effect on precision and final NC289

bin counts varied depending on the dataset and clustering strategy, highlighting the trade-290

offs introduced by enforcing graph-based community structures in the latent space.291

Differential embeddings of plasmids and organisms requires tailored clustering292

leveraging geNomad293
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As previously mentioned, we found the cellular genomes to be fragmented across more294

communities than plasmids, probably due to the larger size of cellular genomes. Furthermore,295

we observed distinct patterns in k-mer composition, contig co-abundance, and PlasMAAG296

latent representations between plasmids and cellular genomes (Supplementary Note 3,297

Supplementary Figures 12-14, Supplementary Tables 3-4). This suggested that community-298

based clustering might be more suitable for plasmids, and density-based clustering for cellular299

genomes, which we indeed verified with our benchmark datasets (Supplementary Note 3,300

Supplementary Figures 12-14, Supplementary Tables 3-4). Therefore, to identify potential301

plasmid communities in the AAG, we used geNomad to assign plasmid scores to each302

community (38). We found that averaging geNomad scores across communities led to more303

accurate plasmid identification compared to scoring individual contigs (Supplementary Note304

2, Supplementary Figure 2, Supplementary Table 1). This allowed us to extract communities305

as putative plasmid bins for community-based clustering and clustered the remaining contigs306

using density-based clustering. Additionally, we found that this was sensitive to the geNomad307

threshold used for the classification, particularly in the case of organisms (Supplementary308

Note 4, Supplementary Figures 15-16). For instance, when setting a geNomad plasmid309

threshold of 0.7, we observed a decrease on the NC cellular genomes (plasmids) of 6-39% (3-310

18%) (Supplementary Figure 17). This indicated that the selection and dereplication process,311

based on geNomad-identified plasmid clusters, led to a trade-off in cellular genomes recovery.312

We conclude that integrating geNomad sequence predictions with PlasMAAG’s diverse313

clustering strategies enhanced binning performance, enabling the robust reconstruction of314

both cellular genomes and plasmids.315

Evaluating PlasMAAG plasmid binning using hospital sewage samples long-read data,316

and short-read plasmidomics data317

Validating PlasMAAG binning performance on real data is not straightforward as current tools318

do not provide quality estimates for plasmids and might show inherent biases when exploring319

understudied environments such as wastewater. We instead applied a binning validation320

strategy based on sequencing both short- and long-read metagenomics from the same set of321

samples (Fig. 4.A). We considered a long-read contig to be composed of a set of short-read322

contigs if they aligned with 97% identity and a long-read contig coverage of 90% (see323

Methods). By tallying the number of such sets of short-read contigs binned together, we got324
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a measure of recall of short-read contig binning. We observed that PlasMAAG community-325

based bins reconstructed 21% more long-read contigs than VAMB, the second-best326

performing binner (Fig. 4.B). Superior PlasMAAG binning performance was consistent even327

when accounting for incompleteness of the long-read assembled contigs (Supplementary328

Note 5, Supplementary Figure 18). To identify the subset of long-read contigs that329

originated from plasmids, we sequenced samples after a plasmid enrichment to obtain paired330

metagenomics and ‘plasmidomics’ samples as done previously (41) (see Methods). Long-read331

contigs were defined as plasmid contigs if they were either (1) at least 50% covered by332

plasmidomics reads or (2) circular and below 500 kb. We identified short-read contigs as333

originating from plasmid if they aligned well to any long-read contig identified as plasmid (see334

Methods). Using this criteria, PlasMAAG community-based reconstructed 138 NC plasmids,335

which was 33% more plasmid long-read fragments than the second best binner VAMB, and336

431% more NC plasmids than SCAPP cycles (Figure 4.B). These results were consistent with337

the performance validated using unfiltered long-read contigs, demonstrating PlasMAAG's338

robust binning capacity across diverse biological entities.339
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340

Figure 4. PlasMAAG on real samples from hospital sewage. a. Overview of the strategy used to validate PlasMAAG on the five hospital341
sewage samples. For each sample, long-read metagenomics, short-read metagenomics, and short-read plasmidomics datasets were342
generated (see Methods). PlasMAAG was applied to the short-read metagenomics data to produce candidate plasmid and cellular bins.343
These bins were validated against a reference assembly composed by long-read contigs to assess overall binning performance, and against344
a second reference assembly constructed from long-read contigs with plasmid evidence, identified either by circularity or plasmidomics345
read coverage. b. Binning performance of all methods across the five sewage samples, evaluated using all long-read contigs (red) and346
long-read contigs with plasmid evidence (blue). PlasMAAG dens.: bins produced using VAMB's density-based clustering algorithm on347
PlasMAAG’s latents. PlasMAAG coms.: bins generated using the community-based clustering algorithm. c. Binning performance of348
PlasMAAG, SCAPP, and MetaPlasmidSPAdes under relaxed (light gray) and strict (dark gray) plasmid filtering criteria. d. NC cellular bins349
according to CheckM2 estimates, produced by all organism binners for the five hospital sewage samples. PlasMAAG non-plas. conf.:350
PlasMAAG density-based bins after extracting candidate plasmid contigs by aggregating geNomad plasmid contig scores per PlasMAAG351
community-based clusters (see Methods).352

Identifying plasmids in PlasMAAG bins using aggregated geNomad scores353

When applying PlasMAAG to a real dataset with thousands of bins and no ground truth, we354

need to define a threshold to determine whether a bin contains a plasmid. This threshold355

balances precision and recall. To aid in this decision, we aggregated geNomad’s contig plasmid356

scores across all contigs within each bin. With a low threshold of 0.1, PlasMAAG reconstructed357
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93 NC long-read contigs highly confident plasmid based on the metaplasmidomics reads358

(long-read plasmidomics, LR-P), which represented a loss of 33% compared to not filtering359

with aggregated geNomad scores (Figure 4.C). Using a stricter geNomad plasmid threshold360

of 0.95 reduced the number of reconstructed LR-P to 8, a decrease of 94% (Figure 4.D). This361

implied that most long-read contigs, where we had experimental plasmid evidence, were362

predicted by geNomad to be of virus or chromosomal origin, as they had assigned a relatively363

low plasmid score (Figure 4.B, Figure 4.C, Supplementary Figure 19). By comparing364

aggregated geNomad scores with experimental plasmid evidence, we found that this365

mismatch mainly occurred where plasmid evidence was strong but not definitive366

(Supplementary Note 6, Supplementary Figure 19-21). This contrasted with the consistency367

observed in synthetic benchmarks, where geNomad generally demonstrated strong plasmid368

predictive performance (Supplementary Figure 16). Finally, we investigated the effect of this369

on cellular genomes and when applying a geNomad threshold of 0.95, the PlasMAAG density-370

based bins, which are the ones not classified as plasmid, were evaluated with CheckM2. We371

found 18 NC organisms, 3 more than SemiBin2, the second best binner on this dataset, and 8372

more than VAMB. We found noticeable that PlasMAAG offered a better performance373

compared to SemiBin2, even though SemiBin2 leveraged single-copy genes whereas374

PlasMAAG did not. We conclude that PlasMAAG’s has state of the art performance on real375

datasets, both for reconstructing plasmids and cellular genomes.376

PlasMAAG enabled host-plasmids exploration from hospital sewage environments377

By reconstructing plasmid and cellular genomes from the same samples, PlasMAAG enables378

an integrated analysis. We investigated host-plasmid abundance correlations of 24 hospital379

sewage samples collected in Spain (see Methods). PlasMAAG produced 27,954 candidate380

plasmid bins, and 213,431 non-plasmid candidate bins. PlasMAAG plasmid bins were381

aggregated into 13,912 cross-sample clusters, and bacterial hosts per plasmid cluster were382

inferred from PLSDB (see Methods). We identified 323 High quality cellular organism bins (HQ,383

completeness ≥ 70%, contamination ≤ 10%) and aggregated these using PlasMAAG cross384

sample cluster information. We found several significant positive correlations between385

candidate plasmid and cellular organism bins, for example, cluster cl_20, annotated as386

belonging to the Aeromonas genus, correlated with up to 41 plasmid clusters (adjusted p-387

value < 0.05), 12 of which were previously reported as known host-plasmid associations in the388
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PLSDB database (Figure 5A). On the other hand, cluster cl_293, annotated as Ruminococcus_E389

genus, correlated with 43 plasmid clusters, none of them previously reported in PLSDB (Figure390

5A).391

392

393

Figure 5. PlasMAAG enables host-plasmid association studies and exploration of intra-plasmid variation across environments,394
demonstrated using 24 hospital sewage samples. a. Spearman correlation between PlasMAAG high-quality (HQ) cellular clusters and395
PlasMAAG plasmid clusters with an aggregated geNomad plasmid score above 0.75. Highlighted cells with bold rectangles indicate396
significant correlations after Benjamini-Hochberg FDR correction. Cells marked with “X” represent plasmid-organism associations397
previously reported in PLSDB. The organism cluster dendrogram was generated using GTDB-tk taxonomic annotations, while the plasmid398
cluster dendrogram was based on abundance correlations. b. PlasMAAG plasmid cluster nneighs_416 bins. Each row represents a bin from399
one sample, and numbers within parenthesis indicate median bin depth. Yellow blocks denote contigs aligned to pAsa4c, sorted by400
alignment position. Dark green blocks represent contigs not mapping to pAsa4c (see Methods), with their positions inferred from matches401
to other PLSDB plasmid accessions. Light green sections withing dark green blocks indicate alignment segments to pAsa4c. Dark grey402
areas indicate alignment graph edges, and light grey areas represent non-restrictive alignment matches (see Methods). GC%: Average GC403
content computed using a 1000 kb window. Colour code for pAsa4c regions: Blue (Replication and maintenance), Green (Conjugative404
transfer), Purple (Recombination and DNA repair), Orange (Secretion and surface structures), Red (Metabolism), Yellow (Enzymes), Cyan405
(Regulatory proteins and transcription factors), Brown (Transposases and mobile genetic elements), Gray (Hypothetical or unclassified). c.406
PlasMAAG plasmid cluster nneighs_76, composed of contigs from sample 6 (blue), sample 3 (red), sample 5 (green), and sample 23 (orange).407
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Links represent alignment regions, coloured according to the sample of origin. Bold annotations indicate functions associated to408
antimicrobial resistance.409

PlasMAAG revealed intra-plasmid variation across hospital sewage samples410

In PlasMAAG, contigs from different samples are projected into a shared latent space, enabling411

them to be clustered together, and split into per-sample bins thereafter. Aggregation of bins412

into PlasMAAG clusters enabled investigation of highly related plasmids from different413

samples. Cluster nneighs_76 was selected for more in-depth analysis. Plasmid bins from the414

nneighs_76 cluster reconstructed a 90 kb region from the plasmid pAsa4c, which is reported415

to be hosted by Aeromonas salmonicida subsp. (42) (Figure 5B). Despite representing highly416

overlapping regions of the same accession, bins from the nneighs_76 cluster exhibited varying417

degrees of contig fragmentation. For instance, the bin from sample 2 was composed of 20418

contigs, whereas the bin from sample 1 consisted of 10 contigs, which could be explained by419

the difference in the contig abundance. We then explored the relationship of the plasmid bins420

using the alignments from the AAG (Figure 5B). We also found that some bins in nneighs_76421

contains contigs that did not align to pAsa4c. Some of these unaligned contigs were found in422

multiple bins and were syntenic across bins aligned to each other, suggesting that we found423

true plasmid variation, and not an error in binning (Figure 5B). Using synteny, we could find424

four approximate locations on the reference sequence where these contigs belonged to. Three425

of four regions had hallmarks of recombination hotspots, including an ISAs2 insertion site, a426

known conjugative block and a segment with distinct GC content (42) (Figure 5B). Furthermore,427

14 of 19 contigs not mapping to pAsa4c aligned to plasmid accessions reported to be hosted428

by organisms from the Aeromonas genus. Additionally, PlasMAAG clusters, together with the429

assembly-alignment graph, enable the exploration of diversity among similar plasmids across430

samples without PLSDB support. As an example, bins from the plasmid cluster nneighs_416431

exhibited a high degree of sequence similarity despite variations in contig fragmentation432

(Figure 5C). PlasMAAG facilitates the tracking of highly similar plasmids across different433

environments, allowing for the capture of their composition variations.434

DISCUSSION435

Plasmids are pivotal in horizontal gene transfer, playing an influential role in shaping microbial436

communities. Their prevalence across microbial ecosystems highlights their importance, yet437
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studying plasmids from environmental samples has been challenging due to their dynamic438

and unstable composition. This limitation has hindered efforts to bin and identify plasmids439

accurately, despite their abundance. The recent decrease in sequencing costs has significantly440

increased the availability of metagenomic samples, presenting an unprecedented opportunity441

to uncover plasmid diversity. However, the challenges of plasmid binning emphasize the need442

for a robust and broad-range plasmid binning method.443

In this study, we introduced PlasMAAG, a novel deep learning-based framework for444

metagenomic binning of both plasmids and organisms. PlasMAAG leverages a unique feature445

we developed—assembly-alignment graphs—which enables the aggregation of assembly446

graphs across multiple samples. This advancement allows PlasMAAG overcome traditional447

limitations associated with single-sample plasmid assemblers.448

PlasMAAG outperformed SCAPP, the current state-of-the-art plasmid assembler, on both449

synthetic and real datasets, delivering superior results for plasmid binning while being450

significantly faster. Besides producing more plasmid bins, the set of candidate plasmids451

produced by PlasMAAG achieved a more balanced trade-off between precision and recall,452

enabling a broader characterization of metagenomic samples. Notably, PlasMAAG's capability453

to bin all sequences, including plasmids and organisms, offers a comprehensive approach to454

metagenomic analysis. PlasMAAG achieves organism binning results that are comparable to455

leading organism binners on synthetic datasets while demonstrating superior performance in456

understudied, real-world environments.457

PlasMAAG's holistic approach enables integrated studies, such as the exploration of plasmid-458

host associations. Using its comprehensive binning capabilities, we gathered correlation-459

abundance-based evidence for 773 plasmid-host associations, with only 7% previously460

reported in the PLSDB database. Furthermore, PlasMAAG's assembly-alignment graph-based461

clustering revealed intra-plasmid variation across samples, enabling the study of plasmid462

sequence variation across environments.463

We demonstrated that geNomad plasmid predictions were significantly enhanced when464

aggregated across PlasMAAG communities, underscoring the value of binning for refining465

plasmid sequence identification. However, we also saw that geNomad was inaccurate when466

applied to understudied environments, as validated by experimental paired metaplasmidomics,467
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long, and short-read data. These discrepancies highlight the need for more robust plasmid468

sequence identifiers capable of handling complex or uncharted environments.469

The success of PlasMAAG is largely attributable to the assembly-alignment graph, a feature470

that complements assembly graph signals across samples in a multi-sample framework. This471

innovation not only enhances binning accuracy but also facilitates the inference of472

compositional similarities between samples. Moreover, assembly-alignment graphs also473

improve binning of contigs from the same sample, through indirect links to contigs of other474

samples.475

Another notable innovation in PlasMAAG is its use of contrastive loss to integrate traditional476

binning features like k-mer composition and contig abundances, with the assembly-alignment477

graph. This approach could be extended to incorporate other graph-like data in the binning478

process, such as Hi-C data. As sequencing technologies advance and contigs become479

decreasingly fragmented, particularly in long-read datasets, the utility of using cross-sample480

alignments to bridge gaps in the assembly graphs will grow, covering larger genome fractions481

and providing richer insights.482

Despite the advances introduced by PlasMAAG, plasmid binning remains a significant483

challenge, as evidenced by the lack of groundbreaking plasmid binners in recent years. This484

underscores the necessity of innovative approaches, like PlasMAAG, that address the485

complexities of plasmid diversity and recombination. By enabling the study of plasmids486

alongside organisms from highly complex samples, PlasMAAG expands our ability to explore487

microbial communities comprehensively. Its focus on plasmids—an often-overlooked but488

critical component of microbial ecosystems—enhances our understanding of their role in489

horizontal gene transfer and microbial community dynamics.490

In conclusion, PlasMAAG represents a step forward in plasmid and organism binning from491

metagenomic samples. By incorporating assembly-alignment graphs and contrastive learning,492

it addresses longstanding challenges in plasmid binning while providing a framework for493

studying plasmid-host associations and microbial community dynamics. PlasMAAG offers a494

valuable tool for advancing our understanding of microbial ecosystems, with implications for495

environmental microbiology, public health, and biotechnology. PlasMAAG496
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MATERIAL AND METHODS497

Overview of PlasMAAG498

The inputs to the PlasMAAG pipeline are a set of reads per sample. Reads are assembled per499

sample withmetaSPAdes v3.15.5 (43) creating an assembly graph and contigs for each sample.500

The contigs across all samples are concatenated together to create the contig catalogue. Reads501

are mapped to the catalogue withminimap2 v2.24 (44) and samtools v1.18 (45) , creating per-502

sample BAM files. The alignment graph is generated by aligning the contigs across samples503

with NCBI blast 2.15.0 (46). The assembly- and alignment graphs are merged into the504

assembly-alignment graph (AAG). Fastnode2vec v0.05 (37), an optimized version of node2vec,505

is used to embed local AAG context of each contig into an embedding space, from which506

communities of contigs with similar embeddings are extracted. The k-mer composition and507

abundance features of contigs are embedding using a variational autoender (VAE), where an508

additional loss term is added which penalizes distance between contigs of the same509

community. Using the VAE embedding, communities are expanded, merged, and purified. The510

geNomad (38) tool is used to separate plasmid from non-plasmid contigs: Communities of511

plasmid contigs are extracted as separate bins, whereas the rest contigs are extracted in bins512

using a clustering algorithm.513

Benchmark datasets514

We based our benchmark dataset on the existing CAMI2 short-read human microbiome toy515

dataset, but had to modify the dataset to allow benchmarking of plasmids: First, the original516

dataset did not provide assembly graphs, so we assembled the reads andmapped the resulting517

contigs back to the CAMI2 source genomes to determine their origin, using minimap2 and518

accepting hits with an identity > 97% and a query coverage > 90%. Because this approach519

initially led to many unmapped or ambiguously mapping contigs, we re-simulated the reads520

using wgsim (47) with zero sequencing errors, then assembled each sample usingmetaSPAdes521

without the use of error correction. Second, CAMI2 considered plasmids to be part of their522

cellular host genome with the same abundance, which would inhibit our abundance-based523

binning approach. We changed so that plasmids were separate genomes with an abundance524

proportional to host abundance times a Gaussian random variable, as done in (18). Finally,525

CAMI2 did not contain reads simulated from across the edges of the underlying circular526
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sequences, which prevents assembly graph cycles and hobbles graph peeling-based527

approaches like that used by SCAPP. We made sure to include such reads.528

Assembly graph edge weighting529

Assembly graphs were extracted from the assembly_graph_after_simplification.gfa file530

generated from metaSPAdes and converted into a NetworkX v3.4.2 (48) directed graph, with531

contigs represented as nodes, and links between segments in contigs represented as edges.532

To enrich the assembly graph signal for binning, graph edges were weighted with the533

normalized linkage metric, which is dependent on the number of links established between534

any segments from each pair of contigs, normalized by the length of the contigs. For a pair of535

contigs ci, cj, the number of links connecting those contigs n_linksi j, and the contig lengths lc,536

normalized linkage is:537

 !" =
_

min (! , ")
538

Alignment graph edge weighting539

After assembly, contigs shorter than 2000 bp were discarded as done in (26). Contigs were540

aligned all against all using NCBI blast using blastn command with -perc_identity 95, only541

keeping between-sample hits, alignment identity ≥ 98.0% and an alignment ≥ 500 bp. We also542

removed alignments between sequences that contained large sections that did not align due543

to sequence diversity, as we wanted the alignments to represent shared sequences across544

samples. The remaining set of alignments after filtering was defined as 'restrictive' alignments.545

From the aligments we created an alignment graph with contigs as nodes and alignments as546

edges. Edges were weighted with the normalized alignment metric to reflect the alignment547

certainty. For a pair of contigs ci, cj, alignment identity id, alignment length L, and contig length548

lc:549

 !" =

100

min (, 
!
, 

"
)

min (! , ")
550

Assembly-alignment graph community extraction with node2vec551

Assembly and alignment graphs share no edges, since their edges connect only within-sample552

and between-sample contigs, respectively. This allowed us to trivially merge the graphs by553
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adding the edges from one graph into the other, thus creating the AAG. To extract554

communities from the AAG, we first ran fastnode2vec on the AAG to obtain contig embeddings.555

We created a new graph by linking contigs within a cosine distance of 0.1 in embedding space,556

after which we defined each connected component to be a contig community. We optimized557

the fastnode2vec hyperparameters and clustering radius to generate pure communities at558

genome level, running a small grid search over the re-simulated CAMI2 Airways dataset. The559

embedding dimensions, walk length, number of walks, window size, p, and q parameters from560

fastnode2vec were set to 32, 10, 50, 10, 0.1, and 2.0. The embedding clustering cosine distance561

radius was set to 0.1.562

Contrastive-VAMB for community merging and expansion563

Contrastive-VAMB is a variation of the original VAMB model, with a modification on the loss564

function to account for the communities extracted from the fastnode2vec embeddings.565

Contrastive-VAMB is composed of an encoder, latent representation layer m, and a decoder.566

Each contig represented by the concatenation of the contig co-abundances along samples Ain,567

the tetranucleotide frequencies Tin, and the unnormalized contig abundances Cin and passed568

to the encoder. The encoder projects the contigs into a latent normal N(μ, I) distribution569

parametrized by the m layer, from which the decoder samples. The decoder is optimized to570

reconstruct Ain, Tin, and Cin from the instances sampled from N(μ, I), decrease the latent cosine571

distance between contigs with closely related node2vec graph embeddings, and decrease the572

deviance between the latent normal distribution N(μ, I) parametrized by the μ layer and the573

standard normal distribution used as prior N(0, I).574

Loss functions575

The contrastive-VAMB loss can be decomposed in three terms: reconstruction loss, contrastive576

loss, and regularization loss. The reconstruction loss (Lrec) penalizes the reconstruction error of577

Ain, Tin, and Cin. In the same way than the original VAMB reconstruction loss, cross entropy (CE)578

and sum of squared errors (SSE) losses were set for the reconstruction of the Ain and Tin,579

respectively, whereas SSE loss was set for the Cin loss. These three terms are weighted with580

hyperparameters wA, wT, and wC.581

 = (,) + (,) + (,)582
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The contrastive loss (Lcontr) penalizes the cosine distance between the VAMB latent583

representations of the contigs and contigs highly related in node2vec embedding space, when584

such cosine distance overcomes a predefined margin m, m being a hyperparameter. For a585

contig ci and highly related fastnode2vec embedding space contigs Hci ={n0,…, nn}:586

 = max (
∑  m , m!! ∈#!

||
−, 0)587

The regularization loss (Lreg) penalizes the deviance between the latent normal distribution N(μ,588

I) parametrized by the μ layer, and the standard normal distribution used as prior N(0, I) with589

the Kullback-Leibler divergence, which since the standard deviation is set to 1, simplifies to:590

 =
1
2
+ µ591

Finally, the model total loss (L) was aggregated with weighting hyperparameters wLreg, and592

wLcontr :593

 =  + $%& + #'()$ + 594

Clustering plasmid/organism candidates with geNomad595

Two parallel strategies were implemented to cluster the latent space tailored to extract596

plasmids and non-plasmids, respectively. The plasmid clustering strategy is composed of two597

phases: clustering community-based and clustering iterative medoid based, both based on598

latent space cosine distances. The clustering community-based works in five steps599

(Supplementary Figure 9): (1) for each community extracted from the node2vec embeddings,600

link contigs belonging to the same community, and remove links between contigs with a VAE601

embedding cosine distance > 0.2. (2) Contigs are recruited into the community if within 0.01602

cosine distance to any community member. If the recruited contig is part of a community, the603

two communities are merged. (3) The expanded communities are extracted from the latent604

space as bins, and remaining contigs are clustered with the original medoid based VAMB605

clustering algorithm, (4) self-circularized contigs are extracted based upon mapping read-pairs606

where mates map to opposite contig ends within 50 bps from the contig end, and extracted607

from the clusters, (5) Plasmid score is defined for each cluster by aggregating the geNomad608

plasmid contig scores with a contig length weighted mean, defining plasmid candidates when609

cluster scores are larger than the defined threshold. When geNomad plasmid threshold is610
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larger than 0.5, a fixed geNomad plasmid threshold of 0.5 is applied to the circular contigs,611

accounting for the circular evidence relatable to plasmids. The non-plasmid clustering strategy612

consists in 2 steps: (1) Cluster the VAMB-latent space with the iterative medoid clustering613

algorithm from VAMB. (2) Extract contigs belonging to any plasmid candidate cluster defined614

by the plasmid prone clustering strategy.615

Binning benchmarking – CAMI2 reassembled616

We compared the plasmid and organism binning performance of PlasMAAG, VAMB v4.1.3,617

MetaBAT2 v2.12.1, SemiBin2 v2.1.0, Comebin v1.0.4, MetaDecoder v1.0.19, and SCAPP v0.1.4618

over the re-simulated CAMI2 datasets. Binning performance was evaluated in terms of619

genomes recovered with precision ≥ 95% and recall ≥ 90%, so-called “NC genomes”. Since620

PlasMAAG, and VAMB, MetaBAT2, SemiBin2, Comebin, MetaDecoder perform the binning621

after assembling the contigs, precision and recall of the bins were obtained from the contig622

references, using BinBencher v0.3.0 (49). On the other hand, SCAPP and MetaPlasmidSPAdes623

v3.15.3 assemble their own contigs. Here, we produced a ground truth by aligning the output624

bins to the origin genomes using NCBI blast 2.15.0 accepting hits with an identity > 97% and625

a query coverage > 90%, after which we benchmarked using BinBencher.626

Sample benchmarking CAMI2 reassembled627

Precision, recall, and F1 was computed for each set of plasmid candidates, reflecting the628

plasmid characterisation at the sample level, not at the bin level. Given a sample (s), a set of629

plasmid candidates (candidates), binning precision and binning recall thresholds (pre, rec), and630

the set of true plasmids present in the sample (plasmids):631

 ,, =
#  > (, )

# 
632

 ,,, =
#  > (, )

# 
633

Enabling to compare the number of bins classified as plasmid, compared to the total number634

of plasmid genomes at specific binning precision and recall thresholds.635

Hospital sewage samples sequence datasets636
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Two datasets were used in this study to assess the quality of plasmid binning. Urban sewage637

samples (UWS) samples were collected from comparable UWSs from Denmark and Spain638

located in Odense and Santiago de Compostela, as previously described (41). In this study,639

only hospital sewage samples from each location were used. Sewage samples were collected640

in the winter and summer of 2018 using ISCO automatic samplers for 24-hour flow (50 mL per641

5 min) in Denmark, while 24-hour-time proportional samples in SP (mixing hourly samples642

according to flow information) (Supplementary Table 8). Three replicates per site and season643

were collected on three consecutive days without rain events. All samples were initially cooled644

with ice on-site, then 100 mL of each sample was centrifugated at 10,000 g for 8 min at 4 °C645

in the laboratory. After removing supernatant, pellets were resuspended in 20 % of glycerol646

stock to reach a final volume of 10 mL for storage at −80 °C. In total, environmental DNA was647

extracted from all samples using NucleoSpin Soil kit (Macherey & Nagel, Dürein, DE) using648

500μl of glycerol stock material for direct shotgun metagenomic using Illumina NovaSeq using649

2x150bp paired-end mode (all samples) and PacBio Sequel2e (5 samples from Denmark).650

PacBio libraries were built from the same DNA extracts using libraries using SMRTbell express651

template 2.0 kit and Sequel II Binding Kit 3.2 (Pacific Bioscience, CA, USA) and barcoded using652

SMRTbell Barcoded Adapter Plate 3.0 (Pacific Bioscience, CA, USA). Two libraries per 8M653

SMRTcell (Pacific Bioscience, CA, USA) were pooled and sequenced on a PacBio Sequel2e654

instrument at University of Copenhagen.655

For plasmids enriched samples, we used specific methods to deplete non-plasmid DNA as656

described previously (50, 51). Briefly, hospital sewage samples were pretreated by filtration,657

vortex and sonication and resuspended in TE buffer. Afterwards, a pre-lysis cocktail of cell-wall658

degrading enzymes: lysozyme, mutanolysin, and lysostaphin was used to facilitate lysis of659

Gram-positive bacteria during alkaline lysis. Pre-lysis was followed by alkaline lysis to remove660

chromosomal DNA (52), followed by Plasmid-Safe™ ATP-Dependent DNase (Lucigen, UK)661

digestion. Plasmid-Safe DNase will digest any fragments of dsDNA with open 3’ or 5’ termini,662

hence removing fragmented chromosomal DNA. The purified plasmid DNA was then quality-663

checked, libraries prepared and sequenced on an Illumina NextSeq platform with a v2.5664

sequencing kit (Illumina, San Diego, CA, USA) in paired-end mode.665

Binning benchmarking – hospital sewage666
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We compared the binning performance of PlasMAAG, VAMB, MetaBAT2, SemiBin2, Comebin,667

MetaDecoder, metaplasmidSPAdes, and SCAPP over the 5 hospital sewage samples.668

Performance evaluation was based on the long-read sequences generated from the same669

samples and defined by the long-read contigs recovered with precision ≥ 95% and recall ≥670

90%, so-called “NC long-read assemblies”. To evaluate the overall binning performance, the671

entire set of long-read contigs was used to build the reference. Whereas to evaluate the672

plasmid binning performance, only the long-read contigs either circular or with673

metaplasmidomics reads coverage > 50% were used to build the reference. To build the674

references, we mapped the short-read contigs to either set of long-read contigs to determine675

their origin, using minimap2 v2.24 and accepting hits with an identity > 97% and a query676

coverage > 90%, and used Binbencher for the benchmarking. To account for plasmid circularity,677

2 copies of each long-read contig were concatenated before mapping the short-read contigs.678

adovNC organisms were estimated with CheckM2 v0.1.3.679

Host-plasmid and intra-plasmid diversity exploration680

PlasMAAG was used to bin the contig sequences from 24 hospital sewage samples from681

hospitals in Spain. PlasMAAG bins were aggregated into PlasMAAG clusters and classified as682

plasmids if the aggregated geNomad plasmid score exceeded 0.75, defining them as plasmid683

clusters. Only plasmids clusters with more than 150 kb were considered for the host-plasmid684

association. Organism’s bin quality was estimated with CheckM2 v0.1.3, and only high-quality685

(completeness ≥ 70% and precision ≥ 90%) (HQ) bins were kept. GTDBtk v2.4.0 (53) was used686

to estimate taxonomy for the HQ bins, with cluster taxonomy assigned based on majority vote.687

Abundance correlation analysis was only conducted for plasmids and organism’s clusters with688

non-zero abundance over at least 18 overlapping samples. Spearman correlation coefficients689

and p-values were computed using scipy.stats.spearmanr. To account for multiple testing, p-690

values were corrected using the Benjamini-Hochberg (FDR) correction implemented in the691

statsmodels.stats.multitest.multipletests package. Plasmid cluster hosts were inferred from692

PLSDB when aligning to any PLSDB entry with >80% identity and >80% coverage. Functional693

annotations of contigs were performed with anvi’o v8 software, using the ‘anvi-run-workflow694

-w contigs’ command.695

Resource usage696
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We evaluated computational resource usage of all methods using the Airways CAMI2 re-697

assembled dataset and five samples from the hospital sewage dataset. For the Airways dataset,698

PlasMAAG used 46 minutes, 8 threads, and 16 GB of RAM. In contrast, SCAPP, excluding the699

BAM file generation step, took 192 minutes, utilized 16 threads, and required 24 GB of RAM700

(Supplementary Table 5). Among the other binners, PlasMAAG was slower than VAMB,701

MetaDecoder, and MetaBAT2. For example, VAMB completed the task in just 8 minutes while702

using 8 threads and 16 GB of RAM. However, we observed a different trend when evaluating703

performances on the five hospital sewage samples. When accounting for the additional steps704

of read assembly and read mapping required to compute abundances, PlasMAAG exhibited705

similar runtimes to most binners, except for SCAPP, which required significantly more time.706

Specifically, PlasMAAG took 3,575 minutes, VAMB took 3,435 minutes, ComeBin required 4,911707

minutes, and metaplasmidSPAdes took 4,430 minutes (Supplementary Table 6). In contrast,708

SCAPP required 116,965 minutes—32 times longer than PlasMAAG. This difference in runtime709

remained consistent even when excluding the read assembly steps (Supplementary Table 6).710

711
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archive.html (Supplementary Table 8).721
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