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ABSTRACT

Plasmids are extrachromosomal DNA molecules that enable horizontal gene transfer in
bacteria, often conferring advantages such as antibiotic resistance. Despite their significance,
plasmids are underrepresented in genomic databases due to challenges in assembling them,
caused by mosaicism and micro-diversity. Current plasmid assemblers rely on detecting
circular paths in single-sample assembly graphs, but face limitations due to graph
fragmentation and entanglement, and low coverage. We introduce PlasMAAG (Plasmid and
organism Metagenomic binning using Assembly Alignment Graphs), a framework to recover
plasmids and organisms from metagenomic samples that leverages an approach that we call
"assembly-alignment graphs” alongside common binning features. On synthetic benchmark
datasets, PlasMAAG reconstructed 50-121% more near-complete plasmids than competing
methods and improved the Matthews Correlation Coefficient of geNomad contig classification
by 28-106%. On hospital sewage samples, PlasMAAG outperformed all other methods,
reconstructing 33% more plasmid sequences. PlasMAAG enables the study of organism-
plasmid associations and intra-plasmid diversity across samples, offering state-of-the-art

plasmid reconstruction with reduced computational costs.

INTRODUCTION

Plasmids are extrachromosomal DNA molecules within a host cell that are physically separated
from chromosomal DNA and can replicate independently (1-3). Plasmids differ in genome
length, copy number, replication mechanism, and conjugation mode. The part of the plasmid
that encodes the core replication machinery is typically contiguous and is called the ‘backbone’.
The replication and maintenance of plasmids incur a metabolic burden for the host, and to
avoid purifying selection, the plasmid must carry additional ‘cargo’ genes that increase the
fitness of either the host or the plasmid (4). This may be genes that confer antibiotic resistance

(5-7).

Approximately 50% of bacteria carry one or more plasmids (8). Nonetheless, in databases,
sequences from plasmids remain underrepresented compared to those from cellular genomes.
For instance, RefSeq contains 82,471 bacterial genomes, but only 7,892 plasmids (9).
Characterization of environmental plasmids in in vitro conditions is inherently limited by the

so called “cultivation bottleneck” (10, 11), where laboratory conditions modify microbial
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diversity, offering a poor representation of the original composition. Therefore, despite the
great number of plasmid-related studies, most studies have investigated plasmid virulence
and properties in isolated strains (8, 12-14). This mismatch between estimated plasmid
prevalence in bacteria and plasmid representation in the databases emphasizes our

incomplete understanding of the plasmid genetic structure, diversity, and function (2).

Metagenomic offers culture free alternative techniques; however, the genetic complexity of
environmental samples complicates the process (10, 11, 15). Besides the challenges of
assembling bacterial chromosomes, assembly of plasmids bring additional challenges: a)
plasmids undergo frequent recombination, creating groups of plasmids that share a ‘backbone’
but diverge on their ‘cargo’ sequence (12); b) plasmids at high copy number have higher
mutation rates than chromosomes, which increases micro-diversity and makes them difficult
to assemble with de Bruijn-graph based assemblers (16) and c) plasmids are enriched for
repeated sequences associated with transposable elements (2). A consequence of this is that

plasmid sequences will be fragmented across assemblies and entangled by sharing the same

'‘backbone’ and repeated genetic elements (12, 17).

To overcome these challenges, dedicated metagenomic plasmid assemblers such as Recycler,
metaplasmidSPAdes, and SCAPP have been developed (18-20). These methods rely on the
assembly graph, a data structure used by metagenome assemblers, that represents overlaps
between sequencing reads. Assembly graphs represent contiguous sequences (contigs) as
nodes and overlaps between these as edges (21). By leveraging assembly graphs, plasmid
assemblers can identify connected sequences and resolve complex genomic regions (22).
Recycler re-interprets the metagenomic assembly graph, leveraging paired-reads information,
and attempting to extract subgraph cycles with uniform coverage from the graph, in a process
named graph ‘peeling’ also used by SCAPP (18). MetaplasmidSPAdes iteratively extracts cyclic
subgraphs from the assembly graph with uniform coverage, filtering the subgraphs with
plasmidVerify (19), a tool that classifies sequences into plasmidic and chromosomal based on
gene content using a profile-HMM (19). Finally, SCAPP tries to find plasmid cyclic paths in
assembly graphs based on paired read mappings, presence of plasmid-specific genes,
sequence length, coverage, and plasmid sequence score annotation based on PlasClass (18,
23). Common to the methods is that they operate on single-sample assembly graphs, use the

circularity of plasmids, and contig coverage. However, the methods have fundamental
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79 limitations. First, low coverage causes the "fragmentation problem”, where some plasmids
80  appear disconnected in the graph, making them impossible to identify by graph peeling (14,
81  24). Second, the high recombination rate of plasmids causes entangled assembly graph
82  components where circularity is hard to identify (25). Finally, SCAPP and metaplasmidSPAdes
83 leverage plasmid gene signatures to guide the plasmid candidate’s path extraction from the

84  assembly graph.

85  Binning is a computational strategy used to reconstruct genomes by grouping contigs based
86 on their genome of origin, providing an alternative to assembly graph-based methods.
87  Modern binners typically integrate several sequence features, including k-mer composition
88  (26-31), abundance patterns across samples (26-31), assembly graph connectivity (32), and
89  taxonomic markers or annotations (28, 30, 33). Most of these features can be computed on a
90 per-sequence basis and are therefore not vulnerable to the fragmentation problem suffered
91 by assembly graphs with low coverage. Furthermore, it has been shown how binning
92 information can be used to refine contig classification, using binning features to guide
93 classification rather than contig classification to reconstruct the original sequences (34, 35).
94  We have previously developed the binning tool VAMB, which combines several of these
95  features using a variational autoencoder into a latent space which is clustered to form bins (26,

96  36).

97 In this paper, we introduce assembly-alignment graphs (AAGs), which combine the intra-

98 sample sequence overlaps recorded by assembly graphs, with cross-sample overlaps detected

99 by ordinary sequence alignment. Using a contrastive learning approach, we were able to
100 effectively integrate the AAG with ordinary binning features in a new binning framework called
101  PlasMAAG that can reconstruct both plasmids and cellular genomes. We evaluated PlasMAAG
102  on simulated data, where it reconstructed 9-70% more near-complete (>0.95 precision, >0.9
103 recall) (NC) plasmids and cellular genomes than SemiBin2, ComeBin, MetaBAT2, MetaDecoder,
104  and VAMB. Regarding only plasmids, PlasMAAG reconstructed at least 50-121% more NC
105  plasmids than any other binner, and 14-40% more NC plasmids than the unfiltered set of cycles
106  from SCAPP cycles in 4/5 benchmark datasets. When using a confident threshold PlasMAAG
107  reconstructed 21-212% more confident NC plasmids than SCAPP confident. PlasMAAG
108  achieved excellent performance on hospital sewage samples, reconstructing at least 33% more

109  plasmid sequences than any other tool, as evaluated with a robust paired long-read short-
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110  read validation setup. Using PlasMAAG's ability to reconstruct plasmids and hosts, we studied
111  host-plasmid associations in hospital sewage samples and intra-plasmid diversity across
112 samples. To our knowledge, PlasMAAG is the only method that enables 'multi-sample’
113 characterization of both plasmids and cellular genomes, achieving state-of-the-art plasmid
114  reconstruction with reduced computational resource requirements than current plasmid

115 binners.
116  RESULTS

117  PlasMAAG: Combining assembly graphs, alignment graphs, TNFs, and co-abundances

118  for binning

119  PlasMAAG is a new deep learning binning algorithm designed to reconstruct cellular and
120  plasmid genomes (Figure 1). Compared to our previous developed binning algorithm VAMB,
121 PlasMAAG introduces three novelties. First, we combine multi-sample assembly graphs with
122 contig alignment graphs into a single graph called ‘assembly-alignment graph’. The assembly-
123 alignment graph is then projected to an embedding space with fastnode2vec (37), from which
124  communities of contigs can be extracted. Second, we enhanced the training of the variational
125  autoencoder (VAE) by adding contrastive learning, based on information from the assembly-
126  alignment graph. Finally, we leverage binning to ensemble geNomad (38) contig annotation

127  scores across bins to classify the bins into plasmid or cellular genomes.
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129 Figure 1. PlasMAAG workflow overview. PlasMAAG leverages assembly graphs, alignment graphs, k-mer signal, and contig co-
130 abundances for binning, with a final step where bins are classified as cellular or plasmid bins based upon refined geNomad predictions. a.
131 Per-sample assembly graphs are merged with the between-sample alignment graph, generating the assembly-alignment graph. b.
132 Fastnode2vec is used to generate contig embeddings from the assembly-alignment graph, from where contig communities are extracted.
133 Communities are expanded, merged, and purified using a variational autoencoder with contrastive loss that push communities towards
134 be preserved in the embedding. c. Plasmid and cellular candidate bins are extracted from the VAE embedding based on their geNomad
135 scores, using distinct plasmid and cellular clustering strategies.

136  PlasMAAG reconstructed 21-212% more plasmid bins compared to SCAPP confident

137  To develop and test PlasMAAG we re-assembled the simulated CAMI2 short-read human
138  microbiome toy datasets. Re-assembly of CAMI2 was required because the original CAMI2
139  plasmids were not simulated as independent entities from their hosts cellular genomes, and

140  because assembly graphs were not available (see Methods). We found that PlasMAAG
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141  reconstructed 5-64% more NC bins over all 5 benchmark datasets compared to VAMB, the
142 second best performing binner on the benchmark data (Figure 2.A). The improvement in
143 binning performance was driven by increased reconstruction of plasmids, where PlasMAAG
144  reconstructed at least 50-121% more NC plasmids candidate bins compared to SemiBin2,
145  ComeBin, MetaBAT2, MetaDecoder, and VAMB across all benchmark datasets. When
146  comparing to SCAPP, PlasMAAG reconstructed 14-40% more NC plasmids than SCAPP cycles
147  over 4/5 benchmark datasets (Figure 2.B). When evaluating confident plasmids bins
148  generated by PlasMAAG (above 0.95 geNomad plasmid threshold), PlasMAAG reconstructed
149  21-212% more NC plasmid bins than SCAPP confident (Figure 2.C). Furthermore, PlasMAAG
150  spanned a larger variation of plasmids, since the unique set of confident PlasMAAG plasmids
151  across the benchmark datasets included 172 NC plasmid bins and 223 medium-quality (20.9
152 precision, 20.5 recall) (MQ) plasmid bins not reconstructed by SCAPP confident. In contrast,
153  SCAPP confident reconstructed 64 NC plasmid bins and 68 MQ plasmid bins not reconstructed
154 by PlasMAAG. The intersecting set of plasmids reconstructed by both methods was 164 NC,
155  and 185 MQ plasmid bins, respectively (Figure 2.D-E). Considering cellular binning, PlasMAAG
156  was also competitive, reconstructing 0.7-9% less NC cellular bins than VAMB, the best cellular
157  binner on benchmark datasets (Figure 2.F). The set of PlasMAAG confident plasmids offered
158  a better balance than SCAPP confident between the true positive and true negative plasmids
159  present in the benchmark datasets, with a 14-43% improvement in F1 (Figure 2.G-H,
160  Supplementary Figure 1, Supplementary Note 1). By averaging geNomad scores across
161  PlasMAAG's clusters, we can detect plasmids more accurately than applying geNomad on
162  individual contigs, yielding an improvement over the plasmid/non-plasmid contig
163  classification Area Under Precision-Recall Curve (AUPRC) and Matthews correlation coefficient
164  (MCC) of between 28-69% and 42-131%, respectively (Figure 2.1-J, Supplementary Note 2,

165 Supplementary Figure 2, Supplementary Table 1).
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167 Figure 2. PlasMAAG binning and classification performance across the benchmark datasets. a. NC bins (cellular + plasmids)

168 reconstructed from the five benchmark datasets for VAMB (blue), MetaBAT2 (green), SemiBin2 (red), MetaDecoder (brown), ComeBin
169 (grey), SCAPP cycles (yellow), and PlasMAAG (purple). b. NC plasmid bins reconstructed by all methods. c. NC plasmids reconstructed by
170 SCAPP confident (yellow dotted) and PlasMAAG confident (purple dotted). d. Set of NC complete unique plasmids reconstructed only by
171 PlasMAAG confident (red), only by SCAPP confident (green), and by both methods (light brown) across all datasets. e. Same than d but
172 for MQ plasmid bins. f. NC cellular bins reconstructed by all methods except SCAPP confident. g. Plasmid sample precision-recall (see
173 Methods) from the Airways dataset for PlasMAAG across geNomad thresholds (purple), PlasMAAG confident (purple star), geNomad
174 across thresholds (green), geNomad at the default plasmid threshold (green cross), SCAPP cycles (light yellow), and SCAPP confident (dark
175 yellow). h. Sample F1 across the five benchmark datasets for geNomad at the default plasmid threshold (green), SCAPP confident (yellow),
176 and PlasMAAG confident (purple). i. Area Under Precision-Recall Curve (AUPRC) for the classification of plasmids by geNomad (green) and
177 when aggregating the geNomad scores per PlasMAAG community-based clusters (purple). j. Matthew correlation coefficient (MCC) for
178 the classification of plasmids by geNomad (green) and when aggregating the geNomad scores per PlasMAAG community-based clusters

179 (purple).

180  Assembly graphs have a strong signal for binning

181  In assembly graphs, edges represent sequence overlaps between contigs. Therefore, it has
182  long been known that they are informative for binning (32, 39). To quantify how informative
183  edges were, we weighted them by normalized linkage (see Methods), based on the number of
184  overlapping k-mers, and the length of the contigs. Normalized linkage showed a positive

185  correlation with edge accuracy at genome (species) level, with Spearman correlation
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186  coefficients 0.49-0.93 (0.86-0.98) across all benchmark datasets (Figure 3.A, Supplementary
187  Figure 3). Additionally, normalized linkage was evaluated for correlation with edge accuracy
188  (i.e. how often two contigs linked by an edge belong to the same genome) by calculating the
189  Area Under Precision-Recall Curve (AUPRC). The resulting AUPRC ranged from 0.66 to 0.74 at
190 the genome level and 0.81 to 0.90 at the species level across the benchmark datasets (Figure
191  3.B, Supplementary Figure 3). We concluded that the assembly graph contains useful signals

192 for binning.

193  Alignment graphs contain taxonomic information across samples

194  PlasMAAG uses the multi-split binning workflow due to its superior accuracy (26, 36), where
195 samples are assembled individually. Therefore, assembly graphs only inform about overlaps
196  between intra-sample contigs. To also include between-sample contig overlap information, we
197  aligned contigs across samples with strict criteria to accept a hit (see Methods). The alignments
198  were highly precise with an accuracy at genome (species) level of 57-95% (95-99%) (Figure
199  3.C, Supplementary Figure 4). By adding alignments between pairs of contigs as edges to
200 the assembly graph, we created an alignment-assembly graph (AAG), where we weighed each
201  edge by either alignment metrics (for alignment edges) and normalized linkage (for assembly
202  graph edges, see Methods). Alignment edge weight between two contigs correlated with
203  taxonomic relatedness of the contig’s genomes, showing an 82-98 (98-100) Area Under
204  Precision-Recall Curve (AUPRC) across the benchmark datasets at genome (species) taxonomic
205 level (Figure 3.D, Supplementary Figure 5). Furthermore, there was a positive correlation
206  between the averaged alignment graph edges and the average accuracy, with a Spearman
207  correlation coefficient of 0.71-0.95 across all benchmark datasets (Figure 3.E, Supplementary

208  Figure 5).
209 Assembly-alignment graphs integrate alignments and assembly graphs

210  The complementarity between cross-sample alignments and the intra-sample assembly graph
211 connections in the AAG enabled us to integrate these in a unified graph, resulting in a
212 combined graph that we named ‘assembly-alignment graph’. We evaluated the edges in the
213 assembly-alignment graphs across the benchmark datasets to assess whether higher edge
214 weights correspond to contigs that are taxonomically close, such as those from the same

215 genome. The edge weights in the assembly-alignment graph reflect taxonomic relationship
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216  between sequences, consistent with the original assembly and alignment graphs, achieving a
217  AUPRC of 0.69-0.90 (0.93-0.97) across the benchmark datasets at genome (species) taxonomic
218 level (Figure 3.F, Supplementary Figure 6). Consistently with the AUPRC findings, we found
219  a positive correlation between the averaged edge weights and the average edge accuracy at
220 genome taxonomic level, with 0.20-0.97 Spearman correlation coefficients across benchmark
221  datasets (Figure 3.G, Supplementary Figure 6). The assembly-alignment graph integrates
222 assembly graphs and alignment information across samples into a unified object, where edge

223 weights reflect taxonomic relationships.
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225 Figure 3. Assembly graph, alignment graph, and assembly-alignment graph-based features for binning. a. Average precision of the

226 assembly graph edges from the Airways benchmark dataset, sorted by edge weight and grouped into 5% bins, is shown for genome (blue),

227 species (orange), and genus (green) taxonomic levels. b. Precision-recall curve of the assembly graph edge weights from the Airways
228 benchmark dataset at genome (blue), species (orange), and genus (green) taxonomic levels. c. Alignment accuracy when increasing
229 minimum identity thresholds across benchmark datasets. Results are shown only for restrictive alignments (see Methods) between contigs
230 from different samples. d. Precision-recall curve of the alignment graph edge weights from the Airways benchmark dataset at genome
231 (blue), species (orange), and genus (green) taxonomic levels. e. Average precision of the alignment graph edges from the Airways

232 benchmark dataset, sorted by weight and grouped into 5% bins is shown for genome (blue), species (orange), and genus (green) taxonomic
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233 levels. f. Precision-recall curve of the assembly-alignment graph edge weights from the Airways benchmark dataset at genome (blue),
234 species (orange), and genus (green) taxonomic levels. g. Average precision of assembly-alignment graph edges from the Airways
235 benchmark dataset, sorted by weight and grouped into 5% bins is shown for genome (blue), species (orange), and genus (green) taxonomic
236 levels. h. Precision distribution of communities extracted using FastNode2Vec from assembly-alignment graphs across the five benchmark
237 datasets at genome taxonomic level.

238  Extracting high precision, low completeness communities from the assembly-alignment

239  graph

240  The majority of contigs are too short to contain a stable signal for binning, but the AAG
241  cohesion depends on the nodes representing short contigs. Therefore, we condensed the AAG
242 into a set of node communities using fastnode2vec (see Methods). We found that the
243 extracted communities from this graph embedding had high purity, with an average precision
244 at genome (species) level of 86-95% (95-97%) across the benchmark datasets, and where 63-
245  84% (85-91%) of communities had a precision at genome (species) level (Figure 3.H,
246  Supplementary Table 2). However, we observed that communities were composed of rather
247  few contigs, with 85-91% of the communities were composed of 10 or less contigs across the
248  benchmark datasets. Furthermore, microbial genomes were fragmented in, on average, 12.2-
249  32.8 communities, and plasmids somewhat were less fragmented, split between 1.6-2.5
250 communities on average (Supplementary Figure 7, Supplementary Table 2). We also
251  noticed that only 31-47% of contigs in the datasets belonged to any community
252  (Supplementary Table 2). In conclusion, the communities extracted from the AAG using

253  fastnode2vec were precise, but incomplete and fragmented.

254  Contrastive variational autoencoders improve binning through aggregating, merging
255  and splitting communities

256  To address the fragmentation of AAG communities, we leveraged traditional binning features
257  such as contig k-mer composition and abundances (40). In the VAMB framework, these contig
258  features are embedded using a variational autoencoder (VAE), and these embeddings are then
259  used to cluster contigs together. PlasMAAG follows the same approach but also considers
260  community structure during the embedding and clustering process. To encourage contigs of
261 the same community to be close in the embedding, we added an extra term to the loss
262  function of the VAE which penalized high embedding distance between contigs of the same
263  community. We call this term ‘contrastive loss’. We then applied a clustering strategy on the

264  contrastive VAMB embeddings, consisting of three key steps: (1) Merging — Communities close
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265  inthe embedding were merged to reduce genome fragmentation, and increase genome recall.
266  (2) Splitting — Communities with contigs placed far apart in the embedding were split up to
267  increase precision. (3) Expansion — Unassigned contigs located close to a community in latent
268  space were added to the community to improve recall. We refer to these three steps as
269  ‘community-based’ clustering (see Methods, Supplementary Figure 8). This community-
270  based clustering resulted in a 46-102% increase in genome recall across benchmark datasets
271 compared to the raw communities, confirming the effectiveness of the community merging
272 step. The splitting step improved precision by 0.03-1% (Supplementary Figure 9, Table 3),
273 indicating minor but positive impact without compromising recall. On the other hand,
274  community expansion had limited effect, with only a 1-3% increase in community size
275  (Supplementary Table 3), suggesting that step 3 had a smaller impact. Since recall increased
276  and precision slightly improved, F1 scores also increased, along with the number of

277  reconstructed near-complete (NC) bins.
278  Contrastive loss had a positive impact on binning

279  To better understand the importance of the contrastive loss on the latent representations, we
280  evaluated how it impacted community-based clustering and clustering from the original VAMB,
281  which we call ‘density-based’ clustering. Community-based clustering with contrastive loss
282  achieved 28-63% higher average F1 scores compared to clustering without the contrastive
283  loss, reconstructing 7-45% more NC bins across the benchmark datasets (Supplementary
284  Figures 10-11). Contrastive loss also improved density-based clustering, causing a 57-162%
285  increase in F1 scores across all benchmark datasets (Supplementary Figure 10), but did not
286  uniformly increase the number of NC bins. NC bin recovery was increased by 1-6% in 4 out of
287 5 datasets but led to 16% fewer NC bins in one dataset due to a small decrease in precision
288  (Supplementary Figure 11). Overall, the contrastive loss boosted recall and led to significantly
289  higher F1 scores in both clustering approaches, whereas its effect on precision and final NC
290  bin counts varied depending on the dataset and clustering strategy, highlighting the trade-

291  offs introduced by enforcing graph-based community structures in the latent space.

292  Differential embeddings of plasmids and organisms requires tailored clustering

293  leveraging geNomad
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294  As previously mentioned, we found the cellular genomes to be fragmented across more
295  communities than plasmids, probably due to the larger size of cellular genomes. Furthermore,
296  we observed distinct patterns in k-mer composition, contig co-abundance, and PlasMAAG
297  latent representations between plasmids and cellular genomes (Supplementary Note 3,
298  Supplementary Figures 12-14, Supplementary Tables 3-4). This suggested that community-
299  based clustering might be more suitable for plasmids, and density-based clustering for cellular
300 genomes, which we indeed verified with our benchmark datasets (Supplementary Note 3,
301 Supplementary Figures 12-14, Supplementary Tables 3-4). Therefore, to identify potential
302 plasmid communities in the AAG, we used geNomad to assign plasmid scores to each
303 community (38). We found that averaging geNomad scores across communities led to more
304  accurate plasmid identification compared to scoring individual contigs (Supplementary Note
305 2, Supplementary Figure 2, Supplementary Table 1). This allowed us to extract communities
306  as putative plasmid bins for community-based clustering and clustered the remaining contigs
307 using density-based clustering. Additionally, we found that this was sensitive to the geNomad
308 threshold used for the classification, particularly in the case of organisms (Supplementary
309 Note 4, Supplementary Figures 15-16). For instance, when setting a geNomad plasmid
310 threshold of 0.7, we observed a decrease on the NC cellular genomes (plasmids) of 6-39% (3-
311  18%) (Supplementary Figure 17). This indicated that the selection and dereplication process,
312  based on geNomad-identified plasmid clusters, led to a trade-off in cellular genomes recovery.
313  We conclude that integrating geNomad sequence predictions with PlasMAAG's diverse
314  clustering strategies enhanced binning performance, enabling the robust reconstruction of

315  both cellular genomes and plasmids.

316  Evaluating PlasMAAG plasmid binning using hospital sewage samples long-read data,

317  and short-read plasmidomics data

318  Validating PlasMAAG binning performance on real data is not straightforward as current tools
319  do not provide quality estimates for plasmids and might show inherent biases when exploring
320 understudied environments such as wastewater. We instead applied a binning validation
321  strategy based on sequencing both short- and long-read metagenomics from the same set of
322 samples (Fig. 4.A). We considered a long-read contig to be composed of a set of short-read
323  contigs if they aligned with 97% identity and a long-read contig coverage of 90% (see

324  Methods). By tallying the number of such sets of short-read contigs binned together, we got
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325 a measure of recall of short-read contig binning. We observed that PlasMAAG community-
326 based bins reconstructed 21% more long-read contigs than VAMB, the second-best
327  performing binner (Fig. 4.B). Superior PlasMAAG binning performance was consistent even
328 when accounting for incompleteness of the long-read assembled contigs (Supplementary
329 Note 5, Supplementary Figure 18). To identify the subset of long-read contigs that
330 originated from plasmids, we sequenced samples after a plasmid enrichment to obtain paired
331 metagenomics and ‘plasmidomics’ samples as done previously (41) (see Methods). Long-read
332 contigs were defined as plasmid contigs if they were either (1) at least 50% covered by
333  plasmidomics reads or (2) circular and below 500 kb. We identified short-read contigs as
334  originating from plasmid if they aligned well to any long-read contig identified as plasmid (see
335  Methods). Using this criteria, PlasMAAG community-based reconstructed 138 NC plasmids,
336  which was 33% more plasmid long-read fragments than the second best binner VAMB, and
337  431% more NC plasmids than SCAPP cycles (Figure 4.B). These results were consistent with
338 the performance validated using unfiltered long-read contigs, demonstrating PlasMAAG's

339  robust binning capacity across diverse biological entities.
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Figure 4. PlasMAAG on real samples from hospital sewage. a. Overview of the strategy used to validate PlasMAAG on the five hospital
sewage samples. For each sample, long-read metagenomics, short-read metagenomics, and short-read plasmidomics datasets were
generated (see Methods). PlasMAAG was applied to the short-read metagenomics data to produce candidate plasmid and cellular bins.
These bins were validated against a reference assembly composed by long-read contigs to assess overall binning performance, and against
a second reference assembly constructed from long-read contigs with plasmid evidence, identified either by circularity or plasmidomics
read coverage. b. Binning performance of all methods across the five sewage samples, evaluated using all long-read contigs (red) and
long-read contigs with plasmid evidence (blue). PlasMAAG dens.: bins produced using VAMB's density-based clustering algorithm on
PlasMAAG's latents. PlasMAAG coms.: bins generated using the community-based clustering algorithm. c. Binning performance of
PlasMAAG, SCAPP, and MetaPlasmidSPAdes under relaxed (light gray) and strict (dark gray) plasmid filtering criteria. d. NC cellular bins
according to CheckM2 estimates, produced by all organism binners for the five hospital sewage samples. PlasMAAG non-plas. conf.:
PlasMAAG density-based bins after extracting candidate plasmid contigs by aggregating geNomad plasmid contig scores per PlasMAAG

community-based clusters (see Methods).

Identifying plasmids in PlasMAAG bins using aggregated geNomad scores

When applying PlasMAAG to a real dataset with thousands of bins and no ground truth, we
need to define a threshold to determine whether a bin contains a plasmid. This threshold
balances precision and recall. To aid in this decision, we aggregated geNomad'’s contig plasmid

scores across all contigs within each bin. With a low threshold of 0.1, PlasMAAG reconstructed
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358 93 NC long-read contigs highly confident plasmid based on the metaplasmidomics reads
359  (long-read plasmidomics, LR-P), which represented a loss of 33% compared to not filtering
360 with aggregated geNomad scores (Figure 4.C). Using a stricter geNomad plasmid threshold
361  of 0.95 reduced the number of reconstructed LR-P to 8, a decrease of 94% (Figure 4.D). This
362 implied that most long-read contigs, where we had experimental plasmid evidence, were
363  predicted by geNomad to be of virus or chromosomal origin, as they had assigned a relatively
364 low plasmid score (Figure 4.B, Figure 4.C, Supplementary Figure 19). By comparing
365 aggregated geNomad scores with experimental plasmid evidence, we found that this
366 mismatch mainly occurred where plasmid evidence was strong but not definitive
367 (Supplementary Note 6, Supplementary Figure 19-21). This contrasted with the consistency
368  observed in synthetic benchmarks, where geNomad generally demonstrated strong plasmid
369  predictive performance (Supplementary Figure 16). Finally, we investigated the effect of this
370  on cellular genomes and when applying a geNomad threshold of 0.95, the PlasMAAG density-
371  based bins, which are the ones not classified as plasmid, were evaluated with CheckM2. We
372 found 18 NC organisms, 3 more than SemiBin2, the second best binner on this dataset, and 8
373  more than VAMB. We found noticeable that PlasMAAG offered a better performance
374 compared to SemiBin2, even though SemiBin2 leveraged single-copy genes whereas
375  PlasMAAG did not. We conclude that PlasMAAG's has state of the art performance on real

376  datasets, both for reconstructing plasmids and cellular genomes.
377  PlasMAAG enabled host-plasmids exploration from hospital sewage environments

378 By reconstructing plasmid and cellular genomes from the same samples, PlasMAAG enables
379  an integrated analysis. We investigated host-plasmid abundance correlations of 24 hospital
380 sewage samples collected in Spain (see Methods). PlasMAAG produced 27,954 candidate
381 plasmid bins, and 213,431 non-plasmid candidate bins. PlasMAAG plasmid bins were
382  aggregated into 13,912 cross-sample clusters, and bacterial hosts per plasmid cluster were
383  inferred from PLSDB (see Methods). We identified 323 High quality cellular organism bins (HQ,
384  completeness > 70%, contamination < 10%) and aggregated these using PlasMAAG cross
385 sample cluster information. We found several significant positive correlations between
386 candidate plasmid and cellular organism bins, for example, cluster ¢/ 20, annotated as
387 belonging to the Aeromonas genus, correlated with up to 41 plasmid clusters (adjusted p-

388  value < 0.05), 12 of which were previously reported as known host-plasmid associations in the
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389  PLSDB database (Figure 5A). On the other hand, cluster c/[ 293, annotated as Ruminococcus_E
390  genus, correlated with 43 plasmid clusters, none of them previously reported in PLSDB (Figure

391 5A).
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394 Figure 5. PlasMAAG enables host-plasmid association studies and exploration of intra-plasmid variation across environments,
395 demonstrated using 24 hospital sewage samples. a. Spearman correlation between PlasMAAG high-quality (HQ) cellular clusters and

396 PlasMAAG plasmid clusters with an aggregated geNomad plasmid score above 0.75. Highlighted cells with bold rectangles indicate

397 significant correlations after Benjamini-Hochberg FDR correction. Cells marked with “X" represent plasmid-organism associations
398 previously reported in PLSDB. The organism cluster dendrogram was generated using GTDB-tk taxonomic annotations, while the plasmid
399 cluster dendrogram was based on abundance correlations. b. PlasMAAG plasmid cluster nneighs_416 bins. Each row represents a bin from
400 one sample, and numbers within parenthesis indicate median bin depth. Yellow blocks denote contigs aligned to pAsa4c, sorted by
401 alignment position. Dark green blocks represent contigs not mapping to pAsa4c (see Methods), with their positions inferred from matches

402 to other PLSDB plasmid accessions. Light green sections withing dark green blocks indicate alignment segments to pAsa4c. Dark grey

403 areas indicate alignment graph edges, and light grey areas represent non-restrictive alignment matches (see Methods). GC%: Average GC
404 content computed using a 1000 kb window. Colour code for pAsa4c regions: Blue (Replication and maintenance), Green (Conjugative
405 transfer), Purple (Recombination and DNA repair), Orange (Secretion and surface structures), Red (Metabolism), Yellow (Enzymes), Cyan
406 (Regulatory proteins and transcription factors), Brown (Transposases and mobile genetic elements), Gray (Hypothetical or unclassified). c.

407 PlasMAAG plasmid cluster nneighs_76, composed of contigs from sample 6 (blue), sample 3 (red), sample 5 (green), and sample 23 (orange).
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Links represent alignment regions, coloured according to the sample of origin. Bold annotations indicate functions associated to

antimicrobial resistance.

PlasMAAG revealed intra-plasmid variation across hospital sewage samples

In PlasMAAG, contigs from different samples are projected into a shared latent space, enabling
them to be clustered together, and split into per-sample bins thereafter. Aggregation of bins
into PlasMAAG clusters enabled investigation of highly related plasmids from different
samples. Cluster nneighs_76 was selected for more in-depth analysis. Plasmid bins from the
nneighs_76 cluster reconstructed a 90 kb region from the plasmid pAsa4c, which is reported
to be hosted by Aeromonas salmonicida subsp. (42) (Figure 5B). Despite representing highly
overlapping regions of the same accession, bins from the nneighs_76 cluster exhibited varying
degrees of contig fragmentation. For instance, the bin from sample 2 was composed of 20
contigs, whereas the bin from sample 1 consisted of 10 contigs, which could be explained by
the difference in the contig abundance. We then explored the relationship of the plasmid bins
using the alignments from the AAG (Figure 5B). We also found that some bins in nneighs_76
contains contigs that did not align to pAsa4c. Some of these unaligned contigs were found in
multiple bins and were syntenic across bins aligned to each other, suggesting that we found
true plasmid variation, and not an error in binning (Figure 5B). Using synteny, we could find
four approximate locations on the reference sequence where these contigs belonged to. Three
of four regions had hallmarks of recombination hotspots, including an ISAs2 insertion site, a
known conjugative block and a segment with distinct GC content (42) (Figure 5B). Furthermore,
14 of 19 contigs not mapping to pAsa4c aligned to plasmid accessions reported to be hosted
by organisms from the Aeromonas genus. Additionally, PlasMAAG clusters, together with the
assembly-alignment graph, enable the exploration of diversity among similar plasmids across
samples without PLSDB support. As an example, bins from the plasmid cluster nneighs_416
exhibited a high degree of sequence similarity despite variations in contig fragmentation
(Figure 5C). PlasMAAG facilitates the tracking of highly similar plasmids across different

environments, allowing for the capture of their composition variations.
DISCUSSION

Plasmids are pivotal in horizontal gene transfer, playing an influential role in shaping microbial

communities. Their prevalence across microbial ecosystems highlights their importance, yet
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438  studying plasmids from environmental samples has been challenging due to their dynamic
439  and unstable composition. This limitation has hindered efforts to bin and identify plasmids
440  accurately, despite their abundance. The recent decrease in sequencing costs has significantly
441  increased the availability of metagenomic samples, presenting an unprecedented opportunity
442  to uncover plasmid diversity. However, the challenges of plasmid binning emphasize the need

443  for a robust and broad-range plasmid binning method.

444  In this study, we introduced PlasMAAG, a novel deep learning-based framework for
445  metagenomic binning of both plasmids and organisms. PlasMAAG leverages a unique feature
446  we developed—assembly-alignment graphs—which enables the aggregation of assembly
447  graphs across multiple samples. This advancement allows PlasMAAG overcome traditional

448  limitations associated with single-sample plasmid assemblers.

449  PlasMAAG outperformed SCAPP, the current state-of-the-art plasmid assembler, on both
450  synthetic and real datasets, delivering superior results for plasmid binning while being
451  significantly faster. Besides producing more plasmid bins, the set of candidate plasmids
452  produced by PlasMAAG achieved a more balanced trade-off between precision and recall,
453  enabling a broader characterization of metagenomic samples. Notably, PlasMAAG's capability
454  to bin all sequences, including plasmids and organisms, offers a comprehensive approach to
455  metagenomic analysis. PlasMAAG achieves organism binning results that are comparable to
456  leading organism binners on synthetic datasets while demonstrating superior performance in

457  understudied, real-world environments.

458  PlasMAAG's holistic approach enables integrated studies, such as the exploration of plasmid-
459  host associations. Using its comprehensive binning capabilities, we gathered correlation-
460 abundance-based evidence for 773 plasmid-host associations, with only 7% previously
461  reported in the PLSDB database. Furthermore, PlasMAAG's assembly-alignment graph-based
462  clustering revealed intra-plasmid variation across samples, enabling the study of plasmid

463  sequence variation across environments.

464  We demonstrated that geNomad plasmid predictions were significantly enhanced when
465  aggregated across PlasMAAG communities, underscoring the value of binning for refining
466  plasmid sequence identification. However, we also saw that geNomad was inaccurate when

467  applied to understudied environments, as validated by experimental paired metaplasmidomics,
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468 long, and short-read data. These discrepancies highlight the need for more robust plasmid

469  sequence identifiers capable of handling complex or uncharted environments.

470  The success of PlasMAAG is largely attributable to the assembly-alignment graph, a feature
471  that complements assembly graph signals across samples in a multi-sample framework. This
472  innovation not only enhances binning accuracy but also facilitates the inference of
473  compositional similarities between samples. Moreover, assembly-alignment graphs also
474  improve binning of contigs from the same sample, through indirect links to contigs of other

475  samples.

476 Another notable innovation in PlasMAAG is its use of contrastive loss to integrate traditional
477  binning features like k-mer composition and contig abundances, with the assembly-alignment
478  graph. This approach could be extended to incorporate other graph-like data in the binning
479  process, such as Hi-C data. As sequencing technologies advance and contigs become
480  decreasingly fragmented, particularly in long-read datasets, the utility of using cross-sample
481  alignments to bridge gaps in the assembly graphs will grow, covering larger genome fractions

482  and providing richer insights.

483  Despite the advances introduced by PlasMAAG, plasmid binning remains a significant
484  challenge, as evidenced by the lack of groundbreaking plasmid binners in recent years. This
485 underscores the necessity of innovative approaches, like PlasMAAG, that address the
486  complexities of plasmid diversity and recombination. By enabling the study of plasmids
487  alongside organisms from highly complex samples, PlasMAAG expands our ability to explore
488  microbial communities comprehensively. Its focus on plasmids—an often-overlooked but
489  critical component of microbial ecosystems—enhances our understanding of their role in

490  horizontal gene transfer and microbial community dynamics.

491  In conclusion, PlasMAAG represents a step forward in plasmid and organism binning from
492  metagenomic samples. By incorporating assembly-alignment graphs and contrastive learning,
493 it addresses longstanding challenges in plasmid binning while providing a framework for
494  studying plasmid-host associations and microbial community dynamics. PlasMAAG offers a
495  valuable tool for advancing our understanding of microbial ecosystems, with implications for

496  environmental microbiology, public health, and biotechnology. PlasMAAG
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497 MATERIAL AND METHODS
498  Overview of PlasMAAG

499  The inputs to the PlasMAAG pipeline are a set of reads per sample. Reads are assembled per
500 sample with metaSPAdes v3.15.5 (43) creating an assembly graph and contigs for each sample.
501 The contigs across all samples are concatenated together to create the contig catalogue. Reads
502  are mapped to the catalogue with minimap2 v2.24 (44) and samtools v1.18 (45) , creating per-
503 sample BAM files. The alignment graph is generated by aligning the contigs across samples
504  with NCBI blast 2.15.0 (46). The assembly- and alignment graphs are merged into the
505 assembly-alignment graph (AAG). Fastnode2vec v0.05 (37), an optimized version of node2vec,
506 is used to embed local AAG context of each contig into an embedding space, from which
507 communities of contigs with similar embeddings are extracted. The k-mer composition and
508 abundance features of contigs are embedding using a variational autoender (VAE), where an
509 additional loss term is added which penalizes distance between contigs of the same
510 community. Using the VAE embedding, communities are expanded, merged, and purified. The
511 geNomad (38) tool is used to separate plasmid from non-plasmid contigs: Communities of
512  plasmid contigs are extracted as separate bins, whereas the rest contigs are extracted in bins

513  using a clustering algorithm.
514  Benchmark datasets

515  We based our benchmark dataset on the existing CAMI2 short-read human microbiome toy
516  dataset, but had to modify the dataset to allow benchmarking of plasmids: First, the original
517  dataset did not provide assembly graphs, so we assembled the reads and mapped the resulting
518 contigs back to the CAMI2 source genomes to determine their origin, using minimap2 and
519  accepting hits with an identity > 97% and a query coverage > 90%. Because this approach
520 initially led to many unmapped or ambiguously mapping contigs, we re-simulated the reads
521  using wgsim (47) with zero sequencing errors, then assembled each sample using metaSPAdes
522 without the use of error correction. Second, CAMI2 considered plasmids to be part of their
523  cellular host genome with the same abundance, which would inhibit our abundance-based
524  binning approach. We changed so that plasmids were separate genomes with an abundance
525  proportional to host abundance times a Gaussian random variable, as done in (18). Finally,

526  CAMI2 did not contain reads simulated from across the edges of the underlying circular
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527 sequences, which prevents assembly graph cycles and hobbles graph peeling-based

528  approaches like that used by SCAPP. We made sure to include such reads.
529  Assembly graph edge weighting

530 Assembly graphs were extracted from the assembly _graph_after simplification.gfa file
531 generated from metaSPAdes and converted into a NetworkX v3.4.2 (48) directed graph, with
532  contigs represented as nodes, and links between segments in contigs represented as edges.
533  To enrich the assembly graph signal for binning, graph edges were weighted with the
534  normalized linkage metric, which is dependent on the number of links established between
535  any segments from each pair of contigs, normalized by the length of the contigs. For a pair of
536  contigs ¢, ¢, the number of links connecting those contigs n_links;;, and the contig lengths [,

537 normalized linkage is:

n_links

538 normalized linkage . j = —————
Ieele) = hin (1%, 17

539  Alignment graph edge weighting

540  After assembly, contigs shorter than 2000 bp were discarded as done in (26). Contigs were
541 aligned all against all using NCBI blast using blastn command with -perc_identity 95, only
542  keeping between-sample hits, alignment identity > 98.0% and an alignment > 500 bp. We also
543  removed alignments between sequences that contained large sections that did not align due
544  to sequence diversity, as we wanted the alignments to represent shared sequences across
545  samples. The remaining set of alignments after filtering was defined as 'restrictive' alignments.
546  From the aligments we created an alignment graph with contigs as nodes and alignments as
547  edges. Edges were weighted with the normalized alignment metric to reflect the alignment
548  certainty. For a pair of contigs ¢, ¢, alignment identity id, alignment length L, and contig length

549 [

_id min (L,1¢,1¢)
100 min (1<), 1<)

550 normalized alignment i ;

551  Assembly-alignment graph community extraction with node2vec

552  Assembly and alignment graphs share no edges, since their edges connect only within-sample

553  and between-sample contigs, respectively. This allowed us to trivially merge the graphs by
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554 adding the edges from one graph into the other, thus creating the AAG. To extract
555  communities from the AAG, we first ran fastnode2vec on the AAG to obtain contig embeddings.
556  We created a new graph by linking contigs within a cosine distance of 0.1 in embedding space,
557  after which we defined each connected component to be a contig community. We optimized
558 the fastnode2vec hyperparameters and clustering radius to generate pure communities at
559  genome level, running a small grid search over the re-simulated CAMI2 Airways dataset. The
560 embedding dimensions, walk length, number of walks, window size, p, and q parameters from
561  fastnode2vec were set to 32, 10, 50, 10, 0.1, and 2.0. The embedding clustering cosine distance

562  radius was set to 0.1.
563  Contrastive-VAMB for community merging and expansion

564  Contrastive-VAMB is a variation of the original VAMB model, with a modification on the loss
565  function to account for the communities extracted from the fastnode2vec embeddings.
566  Contrastive-VAMB is composed of an encoder, latent representation layer m, and a decoder.
567  Each contig represented by the concatenation of the contig co-abundances along samples Ai,,
568 the tetranucleotide frequencies Ti,, and the unnormalized contig abundances Ci, and passed
569 to the encoder. The encoder projects the contigs into a latent normal N(y, 1) distribution
570  parametrized by the m layer, from which the decoder samples. The decoder is optimized to
571  reconstruct Aj, Ti,, and Ci, from the instances sampled from N(y, 1), decrease the latent cosine
572  distance between contigs with closely related node2vec graph embeddings, and decrease the
573  deviance between the latent normal distribution N(u, I) parametrized by the p layer and the

574  standard normal distribution used as prior N(O, I).
575 Loss functions

576  The contrastive-VAMB loss can be decomposed in three terms: reconstruction loss, contrastive
577  loss, and regularization loss. The reconstruction loss (Liec) penalizes the reconstruction error of
578 A, Tin, and Gin. In the same way than the original VAMB reconstruction loss, cross entropy (CE)
579 and sum of squared errors (SSE) losses were set for the reconstruction of the Ai, and Ti,,
580 respectively, whereas SSE loss was set for the Ci, loss. These three terms are weighted with

581  hyperparameters wa, wr, and wc.

582 Lrec = Wy CE(Ain: Aout) + WTSSE (Tinv Tout) + WCSSE(Cin» Cout)
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583 The contrastive loss (Lont) penalizes the cosine distance between the VAMB latent
584  representations of the contigs and contigs highly related in node2vec embedding space, when
585  such cosine distance overcomes a predefined margin m, m being a hyperparameter. For a
586 contig c¢i and highly related fastnode2vec embedding space contigs H® ={no. nn}:

Yo, enci cosine distance (m¢, m™)
[He

587 Leoner = max ( —m,0)

588  Theregularization loss (Lieg) penalizes the deviance between the latent normal distribution N(g,
589 ) parametrized by the p layer, and the standard normal distribution used as prior N(O, 1) with

590 the Kullback-Leibler divergence, which since the standard deviation is set to 1, simplifies to:

1
591 Lyeg = >+ Z u?

592  Finally, the model total loss (L) was aggregated with weighting hyperparameters w;.y and

593 Wicontr -

594 L= Lrec + WLregLreg + WLcontT + LCOTLtT

595  Clustering plasmid/organism candidates with geNomad

596  Two parallel strategies were implemented to cluster the latent space tailored to extract
597  plasmids and non-plasmids, respectively. The plasmid clustering strategy is composed of two
598  phases: clustering community-based and clustering iterative medoid based, both based on
599 latent space cosine distances. The clustering community-based works in five steps
600  (Supplementary Figure 9): (1) for each community extracted from the node2vec embeddings,
601 link contigs belonging to the same community, and remove links between contigs with a VAE
602 embedding cosine distance > 0.2. (2) Contigs are recruited into the community if within 0.01
603  cosine distance to any community member. If the recruited contig is part of a community, the
604  two communities are merged. (3) The expanded communities are extracted from the latent
605 space as bins, and remaining contigs are clustered with the original medoid based VAMB
606  clustering algorithm, (4) self-circularized contigs are extracted based upon mapping read-pairs
607  where mates map to opposite contig ends within 50 bps from the contig end, and extracted
608  from the clusters, (5) Plasmid score is defined for each cluster by aggregating the geNomad
609  plasmid contig scores with a contig length weighted mean, defining plasmid candidates when

610  cluster scores are larger than the defined threshold. When geNomad plasmid threshold is
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611 larger than 0.5, a fixed geNomad plasmid threshold of 0.5 is applied to the circular contigs,
612  accounting for the circular evidence relatable to plasmids. The non-plasmid clustering strategy
613  consists in 2 steps: (1) Cluster the VAMB-latent space with the iterative medoid clustering
614  algorithm from VAMB. (2) Extract contigs belonging to any plasmid candidate cluster defined

615 by the plasmid prone clustering strategy.
616  Binning benchmarking - CAMI2 reassembled

617 We compared the plasmid and organism binning performance of PlasMAAG, VAMB v4.1.3,
618  MetaBAT2 v2.12.1, SemiBin2 v2.1.0, Comebin v1.0.4, MetaDecoder v1.0.19, and SCAPP v0.1.4
619 over the re-simulated CAMI2 datasets. Binning performance was evaluated in terms of
620 genomes recovered with precision > 95% and recall > 90%, so-called "NC genomes”. Since
621  PlasMAAG, and VAMB, MetaBAT2, SemiBin2, Comebin, MetaDecoder perform the binning
622  after assembling the contigs, precision and recall of the bins were obtained from the contig
623  references, using BinBencher v0.3.0 (49). On the other hand, SCAPP and MetaPlasmidSPAdes
624  v3.15.3 assemble their own contigs. Here, we produced a ground truth by aligning the output
625  bins to the origin genomes using NCBI blast 2.15.0 accepting hits with an identity > 97% and

626  a query coverage > 90%, after which we benchmarked using BinBencher.
627  Sample benchmarking CAMI2 reassembled

628  Precision, recall, and F1 was computed for each set of plasmid candidates, reflecting the
629  plasmid characterisation at the sample level, not at the bin level. Given a sample (s), a set of
630 plasmid candidates (candidates), binning precision and binning recall thresholds (pre, rec), and

631 the set of true plasmids present in the sample (plasmids):

# candidates > (pre,rec)

632 Sample precision - = -
plep candidates,pre,rec # candidates

# candidates > (pre,rec)

633 Sample recall i i = -
p candidates,plasmids,pre,rec # plasmlds

634  Enabling to compare the number of bins classified as plasmid, compared to the total number

635  of plasmid genomes at specific binning precision and recall thresholds.

636  Hospital sewage samples sequence datasets
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637  Two datasets were used in this study to assess the quality of plasmid binning. Urban sewage
638 samples (UWS) samples were collected from comparable UWSs from Denmark and Spain
639 located in Odense and Santiago de Compostela, as previously described (41). In this study,
640  only hospital sewage samples from each location were used. Sewage samples were collected
641  in the winter and summer of 2018 using ISCO automatic samplers for 24-hour flow (50 mL per
642 5 min) in Denmark, while 24-hour-time proportional samples in SP (mixing hourly samples
643  according to flow information) (Supplementary Table 8). Three replicates per site and season
644  were collected on three consecutive days without rain events. All samples were initially cooled
645  with ice on-site, then 100 mL of each sample was centrifugated at 10,000 g for 8 min at 4 °C
646  in the laboratory. After removing supernatant, pellets were resuspended in 20 % of glycerol
647  stock to reach a final volume of 10 mL for storage at —80 °C. In total, environmental DNA was
648  extracted from all samples using NucleoSpin Soil kit (Macherey & Nagel, Direin, DE) using
649  500ul of glycerol stock material for direct shotgun metagenomic using lllumina NovaSeq using
650 2x150bp paired-end mode (all samples) and PacBio Sequel2e (5 samples from Denmark).
651  PacBio libraries were built from the same DNA extracts using libraries using SMRTbell express
652  template 2.0 kit and Sequel Il Binding Kit 3.2 (Pacific Bioscience, CA, USA) and barcoded using
653  SMRTbell Barcoded Adapter Plate 3.0 (Pacific Bioscience, CA, USA). Two libraries per 8M
654  SMRTcell (Pacific Bioscience, CA, USA) were pooled and sequenced on a PacBio Sequel2e

655 instrument at University of Copenhagen.

656  For plasmids enriched samples, we used specific methods to deplete non-plasmid DNA as
657  described previously (50, 51). Briefly, hospital sewage samples were pretreated by filtration,
658  vortex and sonication and resuspended in TE buffer. Afterwards, a pre-lysis cocktail of cell-wall
659  degrading enzymes: lysozyme, mutanolysin, and lysostaphin was used to facilitate lysis of
660  Gram-positive bacteria during alkaline lysis. Pre-lysis was followed by alkaline lysis to remove
661  chromosomal DNA (52), followed by Plasmid-Safe™ ATP-Dependent DNase (Lucigen, UK)
662  digestion. Plasmid-Safe DNase will digest any fragments of dsDNA with open 3" or 5" termini,
663  hence removing fragmented chromosomal DNA. The purified plasmid DNA was then quality-
664  checked, libraries prepared and sequenced on an lllumina NextSeq platform with a v2.5

665  sequencing kit (Illumina, San Diego, CA, USA) in paired-end mode.

666  Binning benchmarking - hospital sewage
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667  We compared the binning performance of PlasMAAG, VAMB, MetaBAT2, SemiBin2, Comebin,
668  MetaDecoder, metaplasmidSPAdes, and SCAPP over the 5 hospital sewage samples.
669  Performance evaluation was based on the long-read sequences generated from the same
670 samples and defined by the long-read contigs recovered with precision > 95% and recall >
671  90%, so-called “NC long-read assemblies”. To evaluate the overall binning performance, the
672  entire set of long-read contigs was used to build the reference. Whereas to evaluate the
673  plasmid binning performance, only the long-read contigs either circular or with
674  metaplasmidomics reads coverage > 50% were used to build the reference. To build the
675  references, we mapped the short-read contigs to either set of long-read contigs to determine
676  their origin, using minimap2 v2.24 and accepting hits with an identity > 97% and a query
677  coverage > 90%, and used Binbencher for the benchmarking. To account for plasmid circularity,
678 2 copies of each long-read contig were concatenated before mapping the short-read contigs.

679  adovNC organisms were estimated with CheckM2 v0.1.3.
680 Host-plasmid and intra-plasmid diversity exploration

681  PlasMAAG was used to bin the contig sequences from 24 hospital sewage samples from
682  hospitals in Spain. PlasMAAG bins were aggregated into PlasMAAG clusters and classified as
683  plasmids if the aggregated geNomad plasmid score exceeded 0.75, defining them as plasmid
684  clusters. Only plasmids clusters with more than 150 kb were considered for the host-plasmid
685  association. Organism’s bin quality was estimated with CheckM2 v0.1.3, and only high-quality
686  (completeness > 70% and precision > 90%) (HQ) bins were kept. GTDBtk v2.4.0 (53) was used
687  to estimate taxonomy for the HQ bins, with cluster taxonomy assigned based on majority vote.
688  Abundance correlation analysis was only conducted for plasmids and organism’s clusters with
689  non-zero abundance over at least 18 overlapping samples. Spearman correlation coefficients
690 and p-values were computed using scipy.stats.spearmanr. To account for multiple testing, p-
691  values were corrected using the Benjamini-Hochberg (FDR) correction implemented in the
692  statsmodels.stats.multitest. multipletests package. Plasmid cluster hosts were inferred from
693  PLSDB when aligning to any PLSDB entry with >80% identity and >80% coverage. Functional
694  annotations of contigs were performed with anvi‘o v8 software, using the ‘anvi-run-workflow

695  -w contigs’ command.

696 Resource usage
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697  We evaluated computational resource usage of all methods using the Airways CAMI2 re-
698  assembled dataset and five samples from the hospital sewage dataset. For the Airways dataset,
699  PlasMAAG used 46 minutes, 8 threads, and 16 GB of RAM. In contrast, SCAPP, excluding the
700 BAM file generation step, took 192 minutes, utilized 16 threads, and required 24 GB of RAM
701  (Supplementary Table 5). Among the other binners, PlasMAAG was slower than VAMB,
702  MetaDecoder, and MetaBAT2. For example, VAMB completed the task in just 8 minutes while
703  using 8 threads and 16 GB of RAM. However, we observed a different trend when evaluating
704  performances on the five hospital sewage samples. When accounting for the additional steps
705  of read assembly and read mapping required to compute abundances, PlasMAAG exhibited
706  similar runtimes to most binners, except for SCAPP, which required significantly more time.
707  Specifically, PlasMAAG took 3,575 minutes, VAMB took 3,435 minutes, ComeBin required 4,911
708  minutes, and metaplasmidSPAdes took 4,430 minutes (Supplementary Table 6). In contrast,
709  SCAPP required 116,965 minutes—32 times longer than PlasMAAG. This difference in runtime

710 remained consistent even when excluding the read assembly steps (Supplementary Table 6).
711
712  DATA AVAILABILITY

713 Reads, contigs, and contig annotations for the re-assembled CAMI2 datasets are available here:

714 https://erda.ku.dk/archives/826fe4d8889f88db2ec20058f9eaal15/published-archive.html and
715 https://erda.ku.dk/archives/fb2c6dd2a8e002becb58233bd4388f7c/published-

716 archive.html. The metagenomic short reads, metaplasmidomic short reads, and metagenomic long
717 reads from the 5 Danish hospital sewage samples, as well as the metagenomic short reads from the
718 24 Spanish hospital sewage samples, are available in the European Nucleotide Archive under
719 BioProject PRJEB85938, whereas the assemblies for all samples are available here:

720 https://erda.ku.dk/archives/e87f0d5e12ca4c1204379d4932c3ae59/published-

721  archive.html! (Supplementary Table 8).
722
723  SUPPLEMENTARY DATA

724  Supplementary Data are available online.
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