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Abstract

The goal of this thesis is to apply attention mechanisms to the problem of contig clas-
sification in assembly graphs using the plASgraph2 architecture. A plasmid is a small,
circular DNA segment that resides freely in the cytoplasm of bacteria. Plasmids are
a major factor in the spread of antibiotic resistance between bacterial cells. However,
identifying plasmids from short-read sequencing data is a challenging task. This work
focuses on integrating Graph Attention Networks (GAT) into a graph neural network
that classifies contigs as plasmid, chromosome, or ambiguous. The thesis includes
an analysis of existing approaches, adaptation of the codebase for compatibility with
updated software libraries, and preparation of an experimental framework for further

development.

Keywords: neural networks, graph neural networks, plasmids, DNA
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Abstrakt

Cielom tejto diplomovej préace je aplikovat mechanizmus pozornosti (attention) na
problém Kklasifikicie kontigov v assembly grafoch pomocou architektary plASgraph2.
Plazmid je maly kruhovito stoceny tusek DNA, ktory sa nachédza volne v cytoplazme
baktérii. Prave plazmidy st castou pri¢inou Sirenia antibiotickej rezistencie medzi bak-
tériami. Identifikacia plazmidov z kratkych sekvenénych dat je vSak naro¢né. V préci sa
preto zameriavame na vyuzitie Graph Attention Networks (GAT) ako sucasti grafovej
neurénovej siete, ktora rozhoduje, ¢i dany kontig pochadza z plazmidu, z chromozému
alebo méa nejednoznac¢ny pdvod. Sucastou prace je analyza existujucich rieseni, aktual-
izécia softvérového kodu pre nové verzie kniznic a priprava experimentélneho prostredia

pre dalsi vyskum.

KTlaéové slova: neurdnové siete, grafové neurdénové siete, plazmidy, DN A
9 9 9
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Introduction



Chapter 1

Background and problem statement

1.1 Bacterial DNA

DNA, or deoxyribonucleic acid, is the molecule that carries genetic information for all
living organisms. Inside the cell, DNA is usually arranged in a double helix, where the
two strands run in opposite directions because of their phosphodiester bonds. Even
though the double helix is extremely thin, it can be incredibly long—much longer than
the cell itself—so it stays tightly coiled and packed inside.

Prokaryotes, which are organisms without a nucleus, typically have just one DNA
molecule that is essential for their survival. This DNA is found freely in the cytoplasm,
and its ends are usually connected, forming a circular shape. Eukaryotes, on the other
hand, are organisms that do have a nucleus. Most of their DNA is stored inside the
nucleus as several separate molecules that usually have free ends.

Besides their main chromosomal DNA, many organisms also have smaller DNA
molecules. These can be found in certain cell organelles or as short circular pieces of

DNA in the cytoplasm called plasmids.

1.1.1 Plasmids

Plasmids are double-stranded circular molecules of DNA. They are able to replicate
in the cells of the host independently from chromosomal DNA. Simple example of the
plasmid can be seen on the figure Fig. 1.1 They can be found in various types of
bacteria and other lower organisms such as yeast. They come with various lengths.
Some shorter plasmids can only contain few thousand bases. The longer types can be
hundreds of thousands of bases long. Plasmids do not contain genes that are neces-
sary for the proper function of the cell; however, they can provide various advantages
that can be utilized in different types of environments. Most genes carry resistance
against various types of antibiotics and heavy metals. There are also genes, that are

used for encoding bacteriocin production, genes for the breakdown of complex organic
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substances, restriction-modification systems, or virulence genes.

Bacterial DNA Plasmids

Figure 1.1: This picture shows a bacterial cell with its main bacterial DNA and several
plasmids inside it. The large, tangled red structure represents the bacterial chro-
mosome, which contains most of the genetic information. The smaller blue circular
structures represent plasmids, which are extra DNA molecules that can replicate inde-
pendently from the main chromosome.

Plasmids replicate independently from bacterial chromosomes, that means, every
plasmid is separate replicant. Gene sequences that are used for enzymes production
can be usually found on bacterial chromosomes. These enzymes are necessary for
plasmid replication. These enzymes coding sequences can be also sometimes found on
plasmid itself. The start of replication also determines the range of hosts for a given
plasmid. Some plasmids are able to replicate only in specific types of bacteria; others
can replicate in majority of known types of bacteria.

Not all types of plasmids can coexist in the same bacteria. It is called plasmid
incompatibility and is defined as the inability of two different plasmids to exist in the
same cell without selection pressure. The replication origin determines this property,
i.e., two plasmids with the same origin cannot coexist in one cell.

By their ability to transfer between host cells, plasmids can be conjugative or non-
conjugative. Conjugative plasmids are capable of independent transfer from the donor
to the recipient cell. Transfer is ensured by transfer genes that are encoded on the
plasmid. Non-conjugative plasmids are not capable of transfer between cells. Some
plasmids can also be mobilizable, that means, that they do not contain their own
transfer genes but only a mob region that ensures that they are capable of transfer
from donor to recipient cells if conjugative plasmids are present in the cells.

Stability is an important feature of the plasmids. They are able to stably transfer
to daughter cells. Lot of low-copy plasmids, which are plasmids that have 1-2 copies
to one bacterial chromosome, contain genes and specific sites in their DNA that are
responsible for the distribution of copies to both daughter cells. These specific parts
responsible for the transfer are called partitioning loci. On the other hand, high-copy



plasmids, which are plasmids that have 20 or more copies, do not need to contain par
sites. The reason is, that it is unlikely that a newly formed cell receives no copies of
the plasmid during division. However, for distribution to daughter cells, it is necessary
for the plasmids to segregate after replication, because they need to be divided into

individual molecules.

1.2 Bioinformatical methods for genome processing

In recent years, the development of bioinformatical methods has accelerated signifi-
cantly. As a result, the way we approach the analysis of genetic information has also
changed. From the first DNA sequencing techniques to today’s high-capacity sequenc-
ing platforms, the methods of obtaining and processing genomic data have undergone a
significant evolution. Modern methods allow us to generate huge amounts of sequence
data, which require effective computational tools for interpretation. In this chapter,
we focus on the historical and technological development of sequencing techniques. In
this chapter we also write about two main approaches of genome reconstruction from
obtained fragments. First, we will write about read mapping, which is a method that
is based on aligning sequences to a reference genome. The second method is de novo
assembly, which allows the genome to be assembled without prior knowledge of the

reference.

1.2.1 DNA sequencing

DNA sequencing is a laboratory method used to precisely determine the order of nu-
cleotides within a DNA molecule. Technology has evolved through several stages, and
today we recognize three generations of sequencing.

Scientists first managed to describe the structure of DNA and capture its image in
1953, but it was not until 1978 that the genome was successfully decoded using Sanger
sequencing, a method based on radionuclides. Later, radionuclides were replaced by
dideoxynucleosides. The first commercial automated sequencer was based on Sanger
sequencing, which was able to obtain around 1000 base pairs. This marks the first gen-
eration of sequencing. In the mid-1990s, the second generation of sequencing, otherwise
known as next generation sequencing (NGS) or massive parallel sequencing (MPS), be-
gan. During this period, scientists were able to sequence whole human genome using
massively parallelized sequencing. Third generation sequencing began mid-to-end of
2000s. Unlike in the first generation, in the third generation we can obtain up to 10,000
base pairs from a single read. Each generation has its advantages and disadvantages.
Right now, all three generations are used in genome sequencing, based on the specifics

of the sequencing experiment.



Currently, no sequencer can sequence the whole genome. Instead, it yields smaller
parts, which are called reads. These reads have different lengths and overlap with
each other. Because we have large number of reads, several reads can cover the same
position in genome. Today, we have two methods that are used to obtain back the
original genome: mapping and assembly.

First, we will talk about assembly. After sequencing we have multiple reads with
different lengths. During assembly, we put together reads according to overlapping
sequences. For example in Fig. 1.2 we have 3 DNA fragments CGAGATTAGCT-
GCA, TGCATAGCGATATCA and TATCATGATTA. The first fragment and the sec-
ond fragment share the sequence TGCA and the second fragment and the third frag-
ment share the sequence TATCA. Joining these DNA fragments gives us the resulting
local DNA sequence CGAGATTAGCTGCATAGCGATATCATGATTA. Overlaps are
written only once in the resulting sequence. Using this method, we are often unable to
assemble the entire genome. Obtained local genome sequences are stored in a FASTA

file. Each sequence starts with a one-line description followed by lines of sequence data.

_ St N ™ R t
= \_/J-:_.\ - Ll ragmen
— P == sequencing
v v
CGAGATTAGCTGCA FaTcaArGATTA Ovéﬂjppmg
TGCATAGCGA[TATCA WA
matching
v v
CGAGATTAGCTGCATAGCGATATCATGATTA  L0cal DNA
Reassembly

Figure 1.2: At the start of the assembly process is set of reads. During the assembly
process we put together reads according to to overlapping sequences. At the end of the
process, we have obtained multiple local genomes, that are stored in FASTA files.

Another method to obtain the human genome is mapping. Unlike assembly, map-
ping uses a reference genome sequence to obtain the genome of interest from reads. As
we can see in Fig 1.3 at the start of this process, we have various reads with different
lengths, that we obtained from sequencing and the reference genome of an organism
whose genome we are trying to obtain. During the process, each read is compared to a
different part of a reference genome to find the best fit. As we can see on the bottom
of Fig 1.3, Readl matches in 9 out of 11 bases, Read2 matches in 7 out of 14 bases and

Read3 matches in 10 out of 12 bases. These mismatches are caused by various types of
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mutations. At the end of the process, we have a BAM file that contains all the locally

find genomes. These BAM files are later used in various bioinformatic analyzes.

The most common mutations are substitutions, insertions, and deletions. We are
talking about deletion, when one or more nucleotides are missing from a sequence. For
example, if we know that at the exact position in the reference genome is sequence
AATG, but our sequence from our genome is AAG. We talk about substitution when
two nucleotides are switched. As we can see in Fig 1.3, where in Readl, for example,
nucleotide C in the reference genome was switched to nucleotide A. We talk about an
insertion if a nucleotide or a short sequence of nucleotides is added to the sequence.
Again, in Fig 1.3, we can see that the short sequence of nucleotides CC was inserted
into Read3. Thanks to these mutations, organisms can adapt to various environmental

changes, but they can also be a cause of various dangerous genetic diseases.

Set of reads

N —
[ J—eeeel Reference genome
L_____§ |

[———

I

Mapping

= = =
(=] -
=

GATCAGCAACGTACCGCCAGATACCGGGAACATACCATACGA

TAAGCGACGTA RRRRIIRCCECCARCTACT
Read! TTACCAGATAGGTT

Read2

Figure 1.3: At the start of the mapping process is set of reads and reference genome.
During the mapping process, each read is compared to each sequence of the reference
genome. At the end of the process, each read is placed into position with the highest
amount of matching bases.
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Chapter 2
plASgraph2 and its limitations

Plasmids, as described in Chapter 1.1.1, are small double-stranded circular DNA
molecules that can be found in the cytoplasm of a wide variety of microorganisms.
They are independent of chromosomal DNA and are able to transfer between bacte-
rial cells. Because of this mobility, plasmids allow microorganisms such as bacteria to
adapt to many different environments. They are also the main reason why antibiotic
resistance can spread so effectively among bacteria. Detecting plasmid sequences in
short-read assemblies is therefore important for public health. As explained in Chapter
1.2.1, we are still not able to sequence an entire genome directly. During sequencing,
the genome of an organism is split into many short fragments, which are later com-
bined into contigs using assembly or mapping methods. However, these contigs do not
contain enough information on their own to reliably determine whether they originate

from chromosomal or plasmid DNA.

For this reason, the tool plASgraph2 was developed. In contrast to the tools de-
scribed in Chapter 1.3, plASgraph2 does not analyze each contig independently and
does not require comparison with a database of known plasmids. Instead, it uses the
structure of the assembly graph to determine whether a contig belongs to a chromosome
or a plasmid. In this graph, contigs are connected to each other based on assembly in-
formation. plASgraph2 characterizes each contig using several features that are known
to distinguish plasmids from chromosomes: read coverage (used as a proxy for copy
number), GC content, and contig length. In addition to these established features, it
introduces two new ones: the node degree in the assembly graph and the similarity
between the contig’s k-mer profile and the k-mer profile of the entire assembly. Al-
though these features provide useful information, they are not sufficient by themselves
to classify a contig correctly. The connections between contigs offer additional context

that helps during classification. |2]

Since traditional neural networks are not well suited for working with graph-structured

data, plASgraph?2 incorporates Graph Neural Networks (GNNs) into its architecture.
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GNNs are able to pass information between connected contigs through a process called
message passing. Thanks to this ability, plASgraph2 can take advantage of the struc-
ture of the assembly graph and make accurate decisions even in cases where the features

of a single contig are not sufficient for correct classification.

2.1 Graph Neural Networks

GNNs, or Graph Neural Networks, are a type of network used when we have data
structured as graphs. A graph is a structure made of nodes and edges, which represent
objects and the relationships between them. Simple representation of GNNs can be
seen on Fig. 2.1. A lot of systems in the real world can be represented as graphs; for
example, social networks, telecommunication networks, 3D meshes, biological networks,
brain connectomes, and so on. [3] Usually, we use neural networks on data that has a
regular format, such as text or images. However, graphs do not have a fixed shape or
order, so traditional neural networks struggle with these kinds of structures. This is
the reason why Graph Neural Networks were created.

The main idea of GNNs is that each node in the neural network should learn based
on the information contained in the nodes that are connected to it. At the start of
the training, each node contains its initial information, which we call features. These
features change during training. In every GNN layer, a node collects information from
its neighbors. This process is called "message passing". This means that nodes ex-
change information with the nodes to which they are linked. After that, they update
their own representation based on the information they have received. This process is
repeated in multiple layers. Between each layer, some type of activation function, such
as ReLU, is used to learn more complex relationships. Without using any type of acti-
vation function, the entire neural network would become a large linear transformation,
and no complex relationships would be learned. The simple example of this process
can be seen in Figure 1.4. At the end of the process, each node does not capture only
its own properties. It also captures the context provided by the surrounding parts of
the graph. [3]

The most popular neural network in GNN is the Graph Convolutional Network.
This network works almost the same way as convolutional neural networks used for
image processing. Convolutional neural networks used for image processing look at
nearby pixels. However, graph convolution looks at nearby nodes in a graph. This
property allows the model to learn patterns that are based not only on the features
of the nodes. They are also based on how those nodes are connected. Thanks to this
property, GNNs can detect structures and relationships that traditional models would

miss because these structures are too complex to capture.
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Figure 2.1: Graphical representation of training in Graph Neural Networks using ReL.u
activation function to learn complex relationships between each layer.

We can use GNNs for many tasks. The big advantage is, that they can classify
individual nodes. For example, they can predict whether a sequence of bases belongs
to a plasmid or to a bacterial chromosome. Also, they can classify entire graphs.
They are able to decide whether a molecule is toxic or non-toxic. The most important
property of GNNs is that they can work on incomplete types of graphs. For example,
during training, we can hide some parts of the graph. The result of this is that the
neural network was not able to gain all the knowledge about the data. Besides this
disadvantage, during testing, GNNs are able to predict the correct answers with high
accuracy. In general, we are using GNNs to solve problems that involve data where the

relationships between each item are as important as the individual items themselves.

Graph neural networks are a powerful tool that allows us to solve more complex
problems that traditional neural networks would not be able to handle. However, they
also have their limitations. These neural networks can be very computationally de-
manding, especially in problems that are highly complex and require a deep network
to capture all the important relationships between nodes. The accuracy and computa-
tional cost of these networks also depend on how well the graph is constructed. Despite
these challenges, graph neural networks are increasingly being used to address various

biological problems.
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2.2 Input features of plASgraph2

At the start of the whole process is the assembly graph of bacterial isolates, where
nodes represent contigs and edges represent adjacencies supported by sequencing data.
Each contig in this graph contains six features.

The first feature is node degree. This feature counts how many neighbors a contig
has in the assembly graph. Plasmids often have a different graph structure compared
to chromosomes, so this information is useful. The second feature is normalized contig
length. The contig length is divided by a constant (two million). This prevents very
large values from dominating the model. The third feature is the logarithm of contig
length. This feature helps the model distinguish between long and short contigs. The
fourth feature that describes each contig is Relative GC content. The GC content of
the contig is compared to the average GC content of the entire sample. This makes the
feature less dependent on which bacterial species is being analyzed. The Second-to-last
feature is relative coverage. The coverage of a contig is divided by the weighted median
coverage of the sample. Plasmids often have higher coverage than chromosomes because
they are present in multiple copies. The last feature is relative pentamer composition.
The relative pentamer content compares the 5-mer (pentamer) composition of a contig
with the 5-mer composition of the entire assembly. For each contig or set of contigs,
the number of occurrences of every pentamer and its reverse complement is used to
form a normalized pentamer profile, where a small pseudocount ¢ = 0.01 is added to
avoid zero values. The similarity between the pentamer profile of the contig and that
of the whole assembly is then expressed as the dot product of the two profile vectors.
This produces a single value that represents how similar the sequence composition of
the contig is to the sequence composition of the entire assembly. This process again
provides a species-independent feature. [2]

Using relative features allows the model to generalize across different bacterial
species. It also helps to avoid dependence on species-specific values. For example,
if the raw GC content were used as a feature, the model could learn that chromosomal
sequences tend to have one characteristic GC content, while plasmid sequences tend
to have another. However, this information is not a universal property found in dif-
ferent types of organisms because GC content varies widely across taxa. On the other
hand, using relative GC content allows the model to learn that the GC content of
chromosomal contigs is usually closer to the overall GC content of the sample because
chromosomal DNA is longer than the DNA of the plasmid. Using relative features also
allows the model to realize that the GC content of the plasmids usually deviates from
this value. [2]

Using relative features allows the model to be trained on multiple species, not only

on one specific species.
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2.3 Model architecture

The architecture of plASgraph?2 is designed that way that model is able to label each
contig in an assembly graph as plasmid, chromosome, or ambiguous. As we can see in
Fig 2.2 the model consists of input encoding at the start, several graph convolutional

layers used for training and final prediction module.

2.3.1 Input Encoding

Each contig is described by six input features, that are described in more details in
Chapter 2.2. Before entering the graph neural network, these features are transformed
by a dense layer with a sigmoid activation function.

The sigmoid activation function is a mathematical function that takes any real-
valued number and transforms it into a value between 0 and 1. Values close to 1
indicate high probability, while values close to 0 indicate low probability.

At the end of this first step we end up with a 10 x n representation, where n is the
number of contigs in the assembly graph. The output of this encoding stage is then
processed by two dense layers with ReLLU activation.

The ReLU (Rectified Linear Unit) activation function outputs the input value when
it is positive and outputs zero when the input is negative. This simple form introduces
non-linearity into the model, which allows the network to learn more complex relation-
ships between features. At the same time, ReLU is computationally efficient and helps
reduce issues such as the vanishing gradient during training.

The first dense layer produces a 32 X n representation. This representation is then
used as the main input to the graph convolutional layers. The second layer produces a
32xn node identity vector. This vector preserves the original contig identity throughout
the network. Both the main input and the node identity representation are reused in

each of the six graph convolutional layers. |2]

2.3.2 Graph Convolutional Layers

The core of the model consists of six identical graph convolutional (GCN) layers. All
GCN layers share the same parameters, which means that the same transformation is
applied repeatedly as information propagates through the graph. Each layer contains
several steps. First, dropout (10%) is applied to the 32 x n main input. A GCN layer
with a ReLLU activation function is then applied. This layer takes the current 32 x n
representation together with the n x n adjacency matrix and performs message passing
between neighboring contigs. Afterwards, the updated node features are concatenated

with the preserved node identity vector, resulting in a 64 X n representation. Finally,
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this 64 x n representation is passed through a dense layer that transforms it back to
32 x n. The output of this dense layer becomes the input to the next GCN layer. [2]
After the first round of this process, each node has incorporated information from
its direct neighbors, and its feature vector is updated according to this information.
After the second round, each node also receives information from the neighbors of its
neighbors, and so on. This design allows each contig to accumulate information from

increasingly distant regions of the assembly graph while preserving its original identity.

2.3.3 Output Layer

After the last round of computation, the final dense layer uses a sigmoid activation
function to produce two independent scores for each contig, using the information
obtained during the training process. First, it produces plasmid score and then it
produces chromosome score.

These scores do not need to sum to one. A contig may therefore receive a high
score for both classes (ambiguous), low scores for both classes (unlabeled), or a high
score for only one class (plasmid or chromosome). This behavior reflects the biological
reality that some contigs share characteristics of both plasmids and chromosomes, or

may not contain enough information to be classified with high confidence. [2]

Concat + dense box: Overall architecture:
32xn main | 32xn node ExrinGliLTaal
input identity MHNPHEISaos graph
- = adjacency
o ks
concatenate 10xn input encoding
dense + RelLU ‘ | dense + ReLU
32xn 32xn node
identity

dense + RelLU

GCN box 1

32xn output

GCN box 2

GCN box: GCN box 3

|32><n main input GCN box 4

dropout 10%

=

nxn adjacency matrix GCN box 5

32—
GCN box 6
CEN RaLy 32xn node identity
e S
Goncal # dense
32xn

2xn output scores

Figure 2.2: Model architecture of plASgraph2. The model takes as input the assembly
graph structure and six features per node (contig). The core of the network is composed
of six graph convolutional layers. The model generates two outputs per node, which
facilitate the classification of plasmids and chromosomes as two separate classification
tasks.
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2.4 Training

After preparing the training and testing data sets, the model was trained using the
assembly graphs and the contig features described above. Each assembly graph was
treated as an independent training sample, meaning that a single batch contained the
full graph of one isolate. For optimization, the model used the Adam optimizer with
a learning rate of 0.005. Training was run for a maximum of 1000 epochs with a
patience value of 100 for early stopping, so the training stopped automatically once
the validation loss no longer improved. During training, the data set was split into
80% training samples and 20% validation samples. This allowed the model to be
monitored for overfitting while ensuring that the validation graphs remained unseen
during training. All six graph convolutional layers shared the same parameters. This
design helped reduce the total number of parameters and made the model more robust.
At the end of training, the output of the model consisted of two independent sigmoid
scores for each contig: a plasmid score and a chromosome score. Before applying the
model to new assemblies, the authors performed an additional threshold optimization
step. The aim of this step was to choose score thresholds that maximized the F1 score
on the validation set. These thresholds were then used when classifying contigs in the

testing data and in external samples. [2]

2.5 Results

The performance of plASgraph2 was evaluated on several data sets and compared with
a set of existing plasmid-detection tools, which are described in Chapter 1.3, namely
PlasClass, Platon, 3CAC, and PlasForest. The main evaluation metrics were accuracy,
AUROC, and F1 score. The performance of the model was evaluated separately for
chromosomal and plasmid contigs.

As we can see in Fig 2.3, for the ESKAPEE test samples, plASgraph2 achieved
the highest median F1 score for plasmid identification among all tested tools. It also
reached the best median AUROC and accuracy for plasmid classification. For chro-
mosomal contigs, the performance of plASgraph2 was close to that of Platon, which
uses homology-based information and, therefore, tends to perform very well on long
chromosome-derived contigs.

An important observation was that plASgraph2 performed especially well on short
contigs. This is a challenging region where many homology-based tools struggle because
short sequences often lack meaningful alignment information. In contrast, plASgraph?2
benefits from the structure of the assembly graph, which provides additional context.

To investigate whether the model can generalize beyond the species represented in

the training set, the authors also tested plASgraph2 on isolates that were not part
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of the ESKAPEE group but were still closely related. The model retained strong
performance, showing that the use of relative features and graph structure helps the

model work well even in species that were not directly used for training.

When evaluating very distantly related species, the performance decreased, which is
expected because plasmids and chromosomes may share similar sequence characteristics
outside the ESKAPEE clade. Nevertheless, plASgraph2 remained competitive with the

other methods in these tests.

The authors also examined the predictions directly on the assembly graphs. In
comparison with tools such as PlasForest, which sometimes produce isolated classifi-
cation errors scattered across the graph, the predictions of plASgraph2 tended to ap-
pear in coherent regions. Errors were usually found in small clusters, suggesting that
information passed through the graph helped maintain consistent predictions across

neighboring contigs.

Method SS DB AUROC Precision Recall F1 Accuracy
A: Plasmid classification, contigs >100 bp, n =38,110

plASgraph2 ‘ - - 0.991 0.906 0.908 0.808 0.935
mliplasmids ‘ X - 0.896 0273 0.957 0.480 0.641
PlasClass \ - - 0.892 0.381 0.939 0.617 0.794
PlasForest ‘ - X nfa 0.486 0.939 0711 0.852
Platon ‘ - X n/a 1 05 0.667 0.924
Deeplasmid ‘ = X nfa n/a n/a nfa n/a
RFPlasmid \ X X 0.973 0.854 0.789 0.667 0.885

B: Chromosome classification, contigs >100 bp, n =38,110

plASgraph2 ‘ - - 0.991 0975 1 0.968 0.943

mlplasmids ‘ X - 0.908 1 0.540 0.697 0.609
PlasClass ‘ - - 0.878 1 0.738 0.840 0.766
PlasForest ‘ = X nfa 0.992 0.771 0.855 0.795
Platon ‘ = X n/a 0.957 1 0.973 0.952
Deeplasmid ‘ - X n/a n/a n/a nfa n/a

RFPlasmid ‘ X X 0.959 0.982 0.936 0933 0.893

C: Plasmid classification, contigs >1,000 bp, n =15,687

plASgraph2 ‘ - - 0997 0960 0.933 0852 0946
mlplasmids ‘ X - 0974 0526 1 0783 0.864
PlasClass ‘ - - 0.986 0.75 1 0.857 0.929
PlasForest - X n/a 0824 0.944 0835 0927
Platon - X nfa 1 0.836 0.897 0.961
Deeplasmid - X 0929 1 0.333 0.5 0892
REPlasmid X X 0.998 0914 0.926 0862 0942

D: Chromosome classification, contigs >1,000 bp, n =15,687

plASgraph2 - - 0.996 0.976 1 0.969 0.951
mlplasmids X - 0.966 1 0.845 0.906 0.860
PlasClass - - 0.972 1 0.897 0.936 0.904
PlasForest = X nfa 1 0919 0.936 0.902
Platon - X nfa 0.989 1 0.983 0.973
Deeplasmid - X 0911 0.903 1 0.935 0.893
RFPlasmid X X 0.987 1 0.954 0.954 0931

The table shows the median values for each metric from results on all 224 samples included in the testing set. The highest value in each category is shown in bold. $$, method uses Species-Specific
models; DB, method uses a DataBase of plasmids and/or chromosomes or other features derived from homology search. Note that, Deeplasmid only allows classification of contigs longer than
1,000 bp. Further, PlasForest and Platon do not provide confidence scores for each prediction. Therefore, calculation of AUROC is not applicable (n/a).

Figure 2.3: In this table we can see the accuracy of plASgraph2 againstother tools
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2.6 Limitations

Although plASgraph?2 represents a significant improvement in plasmid detection from
short-read assemblies, the method has several limitations that affect its performance
and generalizability.

A first limitation is the strong dependence on the quality of the assembly graph. The
model makes use of the structure of the graph to exchange information across contigs,
and this is one of its main strengths. However, in highly fragmented assemblies or
in assemblies with misassembled regions, the graph structure may not provide enough
reliable information. In such cases, the advantage of using a graph neural network
becomes smaller, and the model may behave more similarly to sequence-based tools.

A second limitation concerns very short contigs. plASgraph2 does not classify
contigs shorter than 100 bp because these sequences do not contain enough signal to
produce meaningful feature values. Although the graph is adjusted by connecting the
neighbors of these short contigs, the excluded sequences still represent regions where
no prediction is made. In samples that contain many short contigs, this may reduce
the overall usefulness of the method.

Another limitation is related to species diversity. The model was trained primarily
on ESKAPEE species, and its use of relative features allows it to generalize to closely
related species reasonably well. However, when applied to bacterial groups that are
phylogenetically distant from the training set, the performance decreases. In such
cases, plasmid and chromosome sequences may share similar sequence characteristics,
and the relationships learned during training may not transfer effectively.

The model also depends on accurate ground-truth labels during training. Although
hybrid assemblies offer much better reliability than short-read assemblies alone, they
are still subject to misassemblies or incomplete labeling, especially in complex sam-
ples. Any mistakes in the labeling process can propagate into the model and affect its
predictions.

Despite these limitations, plASgraph2 demonstrates that incorporating the assem-
bly graph into plasmid detection can substantially increase classification accuracy, par-
ticularly for short and ambiguous contigs. The approach shows that graph neural
networks can provide meaningful improvements in tasks where both sequence features
and structural information are important. However, further work is needed to extend
this approach to broader taxonomic groups, handle very short contigs more effectively,

and improve robustness to variation in assembly quality.
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Chapter 3

Introduction of attention mechanism
to plASgraph?2

Although plASgraph2 achieves strong performance by combining sequence-derived fea-
tures with information from the assembly graph, its original architecture treats all
neighboring contigs as equally important during message passing. In the graph convo-
lutional layers used by plASgraph2, information from all adjacent nodes is aggregated
using fixed, uniform weighting. This assumption may be limiting in biological assembly
graphs, where not all connections are equally informative. Some edges represent strong
biological relationships, while others may arise from repeats, assembly ambiguities, or

sequencing artifacts.

To address this limitation, an attention mechanism was introduced into the plAS-
graph2 architecture. Attention-based graph neural networks allow the model to assign
different importance weights to neighboring nodes during message passing. Instead of
averaging information from all neighbors, the model learns which connections are more
relevant for the classification task. This is particularly useful in fragmented assemblies,

where misleading or weak connections can negatively influence predictions.

In this work, the original graph convolutional layers were replaced with graph at-
tention layers, while keeping the rest of the architecture unchanged. This design choice
ensures that the model continues to benefit from the structural information encoded
in the assembly graph, while gaining the ability to focus on the most informative
neighbors. The goal of this modification is to improve classification performance, espe-
cially for ambiguous and short contigs, without increasing reliance on species-specific

sequence features or external databases.

17



3.1 Attention mechanism in Neural Network

Graph neural networks are already very strong models, but their performance can be
further improved by adding an attention mechanism. The main idea behind attention
is that a node should not treat all of its neighbors as equally important. Instead, the
model learns which neighbors contain more relevant information and should therefore
contribute more to the node’s updated representation. This idea was introduced in
Graph Attention Networks [3], where the network learns attention coefficients that
determine how much weight each neighbor receives.

To understand how this mechanism works, we start with the input features of each
node, denoted as h;. These features are first transformed through a learnable linear
layer using a weight matrix W, which produces new feature vectors Wh;. This step is
necessary because it allows the model to map the original features into a space where
meaningful interactions between nodes can be learned. During training, the matrix W
is adjusted so that the transformed features become more informative.

After the linear transformation, the model computes attention coefficients between
every node i and each of its neighbors j. This means that, at the end of this process,
each node knows how important its neighbors are. This information is then used during
the update of the node’s features. The score is computed using a small feed-forward

neural network implemented as

e;; = LeakyReLU (aT [Wh; || Whj]) ’

where a is a learnable weight vector, and || represents the concatenation of the
feature vectors. The LeakyReLU activation is used to introduce non-linearity into the
attention computation, and the vector a is tuned during training allowing the network
to discover only meaningful patterns in how the features are related to one another.
The graphical representation of this process can be seen on Figure 3.1. [3]

Because the raw attention scores cannot be used as they are, they are normalized
with the softmax function. This makes the neighbors’ contributions add up to one and
turn them into proper importance weights. The normalized coefficients are computed

as

exp(ei‘)
Q5 = SOftmaxj(eij) = Z 0) erp(ek> ‘
keN (i !

These coefficients describe how much attention node 7 gives to each neighbor j. As
training progresses, the model modifies the parameters so that neighbors that help the
model make correct predictions receive larger «; values, while less useful neighbors
receive smaller ones. In this way, the node learns to “focus” on the most informative

parts of the graph.
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Figure 3.1: This picture shows how a Graph Attention Network computes the atten-
tion coefficient «;; between two connected nodes ¢ and j. First, the transformed feature

vectors Wﬁ, and Wﬁj are concatenated and passed into a small neural network repre-
sented by the weight vector @. This network produces a single score, which then goes
through a LeakyReLU activation. After this, the softmax function is applied over all
neighbors of node ¢, producing the final attention coefficient o;.

Using the attention coefficients, the node features are finally updated by combining

the transformed features of the neighbors:

h?ew =0 Z Q5 Whj N

JEN(i)
where o is a non-linear activation function.

To improve stability and expressiveness, GATs use a technique called multi-head
attention. Instead of computing the attention mechanism once, the model computes
it independently K times. Each head learns its own set of attention coefficients and
its own weight matrix Wj. The outputs of these heads are then concatenated in the

hidden layers:

K
new __ k
by = [[,_,0 Z a;;Wih;

JEN(i)

This allows the model to capture different types of relationships between nodes
simultaneously. Each head can focus on different structural or semantic aspects of
the neighborhood. In the final layer, the outputs of the attention heads are averaged

instead of concatenated, which helps produce stable predictions:
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hi'Y = o Z > afWih;

k 1 jeN(7)

The multi-head approach, therefore, increases the robustness of the model and
provides larger feature representations. Because of all these mechanisms and properties,
the flexibility of the attention mechanism combined with the multi-head approach
usually provides us with a model that achieves higher accuracy than simpler aggregation

methods in graph neural networks. [3]
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Chapter 4

Experimental evaluation
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