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Abstrakt

V tejto práci sme sa ponorili do fenoménu imerzie a študovali rôzne spôsoby, ako sa
dá zlepšiť používateľská skúsenosť. Na dosiahnutie tohto cieľa sme vylepšili existujúci
projekt v prostredí Unity, ktorý obsahuje polohumanoidného robota NICO. Do tohto
projektu sme pridali funkcie, ktorých cieľom je zvýšiť pocit imerzie vo virtuálnej realite.
Tieto vylepšenia zahŕňali tréning neurónových sietí prostredníctvom posilňovacieho
učenia na ovládanie pohybov robota NICO, zlepšenie jeho vizuálnej reprezentácie cez
modelovania jednotlivých časti robota, ako aj pridanie pohybov a zvukových effektov.
Nakoniec sme vytvorili skript na zefektívnenie používania konkrétnych vylepšení, aby
bolo možné testovať, ktoré vylepšenia najefektívnejšie zvýšia pocit imerzie jednotlivca.

Keywords: virtuálna realita, imerzia, NICO, učenie posilňovaním, Unity
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Abstract

We delved into the phenomenon of immersion and studied various ways to enhance
the user experience. To achieve this goal, we enhanced an existing Unity project,
which contains the semi-humanoid robot NICO by adding functionalities with the goal
of increasing the sense of immersion in virtual reality. These enhancements included
training neural networks through reinforcement learning to control NICO’s movements,
improving its visual representation as well as added additional movement and sound
effects. Lastly, we created a script to streamline the use of specific improvements,
to allow the testing of which improvements most effectively increase the individual’s
immersion.

Keywords: virtual reality, immersion, NICO, reinforcement learning, Unity
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Chapter 1

Introduction

Virtual reality (VR) has long existed as an ambitious concept confined to the realms of
science fiction literature, evoking imaginations of a distant future. However, in recent
years, this concept has been transformed into an available technology which starts to
blur the line between reality and computer generated content.

Its wide availability is thanks to the introduction of inexpensive consumer-grade
reality enhancing headsets, making it possible for a larger consumer-base to have access
to this technology. This in turn made it into an attractive platform for developers to
create content, such as games, for these devices.

Even though the biggest focus of VR is in the entertainment and the video game
industry, the use of VR has been integrated into other sectors of life. These industries
include medicine, research, education and manufacturing. One way companies use VR,
is that they use them as a training tool.

In businesses, where training is necessary, but may come with risks of financial loss
or accidents, VR is an alternative, which is a cost-effective and safe way to educate
new talents. It also engages personnel more than a traditional training program due
to the gamification of the whole process. Addition of game-like elements to non-game
environments such as game-mechanics, aesthetics and story, enhances productivity and
raises interest in the presented topic (Cavusoglu et al., 2019).

VR also holds potential use in the realm of healthcare. It could be used for patients
battling with fears of spiders, heights and public speaking along with other phobias.
Additionally, VR could aid recovering patients in the rehabilitation process (Halbig
et al., 2022).

Since VR is supposed to imitate the real world, it is important to recreate reality
as faithfully as possible. To accomplish this, one must fool the users senses while
they interact with the virtual world. Most systems try to achieve such feat with head
mounted goggles, headphones and a pair of controllers. Though these may replicate a
part of our world, creating a near perfect doppelgänger will require more sophisticated

1



2 CHAPTER 1. INTRODUCTION

equipment aimed at every human sense.
For this reason, it is important to study what improvements are more impactful

at creating a genuine representation of the world. These improvements are aimed at
either refining the quality of the senses involved in modern VR experiences or incorpo-
rating additional other senses, thereby increasing the quantity of sensory information
experienced.



Chapter 2

Background

To be able to fully study immersion and the improvements that enhance it, we first need
to understand what immersion is and which elements are responsible for increasing the
sense of immersion. Therefore, in this chapter, we will first be exploring immersion
and all of its forms, after which we will start researching the software and algorithms
that can be used to enhance immersion.

2.1 The Concept of Immersion

For VR to be useful in the future it needs to become advanced enough for humans to
not be able to differentiate between traditional reality and the man-made world VR
is trying to present. To achieve such a feat, it is essential for us to comprehend the
nature of what we seek to replicate within the virtual setting. Common physical reality
refers to the tangible interactions confined within the spatial, temporal, and material
constraints of the physical world. On the other hand, virtual reality involves the
creation of artificial simulations, typically recreating real-life environments, to enhance
the perception of an imagined reality or situation (Tham et al., 2018). To blur the
barrier of reality we need to increase the users presence or immersion, ideally both.
While both these expressions have been somewhat convoluted and at times, even used
interchangeably, they are both distinct terms (Wilkinson et al., 2021).

2.1.1 Presence versus Immersion

As mentioned, these terms are often used synonymously even though in the context
of VR they hold distinct meanings. Immersion was defined by Kim et al. (2017) as
follows:

“Immersion, leveraging the user’s five senses, offers a remarkable ability to
transport individuals into a virtual realm where they can perceive their

3



4 CHAPTER 2. BACKGROUND

surroundings, interact with others, and engage in activities as if they were
genuine experiences. It encompasses the depth of engagement a user feels,
evoking a range of emotions within the virtual space and manifesting them
in relation to the simulated environment. In contrast, the concept of pres-
ence revolves around the phenomenon where users genuinely believe and
feel as though they are physically present in the computer-generated world
presented by the display technology. Consequently, immersion serves as
the term employed to describe the technology that enables the emergence
of presence, providing users with an immersive and captivating virtual ex-
perience.”

Though the increase of immersion is desirable, miss-handling or incorrect imple-
mentation may lead to unfortunate side effects such as nausea, headaches and vertigo,
also called VR sickness, directly caused by the discrepancy between visual information
and the vestibular information received from the VR simulating movement (Tanaka
and Takagi, 2004). As we now have an understanding of what immersion is, the next
section will contain how it can be improved.

2.2 Improving Immersion

In a case study participants reported that a VR environment which provided them a
rich sensory stimulation, such as visual, auditory and tactile feedback increased their
sense of presence (Tham et al., 2018). Their findings also suggest that higher VR
fidelity contributes to a greater sense of embodiment among participants. In other
words, when the visual and auditory cues in the virtual environment are of higher
quality and realism, individuals tend to feel more fully present and engaged within
that virtual world. This enhanced fidelity strengthens the connection between the
user’s physical self and their virtual representation, resulting in a more immersive and
convincing VR experience. To them, reality in the context of VR is defined by how
effectively the VR hardware convinces their senses in any given scenario (Tham et al.,
2018).

As immersion is inherently tied to technology that directly enhances presence, as
a result we can enhance immersion by improving the realism of the VR environment
through advancements in graphics and sound quality. However, immersion can also
be further enhanced by augmenting the quantity and quality of sensory feedback that
users receive during their VR experience. By providing users with more comprehensive
and realistic sensory inputs, such as tactile feedback, haptic sensations, and spatial
audio cues, we can deepen the level of immersion (Hecht et al., 2008).

Most modern commercially available VR systems come with a Head-Mounted Dis-
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play (HDM), controllers, some variation of tracking sensors and they also may provide
integrated or separate audio systems. This means that most devices mainly focus on
the visual and audio aspects of VR, neglecting other senses such as touch. That’s why
we will first focus on audio and visual immersion.

2.3 Visual Immersion

One of the most sought after aspects of VR is its ability to be able to see, what was
once on a screen, before us, in 3D, therefore visual immersion plays a critical role in VR
systems. There are multiple aspects with which we can improve visual immersion, since
we need to trick ourselves to believe we really are a part of the computer generated
world. The most important aspects are: realistic rendering, improved graphics and an
appropriate field of view (FoV) (Bowman and McMahan, 2007).

2.3.1 Rendering

To ensure a realistic depiction of the environment, it is important that the user con-
tinually sees their environment without interruption. For a seamless experience a high
enough frame rate is needed to ensure adequate immersion. For this to be viable, a
rendering engine with sufficient power is essential. This ensures that the image changes
swiftly in response to the users head movement, maintaining the illusion of real-time
interaction (Regan and Pose, 1994).

VR systems may use stereoscopic rendering, to accurately simulate how the human
eyes see. The simple reason behind this being, that by stereoscopically rendering each
eye, we receive separately rendered images, thus creating the illusion of depth and 3D
effect (Forlim et al., 2019).

2.3.2 Graphics

In contrast to older graphics cards that render 3D images using polygonal structures
with shading, modern graphics cards like the NVIDIA RTX line, employ advanced
techniques to simulate the behavior of light. These cards trace the path that light would
naturally take from the human eye through the virtual environment. This capability
enables them to generate realistic shadows and refractions, enhancing the visual fidelity
of the rendered scenes (Wilkinson et al., 2021).

Another way to increase immersion through graphics is to ensure the user has
a smooth experience by optimizing graphics and effectively use hardware resources.
These strategies include optimizing the frame rate and resolution to fit the hardware
and ensure a smooth experience. Another optimization includes implementing a level
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of information where objects further away are rendered with less detail, than closer
objects, lowers resource use and rendering demands. Additional optimization tech-
niques include using efficient shaders, and removing objects that are not seen by the
user, which reduces the overall complexity of the surroundings without impacting the
experience of the user (Tytarenko, 2023).

2.3.3 Field of View

While FoV might not seem like an important aspect of visual immersion, its incorrect
implementation may lead to the users experiencing VR sickness. This of course leads
to lessened immersion and an overall worse experience with VR. One of the ways found
to mitigate VR sickness without influencing the persons experiences inside of VR is
dynamically changing the FoV of the user. When the user is in a stationary position the
users have regular, unrestricted FoV. The change occurs when the users are in motion
because their FoV contracts drastically. This blocks their peripheral visual motion
preventing a disconnect between what they see, and what they are doing (Teixeira and
Palmisano, 2021).

2.4 Auditory Immersion

Sound is paramount in crafting an environment that exudes vibrancy and authenticity,
ultimately contributing to a heightened sense of realism and immersion. There are
multiple factors that contribute to the creation of an immersive environment such as
spatial audio, binaural rendering and realistic sound effects.

2.4.1 Spatial Audio and Binaural Rendering

As the name suggests, spatial audio gives the user the remarkable sensation that sound
emanates from distinct and specific locations within the 3D space, which helps create a
dynamic and captivating environment that envelops the end user in a truly immersive
experience (Schissler et al., 2016).

An important part of spatial audio is the shaping of the head-related transfer func-
tions (HRTF), which describes how a listener and its geometry affects the sound that
he is exposed to. It can be described as a filter which maps incoming sounds to the head
of the user, and then delivers the necessary sounds to the left or right ear (Schissler
et al., 2016). The audio also includes cues for the human ears to experience certain
sounds from different directions, distance, which is created through binaural rendering
(Zaunschirm et al., 2020).
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2.4.2 Realistic Sound

The utilization of 3D sound technology, based on HRTF, faces a limitation in accurately
reproducing realistic sound. That is due to its inability to reflect the physical impact
on object materials and the surrounding environment within the virtual space. This
limitation can be overcome through sound rendering. This is a technique which involves
simulating the physical attributes of sound that occur between the sound source and
the listener within the virtual space. Sound rendering consists of sound synthesis,
sound propagation and sound generation (Hong et al., 2017):

• Sound synthesis is the generation of the sound when an event occurs for instance
through user interaction.

• Sound propagation is the act of processing the characteristics of the environment
into the sound. These may include absorption, reflection or transmission among
others.

• Sound generation then takes all the characteristics processed by the sound prop-
agation step and incorporating them into the original sound.

Figure 2.1: The pipeline used for rendering realistic sound (Hong et al., 2017).

2.5 Haptic Feedback

While visual and auditory immersion undeniably form significant pillars of the VR
experience, achieving true immersion necessitates the development of precise and lifelike
methods for interacting with objects within the computer-generated environment (Kim
et al., 2017).

Haptic feedback can be categorized into passive haptic feedback and active haptic
feedback. Passive haptic feedback is generally a physical object that is simultaneously
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generated in the VR, which simulates the physical properties of the object, such as it’s
weight, texture and shape (Viciana-Abad et al., 2010). Active haptic feedback on the
other hand, is haptic feedback that can be actively programmed and felt through a
haptic display such as vibrations and heat (Nilsson et al., 2018).

The majority, if not all, of commercially available VR systems currently offer limited
or no haptic feedback. This limitation arises from the inherent challenge of accommo-
dating the diverse physical attributes of individual users while maintaining a balance
between wearability, lightweight design, and the inclusion of adequate hardware to
deliver a convincingly realistic sense of touch (Perret and Vander Poorten, 2018).

2.6 Walking in Virtual Reality

Among the routine tasks we engage in on a daily basis, walking stands out as one of
the most formidable challenges to authentically simulate in virtual reality, aiming to
capture the essence of natural movement with a genuine sense of reality.

The primary hurdle in achieving a natural walking experience lies in the challenge
of crafting expansive and immersive virtual worlds within the confines of our homes.
The task at hand involves ingeniously navigating the limitations of physical space while
delivering captivating environments that invite exploration and evoke a genuine sense
of presence (Nilsson et al., 2018). Another concern may be, how to accurately simulate
all the outside stimuli our bodies receive with each step, such as sight, sound and tactile
feedback (Nilsson et al., 2018).

Virtual travel can be classified based on various factors, providing us with differ-
ent categories to explore. Firstly, we can differentiate between mobile and stationary
travel techniques, depending on whether the user physically moves or remains in a fixed
position throughout the experience. In the realm of mundane travel techniques, users
are bound by the limitations of physics, biology, and current technological constraints,
while in the realm of magic travel techniques, such as using portals, teleporting, these
constraints are transcended. Additionally, we can discern between vehicular and body-
centric travel techniques. Body-centric travel techniques simulate movement by in-
corporating human motions such as walking or running, whereas vehicular techniques
allow users to control a simulated vehicle without the need for physical movement
(Nilsson et al., 2018).

Although simulating natural walking in VR poses challenges, there exists a multi-
tude of solutions that can be classified into three distinct walking techniques.
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2.6.1 Repositioning Systems

Repositioning systems are responsible for nullifying the movement done by the user,
thus the user still moves virtually without having moved in reality. These systems
can be classified into two distinct categorize active and passive repositioning systems
(Nilsson et al., 2018).

Active repositioning systems are complex mechanisms that counteract any move-
ment done by the users. Such systems are for instance linear treadmills. Though these
offer the user to move forward turning and walking in any other direction must be
done in a indirect matter. One way to mitigate this problem is to use omnidirectional
treadmills which allow the user to walk in any desired direction. A limitation of these
devices is that sudden movements, like side stepping, may cause the user to lose balance
(Nilsson et al., 2018).

Passive repositioning systems are on the other hand mechanically simpler and often
use friction-free floors, which prevent the steps of the user to take effect and move them.
These systems are available commercially to the public, for instance KatVR’s Kat Walk
is one of such devices (Nilsson et al., 2018).

Figure 2.2: Examples of repositioning systems used for walking in VR: a) a traditional
treadmill, b) motorized tiles, c) a enlarged hamster ball, d) friction less platform (Nils-
son et al., 2018)

2.6.2 Proxy Gestures

Proxy gestures are actions which try to mimic the act of walking without actually
moving the user from the spot they are in. These gestures can be categorized based
on which part of the body the gesture is made with. Based on this we categorize them
into upper and lower body gestures (Nilsson et al., 2018).

Due to the fact that we are trying to simulate walking, proxy gestures more often
rely on lower body movement. The most common gesture is the walking-in-place
gesture, which is comparable to marching in place. These gesture are easier and less
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expensive to track through motion tracking, or a physical device. They also provide
feedback comparable to the act of walking, thus increasing the level of presence and
helping users with spatial orientation (Nilsson et al., 2018).

Upper body gestures may seem to be less desirable to use, but these movements
do not seem to have any impact on decreasing the users presence. Though they may
hinder the interaction of the user with with their environment while walking. But, for
some applications on systems that only track the head and arm movement they may
seem as a more likely alternative (Nilsson et al., 2018).

2.6.3 Redirected Walking

This walking technique does include the user physically walking, while the environ-
ment around them warps in a way to direct them, without the user noticing. This
manipulation may be done through altering the path of the user through objects or
altering the users virtual point of view. This may include changes of the curvature,
rotation and movement gain of the virtual camera. This is done, so that the user is
under the illusion of traveling a large distance in a limited space. For this technique to
be effective these manipulation need to be small enough for the user not to notice, since
misuse may result in the disruption of the users experience, and may feel unnatural
(Nilsson et al., 2018).

Even though most of the manipulation has been achieved through visual manipu-
lation, redirection may be achieved through audio, or other senses, when the user has
lowered visual stimuli (Nilsson et al., 2018).

2.7 Relevant Software

2.7.1 Unity

Unity is a real-time development platform, which can be used to create 2D or 3D
projects, ranging from simple games to immersive VR experiences. Its popularity is
thanks to its widespread availability on all major platforms, including Linux, Apple
and Windows. Renowned for its ease of use, flexibility and its strong feature set,
Unity caters not only to beginner, but also to experienced developers creating high-
performance products (Hussain et al., 2020).

Unity, equipped with its rendering and physics engine and a graphical user inter-
face, the Unity Editor, allows for rapid prototyping in development. Within each Unity
project, various components, termed Assets, form the foundation. The main building
block is an Asset called a Scene, which is the primary element of the project. It con-
tains the hierarchy of GameObjects that constitute the scene’s contents. All projects
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come with preexisting objects, such as Cameras, Meshes and others, but additional
Gameobjects and behaviour can be easily integrated through scripts written in C#
(Juliani et al., 2018).

2.7.2 Blender

Blender is a versatile and accessible 3D creation software, freely available and open-
source. It provides support the whole creation process, tasks such as modeling model-
ing, rigging, animation, simulation, rendering, composition and motion tracking. One
of its major features is its flexibility, allowing any user to use its API to create custom
tools and functionalities for their specific need. These customized additions are often
added to the software at a later release. Blender is also cross-platform compatible,
making sure users on all major platforms may use its features (Blender-Foundation,
nd).

2.7.3 Audacity

Audacity is a free, user-friendly, and open-source software designed for recording, edit-
ing, and modifying audio. Its open-source nature it allows user to study and modify
its source code as well as install plugins created by other users making it a versatile
and flexible software catered to the users individual needs. Audacity supports a wide
range of audio formats, such as VAW, AIFF, MP2 and MP3. It is compatible with
all major platforms: Windows, macOS, and Linux, providing accessibility for a wide
range of users across varying operating systems (Washnik et al., 2023).

2.8 Reinforcement Learning

Reinforcement learning (RL) is a type of machine learning, where a task is gradually
learned through a process of trial and error, while also trying to uncover such a sequence
of actions, which yield the highest amount of cumulative reward. Unlike supervised
learning, which relies on external labeled data, and unsupervised learning, focused on
uncovering latent data structures, RL places its agent within an unknown environment,
permitting it to explore various action choices autonomously (Sutton and Barto, 2018).

The agent initially perceives the state of his surroundings and can subsequently
perform a number of actions which change it. This iterative process continues until
the agents successfully preforms its given task, or reaches a state, where no additional
actions can be taken. Throughout this process, each action is given a reward value,
which is derived from the newly created state. It informs the agent, how impactful
the given action was, to the completion of his end goal. This reward is calculated by
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the reward function, who through these calculations defines what the goal is for the
agent, and also decides what states and or actions are objectively good or bad. Its
objectiveness is protected, because the agent has no way of influencing or altering the
outcome of the function (Sutton and Barto, 2018).

While the reward function shows the immediate benefit of an action the value func-
tion determines the positives of a decision in the long run. It promotes choosing an
action with lower immediate rewards if it promises greater profitability in the future,
over an action with higher immediate rewards but lower long-term yield. While the
reward function lays the groundwork, the value function has a higher priority in the de-
cision making, as it prioritizes maximizing overall value rather than immediate rewards
(Sutton and Barto, 2018).

Subsequent actions are always chosen based on the policy the agent has. This
function links actions to the possible result states that the given action will lead to. The
policy chooses the next best action either through deterministic or stochastic means,
always trying to find the sequence of actions that promises the highest cumulative
reward over time. Basically, it defines how an agent behaves in any situation. A lot
of algorithms keep refining their policy during the learning process. This practice is
predominantly used to encourage exploration. That is because the agent is incentivised
to favor routes with the highest established rewards amongst the ones he knows, which
may block him from discovering superior alternatives. That is why most algorithms
must always incorporate some trade-off between using what the agent knows, and
options not yet explored. This prevents the agent from becoming trapped in a local
maxima (Sutton and Barto, 2018).

2.9 Machine Learning Agents Toolkit

The Unity Machine Learning Agents Toolkit (Ml-Agents Toolkit) stands as an open-
source project that enables developers and researchers to construct learning environ-
ments tailored for training intelligent agents. It also acts as a central platform where
new algorithms and other advances in the AI field can be evaluated and made available
for the wider audience of developers. These advancements can be used for research
purposes or to be integrated into new game titles, providing developers with access to
the latest innovations to elevate their projects (Juliani et al., 2018).

The Ml-Agents Toolkit is made up of four primary high level components, the
Learning Environment, the Python Low-Level API, the External Communicator, and
the Python Trainers.

The Learning Environment describes the Unity scene as well as all the objects
inside the scene. This is where the agent observes its surroundings, performs actions,
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and is taught through reward signals. It’s crucial to design the learning environment
in a manner that is beneficial to learning a given task. If a task is very limited a
more general learning environment may be enough. But for more complex tasks a
more customized environment is needed. For the creation of custom environments, the
Toolkit offers a specialized ML-Agents Unity SDK capable of converting any Unity
scene into a learning environment (Juliani et al., 2018).

The Python Low-Level API serves as a Python interface, providing low-level func-
tionality for modifying and interacting with the Learning Environment. Unlike the
environment itself, this interface operates external, meaning it can communicate with
the environment only through the External Communicator. Its main role is to commu-
nicate and manage the Academy class, although it can also be used to control Unity
as a simulation engine for custom algorithms (Juliani et al., 2018).

The External Communicator serves as the bridge between the Learning Environ-
ment and the Python Low-Level API, making essential communication between these
two vital parts possible. It is contained inside of the Learning Environment making it
a part of it (Juliani et al., 2018).

The Python Trainers house all the algorithms used for the training of agents. As
the name suggest all algorithms are implemented in Python, and this separate package
solely communicates with the Low-Level API (Juliani et al., 2018).

Figure 2.3: Abstract representation of the key components of the ML-Agents Toolkit
(Juliani et al., 2018)

2.9.1 ML-Agents SDK

As previously stated, any Unity scene may be converted into a learning environment.
For it to happen, we need to add three scripts to an existing project:
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• Agent script, a Unity script which defines what GameObject is going to be the
agent that is going to be trained (Metz, 2020).

• Behaviour Parameters script, which acts as the control center for the agent,
which communicates the observations and the rewards between the Agent and
the Training API, and also decides which actions to take (Metz, 2020).

• Decision Requester, which is responsible for the communication between the
Agent and the Academy (Metz, 2020).

In an environment created through the ML-Agent SDK, the fundamental compo-
nents are the Sensors, Agents and the Academy. The Sensors provide observations of
the environment to the Agents. These Sensors may relay different kinds of information,
based on the type of sensor, for instance they relay rendered images or length vectors.
Each Agent is a designated GameObject, with each containing a policy labeled with a
behaviour name. Multiple Agents may share the same policy with identical behaviour
name values. All of the Agents will act upon the same policy and all of them will
contribute data to the refining of the policy. Any number of policies may be added to
a scene, making it easy to create multi-agent environments, where each agent may act
upon a distinct policy (Juliani et al., 2018).

The reward function of an agent may be modified dynamically during the simulation
at any point by the Unity scripting system. Similarly, the state of the agent, or the
entire environment can transition into a state of “done”. This change occurs either
when the agents have reached their objective, defined by a call from a Unity script, or
when they have taken the predefined maximum number of steps. This state signals the
end of an episode of the simulation (Juliani et al., 2018).

The Academy refers to a singleton class that oversees the entire simulation, main-
taining control over its progression. It tracks the amount of steps taken within the
simulation, and is responsible for the management of the agent. The Academy has the
capability to shape the learning environment of the agent by introducing new objects
or altering physical properties when the agent reaches a level of proficiency. This is
done for the goal of further development of the Agent. Also it can be used to reuse the
same environment for both training and testing purposes with minimal modifications
(Juliani et al., 2018).

The Agents can undergo training using state-of-the-art algorithms drawn from a
diverse array of machine learning methods, including reinforcement learning, imitation
learning, neuroevolution and more. However, for the scope of this thesis, we will only
be focusing on the reinforcement learning methods. As such we will discuss the two
algorithms this toolkit provides, which are Proximal Policy Optimization and Soft
Actor Critic (Juliani et al., 2018).
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2.9.2 Proximal Policy Optimization

The Proximal Policy Optimization (PPO) is a RL algorithm, which focuses on stabi-
lizing the training of the policy. It achieves this by limiting the magnitude the policy
may change at the end of each epoch, preventing excessively large updates that could
disrupt the training stability (Simonini, 2022; Schulman et al., 2017).

A more stable training of the policy is preferable, because smaller policy updates
tend to converge more reliably towards the optimal solution. Another reason to employ
this algorithm is, mitigating the risk of large policy change potentially making the
policy ineffective, prolonging training time, or failing to recover altogether (Simonini,
2022; Schulman et al., 2017).

To ensure the policy hasn’t undergone excessive changes, we need to calculate the
ratio of how much the current policy has changed relative to the alteration made to
the former one. This is accomplished by determining the ratio between the current and
former policy. We adjust this ratio so that it falls within the range of [1−ϵ, 1+ϵ], which
prevents excessive alteration of the current policy when compared to the previous one
(Simonini, 2022; Schulman et al., 2017).

Figure 2.4: Two functions depicting one time step of the function LCLIP , when the
ratio function r = 1. The left one shows when the advantage is positive, while the
right shows when the advantage is negative (Schulman et al., 2017).

The PPO algorithm is carried out through the function:

LCLIP (θ) = Êt

[
min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)

]
(2.1)

where rt(θ) is the ratio function:

rθ =
πθ(at|st)
πθold(at|st)

(2.2)

In Eq. 2.2, πθ(at|st) denotes the probability of taking action at in the st state. If
the value of rt(θ) > 1, then we know that this action in the current state is more likely
to happen in the new policy than the old one. And if 0 < rt(θ) < 1, then it is more
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likely for this action/state pair to happen in the older policy rather than the new one.
This is the easiest way to asses the difference between the newer and the older policy.

The main term in Eq. 2.1 is the minimum of two probability ratios, the clipped
and unclipped one. That is how we make sure the policy only changes inside the range
of [1− ϵ, 1 + ϵ], and not more drastically (Simonini, 2022; Schulman et al., 2017).

2.9.3 Soft Actor Critic

An Actor Critic is an RL architecture characterized by the fact that it simultaneously
trains both a policy (actor) and an estimated value function (critic) at the same time.
In this architecture, the actor chooses an action to take based on the policy. This
action is then given feedback by the critic, regarding its long-term quality. Based on
this evaluation the policy is updated by the actor (Ezzeddine et al., 2023).

One of the advantages of AC algorithms is their ability to leverage the strengths of
both policy-based and value-based RL methods. This integration allows the algorithm
to converge on an optimal solution more rapidly and learn more efficiently. Addi-
tionally, these algorithms have a higher proficiency in navigating complex and high
dimensional action spaces, rendering them well-suited for complex input representa-
tion (Ezzeddine et al., 2023).

Despite their numerous advantages, these algorithms also present limitations. One
such drawback is the need for a substantial amount of samples for the value function to
create a more accurate estimate. Another negative is the need to regulate the entropy
of the policies; which if not properly managed may lead the model to converge to
a deterministic policy, which results in less exploration and potentially yielding sub-
optimal result (Ezzeddine et al., 2023).

To resolve such issues a solution was introduced in the form of the Soft Actor Critic
(SAC) architecture. SAC not only tries to maximize the expected reward value, but
also to maximize the entropy of the action taken. This is to ensure that there always
remains a certain level of uncertainty regarding which action will be chosen. This
ensures that there remains a balance between exploration and exploitation, making
sure the policy doesn’t remain sub-optimal (Ezzeddine et al., 2023).

The SAC algorithm is made of three different networks: a state value function, a
soft Q-function and a policy function. The estimation provided by the state value and
the soft Q-function contributes to the convergence of the algorithm (Ezzeddine et al.,
2023).



Chapter 3

Implementation

This thesis is built upon an existing Unity 2.7.1 project1 containing a simulated model
of the semi-humanoid robot NICO in Unity. The robot is constructed using multiple
GameObjects. Each distinct GameObject has its own Mesh and ArticulationBody,
and adds an additional Degree of Freedom (DoF) to the movement. The Unity project
contains a script, that allows an RL agent to be trained to manipulate the right arm
of NICO. Additionally, it contains three scenes: two where the RL agent operates with
varying DoF, and one where the body parts may be manipulated freely using sliders.

3.1 Motivation and Objectives

As we previously mentioned in chapter 2.2, to improve immersion we have to increase
the fidelity of available sensory feedback, or we increase the amount of senses that are
getting feedback. We chose to build upon existing simulation of the robot NICO, aiming
to enhance and incorporate features to it that are present on the physical version of the
same robot. That is because we can not only test different versions of the simulated
variants, but we have a physical form of the robot to compare it to.

That is why, the main aim of this thesis was to create a script, that will help in
future studies of immersion in VR. The main focus was to distinguish which changes
have a higher impact on enhancing an individual’s immersive experience and which
alterations may have the opposite effect and diminish it. If this is studied further, we
may be able to grant insight into what makes a digital world immersive and engaging.

To develop a script where immersion may be studied we have to enhance the model
of NICO. For these enhancements to be noticeable, we have to make NICO perform an
activity where we may detect these additional features. The activity to be performed by
NICO was chosen to be it pointing at a specific object that appears on a table situated
before him. The enhancements themselves are categorized based on which senses they

1This project can be found at: https://github.com/iveta331/NICO
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try to enhance. In this thesis, we have implemented improvements targeting visual and
auditory senses of the user.

3.2 Visual Improvement

Since visual immersion plays an important role in the overall VR experience, our initial
focus was set on elevating the visual aspects of the existing project. The original
project did include a basic model of the robot NICO as well as the ability to control
certain parts of the body. Specifically, the head, neck and right arm could be manually
manipulated in the scene without any RL agents. In the scenes where RL agents were
implemented, only the right arm was moved through the agent.

We decided to first enhance the model of NICO, and after that to implement the
code, which made its movements seem more real.

Figure 3.1: The model of robot NICO without any visual improvements inside of the
Unity editor.

3.2.1 Improvement of the Robotic Model

As mentioned, the project came with a basic model of NICO, as seen in fig. 3.1,
consisting primarily of parts that are either needed for the robot’s structural integrity
or those which may be manipulated with. However, the real NICO, as seen in fig. 3.2a,
features additional aesthetic components, such as covers, which improve its appearance
rather than functionality. To increase immersion, we decided to include at least the
most prominent of such components. This cover masks the robot’s empty torso, since
it covers it from the front, and is the most noticeable visual difference between the real
and virtual NICO.
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(a) (b)

Figure 3.2: a) the physical NICO, which served as a guide for the modeling. b) the
front cover created for the enhancement of the visual immersion made in Blender.

We created the front cover using the 3D modeling software Blender (see in sec.
2.7.2). To guide the modeling process, we began by capturing pictures of the robot’s
front and side profiles. The initial modeling was based on the front profile, followed
by modifying and refining the model using the side profile. During this process, we
ensured that the mesh was made up of only triangles and quadrilateral, to comply with
the best practices and making sure no polygons where present in the mesh, as these
are considered bad practice in 3D modeling. After the modeling was finished it was
exported as an .fbx file format and added to the Unity editor, where it was positioned
on the preexisting model as seen in fig. 3.3.

Figure 3.3: The model of robot NICO with the added front cover inside the Unity
editor.
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3.2.2 Improvement of Movement

While the outer look of the objects in VR play a crucial role in creating an immersive
environment, their unnatural behaviour and movement may be able to break the illusion
and negate the aesthetic of the whole experience. For this reason we decided to improve
the movement of the robot NICO.

All the improvements to the movement were made to ensure that the action of
pointing appears more natural and believable. The first change made, was the po-
sitioning of the left arm and and the fingers of the right arm, which doesn’t change
through the duration of the performed action.

The left arm has been positioned to be parallel instead of perpendicular to the
body. The fingers on the right arm have been arranged as to make a pointing gesture,
where the index finger extended and the other fingers curled inwards.

There was an issue we encountered was with the fingers closing. The speed at which
the motion happened caused the fingers to started moving in a matter resembling
uncontrollable flailing, which did not subside until we restarted the program. Each
finger is made up of three joints, while the thumb consists of four, and the act of
closing the fingers may have caused two joints to overlap. This overlap should not be
happening, due to the collision boxes of the joints. The flailing may be the result of
the unsuccessful attempt at correcting this.

After some experimentation with the digits, we discovered that the problem didn’t
occur within a threshold. This solution was favourable for the thumb, but for the other
digits another solution had to be found, as it caused the hand to stop resembling the
intended gesture. Therefore, we removed the collision boxes of the middle joint of the
two remaining fingers. This adjustment allowed for them to fully close without the
unintended flailing, making the intended gesture.

The next improvement we made, was making the head of NICO move to appear as
if it is looking at the object it is pointing to. The movements of the head are controlled
by two joints: the “neck” joint controlling the heads horizontal movement, and the
“head” joint, which manages the heads vertical movement.

To calculate the necessary movements of the two joints for NICO’s head to “look”
at the target, we have to first designate what the target is, and what we can designate
as the head. By defining both the target and head, we can extract their X, Y and Z
coordinates. Using these lets us calculate, through the simple trigonometric function
of hyperbolic tangent, what the required angles are for the “neck” and “head” joints.

After accurately calculating the required angle, we still must determine where the
target is relative to the head both horizontally and vertically. This step is crucial be-
cause, for instance, if we calculate that the head needs to move 30 degrees horizontally,
we still need to ascertain whether to move it 30 degrees left or right.
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Figure 3.4: The model of robot NICO with its left arm and fingers on the right arm
adjusted.

The final improvement done to the movement of the robot NICO involved training
an agent, through the ML-Agents Toolkit (see sec. 2.9), to control the right arm to
point at the target. We opted to train an agent for this task because, creating a script
for the arms movement, though possible, would prove to be a challenge, that may result
in the final action being choppy and unrefined. This could be attributed to the arms
complicated composition, being made up of six joint, if you exclude the joints that
make up the fingers.

As discussed in 2.9.1, any existing Unity project may be turned into one with a
teachable agent or agents, by adding three scripts. The existing project did contain all
three necessary scripts, but for the applications that we needed, some required to be
modified or rewritten from scratch.

The Decision Requester script comes in-built into the ML-Agent Toolkit. We only
had to decide the frequency of communication between the agent and the Academy,
which is a singleton class (see sec. 2.9.1), which we set to four.

The Behaviour Parameters is another script that is prepared for use in any project.
Here we modified the agent control center with the behaviour name NICO. Since we
wanted our agent to only move six joints that make up NICO’s right arm, we changed
the size of the Vector Action array to match the amount of joints, so for each joint an
action is chosen. We also changed the Vector Observation, to match the amount of
observations made by the agent. These include the current position of all joints moved
by the agent, and the distance of the end-effector from the target. The last changes
made were only after we had trained the agent, and that was, we set the model of the
agent to the trained neural network and changed the Behaviour Type to Interference,
which meant that all decisions were made by the neural network we trained, and chose
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to use.
The agent script had to be rewritten from scratch to fit our specific requirements of

our project. The existing project operated on the principle, that every part of NICO,
which had the physics component ArticulationBody, which was responsible for making
the component movable, was automatically included in the agent’s control and moved
according to its neural network. One exception to this, was the possibility to toggle
the exclusion of the fingers from the agent’s control. But even with this exception,
this script was not usable because of the previous improvements we made. We needed
certain joints of the robot to have an ArticulationBody component while also being
controlled by our code. This led to a clash between our code and the agent’s attempt
to try move the same joints.

To address this problem, we decided to create a function called GetParts, which
separates the components under the agent’s control from the ones we don’t want the
agent to influence. For this we utilized Unity’s Tag system, tagging all the parts we
already use in other functions, while leaving all the joints under the agent’s control
untagged. We then created a list of all the tags corresponding to the joints we didn’t
want the agent to control and based on this filtered out all of them in the function.
This solution is practical because it allows for easy adjustments: if we wish to add
another tag, we simply add it to the existing list, and if we wish to grant the agent
control over additional body parts, we simply have to remove the corresponding tag
from the list.

After constraining the agent’s control over chosen body-parts, we had to rework
other functions vital for the agent’s correct operation. These functions had the issue
of either changing all the joints with the ArticulationBody component, or contained
extensive code for the purpose of controlling the finger joints, both of which were
incompatible with the functionality we required. Thus we changed that functions
such as CollectObservation, which collects observations from the environment for the
agent, and OnActionReceived, which when receives actions from the agent changes the
positions of the joints and calculates the reward for the given action. These changes
ensured that only joints under the agents control would be affected by this script and
there be no clashes with other written instructions.

After setting up the Unity project with all the necessary scripts, we were not sure
which of the two RL algorithms to use, either PPO or SAC, so we decided to train two
separate neural networks. To train a neural network with the ML-Agents Toolkit, we
needed to first create a conda environment, where we could run the command:

mlagents-learn <trainer-config-file> --env=<env_name> --run-id=<run-identifier>

--run-id=<run-identifier> parameter is a unique identifier which differentiates
between different training runs.
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--env=<env_name> is an optional parameter, which contains the path to the Unity
project. If not inputted the training will start only after pressing the play button in
the Unity editor.

<trainer-config-file> is the path to a .yaml path which contains all the hyper
parameters needed for the training. If left blank a basic configuration file is used.
Since we wanted to train based on two different algorithms, we created two different
configuration files. Each file was created based upon the recommendation of the ML-
Agents Training Configuration File documentation norms.

behaviors:

NICO:

trainer_type: ppo

hyperparameters:

batch_size: 512

buffer_size: 50000

learning_rate: 0.00001

beta: 0.001

epsilon: 0.2

lambd: 0.95

num_epoch: 10

learning_rate_schedule: linear

network_settings:

normalize: true

hidden_units: 128

num_layers: 2

vis_encode_type: simple

reward_signals:

extrinsic:

gamma: 0.99

strength: 1.0

keep_checkpoints: 5

max_steps: 2000000

time_horizon: 1000

summary_freq: 10000

Figure 3.5: PPO configuration file used for training an agent for 2 000 000 steps.

The training consisted of NICO trying to point at a red cube object, which changed
position after every five-thousand steps made. We employed a reward function present
in the original project which comprised of three elements:
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• For every movement made by a joint NICO was penalized to discourage any
additional movement to make the movement more smooth and fluid.

• If NICO got closer to the target compared to its previous position a reward is
given, if it got further away, it was penalized.

• NICO was penalized for the distance from his target, to incetivize getting closer
to the target.

Figure 3.6: Cumulative Reward throughout the training of both PPO and SAC algo-
rithms.

We finished training after two-million steps, due to the reward increasing only
marginally close to hitting a plateau. The results showed that the neural network
taught with the PPO algorithm was more successful than the one trained with the
SAC algorithm.

After we reviewed the finished neural network NICO was successful at pointing an
object farther away, but for object near it, the result was that NICO approached the
red cube from the side and tried to force its finger inside the box instead of pointing
at it.

This made us consider updating the reward function. We decided to add another
element:

• We penalize NICO for the angle between two vectors. The first one starts from
the right palm of NICO and ends at the end of its index finger, which is the end
effector. The second one also starts at its right palm, but ends at the target,
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which is the red cube. This encourages NICO to minimize the angle, thus trying
to put all three points on one line, thus making the pointing gesture even if the
item is close instead of trying to force its finger into the object.

Figure 3.7: Cumulative Reward throughout the training of both PPO and SAC algo-
rithms.

The neural network trained with the PPO algorithm did show improvement com-
pared to the previous neural networks. The one taught with the SAC performed worse
with the updated reward function, the arm performed more movement while staying
off target more.

Figure 3.8: NICO pointing at the target red cube using a trained neural network.
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Overall the neural networks taught with the PPO algorithm performed better than
the ones trained with the SAC algorithm.

3.3 Auditory Improvement

Increasing immersion can be achieved not only by enhancing existing senses that are
already implemented, but also with the addition of a new sense. Besides sight, the
next most commonly implemented sense into VR projects is audio. In our case this
involves including the sounds made by NICO while it is operational.

The first step was to identify the sounds NICO produces. We categorized these
sounds into two groups: sounds made while NICO is idle and motionless, and sounds
made while NICO is in motion. Passive sounds are produced by the coolers attached
to NICO, located in its trunk near the neck. Active sounds are generated by the servos
in its joints as they bend and move.

The passive sounds generated by NICO were consistent, meaning only one sound
effect was needed. Since the sound made by each joint was indistinguishable from
others, one sound effect would be sufficient for the active sound effects as well.

The next step was recording the audio from which we could create the needed
sound effects for the project. The recording consisted of first recording while NICO
was idle, and then of it moving its arm. While the recording of his passive sounds was
straightforward, capturing the sound of its servos during movement proved challenging.
The servos were producing sound only while moving rapidly. The first recording only
managed to capture these sound in really small bursts which turned out later to be
unusable. Only in the next recording session did we capture usable samples. These
while better than the first batch of audio files, still didn’t contain a sound, which could
be used on its own. The problem was that we required a sound which could be used for
various lengths of time, since we could not predetermine how long a certain movement
would take.

To create the sounds that will be used in the our project, we needed to alter the
samples, so they could be played on repeat. This was done so that it didn’t matter
how long the simulation took, the sound could be played thru-out. For this we used
the open-source software Audacity (see sec. 2.7.3).

The passive background sound effect was relatively easily sampled. We took the
sampling, cut it, and altered it to create a smaller fragment that had a smooth transition
between the end and beginning. This way it could be played for any length of time.
The final sound is two seconds long, but before its addition to the project it was listened
to on repeat to determine if it really was applicable.

Creating the sound effect for the active movement of NICO posed a bigger challenge.
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Figure 3.9: Audacity software layout with the final recording, which was used to create
all sound effects.

As mentioned earlier, the recording did not contain a sample, which could be made
into a looping sound effect. Each movement could be cut into a louder initial sound,
a monotonous middle and a progressively quieting sound. Since we needed something
that could be used on repeat, the only useful piece of the sound was the middle. These
middle parts, while being the best piece, alone they were too short to be played on
repeat, since instead of sounding like a motor, they were more similar to a washing
machine. The solution we found was to use multiple samples of movement, cut out
its more monotonous middle parts, and edit them into one longer sample. With this
approach we got a second long sound effect, which could be added to the final project.

Finally we imported the sounds into the project. For the simulation to create sound
we had to add an Audio Source component to a part of NICO. The passive sound had
its source put into the trunk of NICO because, that is the approximate place where
the sound is coming from on the real robot. For all the joint movements we decided it
would be better to have a central source, which acts as an output for the whole right
arm, instead of having each individual joint outputting sound. This would make sure
that the sound is not disruptive and unintelligible. As a result the Audio Source was
placed on the right upper arm, which is the approximate center of the whole arm. This
means that if any part of the arm moves, the sound effect is played only from the upper
arm, no matter which joint is moving.

3.4 Scenario Setup

To facilitate the use of the improvements made in this project for future studies of
immersion in VR, we developed a C# script that centralized all the features and
streamlines the process of creating different setups of the robot NICO.

The Unity project operates on the basis, that NICO starts performing the action
of pointing for a number of steps defined by the agent script, which is refereed to as
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an episode. At the end of the episode the agent scripts function OnEpisodeBegin is
called, which resets NICO and starts the next episode.

Our script utilizes this episodic nature of the project and makes it easier to have
different versions of the robot NICO in succession without the need to interrupt the
simulation and redefine the parameters.

This script organizes the improvements as distinct functions. Each function is
paired with a corresponding boolean, which is initialized at the beginning of every
episode. Each frame, through the Update function, depending on the booleans, the
respective function is called or bypassed. This structure allows for a highly customizable
approach to the needs of the immersive VR study.

To achieve this level of customization we decided to use a list structure, where the
user inputs either 0 or a 1. This list is used at the beginning of each episode, when
the agent script calls the function SetEnvironment. This function, depending on how
many improvements can be toggled on or off, takes the next n values from the list, and
based on this sets the corresponding boolean to true or false. If we have reached the
end of the list, the next episode will have the same values as the current one.

In our implementation, this entails that the function consistently processes the
next three values based on the integer value of “command_size”. These customization
options include: the front cover of the model, the movement of the head, and the sound
effects.

This method is designed with future development in mind, making sure that adding
new functionalities is straightforward. To integrate a new functionality, we first need
to implement the new improvement along with a corresponding boolean value, increase
the “command_size” value, and incorporate the call of the new functionality into the
Update function. This kind of approach not only streamline the development process
but also strengthens the modularity and scalability of the system, making the continues
improvement and expansion of NICO’s capabilities possible.



Chapter 4

Conclusion

The objective of this thesis was to study the concept of immersion, implement fea-
tures which would raise the immersion of an existing Unity project involving the semi-
humanoid robot NICO, and finally to develop a script which makes it possible to further
study the effects of these improvements and their effect on the project’s immersive ex-
perience.

We began by researched the concept of immersion, exploring methods to improve
immersion inside a VR simulation, and examining the different types of immersion
based on the senses they aim to engage. Based on this we decided what senses we
wanted to focus on and started to study different software, which we would use in the
development, such as the Unity editor for the VR simulation, Blender and Audacity
for the creation of different improvements. Finally we chose concrete libraries and
algorithms to use for the betterment of an already existing project upon which we
built.

After we finished researching the theoretical part of this thesis we moved unto
implementing functionalities, which would increase the simulations immersion. First
we focused on improving the project from a visual standpoint with the creation of
additional assets that where present on the real world counterpart, but not on the
model inside the simulation. We then moved unto improving the movement of NICO
while performing the action of pointing at a target by including other body parts into
the movement and creating a neural networks which controlled its arm during the
action of pointing. The last improvement was the inclusion another sense, sound into
the project, by sampling the real counterpart and editing the sample to fit our needs.

Finally we developed a script which would ease the use of our functionalities in
future studies of immersion, by making it easier to create different version of the robot
in quick succession without the need to stop the experiment and changing parameters.

Even though we did successfully enhanced a project with new features and func-
tionalities for future studies, due to technical and time constraints some aspects of it
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may be enhanced and improved upon in the future.
These include experimenting with the hyper-parameters of the training configura-

tion file and letting the training run for a larger amount of steps to better the final
network. Another aspect to improve upon is using better sound recording equipment
and the editing the final sample, making sure that the sound effects do not sound pe-
riodic in the final product. Finally to model and include all the parts of the physical
NICO, that are not yet included in our project, such as the shoulder covers.

Even though the project has some minor shortcomings, we believe we created an
enhanced version of the NICO project in Unity which could be used to study what
improvements have the biggest impact on the users immersive experience as to know
which areas should be expanded upon in future VR applications.



Bibliography

Blender-Foundation (n.d.). Blender foundation - blender.org. https://www.blender.
org. Accessed: 6.5.2024.

Bowman, D. A. and McMahan, R. P. (2007). Virtual reality: how much immersion is
enough? Computer, 40(7):36–43.

Cavusoglu, H., Dennis, A. R., and Parsons, J. (2019). Immersive systems. Journal of
Management Information Systems, 36(3):680–682.

Ezzeddine, F., Ayoub, O., Andreoletti, D., and Giordano, S. (2023). SAC-FACT:
Soft actor-critic reinforcement learning for counterfactual explanations. In World
Conference on Explainable Artificial Intelligence, pages 195–216. Springer.

Forlim, C. G., Bittner, L., Mostajeran, F., Steinicke, F., Gallinat, J., and Kühn, S.
(2019). Stereoscopic rendering via goggles elicits higher functional connectivity dur-
ing virtual reality gaming. Frontiers in Human Neuroscience, 13:365.

Halbig, A., Babu, S. K., Gatter, S., Latoschik, M. E., Brukamp, K., and von Mammen,
S. (2022). Opportunities and challenges of virtual reality in healthcare–a domain
experts inquiry. Frontiers in Virtual Reality, 3:14.

Hecht, D., Reiner, M., and Karni, A. (2008). Enhancement of response times to bi-and
tri-modal sensory stimuli during active movements. Experimental Brain Research,
185:655–665.

Hong, D., Lee, T.-H., Joo, Y., and Park, W.-C. (2017). Real-time sound propagation
hardware accelerator for immersive virtual reality 3D audio. In Proceedings of the
21st ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, pages
1–2.

Hussain, A., Shakeel, H., Hussain, F., Uddin, N., and Ghouri, T. L. (2020). Unity game
development engine: A technical survey. University Sindh Journal Information and
Communication Technology, 4(2):73–81.

31

https://www.blender.org
https://www.blender.org


32 BIBLIOGRAPHY

Juliani, A., Berges, V.-P., Teng, E., Cohen, A., Harper, J., Elion, C., Goy, C., Gao,
Y., Henry, H., Mattar, M., et al. (2018). Unity: A general platform for intelligent
agents. arXiv preprint arXiv:1809.02627.

Kim, M., Jeon, C., and Kim, J. (2017). A study on immersion and presence of a
portable hand haptic system for immersive virtual reality. Sensors, 17(5):1141.

Metz, L. A. E. P. (2020). An evaluation of unity ML-Agents toolkit for learning boss
strategies. PhD thesis, Rekjavík University.

Nilsson, N. C., Serafin, S., Steinicke, F., and Nordahl, R. (2018). Natural walking in
virtual reality: A review. Computers in Entertainment (CIE), 16(2):1–22.

Perret, J. and Vander Poorten, E. (2018). Touching virtual reality: a review of haptic
gloves. In ACTUATOR 2018; 16th International Conference on New Actuators,
pages 1–5. VDE.

Regan, M. and Pose, R. (1994). Priority rendering with a virtual reality address
recalculation pipeline. In Proceedings of the 21st annual conference on Computer
graphics and interactive techniques, pages 155–162.

Schissler, C., Nicholls, A., and Mehra, R. (2016). Efficient HRTF-based spatial audio
for area and volumetric sources. IEEE Transactions on Visualization and Computer
Graphics, 22(4):1356–1366.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347.

Simonini, T. (2022). Hugging face. https://huggingface.co/blog/deep-rl-ppo.
Accessed: 2.5.2024.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learning: An Introduction. MIT
press.

Tanaka, N. and Takagi, H. (2004). Virtual reality environment design of managing
both presence and virtual reality sickness. Journal of Physiological Anthropology
and Applied Human Science, 23(6):313–317.

Teixeira, J. and Palmisano, S. (2021). Effects of dynamic field-of-view restriction on
cybersickness and presence in HMD-based virtual reality. Virtual Reality, 25(2):433–
445.

Tham, J., Duin, A. H., Gee, L., Ernst, N., Abdelqader, B., and McGrath, M. (2018).
Understanding virtual reality: Presence, embodiment, and professional practice.
IEEE Transactions on Professional Communication, 61(2):178–195.

https://huggingface.co/blog/deep-rl-ppo


BIBLIOGRAPHY 33

Tytarenko, M. (2023). Optimizing immersion: Analyzing graphics and performance
considerations in unity3d vr development. Asian Journal of Research in Computer
Science, 16(4):104–114.

Viciana-Abad, R., Lecuona, A. R., and Poyade, M. (2010). The influence of passive
haptic feedback and difference interaction metaphors on presence and task perfor-
mance. Presence, 19(3):197–212.

Washnik, N., Suresh, C., and Lee, C.-Y. (2023). Using audacity software to enhance
teaching and learning of hearing science course: A tutorial. Teaching and Learning
in Communication Sciences & Disorders, 7(3):4.

Wilkinson, M., Brantley, S., and Feng, J. (2021). A mini review of presence and
immersion in virtual reality. In Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, volume 65, pages 1099–1103. SAGE Publications Sage CA:
Los Angeles, CA.

Zaunschirm, M., Frank, M., and Zotter, F. (2020). Binaural rendering with measured
room responses: First-order ambisonic microphone vs. dummy head. Applied Sci-
ences, 10(5):1631.


	Introduction
	Background
	The Concept of Immersion
	Presence versus Immersion

	Improving Immersion
	Visual Immersion
	Rendering
	Graphics
	Field of View

	Auditory Immersion
	Spatial Audio and Binaural Rendering
	Realistic Sound

	Haptic Feedback
	Walking in Virtual Reality
	Repositioning Systems
	Proxy Gestures
	Redirected Walking

	Relevant Software
	Unity
	Blender
	Audacity

	Reinforcement Learning
	Machine Learning Agents Toolkit
	ML-Agents SDK
	Proximal Policy Optimization
	Soft Actor Critic


	Implementation
	Motivation and Objectives
	Visual Improvement
	Improvement of the Robotic Model
	Improvement of Movement

	Auditory Improvement
	Scenario Setup

	Conclusion

