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Abstract

SIFT has been proven to be the most robust local invari-
ant feature descriptor. SIFT is designed mainly for gray
images. However, color provides valuable information in
object description and matching tasks. Many objects can
be misclassified if their color contents are ignored. This pa-
per addresses this problem and proposes a novel colored
local invariant feature descriptor. Instead of using the gray
space to represent the input image, the proposed approach
builds the SIFT descriptors in a color invariant space. The
built Colored SIFT (CSIFT) is more robust than the conven-
tional SIFT with respect to color and photometrical vari-
ations. The evaluation results support the potential of the
proposed approach.

1. Introduction

Color is an important component for distinction between
objects. If the color information in an object is neglected,
a very important source of distinction may be lost. The ob-
jects of Figure 1 are good examples for the importance of
considering color information for object distinction. In this
figure, we can see clearly how the pure gray-based geomet-
ric description can cause confusion between two completely
different features. Nevertheless, most of the existing ap-
proaches use gray geometric-based feature extractors. On
the other hand, color-based image retrieval approaches ne-
glect the geometrical characteristics of objects. Thus, most
research studies in feature extraction for object recognition
and matching problems have been focusing on either ge-
ometric or color features. Geometric features of an object
are extracted in high informative regions like corners. Other
kinds of approaches use the luminance and/or color signa-
ture in order to describe an object. Color histograms [25]
and gray level histograms [22] are well-known luminance-
based approaches. The color histograms concept has been
extended to include some sort of illumination invariance by

using color ratios of neighboring pixels [20] or by using
illumination-invariant moments for color histogram distri-
butions [8, 24].

For all of those approaches, the invariance with re-
spect to imaging conditions represents the biggest chal-
lenge. Specifically, the extracted features should be invari-
ant with respect to geometrical variations, such as transla-
tion, rotation, scaling, and affine/projective transformations.
At the same time, these features should be invariant with
respect to photometric variations such as illumination di-
rection, intensity, colors, and highlights. Therefore, several
research studies in the literature have been presented to de-
velop feature descriptors that maximize the robustness with
respect to these variations.

In geometrical invariant approaches, local features are
preferred because of their robustness to partial appearance
and their lower sensitivity to global displacements in the im-
age [16, 23]. Nearly all geometrical invariant approaches
avoid dealing with colored images; since colors add an-
other layer of difficulty represented in the color constancy
problem. Therefore, color invariance is a crucial problem
which has to be solved for distinct object description and
recognition. Many research studies have been presented to
solve the color constancy problem [3, 6]. The normalized
RGB representation [9] has been used to partially achieve
the illumination invariance. Some other invariant color rep-
resentations have been developed depending on statistical-
based transformations [1, 21]. As a more sophisticated ap-
proach, various physical-based color invariants have been
developed in [11] for invariant color representations under
different imaging conditions.

Pure geometric-based approaches may have difficulties
in describing ”non-geometric objects” and they may fail in
differentiating between many objects [23]. On the other
hand, due to the global nature in photometric-based ap-
proaches, they suffer from partial visibility and ”extrane-
ous features” [23]. In spite of their relatively few num-
ber, some research studies in the literature have been pre-
sented to combine geometrical and color features. For ex-
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Figure 1. Neglecting the color content may affect the object dis-
tinction. Note the big similarity between the two magnified cor-
ners which occurs when discarding the color information.

ample, in [12], color and shape invariants are combined for
image retrieval. However, the color invariants in that ap-
proach are very sensitive to the noise around their singular-
ities. Also, the geometrical invariants are primitive when
compared with the pure gray-based approaches.

Scale Invariant Feature Transform (SIFT) [16, 17] has
been proven to be the most robust among the other local
invariant feature descriptors with respect to different geo-
metrical changes [19]. SIFT was mainly developed for gray
images which limits its performance with some colored ob-
jects. However, there are some attempts in the literature
which have been introduced to make use of the color in-
formation inside the SIFT descriptors. For example, in [4],
the normalized RGB model has been used in combination
with SIFT to achieve partial illumination invariance besides
its geometrical invariance. The color invariance of this ap-
proach is still limited because of the primitive color model
used. In [7], a multi-stages recognition approach has been
developed in order to achieve both color and geometrical
invariance. In the first stage, a color classifier is used label
the different image regions. Then, the SIFT descriptors are
augmented by adding the color labels. In spite of the good
performance of this approach, its need for colored learning
instances limits its performance in several applications.

In this paper, we present a novel Colored SIFT (CSIFT),
not to just embed the color information in the descriptors,
but to give the built descriptor the robustness with respect
to color variations as well as the robustness of the con-
ventional SIFT against geometrical changes. The proposed
CSIFT approach is compared to the conventional SIFT ap-
proach [16, 17]. The evaluation results show that CSIFT is
more stable and distinctive with respect to variations in the
photometrical imaging conditions.

2. Problem Statement

The problem of object description using local invariant
approaches can be looked at as the problem of transform-
ing the object image into a set of feature vectors or de-
scriptors. For good object description, two criteria should
be satisfied in the extracted features. The first one is the
stability, i.e. the extracted features should be invariant to
different photometric and geometric changes. The second
one is the distinctiveness, which means that the extracted
features should have the minimum information to distin-
guish between the object which they describe and other ob-
jects. In section (3), we discuss the geometrical invariance,
whereas in section (4) we focus on the color invariance. In
section (5), we explain our proposed CSIFT approach for
combining both geometrical and color invariants in a single
descriptor. Finally, we show some evaluation results that
support the potential of CSIFT.

3. Geometrical Invariance

Geometrical invariance means the invariance of the ex-
tracted features to translation, rotation, scaling, or affine
transformations as well as occlusion and partial appearance.
In other words, for a specific object, a feature F (�x) at a lo-
cation �x = (x, y) should satisfy the following condition:

F (�x) = F (T�x) (1)

where T is a transformation which includes translation, ro-
tation, scaling or affine transformation.

The locality of the extracted features and the way in
which the descriptors are built provides the invariance with
respect to these geometrical variations, as shown in sec-
tion (5). The more challenging point is the invariance to
scale changes.

Scale-space theory offers the main tools for selecting the
most robust feature locations, or the interest points, against
scale variations. Given a signal f : R

N → R, the scale-
space representation L : R

N × R+ → R is defined as:

L(�x, t) = g(�x, t) ∗ f(�x) (2)

where L(�x, 0) = f(�x)∀�x ∈ R
N and g(�x, t) is the scale-

space kernel. As t increases, the scale-space representation
L(�x, t) of the signal tends to coarser scales.

It has been proven that the Gaussian kernel is the unique
kernel for generating the scale-space representation [15].
Moreover, Lindeberg [14] has shown that the normalization
of the Laplacian of Gaussian, ∇2g, with a factor σ2 = t
is necessary to give a signal the scale-invariance property.
Empirically, it has been proven that the maxima and minima
of σ2∇2g produces the most stable image features [18]. The
normalized Laplacian of Gaussian pyramid can be approx-
imated by a difference-of-Gaussian pyramid [17]. Hence,
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the locations of the maxima and minima in the difference-
of-Gaussian pyramid correspond to the most stable features
with respect to scale changes.

4. Color Invariance

In this paper, we use the color invariance model, which
was developed by Geusebroek et.al [11] to build our CSIFT
descriptors. So, in this section, we give a brief description
of the invariants in this model.

In this model, the color invariants depend on the old
Kubelka-Munk theory which models the reflected spectrum
of colored bodies [13, 26]. The Kubelka-Munk theory
models the photometric reflectance by:

E(λ, �x) = e(λ, �x)(1 − ρf (�x))2R∞(λ, �x) + e(λ, �x)ρf (�x)
(3)

where λ is the wavelength and �x is a 2D vector which
denotes the image position. e(λ, �x) denotes the illumi-
nation spectrum and ρf (�x) is the Fresnel reflectance at
�x. R∞(λ, �x) denotes the material reflectivity. E(λ, �x)
represents the reflected spectrum in the viewing direction.
This model is suitable for modelling non-transparent/non-
translucent materials. Some special cases can be derived
from Eq. (3). For example, the Fresnel coefficient can be
neglected for matte and dull surfaces. By assuming equal
energy illumination, the spectral components of the source
are constant over the wavelengthes and variable over the
position, which is applicable for most of the practical cases.
So, they can be denoted as i(�x). Then, Eq. (3) will be:

E(λ, �x) = i(�x)[ρf (�x) + (1 − ρf (�x))2R∞(λ, �x)] (4)

By differentiating Eq. (4) with respect to λ, we get:

Eλ = i(�x)(1 − ρf (�x))2
∂R∞(λ, �x)

∂λ
(5)

and

Eλλ = i(�x)(1 − ρf (�x))2
∂2R∞(λ, �x)

∂λ2
(6)

By dividing Eq. (5) by Eq. (6), we get:

H =

(
Eλ

Eλλ

)
=

∂R∞(λ, �x)

∂λ
/
∂2R∞(λ, �x)

∂λ2

= f(R∞(λ, �x)) (7)

Thus, H =
(

Eλ

Eλλ

)
is the reflectance property which is inde-

pendent of viewpoint, surface orientation, illumination di-
rection, intensity, and Fresnel reflectance coefficient.

By considering only matte and dull surfaces for the
model of Eq. (3), i.e. ρf ≈ 0 and E = i(�x)R∞(λ, x)
(which is the Lambertian model under the constraint of
equal energy illumination), another object reflectance prop-
erty Cλ =

(
Eλ

E

)
is provided as an invariant to the view-

point, surface orientation, illumination direction and illumi-
nation intensity. By adding an assumption of planar objects

to the previous assumptions, Wx =
(

Ex

E

)
is given as an

invariant to the changes in the illumination intensity. For
matte and dull surfaces with single illumination spectrum
Nλx =

(
ExE−EλEx

E2

)
is given as an object reflectance prop-

erty that is independent of the viewpoint, surface orienta-
tion, illumination direction, illumination intensity, and illu-
mination color. Hence, Nλx determines material transitions
independent of illumination color and intensity distribution.
Higher order derivatives for these invariants are used for
more robust representations. For the detailed derivation of
these invariants, the reader is referred to [11].

To calculate these invariants from the known RGB color
space, the Gaussian color model is used as a general model
for representation of spectral information and local im-
age structure [11]. In this model, a linear transformation
from the RGB space is used to obtain spectral differential
quotients(Ê, Êλ, Êλλ). Then, spatial differential quotients
(Êx, Êλx, Êλλx) are obtained by convolution with Gaus-
sian derivative filters. A good approximation for the hu-
man vision system and for the CIE 1964 XYZ basis can be
obtained by taking λo = 520nm and σλ = 55nm when
calculating the first three components (Ê, Êλ, Êλλ) of the
Gaussian color model [11]. Using the product of two linear
transformations, one from RGB to XYZ and the other from
XYZ to the Gaussian color model [11], the desired imple-
mentation of the Gaussian color model in terms of RGB can
be obtained, as shown in Eq. (8). Measurement of the color
invariants is obtained by substitution of E, Eλ, and Eλλ by
Ê, Êλ, and Êλλ at a given σx.

⎛
⎝ Ê

Êλ

Êλλ

⎞
⎠ =

⎛
⎝ .06 .63 .27

.3 .04 −.35
.34 −.6 .17

⎞
⎠

⎛
⎝ R

G
B

⎞
⎠ (8)

5. CSIFT descriptors

Object recognition using local invariant features in-
volves three main stages: interest points detection, descrip-
tor building, and descriptor matching and pose estimation.
Considering all the points in the image for object descrip-
tion is not feasible. Therefore, highly informative points
are selected as interest points. More stable interest points
means better performance. For each of these interest points,
a local feature descriptor is built to distinctively describe
the local region around the interest point. The final stage is
matching the descriptors to decide if this point belongs to
the object of interest or not. The matched points are used
for further processing such as performing a global object
recognition or pose estimation.

5.1. Interest points detection

Interest points should be selected so that they achieve the
maximum possible repeatability under different photomet-
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ric and geometric imaging conditions. As discussed in sec-
tion (3), the extrema in Laplacian pyramid, which is approx-
imated by difference-of-Gaussian for the input image in dif-
ferent scales, has been proven to be the most robust interest
points detector to geometrical changes [5, 19]. Therefore,
we detect the interest points at the extrema of a difference-
of-Gaussian pyramid of the input image. We use the color
invariants, which were presented in the previous section, as
the working space for the input image in order to achieve
the stability of the detected features to photometric changes.
Similarly, as in SIFT, we expand the input image by factor
of two, before building the pyramid, to preserve the high-
est spatial frequencies. For the Gaussian color model, we
use σx = 2, whereas σ = 1.4 for the Gaussian filter of the
pyramid levels. In order to localize the interest points, sub-
pixel/sub-scale approximation is performed for the obtained
extrema to achieve the maximum geometrical stability of
the detected interest points [4].

In this paper, we show the results obtained by using the
H invariant of Eq. (7)only. However, CSIFT is developed to
be used with the other invariants as well. In the next section,
we show the improvement which is obtained by using this
model instead of gray level representation.

5.2. Descriptor building

After localizing the interest points, feature descriptors
are built to characterize these points. These descriptors
should contain the necessary distinct information for their
corresponding interest points. Different schemes have been
followed for descriptor building [16, 17, 19, 23]. We follow
the same strategy of SIFT in building CSIFT descriptors. In
other words, the local gradient-orientation histograms for
the same-scale neighboring pixels of an interest point are
used as the key entries of the descriptor. All orientations are
assigned relative to a dominant/canonical orientation of the
interest point. Thus, the built descriptor is invariant to the
global object orientation. The stability to occlusion, partial
appearance, and cluttered surroundings is achieved by the
nature of the local description of the interest points.

Instead of using gray gradients in building the keys, we
use the gradients of the color invariants which are repre-
sented in the previous section. Building CSIFT descriptors
in this way makes them obtain inherently the robustness of
SIFT to different geometrical transformations. At the same
time, the use of color invariants in the feature descriptors,
instead of using gray values, guarantees the robustness with
respect to photometric changes.

5.3. Feature matching and pose estimation

The matching process is performed for the built local
descriptors by finding the nearest neighbor of each feature
key in a given feature descriptor database. The collection
of location, scale, and canonical orientation of each match

Figure 2. Sample images from ALOI [10] for a colored object un-
der different illumination directions and intensities.

provides an estimation for a 2D transformation of the ob-
ject. After rejecting outliers, the generalized Hough trans-
form [2] is used to find a peak cluster among the estimated
2D transformations. Hence, the object pose is estimated.

6. Experimental Results

To evaluate the proposed approach, we use the ”Ams-
terdam Library of Object Images (ALOI)” [10] which is
an image database of colored objects. ALOI contains a
large number of objects under different imaging conditions,
namely, different illumination directions, illumination in-
tensities, illumination colors, and object viewpoints. Fig-
ure 2 shows a sample object under different illumination di-
rections and intensities. It is noted that there are large vari-
ations in the image content with respect to the illumination
changes. Therefore, we found that this database will be a
good data set in order to prove the potential of our proposed
CSIFT.

For evaluation purposes, we compare the performance of
CSIFT with the performance of the SIFT. For fair compari-
son, we assign the optimum values to the SIFT parameters,
as described in [17]. Since the geometrical-feature struc-
ture of SIFT and CSIFT are very close to each other, we
focus on the comparison results between them with respect
to photometric variations. Figure 3 shows the detected fea-
tures of a sample object under different illumination direc-
tions and intensities using the H color invariant space versus
those obtained using SIFT. It is clear that the number of de-
tected features in the color invariant space is much larger
than those in the gray images. It is known that as the num-
ber of the detected features increases, the performance of
the recognition process is enhanced. Therefore, it is noted
from the first glance at Figure 3 that CSIFT performs bet-
ter with respect to the number of the detected features. The
potential of CSIFT in feature detection is appreciated when
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Figure 3. Detected features for a specific object under different il-
lumination directions and intensities (Top) Original images (Mid-
dle) CSIFT detected features (Bottom) SIFT detected features.
Note the stability of the detected colored features in the head and
tail areas when compared to the gray detected features.

some challenging regions for SIFT are considered, e.g. the
head and the tail areas of the object of Figure 3.

Although the total number of the detected features de-
pends on thresholding constraints, e.g. the contrast thresh-
old, CSIFT still has a large number of repeated features,
which leads to a more accurate estimation of the object
pose. Table 1 shows the average values of the ratio between
the number of the repeated CSIFT features to the number
of those obtained by SIFT after rejecting the pixels whose
contrast is under a certain threshold. In general, the perfor-
mance of CSIFT is at least 1.5 times better than the gray-
based SIFT for low contrast rejection threshold up to 10%.
For the recommended threshold of SIFT, which is 3% [17],
the number of the repeated CSIFT features is, in average,
1.94 times the number of the repeated gray SIFT features.

Figure 4 shows quantitative evaluation results for CSIFT
versus SIFT. In this figure, we show the repeatability and
the matching results for objects imaged under different illu-
mination conditions. Although the percentage repeatability
of SIFT may be higher than CSIFT in few cases, the num-
ber of matched features of CSIFT is much larger than those
of SIFT, as shown in Figures 4(b).

7. Conclusion

In this paper, we introduced CSIFT as a novel colored lo-
cal invariant feature descriptor for the purpose of combining
both color and geometrical information in object descrip-
tion. Opposite to many existing methods, the proposed ap-
proach balances between color and geometrical characteris-
tics. We achieved the color invariance by using the color
invariance model developed by Geusebroek et. al. [11],
whereas the geometrical invariance is achieved by build-
ing CSIFT using a structure similar to that of the SIFT de-
scriptors. Evaluation results proved the high performance
of CSIFT when compared with the conventional SIFT de-
scriptors.
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