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Abstract

A diamond is the graph that is obtained from removing an edge from the complete graph on 4 vertices.
A (C4,diamond)-free graph is a graph that does not contain a diamond or a cycle on four vertices as
induced subgraphs. Let G be a connected (C4,diamond)-free graph on n vertices. Let 1 ≤ k ≤ n− 1 be
an integer. The k-token graph, Fk(G), of G is the graph whose vertices are all the sets of k vertices of
G; two of which are adjacent if their symmetric difference is a pair of adjacent vertices in G. Let F be
a graph isomorphic to Fk(G). In this paper we show that given only F , we can construct in polynomial
time a graph isomorphic to G. Let Aut(G) be the automorphism group of G. We also show that if
k 6= n/2, then Aut(G) ' Aut(Fk(G)); and if k = n/2, then Aut(G) ' Aut(Fk(G))× Z2.
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1 Introduction

Let G be a graph on n vertices, and 1 ≤ k ≤ n − 1 a natural number. The k-token graph of G is the
graph whose vertices are all the sets of k vertices of G; where two such sets A and B are adjacent if
their symmetric difference A4B is a pair of adjacent vertices in G. We denote this graph by Fk(G).
The name “token graph” is motivated by the following interpretation. Take k indistinguishable tokens
and place them on the vertices of G (at most one per vertex); form a new graph whose vertices are all
possible token configurations; and make two configurations adjacent if one can be reached from the other
by taking a token and sliding it along an edge to an unoccupied vertex. The resulting graph is isomorphic
to Fk(G). We often refer to the vertices of Fk(G) as token configurations.

Token graphs have been defined independently at least four times:

1. In 1988, in his PhD thesis, Johns [13] called it the k–subgraph graph of G. He defined it as the graph
whose vertices are all the subsets of k vertices of G; two of which are adjacent if their distance in
G is equal to 1.

2. In 1991, Alavi, Behzad, Erdős and Lick [1] defined the 2-token graph; they called it the double
vertex graph. In 1992, Zhu, Liu, Lick and Alavi [23] expanded the definition to k tokens and called
it k-tuple graph. They defined it as the graph whose vertices are all the subsets of k vertices of G;
two of which are adjacent if their symmetric difference is an edge of G.

3. In 2002, Rudolph [17] considered a cluster of n interacting q-bits. Each q-bit can be in a ground
state |0〉 or in an excited state |1〉. At any given moment exactly k of the q-bits are in the excited
state. He represented each q-bit by a vertex in a graph G where two are adjacent if they interact.
The k-token graph of G represents the possible evolution of this cluster of q-bits. His aim was to
translate physical quantities of a cluster of q-bits to graph invariants of the token graph. He called
this construction the level k matrix of G.

4. In 2012, Fabila-Monroy, Flores-Peñaloza, Huemer, Hurtado, Urrutia and Wood [8] defined token
graphs with the token configurations interpretation provided above.

Finally, the k-token graph of G has also been named the k-th symmetric power of G by Audenaert,
Godsil, Royle and Rudolph [3]. This definition is excluded from the previous list because in [3] the
definition is attributed to [17]. In this paper we follow the notation of [8].

In this paper we are interested in the existential and algorithmic problem of reconstructing a graph
from its token graph. Specifically, let F be a graph isomorphic to Fk(G).

• Given only F , can we find in polynomial time a graph G′ such that Fk(G′) ' F?

• is G′ unique up to isomorphism?

A diamond is the graph that results from removing an edge from a complete graph on four vertices;
C4 is the cycle on four vertices. A graph is (C4,diamond)-free if it does not contain a diamond or a C4 as
an induced subgraph. In this paper we consider the problem of reconstructing a graph G from its token
graph, when G is connected and (C4,diamond)-free.

The problem of reconstructing a graph from its token graph seems to be related to the Graph Isomor-
phism Problem. The Graph Isomorphism Problem is the algorithmic problem of determining whether
two given graphs are isomorphic. The current best published algorithm for this problem was given by
Babai and Luks [5]. This algorithm runs in exp(O(

√
n logn)) time for graphs on n vertices. In 2015,

Babai [4] announced a exp((log)O(1)) time algorithm for the Graph Isomorphism Problem. Helfgott
discovered an error in the proof. In 2017, Babai announced a correction1, which Helfgott verified2.

There are many graph invariants, computable in polynomial time, that in many instances distinguish
pairs of non isomorphic graphs. One of these is the spectra of a graph (the eigenvalues of its adjacency
matrix). Two graphs are cospectral if they have the same spectra. As expected there are pairs of non-
isomorphic cospectral graphs. In [17], Rudolph noted that the spectra of 2-token graphs may help in
distinguishing two graphs. He gave an example of a pair of non-isomorphic cospectral graphs whose
2-token graphs are not cospectral. In [3], the authors showed that the 2-token graphs of two strongly
regular graphs with the same parameters are cospectral. Thus, yielding a plethora of examples of pairs
of non-isomorphic graphs whose 2-token graphs are cospectral. In the same paper it is noted that if for

1http://people.cs.uchicago.edu/~laci/update.html
2https://valuevar.wordpress.com/2017/01/04/graph-isomorphism-in-subexponential-time/
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some constant k it is the case that two graphs are isomorphic if and only if their k-token graphs are
cospectral, then this would provide a polynomial time algorithm for the Graph Isomorphism Problem.
This was shown not to be the case independently by Barghi and Ponomarenko [6], and Alzaga, Iglesias
and Pignol [2]. Recently, Dalfó, Duque, Fabila-Monroy, Fiol, Huemer, Trujillo-Negrete and Zaragoza-
Mart́ınez [7], considered the Laplacian spectra of token graphs. They showed that the Laplacian spectra
of a graph is closely related to the Laplacian spectra of its token graphs. There is no known example of
a pair of non-isomorphic graphs whose token graphs have the same Laplacian spectra.

Underlying the question of whether token graphs may help in distinguishing pairs of non-isomorphic
graphs, is the question of how much information from G is carried out to the k-token graphs of G. In [8]
the authors made the following conjecture.

Conjecture 1.1. Let G and H be two graphs such that for some k their k-token graphs are isomorphic.
Then G and H are isomorphic.

Conjecture 1.1 was posed as a question for 2-token graphs by Jacob, Goddard and Laskar [12]. An
equivalent formulation is that Fk(G) determines G completely (up to isomorphism). If this is the case
for some graph G we say that G can be reconstructed from its token graph. We believe this to be a hard
problem, even in the case of only two tokens. There are very few results in this direction. We mention
some of them. In [12], it is shown that if G is regular and does not contain a 4-cycle as a subgraph
then G is reconstructible from it 2-token graph. They also show that cubic graphs can be reconstructed
from their 2-token graphs. In [1] it is claimed (without proof) that trees can be reconstructed from
their 2-token graphs. Trujillo-Negrete [20] in her Master’s thesis gave an example of two non-isomorphic
graphs G and H, and a pair of distinct integers k and l, such that Fk(G) and Fl(H) are isomorphic (and
non-trivial). For completeness we provide this example in Section 7.

1.1 Notation

We now provide some of the notation used throughout the paper. Let G = (V,E) be a graph. We denote
with |G| and ||G|| the number of vertices and edges of G, respectively. Let U,W be two sets of vertices
of G or two subgraphs of G. We denote with E(U,W ) the set of edges of G with one endpoint in U and
the other endpoint in W . If uw is an edge in E(U,W ) we always assume that u ∈ U and w ∈ W . We
refer to the edges in E(U,W ) as U −W edges.

Two graphs G and H are isomorphic if there exists a bijection, ϕ, between the vertices of G and the
vertices of H that satisfies the following. A vertex x is adjacent to a vertex y in G if and only if ϕ(x) is
adjacent to ϕ(y) in H. We say that ϕ is an isomorphism between G and H. We write G ' H to denote
that G and H are isomorphic. We denote with Iso(G,H) the set of isomorphisms from G to H. An
isomorphism of G with itself is called an automorphism. The set of automorphisms of G form a group
under function composition; we denote this group by Aut(G).

Let G1, . . . , Gn be graphs. The Cartesian product of G1, . . . , Gn is the graph G1� · · ·�Gn with vertex
set V (G1)×· · ·×V (Gn); where (x1, . . . , xn) is adjacent to (y1, . . . , yn) if and only if there exists an index
1 ≤ i ≤ n such that xi is adjacent to yi and xj = yj for all j 6= i. Let v := (x1, . . . , xn) be a vertex of
G1� · · ·�Gn; we denote the i-th coordinate of (x1, . . . , xn) with v(i) := xi. Cartesian products of graphs
play an important role throughout this paper. The d-dimensional hypercube is the Cartesian product of
d copies of K2. We denote it with Qd. A graph is composite if it is isomorphic to the Cartesian product
of two or more nontrivial graphs. Otherwise, we say it is a prime graph.

The line graph of G is the graph, L(G), whose vertex set is the edge set of G. Two vertices of L(G)
are adjacent if as edges of G they are incident to the same vertex. Whitney [22] showed that, except
for the cases of a triangle and K1,3, if G and G′ are two graphs such that L(G) ' L(G′) then G ' G′.
For |G| > 3, Roussopoulos [16] and Lehot [14] gave an O(|G|+ ||G||) time algorithm that given a graph
isomorphic to L(G) constructs a graph isomorphic to G.

1.2 Main results

We mention the main results of this paper. Our first result is the following.

Theorem 1.2. Let G be a connected (C4,diamond)-free graph. Given only a graph isomorphic to Fk(G),
we can compute in polynomial time a graph isomorphic to G.
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Let F be a graph. Let ϕ be an isomorphism from F to Fk(G). We call the pair (G,ϕ) a k-token
reconstruction of F . We say that a graph G is k-token reconstructible if for every (G′, ϕ′), k-token
reconstruction of Fk(G), we have that G ' G′. Thus, Conjecture 1.1 states that all graphs are k-
token reconstructible for every 1 ≤ k ≤ |G| − 1. We prove the following result, which is stronger than
Theorem 1.2.

Theorem 1.3. Let G be a connected (C4,diamond)-free graph. Given a graph, F , isomorphic to Fk(G)
(k ≤ n/2), we can compute in polynomial time a k-token reconstruction of F .

In Section 2, we introduce the notion of a graph being uniquely k-token reconstructible as the k-token
graph of G. Informally, a graph F is uniquely reconstructible as the k-token graph of G if all its k-token
reconstruction as the k-token graph of G, are unique up to automorphisms of G. We show the following.

Theorem 1.4. Let G be a connected (C4,diamond)-free graph. Then Fk(G) is uniquely reconstructible
as the k-token graph of G.

We prove the following consequence of being uniquely k-token reconstructible.

Proposition 1.5. Suppose that Fk(G) is uniquely k-token reconstructible as the k-token graph of G.
Then

Aut(Fk(G)) '

{
Aut(G)× Z2 for k = n/2 and n ≥ 4,

Aut(G) otherwise.

Roadmap

In Section 2, we introduce the notion of unique k-token reconstructibility. In Theorem 2.4, we present
three conditions equivalent to being uniquely k-token reconstructible. In Section 3, we consider the
token graph of stars. Token graphs of stars play an instrumental role in our reconstruction algorithm.
We show that token graphs of stars are uniquely reconstructible as the k-token graph of K1,n. We also
show that if F is isomorphic to Fk(K1,n), then a reconstruction of F as the k-token graph of Fk(K1,n)
can be found in polynomial time. In Section 4, we characterize how 4-cycles are generated in Fk(G); we
derive some consequences of this characterization. In Section 5, we prove Theorem 1.2. In Section 6,
we prove Theorems 1.3 and 1.4. Finally, in Section 7, we consider the case when G is a disconnected
(C4,diamond)-free graph.

2 Uniquely k-token Reconstructible Graphs

Let H be a graph isomorphic to G. We define a function ι : Iso(H,G) → Iso(Fk(H), Fk(G)) as follows.
Let ψ ∈ Iso(H,G). Let ι(ψ) be the function that maps every A ∈ V (Fk(G)) to

ι(ψ)(A) := {ψ(v) : v ∈ A}.

It is straightforward to show that ι(ψ) ∈ Iso(Fk(H), Fk(G)). We show that ι is injective. Let φ ∈
Iso(H,G) such that ψ 6= φ. Let v ∈ V (H) such that φ(v) 6= ψ(v) and let u ∈ V (G) be such that
φ(u) = ψ(v). Thus, u = φ−1ψ(v) and u 6= v. Let A ∈ V (Fk(H)) such that v ∈ A and u /∈ A. We have
that ψ(v) /∈ ι(φ)(A) and ψ(v) ∈ ι(ψ)(A). Therefore, ι(φ)(A) 6= ι(ψ)(A). Let J be a graph isomorphic to
G, and let φ now be an isomorphism from G to J . It is straightforward to show that

ι(φ ◦ ψ) = ι(φ) ◦ ι(ψ).

Ibarra and Rivera [10] recently showed that when G = H, ı is an injective group homomorphism from
Aut(G) to Aut(Fk(G)). Thus,

Aut(G) ≤ Aut(Fk(G)). (1)

Let c be the map that sends every set of k vertices of G to its complement in V (G). This map is an
isomorphism from Fk(G) to Fn−k(G). If k = n/2, then c is an automorphism of Fk(G), which we call
the complement automorphism of Fk(G).

Proposition 2.1. For n > 2 even and k = n/2, c /∈ ı(Aut(G)).
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Proof. Suppose for a contradiction that there exists φ ∈ Aut(G) such that ı(φ) = c. Note that φ is not
the identity; thus, there exists a vertex v1 of G such that v1 6= φ(v1). Let A := {v1, φ(v1), v2, . . . , vk−1}
be a vertex in Fk(G). Then V (G) \A = {φ(v1), φ(φ(v1)), . . . , φ(vk−1)}. This implies that φ(v1) ∈ A and
φ(v1) /∈ A—a contradiction.

Observation 2.2. Suppose that G is the edge uv. Let swap be the automorphism of G that interchanges
these two vertices, so that swap(u) = v and swap(v) = u. Then c = ι(swap).

Note that for every ψ ∈ Aut(G) we have that c ◦ ι(ψ) = ι(ψ) ◦ c. Since c2 is the identity, when n ≥ 3,
the group generated by Aut(G) and c is isomorphic to Aut(G)× Z2. Thus, when k = n/2 we have that

Aut(G)× Z2 ≤ Aut(Fk(G)). (2)

The inclusions(1) and (2) can be proper. Using the SageMath [19] and GAP [9] softwares we determined
that

Aut(K2,3) = Z2 × S3 < Z2 × S4 = Aut(F2(K2,3))

and
Aut(C4)× Z2 = D4 × Z2 < S4 × Z2 = Aut(F2(C4)).

We define an equivalence relation between k-token reconstructions. Let (G,ψ) and (G,ϕ) be two
k-token reconstructions of a graph F . We say that (G,ϕ) and (G,ψ) are equivalent k-reconstructions of
F if there exists an automorphism s(ϕ,ψ) of G such that

ψ = ι(s(ϕ,ψ)) ◦ ϕ or ψ = c ◦ ι(s(ϕ,ψ)) ◦ ϕ.

We say that F is uniquely reconstructible as the k-token graph of G if any two k-reconstructions of F as
the k-token graph of G are equivalent. For a given ϕ ∈ Iso(F, Fk(G)) let

Iϕ := {ψ ∈ Iso(F, Fk(G)) : ψ = ι(s(ϕ,ψ)) ◦ ϕ}

and
Cϕ := {ψ ∈ Iso(F, Fk(G)) : ψ = c ◦ ι(s(ϕ,ψ)) ◦ ϕ}.

By Proposition 2.1, if |G| ≥ 3, then Iϕ and Cϕ are disjoint. Since ι is injective we have the following.

Lemma 2.3.
Iϕ = ι(Aut(G)) ◦ ϕ and Cϕ = c ◦ ι(Aut(G)) ◦ ϕ.

For a given vertex u ∈ G let

κG(u, k) := {A ∈ Fk(G) : u ∈ A}

and
κG(u, k) := {A ∈ Fk(G) : u /∈ A}.

In the following theorem we give three equivalent conditions for Fk(G) to be uniquely reconstructible as
the k-token graph of G.

Theorem 2.4. Let G and H be isomorphic graphs on at least 3 vertices; the following are equivalent:

1) Fk(G) is uniquely reconstructible as the k-token graph of G.

2)

Aut(Fk(G)) '

{
Aut(G)× Z2 for k = n/2,

Aut(G) otherwise.

3) For every ψ ∈ Iso(Fk(H), Fk(G)) there exists a f(ψ) ∈ Iso(H,G) such that

ψ = ι(f(ψ)) or ψ = c ◦ ι(f(ψ)).

5



4) There exists a function f that assigns to every ψ ∈ Iso(Fk(H), Fk(G)) a function f(ψ) : V (H) →
V (G) such that the following holds. For every vertex u ∈ H either

ψ(κH(u, k)) = κG(f(ψ)(u), k) or ψ(κH(u, k)) = κG(f(ψ)(u), k).

Proof.

1) ⇒ 2) Let ϕ ∈ Iso(F, Fk(G)). Since Fk(G) is uniquely reconstructible as the k-token graph of G, we
have that Aut(Fk(G)) = Iϕ ∪ Cϕ. By Lemma 2.3 we have that |Aut(Fk(G))| ≤ |Aut(G)| for k 6= n/2,
and |Aut(Fk(G))| ≤ 2|Aut(G)| for k = n/2. By (1) and (2) we have 2).

2) ⇒ 3) Note that | Iso(H,G)| = |Aut(G)| and | Iso(Fk(H), Fk(G))| = |Aut(Fk(G))|. Suppose that
k 6= n/2. We have that | Iso(H,G)| = | Iso(Fk(H), Fk(G))|. Since ι is an injection from Iso(H,G) to
Iso(Fk(H), Fk(G)) it is also a bijection and we have 3). Suppose that k = n/2. Let

X := {ι(φ) : φ ∈ Iso(H,G)} and Y := {c ◦ ι(φ) : φ ∈ Iso(H,G)}.

Since ι is injective we have that |X| = | Iso(H,G)| and |Y | = | Iso(H,G)|. By Proposition 2.1 we have
that X ∩ Y = ∅. Since | Iso(Fk(H), Fk(G))| = 2| Iso(H,G)|, we have that Iso(Fk(H), Fk(G)) = X ∪ Y ;
thus 3) holds.

3)⇒ 4) Let u be a vertex of H. If ψ = ι(f(ψ)), then

ψ(κH(u, k)) = ι(f(ψ))(κH(u, k)) = κG(f(ψ)(u), k).

If ψ = c ◦ ι(f(ψ)), then

ψ(κH(u, k)) = c ◦ ι(f(ψ))(κH(u, k)) = c ◦ κG(f(ψ)(u), k) = κG(f(ψ)(u), k).

4)⇒ 1) Note that

|κH(v, k)| =

(
n− 1

k − 1

)
and |κH(v, k)| =

(
n− 1

k

)
.

Therefore, if for some vertex v of H we have that ψ(κH(v, k)) = κG(f(ψ)(v), k), we would have that(
n−1
k−1

)
=
(
n−1
k

)
. This would imply that n is even and k = n/2. Suppose that for some pair of vertices

u, v ∈ H we have that ψ(κH(u, k)) = κG(f(ψ)(u), k) and ψ(κH(v, k)) = κG(f(ψ)(v), k). Note that

|κH(u, k) ∩ κH(v, k)| =

(
n− 2

k − 2

)
;

we have that

|ϕ(κH(u, k) ∩ κH(v, k))| = |ϕ(κH(u, k)) ∩ ϕ(κH(v, k))| = |κG(f(ψ)(u), k) ∩ κG(f(ψ)(v), k)| =

(
n− 2

k − 1

)
.

Thus,
(
n−2
k−2

)
=
(
n−2
k−1

)
, and n is odd—a contradiction. Therefore, for all vertices u ∈ H either ψ(κH(u, k)) =

κG(f(ψ)(u), k) or ψ(κH(u, k)) = κG(f(ψ)(u), k).
Suppose that there exist two vertices u, v ∈ H, such that f(ψ)(u) = f(ψ)(v). We have that

(
n−1
k−1

)
=(

n−2
k−2

)
. This implies that n = k, a contradiction. Thus, f(ψ) is injective; thus, it is also bijective.

Note that u is not adjacent to v if and only if

E (κH(u, k) \ κH(v, k), κH(v, k) \ κH(u, k)) = ∅.

Similarly, u is not is adjacent to v if and only if

E (κH(u, k) \ κH(v, k), κH(v, k) \ κH(u, k)) = ∅.
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Let X := κH(u, k) and Y := κH(v, k). Since

|E (X \ Y, Y \X)| = |ψ (E (X \ Y, Y \X)) | = |E (ψ(X) \ ψ(Y ), ψ(Y ) \ ψ(X)) |,

we have that u is adjacent to v if and only if f(ψ)(u) is adjacent to f(ψ)(v). Thus, f(ψ) ∈ Iso(H,G).
Moreover, if A ∈ Fk(H) then

ψ(A) = ψ

(⋂
v∈A

κH(v, k)

)
=
⋂
v∈A

ψ(κH(v, k)) =
⋂
v∈A

κG(f(ψ)(v), k) = ι(f(ψ))(A)

or

ψ(A) = ψ

(⋂
v∈A

κH(v, k)

)
=
⋂
v∈A

ψ(κH(v, k)) =
⋂
v∈A

κG(f(ψ)(v), k) = c ◦ ι(f(ψ))(A).

Fix an isomorphism ψ from Fk(H) to Fk(G) and let (G,ϕ) and (G,φ) be two k-token reconstructions
of Fk(G). Let s(ϕ, φ) := f(φψ) ◦ f(ϕψ)−1. Note that φ = ι(s(ϕ, φ)) ◦ ϕ or φ = c ◦ ι(s(ϕ, φ)) ◦ ϕ and we
have 1)

Observation 2.5.

• If 3) of Theorem 2.4 holds, then f(ψ) is unique;

• if 4) of Theorem 2.4 holds, then f(ψ) is unique and an isomorphism from H to G, and either

ψ(κH(u, k)) = κG(f(ψ)(u), k) or ψ(κH(u, k)) = κG(f(ψ)(u), k),

for all vertices u ∈ H

We now present some consequences of Theorem 2.4.

2.1 k-reconstruction Families

Suppose that F is a graph on
(
n
k

)
vertices. Inspired by property 4) of Theorem 2.4, we define the concept

of a k-reconstruction family of F . Let R be a family of subsets of vertices of F . For every vertex A ∈ F ,
let

SR(A) := {X ∈ R : A ∈ X}.
We say that R is a k-reconstruction family of F if it satisfies the following properties.

1) |X| =
(
n−1
k−1

)
for all X ∈ R;

2) |SR(A)| = k for all A ∈ V (F ); and

3) for every edge AB ∈ F we have that

|SR(A) ∩ SR(B)| = k − 1.

Note that 1) and 2) imply that |R| = n. Let (G,ϕ) be a k-reconstruction of F . Note that

Rϕ := {ϕ−1(κG(u, k)) : u ∈ V (G)}

is a k-reconstruction family of F . Conversely, from a k-reconstruction family we can obtain a k-token
reconstruction of F as follows. Let GR be the graph whose vertex set is R; and such that X is adjacent
to Y in GR if and only if there exists an edge AB of F such that

SR(A)4SR(B) = {X,Y }.

Proposition 2.6. If R is a k-reconstruction family of F , then (GR, SR) is a k-token reconstruction of
F .
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Proof. By 2), for every A ∈ V (F ) we have that SR(A) ∈ V (Fk(GR)). 1) and 2) imply that SR is a
bijection from V (F ) to V (Fk(GR)). The definition of GR and 3) implies that SR is an isomorphism
from F to Fk(GR).

Suppose that R is a k-reconstruction family of F ; let

R := {V (F ) \X : X ∈ R}.

Proposition 2.7. Suppose that R is k-reconstruction family of F and that k = n/2. Then R is a
k-reconstruction family of F .

Proof. For every X ∈ R we have that |V (F ) \X| =
(
n
k

)
−
(
n−1
k−1

)
=
(
n−1
k−1

)
; thus, R satisfies 1). For every

A ∈ V (F ) we have that |SR(A)| = |R\SR(A)| = n−k = k; thus, R satisfies 2). For every edge AB ∈ F
we have that

|SR(A) ∩ SR(B)| = |(R \ SR(A)) ∩ (R \ SR(B))|
= n− (k − 1)− 2

= k − 1.

thus, R satisfies 3).

Proposition 2.8. Let (G,ϕ) and (G,ψ) be two k-token reconstructions of F . Then (G,ϕ) and (G,ψ)
are equivalent k-token reconstructions of F if and only if Rϕ = Rψ or Rϕ = Rψ.

Proof. Suppose that (G,ϕ) and (G,ψ) are equivalent k-token reconstructions of F . Then there exists an
automorphism s(ϕ,ψ) of G such that

ψ = ι(s(ϕ,ψ)) ◦ ϕ or ψ = c ◦ ι(s(ϕ,ψ)) ◦ ϕ.

In the first case we have that

Rϕ = {ϕ−1(κG(u, k) : u ∈ V (G)}

= {ψ−1 ◦ ι(s(ϕ,ψ))−1(κG(u, k)) : u ∈ V (G)}

= {ψ−1(κG(s(ϕ,ψ)−1(u), k)) : u ∈ V (G)}

= {ψ−1(κG(u, k) : u ∈ V (G)}
Rψ.

In the second case we have that

Rϕ = {ϕ−1(κG(u, k) : u ∈ V (G)}

= {ψ−1 ◦ c ◦ ι(s(ϕ,ψ))−1(κG(u, k)) : u ∈ V (G)}

= {c ◦ ψ−1(κG(s(ϕ,ψ)−1(u), k)) : u ∈ V (G)}

= {V (F ) \ ψ−1(κG(u, k) : u ∈ V (G)}
Rψ.

Suppose that Rϕ = Rψ or Rϕ = Rψ. We define an automorphism f of G as follows. Let u ∈ V (G)
and let f(u) be the vertex of G such that

ϕ−1(κG(u, k)) = ψ−1(κG(f(u), k)) or ϕ−1(κG(u, k)) = V (F ) \ ψ−1(κG(f(u), k)).

Condition 3) in the definition of k-reconstruction family implies that f is an automorphism of G. We
have that

ψ = ι(f) ◦ ϕ or ψ = c ◦ ι(f) ◦ ϕ.
Thus, (G,ϕ) and (G,ψ) are equivalent k-reconstructions of F .
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Proposition 2.9. Let R be a k-reconstruction family of F . Then F is uniquely reconstructible as the
k-token graph of GR if and only if for every automorphism ϕ of F we have that

R = {ϕ(X) : X ∈ R} or R = {ϕ(X) : X ∈ R}.

Proof. Let X ∈ R. Note that

κGR(X, k) = {W ⊂ R : |W | = k and X ∈W}
= {SR(A) : A ∈ X}
= SR(X).

If k = n/2, we also have that

κGR(X, k) = {W ⊂ R : |W | = k and X /∈W}
= {SR(A) : A /∈ X}
= SR(V (F ) \X).

Let
ϕ′ := SR ◦ ϕ ◦ S−1

R .

Note that ϕ′ is an automorphism of Fk(GR).
Suppose that F is uniquely reconstructible as the k-token graph of GR. Thus, Fk(GR) is uniquely re-

constructible as the k-token graph ofGR. LetX ∈ R. By 4) of Theorem 2.4 we have that ϕ′(κGR(X, k)) =
κGR(Y, k) or ϕ′(κGR(X, k)) = κGR(Y, k), for some Y ∈ R. In the first case we have that

ϕ(X) = Y ;

In the second case case we have that
ϕ(X) = V (F ) \ Y.

As in the proof of 4)⇒ 1), we have either the first case happens for all X ∈ R or the second case happens
for all X ∈ R. Thus,

R = {ϕ(X) : X ∈ R} or R = {ϕ(X) : X ∈ R}. (3)

Suppose that (3) holds. Then for all X ∈ R we have that

ϕ′(κGR(X, k)) = κGR(Y, k) or ϕ′(κGR(X, k)) = κGR(Y, k), for some Y ∈ R.

Proposition 2.10. Let (G,ϕ) and (H,φ) be two k-token reconstructions of F . Then G ' H if and only
if there exists an automorphism ψ of F such that

Rφ = {ψ(X) : X ∈ Rϕ}.

Proof. Suppose that G ' H. Let f be an isomorphism from G to H. Let

ψ := φ−1 ◦ ι(f) ◦ ϕ.

Let X ∈ Rϕ. Let x ∈ V (G) be such that ϕ(X) = κG(x, k). We have that ι(f) ◦ ϕ(X) = κH(f(x), k).
Let Y ∈ Rφ be such that Y = φ−1(κH(f(x), k). Thus, Y = ψ(X), and Rφ = {ψ(X) : X ∈ Rϕ}.

Suppose that there exists ψAut(F ) such that Rφ = {ψ(X) : X ∈ Rϕ}. We define an isomorphism,
f , from G to H. Let x ∈ V (G). Let Y = ψ(ϕ−1(κG(x, k)). Let f(x) be the vertex of H such that
φ−1(κH(f(x), k)) = Y . Condition 3) in the definition of k-reconstruction family implies that f is an
isomorphism.

We can use Proposition 2.10, to rephrase Conjecture 1.1:

Conjecture 2.11. Let G be a graph. For every two k-token reconstruction families R and R′ of Fk(G),
there exists an automorphism ψ of Fk(G) such that

R′ = {ψ(X) : X ∈ Rϕ}.
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Example 2.12. Consider C4 =: (1, 2, 3, 4). Let

X1 := {{2, 3}, {1, 3}, {1, 4}}, X2 := {{2, 3}, {1, 2}, {2, 4}},

X3 := {{1, 2}, {1, 3}, {2, 4}}, X4 := {{1, 4}, {2, 4}, {3, 4}}.
R := {X1, X2, X3, X4} is a 2-token reconstruction family of F2(C4).

We now consider the token graphs of stars; these graphs play a crucial role in our reconstruction
algorithm.

3 Token graphs of stars

For n ≥ 2, we call the complete bipartite graph K1,n a star. Throughout this section let n ≥ 2 and
k ≤ (n + 1)/2. Let {x0, x1, . . . , xn} be the vertices of K1,n so that x0 is the vertex of degree greater
than one. Fk(K1,n) is a bipartite graph: one set in the partition corresponds to the token configurations
without a token at x0 and the other set corresponds to the token configurations with a token at x0. Let
V0 and V1 be these sets, respectively. Every vertex in V0 has degree equal to k and every vertex in V1 has
degree equal to n−k+1. Note that if F is not bipartite, then it cannot be isomorphic to the token graph
of a star. Throughout this section assume that F is bipartite with vertex bipartition (W0,W1). In the
following lemmas we show that it is possible to determine in polynomial time whether F is isomorphic to
the k-token graph of a star. If this is the case, then we can also compute an isomorphism in polynomial
time.

Lemma 3.1. Suppose that F is isomorphic to the token graph of a star. Then there exist unique positive
integers n and k ≤ (n+ 1)/2, such that F ' Fk(K1,n); these integers can be found in polynomial time.

Proof. Note that every vertex in W0 has the same degree d0, and every vertex in W1 has the same degree
d1. Without loss of generality assume that d0 ≤ d1. If d0 < d1, an isomorphism from F to Fk(K1,n)
must map W0 to V0 and W1 to V1. If d0 = d1, an isomorphism from F to Fk(K1,n) can map W0 to V0

or to V1. In both cases d0 = k and d1 = n − k + 1. Therefore, k and n are uniquely determined, and
computable in polynomial time.

In view of Lemma 3.1, in what follows assume that n and k are such that every vertex in W0 has
degree k, and every vertex in W1 has degree n− k + 1.

Lemma 3.2. Let

• v∗ be a vertex in W0;

• w1, . . . , wk be the neighbors of v∗;

• vk+1, vk+2, . . . , vn be the neighbors of w1 distinct from v∗; and

• f be any injective function that maps {v∗} ∪ {w1, . . . , wk} ∪ {vk+1, vk+2, . . . , vn} to the vertices of
Fk(K1,n) such that

– f({w1, . . . , wk}) = N(f(v∗)) and

– f({vk+1, vk+2, . . . , vn}) = N(f(w1)) \ {f(v∗)}.
If F and Fk(K1,n) are isomorphic, then in polynomial time we can extend f to a unique isomorphism from
F to Fk(K1,n). Moreover, if F and Fk(K1,n) are not isomorphic then we can determine in polynomial
time that such an extension does not exist.

Proof. We provide an algorithm that attempts to extend f to an isomorphism from F to Fk(K1,n). The
algorithm succeeds if and only if F and Fk(K1,n) are isomorphic. Our algorithm proceeds by labeling
the vertices of F . Let v be a vertex of F . If v is in W0 then v will be labeled with a string of integers
s1s2 · · · sk; this means that the isomorphism maps v to the token configuration {xs1 , . . . , xsk}. If v is
in W1 then v will be labeled with a string of integers s1 · s2 · · · sk−1; this means that our isomorphism
maps v to the token configuration {x0, xs1 , . . . , xsk−1}. We denote with `(v) the label assigned to vertex
v. Let s be one of these labelings. For a given integer j, we denote with s	 j the label that results from
s by removing the appearance of j. Similarly, we denote with s⊕ j the label that results from adding j
to s.
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If necessary we relabel the vertices of K1,n so that `(v∗) = 1 · 2 · · · k. Note that the neighbors of
v∗ receive a label of the form `(v∗) 	 j for some 1 ≤ j ≤ k. We relabel the neighbors of v so that
`(wj) := `(v∗)	 j. Note that the neighbors of w1 distinct from v∗ receive a label of the form `(v∗)	1⊕ j
for some k + 1 ≤ j ≤ n. We relabel the neighbors of w1 distinct from v∗ so that `(vj) = `(v∗) 	 1 ⊕ j.
This first labeling can be made if F and Fk(K1,n) are indeed isomorphic. In what follows, we show that
this first labeling determines the labels of the remaining vertices of F .

We now label the neighbors of each wj with j 6= 1. Note that the neighborhoods of distinct wj only
intersect at v∗. Let j 6= 1. Let u be an unlabeled neighbor of wj . Note that u should receive a label of
the form `(v∗)	 j ⊕ t for some k + 1 ≤ t ≤ n. Further note that u should receive the label `(v∗)	 j ⊕ t
if and only if there is a path of length two from u to vt. This corresponds to the following token moves:
starting from the token configuration assigned to vt move the token at xj to x0; then move this token
from x0 to x1 to arrive to the token configuration assigned to u. We label each such u by checking the
paths of length 2 from u to vk+1, vk+2, . . . , vn. In the process we check whether there are conflicting
labelings for u, in which case F and Fk(K1,n) are not isomorphic.

So far we have labeled all the vertices in W1 at distance one from v∗ and all vertices in W0 at distance
two from v∗. Let d ≥ 3 be an odd integer. Suppose we have labeled all the vertices in W1 at distance
at most d − 2 from v∗ and all the vertices in W0 at distance at most d − 1 from v∗. We now label the
vertices in W1 at distance d from v∗ and the vertices in W0 at distance d+ 1 from v∗.

Let u be a vertex in W1 at distance d from v∗. Let y1 and y2 be two neighbors of u at distance d− 1
from v∗. Note that there exists two integers t1 and t2 such that `(y2) = `(y1) 	 t1 ⊕ t2; thus, u should
be labeled with s := `(y1)	 t1 = `(y2)	 t2. We label each such u by checking all its pairs of neighbors
at distance d− 1 from v∗. In the process we check whether there are conflicting labelings for u, in which
case F and Fk(K1,n) are not isomorphic.

Let now u be a vertex in W0 at distance d + 1 from v∗. Let y1 and y2 be two neighbors of u at
distance d from v∗. Note that there exists two integers t1 and t2 such that `(y2) = `(y1)	 t1 ⊕ t2; thus,
u should be labeled with s := `(y1) ⊕ t2 = `(y2) ⊕ t1. We label each such u by checking all its pairs of
neighbors at distance d from v∗. In the process we check whether there are conflicting labelings for u, in
which case F and Fk(K1,n) are not isomorphic. If the algorithm succeeds in labeling the vertices of F ,
then F and Fk(K1,n) are isomorphic.

Lemma 3.3. We can determine in polynomial time whether F and Fk(K1,n) are isomorphic. Moreover,
if F ' Fk(K1,n), then we have the following.

1. We can find an isomorphism between F and Fk(K1,n) in polynomial time;

2. F is uniquely reconstructible as the k-token graph of K1,n.

Proof. It only remains to show that if F ' Fk(K1,n), then F is uniquely reconstructible as the k-token
graph of K1,n,. Suppose that F ' Fk(K1,n). Pick a vertex v∗ ∈W0. Let {w1, . . . , wk} be the neighbors
of v∗. Let {vk+1, vk+2, . . . , vn} be the neighbors of w1 distinct from v∗. Choose any injective function,
f , that maps {v∗} ∪ {w1, . . . , wk} ∪ {vk+1, vk+2, . . . , vn} to the vertices of Fk(K1,n) such that

• f(v∗) ∈ V0 if k < (n+ 1)/2;

• f({w1, . . . , wk}) = N(f(v∗)); and

• f({vk+1, vk+2, . . . , vn}) = N(f(w1)) \ {f(v∗)}.
By Lemma 3.2, we can extend f to an isomorphism ψ from F to Fk(K1,k). Iterating over all possible
choices for f , we generate all isomorphisms, ψ, from F to Fk(K1,n). This allows us to compute the size
of Iso(F, Fk(K1,k)) by counting the number of possible choices for f . If k = (n + 1)/2 we have that
f(v∗) ∈ V0 or f(v∗) ∈ V1. Once this choice is made, there are

(
n
k

)
possible choices for f(v∗). Once the

value of f(v∗) is fixed there are k! possible choices for {f(w1), . . . , f(wk)}. Once these values are fixed,
there are (n− k)! possible choices for {f(vk+1), f(vk+2), . . . , f(vn)}. We have that

| Iso(F, Fk(K1,n))| =

{
n! if k 6= (n+ 1)/2,

2n! if k = (n+ 1)/2.

Since Aut(K1,n) = Sn and |Aut(Fk(K1,n)| = | Iso(F, Fk(K1,n))|, we have that by Theorem 2.4, F is
uniquely reconstructible as the k-token graph of K1,n.
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Figure 1: These are the four ways to generate an induced 4-cycle in Fk(G); tokens that are not shown are
assumed to remain fixed; and dashed lines are forbidden in G.

4 Induced 4-cycles of Fk(G) and Ladders

In this section we study how induced 4-cycles in Fk(G) can be generated. In particular we show that if
G is a (C4,diamond)-free graph then all induced 4-cycles of Fk(G) are generated by moving two tokens
along two independent edges of G. We use this characterization to define an equivalence relation on the
edges of Fk(G). This equivalence relationship is computable in polynomial time.

4.1 Induced 4-cycles of Fk(G)

Proposition 4.1. Every induced 4-cycle of a k-token graph is generated in one of the four ways depicted
in Figure 1.

Proof. Let G be a graph. Let C := (A,B,C,D) be an induced 4-cycle of Fk(G). Let

• A4B := {a1, b1} with a1 ∈ A, b1 ∈ B;

• B4C := {b2, c1} with b2 ∈ B, c1 ∈ C; and

• C4D := {c2, d1} with c2 ∈ C, d1 ∈ D.

We proceed by case analysis.

• Suppose that {a1, b1} ∩ {b2, c1} = ∅. This implies that A4C = {a1, b2, b1, c1}. There are three
possible values for C4D. C4D = {a1, b1}; C4D = {a1, c1}; or C4D = {b1, b2}.
– If C4D = {a1, b1} then A4D = {b2, c1} and C is generated as in (ii) of Figure 1.

– If C4D = {a1, c1} then A4D = {b1, b2} and C is generated as in (iii) of Figure 1.

– If C4D = {b1, b2} then A4D = {c1, a1} and C is generated as in (iii) of Figure 1.

• Suppose that {a1, b1} ∩ {b2, c1} 6= ∅. Thus, b1 = b2 or a1 = c1.

– Suppose that b1 = b2.

∗ Suppose that c1 = c2. Thus, d1 6= a1 and A4D = {a1, d1, }. This implies that C is
generated as in (i) of Figure 1.

∗ Suppose that c1 6= c2. If d1 6= a1 then A and D are not adjacent since A4D =
{a1, c1, c2, d1} in this case. Therefore, d1 = a1. This implies that D4A = {c2, d1} and C
is generated as in (iii) of Figure 1.

– Suppose that a1 = c1.

∗ Suppose c2 = a1. Then d1 6= b2 as otherwise D = B. But then A is not adjacent to D.

∗ Suppose that c2 = b1. Then A4D = {d1, b2} and C is generated as in (iii) of Figure 1.

∗ Suppose that c2 /∈ {a1, b1}. Then d1 = b2 as otherwise D would not be adjacent to A.
Therefore, A4D = {b1, c2} and C is generated as in (iv) of Figure 1.

It may be the case that F can be reconstructed (even uniquely) as the token graph of two non-
isomorphic graphs. The following lemma shows that if one of them is a (C4,diamond)-free graph, then
the other graph is also a (C4,diamond)-free graph.
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Lemma 4.2. Let G be a (C4,diamond)-free graph. If (G′, ϕ) is any k′-reconstruction of Fk(G) then G′

is also a (C4,diamond)-free graph.

Proof. We start by showing the following property of Fk(G):

(P1) for each induced 4-cycle ABCD of Fk(G) and each vertex X ∈ Fk(G) − {A,B,C,D}, if X is
adjacent to two non-consecutive vertices of the cycle ABCD, then it is adjacent to the vertices
A,B,C and D.

Let A,B,C,D and X as in (P1). Suppose that X is adjacent to A and C. Since G is (C4,diamond)-
free, the 4-cycle ABCD must be generated as in (ii) of Figure 2: by moving two tokens on two disjoint
edges (a1, b1) and (a2, b2) ofG, while the other k−2 tokens remain fixed on a subset S ofG−{a1, a2, b1, b2}.
Without loss of generality assume that

A = S ∪ {a1, a2}, B = S ∪ {b1, a2}, C = S ∪ {b1, b2}, D = S ∪ {a1, b2}.

Consider now the vertex X. Let us note that X must be obtained from C by moving a token at one
of {b1, b2} to a vertex in {a1, b1}, as otherwise we would have |X4A| > 2, and so X and A cannot be
adjacent, a contradiction. Clearly, X cannot be obtained from C by moving the token at b2 to a2, as
otherwise X = B, a contradiction. Similarly, X cannot be obtained from C by moving the token at b1
to a1. Thus, either X is obtained from C by moving the token at b1 to a2, or by moving the token at
b2 to a1, but these two cases are analogous. Without loss of generality let us assume that X is obtained
from C by moving the token at b1 to a2, and so, b1 is adjacent to a2. Since X is adjacent to A, it follows
that a1 is adjacent to b2, and since G is a (C4,diamond)-free graph, the vertex set {a1, a2, b1, b2} must
induce a complete graph in G. This fact implies that X is also adjacent to B and D, and so (P1) holds.

Suppose that G′ is not a (C4,diamond)-free graph. Let uvwz be a 4-cycle in G′, with at most one
chord, let us assume that v and z are not adjacent. Let S′ ⊆ G′ − {u, v, w, z} with |S′| = k − 2, and
consider the vertices

A′ = S′∪{u, v}, B′ = S′∪{u,w}, C′ = S′∪{u, z}, D′ = S′∪{v, z} and X ′ = S′∪{z, w}.

Note that A′B′C′D′ induces a 4-cycle in Fk′(G
′) and the vertex X ′ is adjacent to B′ and D′, however,

X ′ cannot be adjacent to A′, and so (P1) does not hold for Fk′(G
′)—a contradiction. Thus, G′ is a

(C4,diamond)-free graph.

4.2 Ladders, Cartesian Products and Line Graphs

A ladder is a graph isomorphic to the Cartesian product of K2 and a path Pm of length m ≥ 1. Let x
and y be the two vertices of K2; let v1, . . . , vm+1 be the vertices of Pm. For m ≥ 2, we call the edges
(x, vi)(y, vi) the rungs of the ladder. In the case of K2�P1 the rungs may be either one of the two pairs
of disjoint edges. Two edges e and f in F are said to be connected by a ladder if there exists an induced
subgraph of F isomorphic to a ladder, such that e and f are rungs of this ladder. Being connected by a
ladder is an equivalence relation on the edges of F . We refer to its equivalence classes as ladders classes.
We denote the ladder class of e with R[e]. The ladder classes of F are easily computed in polynomial
time as follows. Construct a graph F ′ whose vertices are the edges of F ; two of which are adjacent if
they are disjoint edges of an induced 4-cycle of F . The ladder classes of F correspond to the components
of F ′. In the case when F is the k-token graph of a (C4,diamond)-free graph, we have the following.

Proposition 4.3. Let G be a (C4,diamond)-free graph and let AB,A′B′ be two edges of Fk(G) in the
same ladder class. Then

A4B = A′4B′;
that is, AB and A′B′ correspond to moving a token along the same edge of G.

Proof. Let H ' K2�Pm be a ladder of Fk(G) such that AB is the first rung of H and A′B′ is the last
rung of H. Since G is a (C4,diamond)-free graph, every induced 4-cycle of Fk(G) is generated as in
(ii) of Figure 1. If m = 1 then the result follows from this observation. Suppose that m > 1 and that
the result holds for smaller values of m. Let A′′B′′ be the rung of H previous to A′B′. By induction
A4B = A′′4B′′ and by the previous argument A′′4B′′ = A′4B′; the result follows.
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Although Proposition 4.3 implies that every edge in a given ladder class of Fk(G) corresponds to
moving a token along the same edge of G, two edges in different ladder classes may correspond to moving
a token along the same edge ab of G. The next lemma shows this does not happen when G \ {a, b} is
connected.

Lemma 4.4. Let G be a (C4,diamond)-free graph. Let e := ab be an edge of G such that G \ {a, b} is
connected. Then the set of edges of Fk(G) that correspond to moving a token along e form a ladder class.

Proof. Let A1B1 and A2B2 edges of Fk(G) such that A14B1 = A24B2 = {a, b}. Without loss of
generality assume that a ∈ A1, a ∈ A2, b ∈ B1 and b ∈ B2. Let A′1 := A1 \ {a, b}, B′1 := B1 \ {a, b},
A′2 := A2 \ {a, b} and B′2 := B2 \ {a, b}. Note that A′1, B

′
1, A

′
2, B

′
2 are vertices of Fk−1(G \ {a, b}). Since

G′ is connected then so is Fk−1(G \ {a, b}) [8]. Let (A′1 =: C1, C2, . . . , Cm := A′2) be a path from A′1 to
A′2 in Fk−1(G \ {a, b}). The set of vertices

{Ci ∪ {a} : 1 ≤ i ≤ m} ∪ {Ci ∪ {b} : 1 ≤ i ≤ m}

induces a ladder that connects A1B1 to A2B2 in Fk(G).

Note that if G is a 3-connected (C4,diamond)-free graph, then the edges of G and the ladder classes
of Fk(G) are in a one to one correspondence. By Proposition 4.1, the edges corresponding to two ladder
classes R1 and R2 are incident to a same vertex if and only if no edge of R1 is contained in an induced
4-cycle of Fk(G) simultaneously with an edge of R2. In particular this implies that if G is 3 connected,
then we can recover the line graph L(G) of G from the ladder classes of F in polynomial time. We have
the following corollary.

Corollary 4.5. Let G be a 3-connected (C4,diamond)-free graph; let F be a graph isomorphic to Fk(G).
Given only F and the information that G is 3-connected, we can compute in polynomial time a graph H
isomorphic to G.

In the Section 5 we give an algorithm that given F ' Fk(G), in polynomial time finds a graph
isomorphic to G. A key step in our algorithm is to find a large composite graph in F . The following
lemma characterizes how certain large composite graphs are generated in Fk(G).

Theorem 4.6. Let G be a connected (C4,diamond)-free graph. Let H be a subgraph of Fk(G), such that
H is maximal with the property of being isomorphic to a graph H ′ = H ′1� · · ·�H ′r, where each H ′i is
connected and with at least two vertices. Then there exists a partition V1, . . . , Vr of V (G), and positive
integers k1, . . . , kr with k = k1 + · · · + kr, such that the following holds. H is generated by moving ki
tokens on Gi := G[Vi] and each H ′i is isomorphic to Fki(Gi)

Proof. Let f be an isomorphism from H ′ to H. Fix an index 1 ≤ i ≤ r. Let u1u2 and v1v2 be two edges
of H ′ such that

u1(i) = x = v1(i) and u2(i) = y = v2(i)

for some pair of adjacent vertices x, y in H ′i. We first show that

f(u1)f(u2) and f(v1)f(v2) are generated by moving a token along the same edge of G. (∗)

Let (u1 = w1, . . . , wm = v1) be a shortest path from u1 to v1 in H ′ such that for all 1 ≤ j ≤ m, we have
that

wj(i) = x.

Let (u2 = w′1, . . . , w
′
m = v2) be the path in H ′ such that for all 1 ≤ j ≤ m and all 1 ≤ l ≤ r, we have

that

w′j(l) :=

{
y if l = i,

wj(l) if l 6= i.

Note that the set of vertices

{f(wj) : 1 ≤ j ≤ m} ∪ {f(w′j) : 1 ≤ j ≤ m}

induces a ladder in H. By Proposition 4.3, f(u1)f(u2) and f(v1)f(v2) are generated by moving a token
along the same edge of G. This proves (∗).

14



We now define the sets Vi’s. Fix a vertex v∗ ∈ H ′. Let Hi be subgraph of H induced by the set of
vertices

{f(u) : u ∈ V (H ′) and u(j) = v∗(j) for all j 6= i}.
Clearly, Hi ' H ′i. Let

Vi := {x ∈ V (G) : there exist A,B ∈ V (Hi) such that x ∈ A and x /∈ B}.

By (∗) and the fact that Hi is connected we have that Vi does not depend on the choice of v∗.
We show that the Vi are pairwise disjoint. Suppose that for some distinct Vi and Vj there exists a

vertex x ∈ Vi ∩ Vj . Since Hi is connected, there exist adjacent vertices A1 and B1 of Hi, such that
x ∈ A1 and x /∈ B1; let y1 be the vertex of Vi such that B1 is obtained from A1 by moving the token
from x to y1. Since Hj is connected there exists adjacent vertices A2 and B2 of Hj such that x ∈ A2

and x /∈ B2; let y2 be the vertex of Vj such that B2 is obtained from A2 by moving the token from x to
y2. Note that f−1(A1)f−1(B1) is an edge of H ′ and f−1(A1)(i)f−1(B1)(i) is an edge of H ′i. Similarly,
f−1(A2)f−1(B2) is an edge of H ′ and f−1(A2)(j)f−1(B2)(j) is an edge of H ′j . Let w1, w2, w3, w4 be
vertices of H ′ defined as follows. For all 1 ≤ l ≤ r and l 6= i, j we have

w1(l) = w2(l) = w3(l) = w4(l) = v∗(l).

For i, we have

w1(i) = f−1(A1)(i), w2(i) = f−1(A1)(i), w3(i) = f−1(B1)(i) and w4(i) = f−1(B1)(i).

For j, we have

w1(j) = f−1(A2)(j), w2(j) = f−1(B2)(j), w3(j) = f−1(B2)(j) and w4(j) = f−1(A2)(j).

Note that (w1, w2, w3, w4) is an induced 4-cycle of H ′. By Proposition 4.1, f(w1)f(w2) and f(w1)f(w4)
are generated each by moving a token along disjoint edges of G. However, by (∗) these edges are xy1
and xy2, respectively—a contradiction.

Let A be a vertex of Hi, we define ki := |A ∩ Vi|. Let B a vertex of Hi distinct from A. Let
(A =: A1, A2, . . . , Am := B) be a path from A to B in Hi. Note that for every 1 ≤ l < m, Al4Al+1 ⊂ Vi.
Therefore, |A ∩ Vi| = |B ∩ Vi|. Thus, ki does not depend on our choice of A. For every 1 ≤ i ≤ r, let Gi
be the subgraph of G induced by Vi. Let H ′′ be the subgraph of F generated by moving ki tokens on
each Gi. Note that H ′′ ' Fk1(G1)� · · ·�Fkr (Gr). Since Vi does not depend on the choice of v∗, we have
that H is a subgraph of H ′′. The maximality of H implies that H ′′ = H, Hi ' Fki(Gi), k = k1 + · · ·+kr
and that V (G) = V1 ∪ · · · ∪ Vr.

We have the following corollary to Theorem 4.6.

Corollary 4.7. If G is a connected (C4,diamond)-free graph, then Fk(G) is a prime graph.

5 Reconstructing G

Throughout this section let:

• G be a connected (C4,diamond)-free graph;

• F be a graph isomorphic to Fk(G), with 1 < k < |G| − 1; and

• ϕ be a fixed isomorphism from F to Fk(G).

In this section we present a polynomial time algorithm that given only F constructs a graph isomorphic
to G. Note that we are not given n,k, ϕ, Fk(G) nor G. In particular, we use ϕ only as a tool to help us
reason about F .

Our general strategy is as follows. We run an algorithm, called ProductSubgraph, on F . The
first step of ProductSubgraph is to find a vertex A of F with the following property. The number
of independent edges of G incident to exactly one vertex of ϕ(A) is maximum. Let r be this number
of independent edges of G. Afterwards, ProductSubgraph finds a subgraph H of F , that is maximal
with the property of being isomorphic to a Cartesian product H1� · · ·�Hr of connected graphs Hi, each
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with at least two vertices. ProductSubgraph also finds these Hi. By Theorem 4.6, we know that
there exist induced disjoint subgraphs G1, . . . , Gr of G, and integers k1, . . . , kr that sum up to k, such
that V (G) =

⋃r
i=1 V (Gi) and Hi ' Fki(Gi). The structure of the Hi is such that we can construct in

polynomial time a graph isomorphic to each Gi. Finally, we reconstruct the adjacencies between the
Gi’s.

The information stored in the ladder equivalence relations of the edges of F allows us to locally
reconstruct small parts of G. Let A be a vertex of Fk(G); let

EA := {A4B : B ∈ N(A)}.

Thus, EA is the set of edges of G with exactly one vertex of A as one of their endpoints. Let GA be the
subgraph of G whose vertices are the endpoints of the edges in EA, and its edge set is EA.

Let AB and AC be two edges of Fk(G); let e1 and e2 be the edges of G such that AB and AC
correspond to moving a token along e1 and e2, respectively. Since G is (C4,diamond)-free and by
Proposition 4.1, we have that AB and AC are in a common induced 4-cycle of Fk(G) if and only if
e1 and e2 are disjoint. By checking whether each pair of edges incident to A are contained in a 4-cycle (in
Fk(G)) we can reconstruct the incidence relations in EA. Thus, given a vertex B of F we can construct,
in polynomial time, a graph isomorphic to the line graph of Gϕ(B). As mentioned above, for graphs with
more than three vertices there is a polynomial time algorithm that can reconstruct a graph from its line
graph. [16, 14]. Since triangles in Fk(G) are generated by moving one or two tokens in a triangle of G [8],
we have the following result.

Lemma 5.1. Given only F we can construct in polynomial time a set of graphs

{JA : A ∈ V (F )},

where each JA is isomorphic to Gϕ(A).

ProductSubgraph has two subroutines: Initialize and Extend. Initialize does the following. In
line 1 it constructs the set of graphs JA described in Lemma 5.1. In lines 2-5 for every vertex A of F it
computes a maximum cardinality matching MA of JA; this can be done in polynomial time [15]. In line
5, a vertex A ∈ F is chosen so that |MA| is maximum. Assuming k ≤ n/2, this matching corresponds
to a matching of G of maximum cardinality with the property of having at most k edges. The 1-token
graphs of these edges are the starting Hi. Afterwards, ProductSubgraph iteratively calls Extend for
each i in turn. Extend attempts to extend Hi into a larger graph isomorphic to the token graph of
some subgraph Gi of G. The initial choice of A is what enable us to reconstruct the Gi from their Hi.
At the end of its execution ProductSubgraph outputs a subgraph H of F , graphs H1, . . . , Hr and an
isomorphism π from H to H1� · · ·�Hr.
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Procedure Initialize

1 Construct a set of graphs {JA : A ∈ V (F )} where each JA is isomorphic to Gϕ(A);
2 for A ∈ V (F ) do
3 Compute a maximum cardinality matching MA of JA;
4 end
5 Find A ∈ V (F ) maximizing |MA|;
6 Let e1, . . . , er be the edges incident to A in F corresponding to the edges of MA;
7 Find the r-cube, Qr ⊂ F containing A as a vertex and e1, . . . , er as edges;
8 H = Qr;
9 for i← 1 to r do

10 Initialize two new vertices xi and yi and a new graph Hi;
11 V (Hi)← {xi, yi};
12 E(Hi)← {xiyi};
13 end
14 for B ∈ Qr do
15 Compute a shortest path P in Qr from A to B;
16 for i← 1 to r do
17 if P contains an edge in R[ei] then
18 π(B)(i)← yi;
19 else
20 π(B)(i)← xi;
21 end

22 end

23 end
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Procedure Extend(i)

1 Let A1 be any vertex of H;
2 Let A2 be the neighbor of A1 in H such that π(A1)(i) 6= π(A2)(i);
3 Q = Queue();
4 Q. Insert(A1);
5 Q. Insert(A2);
6 while Q not empty do
7 A = Q.Dequeue();
8 for every edge AB of F that is not an edge of H do
9 if every C ∈ V (H), such that π(C)(i) == π(A)(i), is incident to an edge in R[AB] then

10 if B /∈ H then
11 Initialize a new vertex y;
12 Add the vertex y to Hi;
13 for every X ∈ V (H), such that π(X)(i) == π(A)(i) do
14 Let Y be the neighbor of X in F such that XY is in R[AB];
15 Add the vertex Y to H;
16 π(Y ) = π(X);
17 π(Y )(i) = y;

18 end
19 Q. Insert(B);

20 end
21 x = π(A)(i);
22 y = π(B)(i);
23 Add the edge xy to Hi;
24 for every X ∈ V (H), such that π(X)(i) == π(A)(i) do
25 Let Y be the neighbor of X in H such that XY is in R[AB];
26 Add the edge XY to H;

27 end

28 end

29 end

30 end

Algorithm 1: ProductSubgraph

Input: A graph F ' Fk(G) where G is a graph without induced 4-cycles as subgraphs.
Output: A subgraph H of F , graphs H1, . . . ,Hr, and an isomorphism π from H to H1� . . .�Hr.

1 Compute the set R of ladder classes of E(F );
2 Initialize (); // Initializes H and H1, . . . ,Hr

3 for i← 1 to r do
4 Extend (i);
5 end
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The following lemma provides structural properties of the output of ProductSubgraph; along the
way, its proof also analyses ProductSubgraph, Initialize and Extend in detail.

Lemma 5.2. There exist disjoint induced subgraphs G1, . . . , Gr of G, and positive integers k1, . . . , kr
such that the following holds.

(1) k = k1 + · · ·+ kr and V (G) = V (G1) ∪ · · · ∪ V (Gr).

(2) For every pair of vertices A1, A2 ∈ H and index 1 ≤ i ≤ r we have that π(A1)(i) = π(A2)(i) if and
only if ϕ(A1) ∩ V (Gi) = ϕ(A2) ∩ V (Gi).

(3) For every index 1 ≤ i ≤ r, and vertex u ∈ V (Hi), pick any vertex A ∈ H such that u = π(A)(i); let
ϕi be the function that maps u to ϕ(A) ∩ V (Gi); then ϕi is an isomorphism from Hi to Fki(Gi).

(4) For every A ∈ V (H),

ϕ(A) =

r⋃
i=1

ϕi(π(A)(i)).

That is, the following diagram commutes.

H Fk(G)

H1� · · ·�Hr

ϕ

π ⋃r
i=1 ϕi(·)

Proof. H,H1, . . . , Hr and π are initialized when Initialize is called in line 2 of ProductSubgraph.
Afterwards, these graphs and π are updated throughout the execution of ProductSubgraph. In what
follows we show that throughout the execution of ProductSubgraph there exist disjoint subgraphs
G1, . . . , Gr of G, and integers k1, . . . , kr whose sum is at most k, such that at key steps of the execution
of ProductSubgraph, (2) and the following properties hold.

(3′) For every index 1 ≤ i ≤ r, and vertex u ∈ V (Hi), pick any vertex A ∈ H such that u = π(A)(i); let
ϕi be the function that maps u to ϕ(A)∩ V (Gi); then ϕi is an isomorphism from Hi to a subgraph
of Fki(Gi).

(4′) For every A ∈ V (H),

ϕ(A) =

(
r⋃
i=1

ϕi(π(A)(i))

)
∪

(
ϕ(A) \

r⋃
i=1

V (Gi)

)
.

Afterwards, we show that (1),(3) and (4) hold at the end of the execution of ProductSubgraph. We
also show that at the end of the execution of ProductSubgraph the ki sum up to k and that Gi are
induced subgraphs of G; this proves the lemma.

Let A be as in line 5 of Initialize. Since MA is a matching of JA, its edges are in correspondence with
r := |MA| independent edges in G, such that there is exactly one token of ϕ(A) in each edge. Moving
these tokens on their respective edges produces an r-cube in Fk(G). Therefore, the r-cube, Qr, of line 7
exists. Qr can be computed as follows. Let e1, . . . , er be the edges of F incident to A that correspond to
the edges of MA (line 6 of initialize). The vertices of Qr are all the vertices of F that are reachable from
A by a path with all its edges contained in R[e1]∪ · · · ∪R[er]. Thus, Qr can be found by computing the
subgraph of F with edge set R[e1] ∪ · · · ∪R[er] and then finding the component containing A. In line 8,
H is set to be Qr. The Hi’s are constructed in lines 9− 12; each Hi consists of two adjacent vertices xi
and yi. Let e′1, . . . , e

′
r be the edges of G such that ϕ(ei) corresponds to moving the token along e′i; let

Gi be the subgraph of G consisting of the edge e′i and let ki = 1. In lines 14 − 22, π is constructed so
that (2), (3′) and (4′) hold.

We now consider the i-th call to Extend in line 4 of ProductSubgraph. Assume that (2), (3′) and
(4′) hold before the i-th call to Extend. Throughout the execution of Extend we have the following
invariant.

Every vertex X in Q satisfies that π(X)(j) = π(A1)(j) for all j 6= i. (∗)

This is certainly the case before the first execution of the while in line 6, since Q contains only the
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vertices A1 and A2. We show that (2), (3′), (4′) and (∗) hold at the end of each execution of the for of
line 8.

Let AB be the edge in line 8 and let e := uv be the edge of G such that ϕ(B) is obtained from ϕ(A)
by moving a token along e. We show that

the condition of line 9 is satisfied if and only if one of u and v is in Gi while the other is
not in any Gj with j 6= i.

(†)

Suppose that one of u and v is in Gi while the other is not in any Gj with j 6= i. Let C ∈ V (H)
with π(C)(i) = π(A)(i). Let (A = C1, . . . , Cm = C) be a shortest path in H from A to C. Note that
π(Cl)(i) = π(A)(i) for all 1 ≤ l ≤ m. Since (2) holds we have that for every 1 ≤ l ≤ m there exists a
vertex Dl such that ϕ(Dl) is obtained from ϕ(Cl) by sliding a token along e. Thus, the set of vertices

{Cl : 1 ≤ l ≤ m} ∪ {Dl : 1 ≤ l ≤ m}

induce a ladder from AB to CDm. Therefore, the condition of line 9 is satisfied.
Suppose that u and v are not in ∪rj=1V (Gi). Then {e, e1, . . . , er} is a matching of size r + 1 of JA,

where A is as in line 5 of Initialize; this is a contradiction to the fact that MA is maximum. Therefore, at
least one of u and v is in ∪rj=1V (Gi). Suppose that one of u and v is in Gj for some j 6= i. Without loss of
generality suppose it is u. Then there exist vertices C1 and C2 of H with π(C1)(i) = π(C2)(i) = π(A)(i),
such that in ϕ(C1) there is a token at u, and in ϕ(C2) there is no token at u. Depending on whether
there is a token at v in ϕ(A), for one of ϕ(C1) and ϕ(C2) either e contains two tokens at its endpoints
or no endpoint of e contains a token. In either case, there is no token move possible along e. Therefore,
there exists a vertex C ∈ H with π(C)(i) = π(A)(i) that is not incident to an edge in R[AB]. Thus, the
condition of line 9 does not hold. Therefore, (†) holds.

Suppose that B is not a vertex of H. If v /∈ V (Gi), update V (Gi) to V (Gi) ∪ {v}, and E(Gi) to
E(Gi)∪{uv}. If ϕ(B) is obtained from moving a token from v to u, then this token has not been moved
before. In this case update ki to ki + 1. Otherwise, if ϕ(B) is obtained from moving a token from u to
v, then ki remains unchanged. In line 12 a new vertex y is added to Hi. Consider lines 13 − 15. For
every vertex X ∈ H with π(X)(i) = π(A)(i), let Y be its neighbor such that XY ∈ R[AB]; we add Y
to V (H). In lines 16 and 17, π(Y ) is defined so that π(Y )(i) := y and π(Y )(j) := π(X)(j) for all j 6= i.
Thus (2) is satisfied after the execution of line 18. Since ϕ(Y ) is obtained from ϕ(X) by sliding a token
along e we have that (4′) holds after the execution of line 18. In line 19, B is inserted to Q, and (∗) still
holds. Suppose that B may or may not be a vertex of H. Let X and Y be as in lines 24 and 25. Since
ϕ(Y ) is obtained from ϕ(X) by sliding a token along uv, we have that (3′) holds after the execution of
line 27.

Suppose that the i-th execution of Extend has ended. Let uv be an edge of Gi. Let X be any vertex
of H such that ϕ(X) contains a token at u and no token at v. Let Y ∈ F be such that ϕ(Y ) is obtained
from ϕ(X) by sliding a token along uv. Note that Y is also in H. At some point during the execution
of Extend, in line 23 the edge π(A)(i)π(B)(i) was added to Hi. Therefore, we have that

(3′′) For every vertex u ∈ V (Hi), pick any vertex A ∈ H such that u = π(A)(i); let ϕi be the function
that maps u to ϕ(A) ∩ V (Gi); then ϕi is an isomorphism from Hi to Fki(Gi).

Assume that the execution of ProductSubgraph has ended. Since (3′′) holds for every 1 ≤ i ≤ r
we have that (3) holds. Let G′ =

⋃r
i=1Gi. Suppose that G \G′ 6= ∅. Let uv be a G′ −G \G′ edge. Let

Gi be such that u ∈ Gi. Let A1 and A2 be vertices of H such that in ϕ(A1) there is a token at u and in
ϕ(A2) there is no a token at u. Note that either there is a token at v in both ϕ(A1) and ϕ(A2) or there is
no token at v in neither of ϕ(A1) and ϕ(A2). For exactly one of ϕ(A1) and ϕ(A2) we have that there is
exactly one token at the endpoints of uv. Let A := Aj be such that in ϕ(Aj) there is exactly one token
at the endpoints of uv. Let B ∈ V (F ) be such that ϕ(B) is obtained from ϕ(A) by sliding the token
along uv. Since v /∈ Gi we have that B /∈ Hi. At some point during the execution of line 7 of Extend(i)
A is removed from Q. Afterwards, eventually, in line 8, AB is considered. AB satisfies the condition of
line 9; thus B is added to Hi—a contradiction. Thus, V (G) = V (G1) ∪ · · · ∪ V (Gr). This implies that
H is maximal in F with the property of being the Cartesian product of r connected graphs with at least
two vertices. By Theorem 4.6 we have that k = k1 + · · · + kr and that the Gi’s are induced subgraphs
of G. In particular (1) holds. Since (4′) holds, this implies that (4) holds. The result follows.
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Figure 2: A sample token configuration of Fki
(Gi) for an Hi of each possible class.

5.1 Reconstructing the Gi

Suppose that ProductSubgraph has been executed; let G1, . . . , Gr and k1, . . . , kr be as in Lemma 5.2.
In this section we show how to construct graphs isomorphic to the Gi. We classify each Hi into the
following four classes.

1. Hi is a an edge.

2. Hi is a triangle.

3. Hi is isomorphic to the token graph of a star of at least three vertices. By Lemma 3.3, there are
unique integers l and m, with l ≤ (m + 1)/2 such that Hi ' Fl(K1,m). There are three more
possibilities in this case:

3a. Gi ' Fl(K1,m), ki = 1 or ki = |Fl(K1,m)| − 1, and 1 < l < m; or

3b. Gi ' K1,m, 1 < ki < |Gi| − 1, and ki = l or ki = m+ 1− l.
3c. Gi ' K1,m and ki = 1 or ki = m.

4. Hi is not a triangle, an edge, nor isomorphic to the token graph of a star.

See Figure 2.
We now show how to determine the class of each Hi in polynomial time. The following lemma is

useful for restricting the possible values of the ki.

Lemma 5.3. If some Gi contains two disjoint edges, then all kj are equal to 1 or all kj are equal to
|Gj | − 1.

Proof. Consider the vertex A and the edges e1, . . . , er in lines 5 and 6 of Initialize. The edges
ϕ(e1), . . . , ϕ(er) of Fk(G) correspond to e′1, . . . , e

′
r disjoint edges in G, each with exactly one token

of ϕ(A) at one of their endpoints. For every 1 ≤ i ≤ r, we have that ei is in Gi. Let e∗1 and e∗2 be
two disjoint edges of Gi. By the maximality of MA, in ϕ(A) at least one of e∗1 and e∗2 contains either:
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no token, or two tokens at its endpoints. Without loss of generality assume it is e∗1. This implies that
e∗1 6= e′i.

For a contradiction suppose that some kj is different from 1 and |Gj | − 1. This implies that in ϕ(A),
Gj contains both a vertex u /∈ e′j without a token, and vertex v /∈ e′j with a token. If e∗1 contains no token
of ϕ(A), then let ϕ(A′) be the token configuration that is produced from ϕ(A) by removing the token at
v and placing it at e∗1. If e∗1 contains two tokens of ϕ(A), then let ϕ(A′) be the token configuration that
is produced from ϕ(A) by removing one token from e∗1 and placing it at u. We have that e∗1, e

′
1, . . . , e

′
r is

a set of disjoint edges each with exactly one token of ϕ(A′). This implies that |M ′A| = |MA|+ 1, which
contradicts our choice of A.

Lemma 5.4. We can determine in polynomial time the class of every Hi.

Proof. By Lemma 3.3, we can determine in polynomial time whether each Hi is of class 1, 2, 3c or 4. We
show how to distinguish between the classes 3a and 3b. By Lemma 5.3 there cannot simultaneously exists
an Hi of class 3a and an Hj of class 3b. Assume that at least one Hi is of class 3a or 3b as otherwise we
are done. Suppose that r = 1; since we are assuming that 1 < k < |G| − 1, we have that H1 is of class
3b and we are done in this case. Assume that r > 1.

We claim that

all the Hi of class 3a or 3b, are of class 3a if and only if F contains three edge disjoint graphs
F1, F2 and M with the following properties.

(∗)

(1) F1 is an induced subgraph of H;

(2) there exists an Hi of class 3a or 3b, and vertices u ∈ Hi and v ∈ Hj(j 6= i), such that the set of
vertices of F1 is of the form

{A ∈ V (H) : π(A)(i) 6= u and π(A)(j) = v}.

(3) F2 is disjoint from H;

(4) M is a matching from the vertices of F1 to the vertices of F2;

(5) all the edges in M are in the same ladder class;

(6) the map that sends every vertex in F1 to its matched vertex in M is an isomorphism from F1 to
F2.

Let F1, F2 and M be as above. Since all the edges in M are in the same ladder class, the set of edges
of ϕ(M) corresponds to moving a token along the same edge xy of G. This implies that every token
configuration in ϕ(F1) either: contains a token at x and no token at y, or contains a token at y and no
token at x. By (2) of Lemma 5.2 there exist token configurations B1 ∈ Fki(Gi) and B2 ∈ Fkj (Gj) such
that

ϕ(V (F1)) = {C ∈ ϕ(V (H)) : C ∩ V (Gi) 6= B1 and C ∩ V (Gj) = B2}
Thus, either x ∈ Gi and y ∈ Gj , or x ∈ Gj and y ∈ Gi. Without loss of generality assume it is the
former. If Hi is of type 3b then there exists token configurations C1 and C2 of Fki(Gi) distinct from B1

such that x ∈ C1 and x /∈ C2. This is a contradiction to the fact that in every token configuration of
ϕ(F1) either there is a token at x or there is no token at x. Therefore, if H contains subgraphs F1, F2

and M as above then every Hi of class 3a or 3b, is of class 3a.
Conversely, suppose that every Hi of class 3a or 3b, is of class 3a. Since r > 1 and G is connected

there exists a pair of indices i and j, such that Hi is of class 3a and there exists an edge xy ∈ G with
x ∈ Gi and y ∈ Gj . By Lemma 5.3 either all ki are equal to 1, or all ki are equal to |Gi| − 1. If all the
ki are equal to 1, then let F ′1 be the subgraph of Fk(G) induced by the set of token configurations

{B ∈ ϕ(H) : x /∈ B and y ∈ B}.

If all ki are equal to |Gi| − 1, then let F ′1 be the subgraph of Fk(G) induced by the set of token
configurations

{B ∈ ϕ(H) : x ∈ B and y /∈ B}.
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Let F1 := ϕ−1(F ′1). By (2) of Lemma 5.2 and the fact that every ki is equal to 1 or to |Gi| − 1, the
vertex set of F1 is of the form

{A ∈ H : π(A)(i) 6= u and π(A)(j) = v},

for some pair of vertices u ∈ Hi and v ∈ Hj . Thus F1 satisfies (1) and (2). Let F ′2 be the subgraph of
Fk(G) induced by the set of vertices

{C ∈ Fk(G) : C is obtained from a vertex B ∈ F ′1 by sliding the token along xy}.

Let F2 := ϕ−1(F ′2). Since xy is not an edge of
⋃r
i=1Gi, F2 is disjoint from H. Thus, F2 satisfies (3). Let

M ′ := {C1C2 ∈ E(F ′1, F
′
2) : ϕ(C1)4ϕ(C2) = {x, y}}.

Let M := ϕ−1(M ′). M ′ is a matching from F ′1 to F ′2; thus, M satisfies (4). By construction of F ′2,
the map that sends every vertex in F ′1 to its matched vertex in M ′ is an isomorphism from F ′1 to F ′2.
Therefore, M satisfies (6). It is not hard to show that Hi is 2-connected; this, in turn implies that F ′1 is
connected. Thus, all the edges in M ′ are in the same ladder class, and M satisfies (5).

The existence of F1, F2 and M can be determined in polynomial time as follows. First we iterate over
all possible candidates for F by considering all subgraphs induced by a set of vertices satisfying (2); there
are a polynomial number of these sets, and each can be constructed in polynomial time. Afterwards, we
iterate over each ladder class of F and compute the subset of edges, M , in this ladder class such that
exactly one of its endpoints is a vertex of F1. We compute the graph F2 induced by the endpoints of
these edges that are not in F1. Finally, we check whether M and F2 satisfy (3) − (6). If the desired
F1, F2 and M exist they are found by this algorithm.

For every 1 ≤ i ≤ r we construct a graph Ji isomorphic to Gi as follows. If Hi is not of class 3b we
set Ji to be a copy of Hi. If Hi is of class 3b, we use Lemma 3.1 to compute m and l ≤ (m+ 1)/2 such
that Hi ' Fl(K1,m); and set Ji to be a copy of K1,m. Let J :=

⋃r
i=1 Ji; note that J is isomorphic to⋃r

i=1Gi.

5.2 Reconstructing the adjacencies between the Gi’s

To reconstruct G all that remains to be done is to reconstruct the adjacencies between the Gi’s. This
information is encoded in the adjacencies between H and F \H. We start by labeling each Hi as a token
graph of Ji. First note that each Hi is uniquely reconstructible as the ki-token graph of Ji: when Hi is
not of class 3b this is straightforward; and when Hi is of class 3b it follows from Lemmas 3.1 and 3.3.
There are at most two possible values, li and l̄i, for each ki:

• if Hi is of class 1, then ki = 1; in this case we set li := 1 and l̄i := 1;

• If Hi is not of class 3b nor 1, then by Lemma 5.3, we have that ki = 1 or ki = |Ji| − 1; in this case
we set li := 1, and li := |Ji| − 1;

• If Hi is of class 3b, then by Lemma 3.1, there exist unique integers m and l ≤ (m+ 1)/2 such that
Hi ' Fl(K1,m); we set li := l, and li := m+ 1− l in this case.

We construct in polynomial time an isomorphism ψi : Hi → Fli(Ji). This is straightforward when
Hi is not of class 3b; when Hi is of class 3b it can be done in polynomial time by Lemma 3.3. For each
Hi we also construct the following isomorphism from Hi to Fli(Ji).

ψi :=


c ◦ ψi if Hi is not of class 1;

ψi if Hi is of class 1;

Let ϕi be the isomorphism from Hi to Fki(Gi) given by (3) of Lemma 5.2. Using ϕi and one of ψi
and ψi, we define an isomorphism φ′i from Fki(Ji) to Fki(Gi), and an isomorphism φi from Ji to Gi such
that

φ′i = ι(φi).
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• Suppose that Hi is not of class 1. By 3) of Theorem 2.4, there exists a unique f(ϕi ◦ ψi−1) ∈
Iso(Ji, Gi) such that

ϕi ◦ ψi−1 = ι(f(ϕi ◦ ψi−1)) or ϕi ◦ ψi−1 = c ◦ ι(f(ϕi ◦ ψi−1)).

Let

φ′i :=


ϕi ◦ ψi−1 if ϕi ◦ ψi−1 = ι(f(ϕi ◦ ψi−1));

ϕi ◦ ψi
−1

if ϕi ◦ ψi−1 = c ◦ ι(f(ϕi ◦ ψi−1)).

Let φi := f(ϕi ◦ ψi−1). If φ′i = ϕi ◦ ψi−1, then φ′i = ι(φi). If φ′i = ϕi ◦ ψi
−1

, then

φ′i = ϕi ◦ ψi
−1

= ϕi ◦ (c ◦ ψi)−1

= ϕi ◦ ψi−1 ◦ c

= c ◦ ι(f(ϕi ◦ ψi−1)) ◦ c

= c ◦ c ◦ ι(f(ϕi ◦ ψi−1))

= ι(f(ϕi ◦ ψi−1))

= ι(φi).

• Suppose that Hi is of class 1. Let φ′i := ϕi ◦ ψi−1, and let φi ∈ Iso(Ji, Gi) such that

φ′i = ι(φi).

We have the following diagram.

Fli(Ji)

Hi Fki(Gi) Ji Gi

Fli(Ji)

ψi
−1

ι(φi)

ϕi φi
c

ψi
−1

ι(φi)

,

where we have exactly one of the dashed lines.
In what follows we always use the same letter to denote a vertex of Ji and its image under φi in Gi. We

use a prime to distinguish the vertex in Ji. So that if u′ ∈ Ji then u := φi(u
′) ∈ Gi. Let e ∈ E(H,F \H).

Note that there exist indices 1 ≤ i < j ≤ r such that ϕ(e) corresponds to moving a token along a
Gi − Gj edge. Let idxH(e) := {i, j}; and let E(H,F \ H)ij be the set of edges e′ ∈ E(H,F \ H) such
that idxH(e′) = {i, j}.
Lemma 5.5. For every H − F \H edge, e, we can compute idxH(e) in polynomial time.

Proof. Let AB be an H − F \H edge. For every pair 1 ≤ i < j ≤ r we check whether every vertex in
the set

{C ∈ H : π(C)(i) = π(A)(i) and π(C)(j) = π(A)(j)}
is incident to an edge in the same ladder class as AB. The pair where this is the case is the pair of
indices we are looking for.
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5.2.1 Labeling the H − F \H edges with vertices in J

Consider an edge e ∈ E(H,F \ H)ij . Note that there exist vertices x′ =: endpointJ(e)(i) ∈ Ji and
y′ =: endpointJ(e)(j) ∈ Jj such that ϕ(e) corresponds to moving a token along the edge xy. In this
section we show how to compute endpointJ(e)(i) in polynomial time when Hi is not of class 1. We define
some subgraphs of F , that are useful for this and other purposes.

Let A be a vertex of F .

• Let Move(A, i) be the subgraph of F induced by all the vertices B ∈ F such that

ϕ(B) ∩Gj = ϕ(A) ∩Gj for all j 6= i.

Thus, ϕ(Move(A, i)) is the subgraph of Fk(G) induced by all the token configurations that can be
reached from ϕ(A) by moving the tokens within Gi while leaving the tokens at the other Gj fixed.

• Let Move(A) be the subgraph of F induced by all the vertices B ∈ F such that

|ϕ(B) ∩Gi| = |ϕ(A) ∩Gi| for all 1 ≤ i ≤ r.

Thus, ϕ(Move(A)) is the subgraph of Fk(G) induced by all the token configurations that can be
reached from ϕ(A) by token moves that do not involve moving tokens between different Gi.

Note that if A ∈ V (H), then

Move(A, i) ' Hi and Move(A) ' H.

In particular, in this case Move(A, i) is the subgraph of H induced by the set of vertices

{B ∈ H : π(B)(j) = π(A)(j) for all j 6= i}.

Thus, when A is a vertex of H we can compute Move(A, i) in polynomial time.

Let e = AB ∈ E(H,F \H)ij .

• Let FixEdge(e, i) be the component, that contains A, of the subgraph of F induced by the set of
vertices

{C ∈Move(A, i) : C is incident to an edge in the ladder class of e}.
Thus, ϕ(FixEdge(e, i)) is the subgraph of Fk(G) induced by token configurations in ϕ(Move(A, i))
that are reachable from ϕ(A) by a path in ϕ(Move(A, i)), such that at every token move of the
path no token has been moved from or placed at the endpoints of ϕ(e).

• Let NFixEdge(e, i) be the subgraph of Move(A, i) \ FixEdge(e, i) induced by neighbors of
FixEdge(e, i) in Move(A, i) \ FixEdge(e, i).

We now prove some lemmas that use the structure of the previously defined subgraphs of F , to
compute endpointJ(e)(i) in polynomial time.

Lemma 5.6. Let e ∈ E(H,F \H)ij. Suppose that |FixEdge(e, i)| > 1 or |NFixEdge(e, i)| > 1. Then
we can compute endpointJ(e)(i) in polynomial time.

Proof. Let AB := e. If Hi is of class 1, then |FixEdge(e, i)| = 1 and |NFixEdge(e, i)| = 1. Thus, Hi
is not of class 1. Note that

a) if A1A2 is an edge of FixEdge(e, i), then

x′ /∈ ψi(A1)4ψi(A2) = ψi(A1)4ψi(A2); and

b) if A1A2 is a FixEdge(e, i)−NFixEdge(e, i) edge then

x′ ∈ ψi(A1)4ψi(A2) = ψi(A1)4ψi(A2).

(∗)
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Suppose that Hi is not of class 3b. We have that ki = 1 or ki = |Gi| − 1. Let v′ the only vertex in

ψi(A) = V (Ji) \ ψi(A).

Let C be a vertex in NFixEdge(e, i). Let w′ be the only vertex in

ψi(C) = V (Ji) \ ψi(C).

Suppose that |FixEdge(e, i)| > 1; by (∗) we have that endpointJ(e)(i) = w′. Suppose that |FixEdge(e, i)| =
1; thus, |NFixEdge(e, i)| > 1; by (∗) we have that endpointJ(e)(i) = v′.

Suppose that Hi is of class 3b. Thus, Ji is a star. Let v′ be the center of Ji. If |FixEdge(e, i)| =
1, then |NFixEdge(e, i)| > 1 and endpointJ(e)(i) = v′. Suppose that |FixEdge(e, i)| > 1, then
endpointJ(e)(i) 6= v′. Let CD be a FixEdge(e, i)−NFixEdge(e, i) edge. We have that endpointJ(e)(i)
is the vertex in

ψi(C)4ψi(D) = ψi(C)4ψi(D)

distinct from v′.

Lemma 5.7. Suppose that Hi is not of class 1. For every vertex u ∈ Gi such that u is adjacent to
a vertex v ∈ Gj, there exists e ∈ E(H,F \ H)ij such that endpointJ(e)(i) = u′ and for which we can
compute endpointJ(e)(i) in polynomial time.

Proof. Suppose that u is of degree greater than one in Gi. Let A ∈ V (H) be such that: if ki = 1, then
in ϕ(A) there is a token at u and no token at v; and if ki > 1, then in ϕ(A) there is no token at u, a
token in at least two neighbors of u and a token at v. Let e := AB, such that ϕ(B) is obtained from A
by sliding the token along uv. We have that |NFixEdge(e, i)| > 1 and by Lemma 5.6 we can compute
endpointJ(e)(i).

Suppose that u is of degree equal to one in Gi, and let w be its neighbor in Gi. Note that since Hi
is not of class 1, w is of degree greater than one in Gi. Let A ∈ H be such that: if ki = 1, then in ϕ(A)
there is a token at w, no token at u, and a token at v; if ki > 1, then in ϕ(A) there is no token at w,
a token at u, a token at a neighbor of w in Gi distinct from u, and no token at v. Let e := AB, such
that ϕ(B) is obtained from A by sliding the token along uv. We have that |FixEdge(e, i)| > 1 and by
Lemma 5.6 we can compute endpointJ(e)(i).

Lemma 5.8. Let e := AB ∈ E(H,F \H)ij such that Hi is not of class 1. If we know that it must be the
case that either ki = kj = 1, or ki = |Gi| − 1 and kj = |Gj | − 1, then we can compute endpointJ(e)(i) in
polynomial time.

Proof. Let x′ be the vertex of Ji such that

{x′} = ψi(π(A)(i)) = V (Ji) \ ψi(π(A)(i)).

Suppose that x′ is of degree greater than one in Ji. If x′ = endpointJ(e)(i) then |NFixEdge(e, i)| > 1,
and we are done by Lemma 5.6. If x′ 6= endpointJ(e)(i) then |FixEdge(e, i)| > 1, and we are done by
Lemma 5.6. Assume that x′ is of degree equal to one in Ji. Let v′ be the neighbor of x′ in Ji. Assume
that endpointJ(e)(i) = x′ or endpointJ(e)(i) = v′; otherwise, |FixEdge(e, i)| > 1 and we are done by
Lemma 5.6.

Let y′ be the vertex of Jj such that

{y′} = ψj(π(A)(j)) = V (Jj) \ ψj(π(A)(j)).

Suppose that |FixEdge(e, j)| > 1 or |NFixEdge(e, j)| > 1. Note that Hj is not of class 1. By
Lemma 5.6 we can compute endpointJ(e)(j). If endpointJ(e)(j) = y′, then endpointJ(e)(i) = v′; if
endpointJ(e)(j) 6= y′, then endpointJ(e)(i) = x′. Thus, we may assume that |FixEdge(e, j)| = 1 and
|NFixEdge(e, j)| = 1. This implies that y′ is of degree equal to one in Jj . Let w′ be the neighbor of y′

in Jj . We have that endpointJ(e)(j) = y′ or endpointJ(e)(j) = w′; otherwise, |FixEdge(e, j)| > 1.
Let A′ be the vertex of H such that ψi(π(A′))(i) = V (Ji) \ ψi(π(A)(i)) and ψj(π(A′))(j) = V (Jj) \

ψj(π(A)(j)). Let

S := {B′ ∈ V (F \H) : idxH(A′B′) = {i, j}}.
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Let B′ ∈ S. Since v′ is of degree greater than one in Ji we have that |FixEdge(A′B′, i)| > 1 or
|FixEdge(A′B′, i)| > 1. By Lemma 5.6 we can determine endpointJ(A′B′)(i). By a similar argument,
if Hj is not of class 1 we can determine endpointJ(A′B′)(j).

Suppose that Hj is not of class 1. We determine whether x is adjacent to w, and whether y is adjacent
to v as follows. If x is adjacent to w but v is not adjacent to y, then endpointJ(e)(i) = x′. If y is adjacent
to v but x is not adjacent to w, then endpointJ(e)(i) = v′. Assume that x is adjacent to w and that v
is adjacent to y. We determine the vertex B′ ∈ S such that ϕ(B′) is obtained from ϕ(A′) by sliding the
token along the edge xw, and the vertex B′′ ∈ S such that ϕ(B′′) is obtained from ϕ(A′) by sliding the
token along the edge yv. Note that B = B′ or B = B′′. If B = B′ then endpointJ(e)(i) = v′; and if
B = B′′ then endpointJ(e)(i) = x′.

Suppose thatHj is of class 1. Suppose that there exists a vertexB′ ∈ S such that endpointJ(A′B′)(i) =
v′. If B = B′, then endpointJ(e)(i) = x′; otherwise, endpointJ(e)(i) = v′. Suppose that no such vertex
B′ exists. If ki = 1, then v is not adjacent to y, and endpointJ(e)(i) = x′. If ki = |Gi| − 1, then v is not
adjacent to y, and endpointJ(e)(i) = x′. In either case we have that endpointJ(e)(i) = x′.

Suppose that we have computed endpointJ(e)(i) and endpointJ(e)(j) for some e := AB ∈ E(H,F \
H)ij . Note that ψi and ψi both interpret Hi as a token graph of Ji. With the difference being that there
is a token at endpointJ(e)(i) in ψi(π(A)) if and only if there is no token at endpointJ(e)(i) in ψi(π(A)).
The same relationship holds for ψj , ψj and Hj . So ψi is compatible with exactly one of ψj and ψj . We
formalize this idea in Lemma 5.9. For every 1 ≤ i ≤ r, and every ψ′i ∈ {ψi, ψi}, let

ψ′i :=


ψi if ψ′i = ψi,

ψi if ψ′i = ψi.

Lemma 5.9. Suppose that Hj is not of class 1 and that we have computed both endpointJ(e)(i) and
endpointJ(e)(j) for some e ∈ E(H,F \H)ij. Then we can determine in polynomial time ψ′j ∈ {ψj , ψj}
with the following property. For every edge AB ∈ E(H,F\H)ij, there is exactly one token at {endpointJ(AB)(i),
endpointJ(AB)(j)} in each of

ψi(π(A)(i)) ∪ ψ′j(π(A)(j)) and ψi(π(A)(i)) ∪ ψ′j(π(A)(j)).

Proof. Let AB := e, x′ := endpointJ(e)(i) and y′ := endpointJ(e)(j). Since ϕ(B) is obtained from ϕ(A)
by sliding a token along the edge xy, we have that in ϕ(A) there is exactly one token at each of x and
y. By definition of ψj there is a token at y′ in ψj(π(A)(j)) if and only if there is no token at y′ in
ψj(π(A)(j)). Choose ψ′j ∈ {ψj , ψj} so that

there is a token at y′ in ψ′j(π(A)(j) if and only there is no token at x′ in ψi(π(A)(i)). (∗)

Let CD ∈ E(H,F \H)ij , v
′ := endpointJ(CD)(i) and w′ := endpointJ(CD)(j). Recall that

φ′i = ϕi ◦ ψi−1 or φ′i = ϕi ◦ ψi
−1
.

Suppose φ′i = ϕi ◦ ψ−1
i . Thus, the isomorphism φi from Ji to Gi is given by φi = ι−1(ϕi ◦ ψ−1

i ). By
(∗) we have that φj = ι−1(ϕj ◦ ψ′j

−1
). This implies that:

• there is a token at v in ϕ(C) if and only if there is a token at v′ in ψi(π(C)(i)); and

• there is a token at w in ϕ(C) if and only if there is a token at w′ in ψ′j(π(C)(j)).

Therefore, there is exactly one token at {v′, w′} in each of

ψi(π(C)(i)) ∪ ψ′j(π(C)(j)) and ψi(π(C)(i)) ∪ ψ′j(π(C)(j)).

Suppose φ′i = ϕi ◦ψi
−1

. Thus, the isomorphism φi from Ji to Gi is given by φi = ι−1(ϕi ◦ψi
−1

). By

(∗) we have that φj = ι−1(ϕj ◦ ψ′j
−1

) This implies that:

• there is a token at v in ϕ(C) if and only if there is no token at v′ in ψi(π(C)(i)); and

• there is a token at w in ϕ(C) if and only if there is no token at w′ in ψ′j(π(C)(j)).
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Therefore, there is exactly one token at {v′, w′} in each of

ψi(π(C)(i)) ∪ ψ′j(π(C)(j)) and ψi(π(C)(i)) ∪ ψ′j(π(C)(j)).

When ψi and ψ′j are as in Lemma 5.9, we say that ψi is compatible with ψ′j , and that ψi is compatible

with ψ′j . For convenience if Hi is of class 1, then for every 1 ≤ j ≤ r, we say that ψj and ψj are both

compatible with ψi = ψi. We are now ready to prove the main result of this section.

Theorem 5.10. Let e ∈ E(H,F\H)ij such that Hi is not of class 1. Then we can compute endpointJ(e)(i)
in polynomial time.

Proof. We first show that

If there exist three disjoint edges e′1, e
′
2 and e′3 in Gi ∪Gj, then ki = kj = 1, or ki = |Gi| − 1

and kj = |Gj | − 1.
(∗)

Suppose for a contradiction that ki = 1 and kj > 1, or ki = |Gi| − 1 and kj < |Gj | − 1. Let e1, . . . er
be as in line 6 of Initialize. We can rearrange the tokens at ϕ(A) and place exactly one token at the
endpoints of each of e1, . . . , ei−1, ei+1, . . . , ej−1, ej+1, . . . er, e

′
1, e
′
2 and e′3; which contradicts our choice of

A in line 5 of Initialize.
Let AB := e ∈ E(H,F \ H). Suppose that Hi is of class 2, 3a or 3b. Note that Gi contains two

incident edges, such that in ϕ(A) each edge contains exactly one token at its endpoints. This implies that
|FixEdge(e, i)| > 1 or |NFixEdge(e, i)| > 1; thus, by Lemma 5.6, we can determine endpointJ(e)(i).
(Note that using the same arguments, if Hj is of class 2, 3a or 3b, we can determine endpointJ(e)(j).)
Suppose that Hi is of class 4. We have that Gi contains two disjoint edges. By (∗) we have that
ki = kj = 1, or ki = |Gi| − 1 and kj = |Gj | − 1. Thus, by Lemma 5.8 we can determine endpointJ(e)(i).
Assume that Hi is of class 3c.

Let x′ be the vertex of Ji such that

{x′} = ψi(π(A)(i)) = V (Ji) \ ψi(π(A)(i)).

We assume that |FixEdge(e, i)| = 1 and |NFixEdge(e, i)| = 1; otherwise we are done by Lemma 5.6.
Thus, x′ is of degree one in Ji. Let v′ be the neighbor of x′ in Ji. We have that

endpointJ(e)(i) = x′ or endpointJ(e)(i) = v′;

otherwise, |FixEdge(e, i)| > 1 or |NFixEdge(e, i)| > 1.
Suppose that Hj is of class 4; thus, Gj contains two disjoint edges. By (∗), we have that ki = kj = 1,

or ki = |Gi| − 1 and kj = |Gj | − 1; and by Lemma 5.8, we can determine endpointJ(e)(i). Suppose that
Hj is of class 2, 3a or 3b. By Lemma 5.7, there exists e′ ∈ E(H,F \ H)ij for which we can compute
endpointJ(e′)(i). By the previous observation we can compute endpointJ(e′)(j). Therefore, we can
compute ψ′j as in Lemma 5.9. If there is a token at endpointJ(e)(j) in ψ′j(π(A)(j)) then endpointJ(e)(i) =
v′; and if there is no token at endpointJ(e)(j) in ψ′j(π(A)(j)) then endpointJ(e)(i) = x′. Suppose that
Hj is of class 1. We have that ki = kj = 1, or ki = |Gi| − 1 and kj = |Gj | − 1. By Lemma 5.8, we can
determine endpointJ(e)(i). Assume that Hj is of class 3c.

Since both Hi and Hj are of class 3c, we have that Ji and Jj are stars. Thus, x′ is a leaf of Ji and v′

is the center of Ji. Let w′ be the center of Jj . By Lemma 5.7, we can determine for every pair of vertices
v′1 ∈ Gi and v′2 ∈ Gj , whether v1 is adjacent to v2 in G. We assume that x is adjacent to a vertex of
Gj as otherwise endpointJ(e)(i) = v′. We also assume that v is adjacent to a vertex of Gj as otherwise
endpointJ(e)(i) = x′. Suppose that a leaf of Gi is adjacent to a leaf of Gj ; note that there exists three
disjoint edges in Gi ∪Gj . We have that (∗) implies that ki = kj = 1, or ki = |Gi| − 1 and kj = |Gj | − 1;
thus, by Lemma 5.8, we can compute endpointJ(e)(i). Assume that no leaf of Gi is adjacent to a leaf of
Gj ; this implies that x is adjacent to w.

Suppose that y is a neighbor of v in Gj distinct from w. Then, (v, y, w, x) is a 4-cycle in G and x
and y are adjacent—contradicting the assumption that no leaf of Gi is adjacent to a leaf of Gj . Thus, w
is the only neighbor of v in Gj . Suppose that a vertex y of Gi distinct from x and v, is adjacent to w.
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Then, (y, w, x, v) is a 4-cycle in G and x and y are adjacent—contradicting the assumption that Gi is a
star. Summarizing, we have that

E(Gi, Gj) = {xw, vw}.
Let z be a leaf of Gi distinct from x. Let A1 such that ϕ(A1) is obtained from ϕ(A) by sliding a token

along xv. Let A2 such that ϕ(A2) is obtained from ϕ(A1) by sliding a token along vz. If there exists a
vertex B′ ∈ F \H such that A2 is adjacent to B′ and idxH(A2B

′) = {i, j}, then endpointJ(e)(i) = v′; if
no such vertex exists, then endpointJ(e)(i) = x′.

5.2.2 Labeling the H − F \H edges with respect to token movement direction

Consider an edge e ∈ E(H,F \H)ij . The edge ϕ(e) corresponds to moving a token either from Gi to Gj
or from Gj to Gi. We denote these two possibilities with the tuples (e, i→ j) and (e, j → i), respectively.
If ϕ(e) corresponds to moving a token from Gi to Gj , then we say that (e, i → j) agrees with ϕ. For
every Hi of class 1, let V (Gi) = {xi, x̄i}. For every vertex u′ ∈ Ji, let

u′ :=


x′i if u′ = x′i, and

x′i if u′ = xi;

and for every vertex u ∈ Gi, let

u :=


xi if u = xi, and

xi if u = xi.

For convenience, for every vertex v′ in some Jj , such that Hj is not of class 1, we define

v̄′ := v′ and v̄ := v.

Lemma 5.11. For all 1 ≤ i < j ≤ r, let

D′ij := {(e, i→ j) : e ∈ E(H,F \H)ij}} ∪ {(e, j → i) : e ∈ E(H,F \H)ij}} .

In polynomial time we can find a partition of the set

D :=
⋃

1≤i<j≤r

D′ij

into two sets
−→
D and

←−
D , such that the following holds. Either for all edges e ∈ E(H,F \ H) there is a

tuple containing e in
−→
D that agrees with the direction of ϕ, or for all edges e ∈ E(H,F \H) there is a

tuple containing e in
←−
D that agrees with the direction of ϕ.

Proof. Let 1 ≤ i < j ≤ r be such that E(Gi, Gj) 6= ∅. We first show that in polynomial time we can
find a partition of D′ij into two sets Dij and Dij such that the following holds. Either for all edges
e ∈ E(H,F \H)ij there is a tuple in Dij that agrees with ϕ, or for all edges e ∈ E(H,F \H)ij there is
a tuple in Dij that agrees with ϕ. For convenience we define Dji := Dij and Dji := Dij .

Let e := AB ∈ E(H,F \H)ij . We decide which of Dij and Dij contains (e, i→ j) as follows.

• Suppose that at least one of Hi and Hj is not of class 1.

Without loss of generality assume that Hi is not of class 1. We use Theorem 5.10 to compute
endpointJ(e)(i). If endpointJ(e)(i) ∈ ψi(π(A)(i)), then (e, i → j) ∈ Dij and (e, j → i) ∈ Dij ; if
endpointJ(e)(i) /∈ ψi(π(A)(i)), then (e, i→ j) ∈ Dij and (e, j → i) ∈ Dij . Note that, either for all
edges e ∈ E(H,F \H)ij there is a tuple in Dij that agrees with ϕ, or for all edges e ∈ E(H,F \H)ij
there is a tuple in Dij that agrees with ϕ.

• Suppose that both Hi and Hj are of class 1.

Fix a vertex A∗ ∈ H and let H ′ be the subgraph of H induced by the vertices C ∈ H such that
π(C)(l) = π(A∗)(l) for all l 6= i, j. Note that ϕ(H ′) is the graph generated by moving a token at
each of Gi and Gj , while fixing the tokens at the other Gl. Since Gi and Gj are edges, H ′ is an
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induced 4-cycle of F . The endpoint in F \H of every edge in E(H ′, F \H)ij must be one of two
vertices B1

∗ and B2
∗, where ϕ(B1

∗) and ϕ(B2
∗) correspond to having two tokens in either Gi or

in Gj . Let P := (A = A1, . . . , Am = A′) be a path from A to a vertex A′ ∈ H ′ such that for all
1 ≤ s ≤ m, we have that π(As)(i) = π(A)(i) and π(As)(j) = π(A)(j). Thus, ϕ(P ) corresponds to
a sequence of tokens moves that leaves the tokens at Gi and Gj fixed and arrives at a vertex of
ϕ(H ′). Note that there exists exactly one edge A′B′ ∈ E(H,F \H)ij , such that A′B′ and e are in
the same ladder class. If B′ = B1

∗ then (e, i → j) ∈ Dij and (e, j → i) ∈ Dij ; if B′ = B2
∗ then

(e, i → j) ∈ Dij and (e, j → i) ∈ Dij . Note that, either for all edges e ∈ E(H,F \ H)ij there is
a tuple in Dij that agrees with ϕ, or for all edges e ∈ E(H,F \ H)ij there is a tuple in Dij that
agrees with ϕ.

Suppose that we have defined all such Dij and Dij . For D ∈ {Dij , Dij}, we define

D :=


Dij if D = Dij , and

Dij if D = Dij .

Let 1 ≤ i, j, l ≤ r be indices such that E(Gi, Gj) 6= ∅ and E(Gj , Gl) 6= ∅. Let D1 ∈ {Dij , Dij} and
D2 ∈ {Djl, Djl}. We say that D1 and D2 are an adjacent pair ; we say that D1 and D2 are a compatible
pair, if in addition the following holds. Either for all edges e ∈ E(H,F \H)ij ∪E(H,F \H)jl there is a
tuple in D1 ∪D2 that agrees with ϕ, or for all edges e ∈ E(H,F \H)ij ∪ E(H,F \H)jl there is a tuple
in D1 ∪D2 that agrees with ϕ. Note that if D1 and D2 are compatible, then D1 and D2 are compatible.
Moreover, there is exactly one of Djl and Djl that is compatible to Dij .

We determine in polynomial time whether D1 and D2 are compatible as follows.

• Suppose that Hj is not of class 1.

Let e1 := A1B1 ∈ E(H,F \H)ij and e2 := A2B2 ∈ E(H,F \H)jl such that (e1, i → j) ∈ D1

and (e2, j → l) ∈ D2. We use Theorem 5.10 to compute endpointJ(e1)(j) and endpointJ(e2)(j)
in polynomial time. Let ψ′j ∈ {ψj , ψj} be such that there is no token at endpointJ(e1)(j) in
ψ′j(π(A1)(j)). D1 and D2 are compatible if and only if there is a token at endpointJ(e2)(j) in
ψ′j(π(A2)(j)).

• Suppose that Hj is of class 1.

Let e1 := AB1 ∈ E(H,F \H)ij and e2 := AB2 ∈ E(H,F \H)jl such that (e1, i→ j) ∈ D1 and
(e2, j → l) ∈ D2. Let u′ be the only vertex in ψj(π(A)(j)). If (e1, i→ j) and (e2, j → l) agree with
ϕ, then ϕ(e1) corresponds to moving a token from a vertex in Gi to ū; and ϕ(e2) corresponds to
moving a token from u to a vertex in Gl. D1 and D2 are compatible if and only if e1 and e2 are
contained in an induced 4-cycle of F .

We now extend the definition of compatible pairs to not necessarily adjacent pairs. Let 1 ≤ i, j, l, s ≤ r
be indices such that E(Gi, Gj) 6= ∅ and E(Gl, Gs) 6= ∅. Let D1 ∈ {Dij , Dij} and D2 ∈ {Dls, Dls}. We
say that D1 and D2 are compatible if there exists a sequence D1 = C1, C2, . . . , Cm = D2, such that for
all 1 < t ≤ m, Ct and Ct+1 is a compatible adjacent pair. Having computed all compatible adjacent
pairs we compute all compatible pairs.

We finish the proof by computing D and D. Without loss of generality assume that E(G1, G2) 6= ∅.
Let −→

D :=
⋃

1≤i<j≤r
E(Gi,Gj)6=∅

{D : D ∈ {Dij , Dij} and D is compatible with D12}.

Similarly, let ←−
D :=

⋃
1≤i<j≤r

E(Gi,Gj)6=∅

{D : D ∈ {Dij , Dij} and D is compatible with D12}.
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Renaming ψ and ψ

Let
−→
D and

←−
D be as in Lemma 5.11. If for every edge e ∈ E(H,F \H) there is a tuple (e, i → j) ∈

−→
D

that agrees with ϕ, then we say that
−→
D agrees with ϕ; if for every edge e ∈ E(H,F \H) there is a tuple

(e, i → j) ∈
←−
D that agrees with ϕ, then we say that

←−
D agrees with ϕ. Note that ϕ agrees with exactly

one of
−→
D and

←−
D .

Suppose that Hi is not of class 1 and let ψ′i ∈ {ψi, ψi}. If for every tuple (AB, i→ j) ∈
−→
D , we have

that there is a token at endpointJ(AB)(i) in ψ′i(A), then we say that ψ′i agrees with
−→
D ; if for every tuple

(AB, i → j) ∈
−→
D , we have that there is no token at endpointJ(AB)(i) in ψ′i(A), then we say that ψ′i

agrees with
←−
D . Note that ψ′i agrees with exactly one of

−→
D and

←−
D . Moreover, ψi agrees with

−→
D if and

only if ψi agrees with
←−
D . For all 1 ≤ i ≤ r, such that Hi is not of class 1, we rename ψi and ψi so that

ψi agrees with
−→
D and ψi agrees with

←−
D . This implies also renaming li and li. Note that if Hi and Hj

are not of class 1 and E(H,F \H)ij 6= ∅, then ψi is compatible with ψj , and ψi is compatible with ψj .
By the definition of φ′i, we now have that

φ′i :=


ϕi ◦ ψi−1 if ϕ agrees with

−→
D ;

ϕi ◦ ψi
−1

if ϕ agrees with
←−
D .

5.3 Constructing a graph isomorphic to G

We construct, in polynomial time two isomorphic graphs
−→
J and

←−
J . Let

V (
−→
J ) := V (

←−
J ) :=

⋃
1≤i≤r

V (Ji);

let E(
−→
J ) and E(

←−
J ) both contain ⋃

1≤i≤r

E(Ji).

For every (e, i → j) ∈
−→
D we add an additional edge to

−→
J and

←−
J as follows. Let AB ∈ E(H,F \H)ij

such that AB = e. Let

x′ :=


endpointJ(e)(i) if Hi is not of class 1;

the only vertex in ψi(π(A)(i)) if Hi is of class 1;

Let

y′ :=


endpointJ(e)(j) if Hj is not of class 1;

the only vertex in ψj(π(A)(j)) if Hj is of class 1.

We add the edge x′y′ to
−→
J and the edge x′y′ to

←−
J . Note that, if Hi and Hj are not of class 1, then

x′y′ = x′y′ = x′y′.
Let φ : V (J)→ V (G) be the map defined by

φ(u′) = φi(u
′) = u,

where u ∈ Ji. By Lemma 5.11 and the constructions of
−→
J and

←−
J we have that: if ϕ agrees with

−→
D ,

then φ is an isomorphism from
−→
J to G; and if ϕ agrees with

←−
D , then φ is an isomorphism from

←−
J to G.

Let swap : V (J)→ V (J) be the map defined by

swap(x′) := x′,

for all x′ ∈ V (J). Note that swap is an isomorphism from
−→
J to

←−
J ; we have proved Theorem 1.2:

Theorem 1.2. Let G be a connected (C4,diamond)-free graph. Given only a graph isomorphic to Fk(G),
we can compute in polynomial time a graph isomorphic to G.

Add all the edges of
−→
J to J , so that throughout the remainder of the paper we assume that J =

−→
J .
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6 F is Uniquely Reconstructible

In this section we show that F is uniquely reconstructible as the k-token graph of G. In the process we
often consider unions, intersections, differences and complements of token configurations in G and J .

Boolean Formulas and Boolean Combinations on V (Fk(G))

Let F be a family of subsets of a set S. A Boolean formula on F is recursively defined as follows.

1. For every X ∈ F , X is a Boolean formula on F , which we call a term;

2. if Γ1 and Γ2 are Boolean formulas on F , then so are (¬Γ1), (Γ1 ∨ Γ2) and (Γ1 ∧ Γ2).

For every Boolean formula Γ on F there is a corresponding Boolean combination of elements in F ; let
eval(Γ) be the subset of S that is obtained from Γ by interpreting: every appearance of ¬ as comple-
mentation with respect to S; every appearance of ∨ as set union; and every appearance of ∧ as set
intersection. Let G and H be isomorphic graphs and let ψ ∈ Iso(G,H). Let Γ be a Boolean formula on
V (Fk(G)). Let Γ(ψ) be the Boolean formula on V (Fk(H)) that is obtained by replacing every term A of
Γ with ψ(A). We use the following result extensively throughout the proofs of Theorems 1.3 and 1.4.

Proposition 6.1. Let G and H be isomorphic graphs on at least three vertices. Suppose that Fk(G)
is uniquely reconstructible as the the k-token graph of G. Let Γ be a Boolean formula on V (Fk(G)); let
ψ ∈ Iso(Fk(G), Fk(H)); and let f(ψ) ∈ Iso(G,H) as in 3) of Theorem 2.4. Then

f(ψ)(eval(Γ)) =

{
eval(Γ(ψ)) if ψ = ι(f(ψ)),

eval(Γ(c ◦ ψ)) if ψ = c ◦ ι(f(ψ)).

Proof. Since f(ψ) is a bijection, we have that

f(ψ)(eval(Γ)) = eval(Γ(ι(f(ψ))).

By 3) of Theorem 2.4, we have that

ι(f(ψ)) = ψ or ι(f(ψ)) = c ◦ ψ.

6.1 Extending our Framework

In what follows we define isomorphisms from subgraphs of J to subgraphs of G. To avoid confusion, let

φ(J, ϕ) := φ, (4)

where φ is defined as above. Note that ϕ agrees with
−→
D if and only if c ◦ ϕ agrees with

←−
D . In what

follows, we assume without loss of generality that ϕ agrees with
−→
D . Thus,

k =

r∑
i=1

li.

Since, if necessary, we can replace ϕ with c ◦ ϕ, we also assume that k ≤ n/2.
In the remainder of this section we compute, in polynomial time, an isomorphism ψ from F to Fk(J)

so that (J, ψ) is a k-token reconstruction of F . For this purpose we extend the theoretical framework
developed in the previous sections. For every 1 ≤ i ≤ r let

Ĥi :=

min{k,|Ji|}⋃
s=0

Fs(Ji).

For convenience we set F0(Ji) to be the empty graph on one vertex; it represents that no tokens are

placed at the vertices of Ji. Thus, Ĥi is the disjoint union of all possible token graphs of Ji with at most
k tokens. Let F̂ be the subset of vertices Â ∈ V (Ĥ1� · · ·�Ĥr) that satisfy

r∑
i=1

∣∣∣Â(i)
∣∣∣ = k;
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if Â(i) is the only vertex in F0(Ji), then we set Â(i) := ∅. Let û : F̂ → V (Fk(J)) be the map defined by

û(Â) :=

r⋃
i=1

Â(i),

for all Â ∈ V (F̂ ). In the remainder of this section we prove the following theorem.

Theorem 6.2. Suppose that ϕ agrees with
−→
D and that k ≤ n/2. Then we can compute in polynomial

time a map π̂ : V (F )→ F̂ such that

a) ψ := û ◦ π̂ is an isomorphism from F to Fk(J); and

b) ϕ = ι(φ(J, ϕ)) ◦ ψ.
That is the following diagram commutes.

F Fk(G)

F̂ Fk(J)

π̂

ϕ

ψ

û

ι(φ(J, ϕ))

Theorem 6.2 readily implies Theorem 1.4.

Theorem 1.4. Let G be a connected (C4,diamond)-free graph. Then Fk(G) is uniquely reconstructible
as the k-token graph of G.

Proof. Let g ∈ Iso(Fk(J), Fk(G)). Then g◦ψ ∈ Iso(F, Fk(G)). By b) of Theorem 6.2, with either ϕ = g◦ψ
or ϕ = c ◦ g ◦ ψ we have that

g ◦ ψ = ι(φ(J, ϕ)) ◦ ψ or c ◦ g ◦ ψ = ι(φ(J, ϕ)) ◦ ψ.

Therefore,
g = ι(φ(J, ϕ)) or g = c ◦ ι(φ(J, ϕ)).

By 3) of Theorem 2.4 we have that Fk(G) is uniquely reconstructible as the k-token graph of G.

Let A be a vertex of F . We say that we can define ψ on A, if we can find in polynomial time a vertex
π̂(A) of F̂ such that the following holds. If we set ψ(A) := û ◦ π̂(A), then

ϕ(A) = ι(φ(J, ϕ)) ◦ ψ(A)

We begin by defining π̂ on the vertices of H. For every vertex A ∈ H, let

π̂(A) := (ψ1(π(A)(1), . . . , ψr(π(A)(r))).
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We have that

ι(φ(J, ϕ)) ◦ ψ(A) = (ι(φ(J, ϕ)) ◦ ψ) (A)

= (ι(φ(J, ϕ)) ◦ û ◦ π̂) (A)

= (ι(φ(J, ϕ)) ◦ û) (ψ1(π(A)(1), . . . , ψr(π(A)(r)))

= ι(φ(J, ϕ))

(
r⋃
i=1

ψi(π(A)(i))

)

=

r⋃
i=1

 ⋃
x′∈ψi(π(A)(i))

{
φ(x′)

}
=

r⋃
i=1

 ⋃
x′∈ψi(π(A)(i))

{
φi(x

′)
}

=

r⋃
i=1

ι(φi)(ψi(π(A)(i)))

=
r⋃
i=1

(φ′i ◦ ψi)(π(A)(i))

=

r⋃
i=1

(ϕi ◦ ψ−1
i ◦ ψi)(π(A)(i))

=

r⋃
i=1

ϕi(π(A)(i))

= ϕ(A).

Before proceeding we define two subgraphs of F that are useful for defining π̂. Let A be a vertex of
F .

• Let s := |ϕ(A) ∩Gi|. Let Split(s, i) be the subgraph of F induced by all the vertices B ∈ F such
that

|ϕ(B) ∩Gi| = |ϕ(A) ∩Gi|.
Thus, ϕ(Split(s, i)) is the subgraph of Fk(G) induced by all the token configurations in which there
are s tokens at Gi and k − s tokens at G \Gi.

• Let Fix(A, i) be the subgraph of F induced by all the vertices B ∈ Split(s, i) such that

ϕ(B) ∩Gi = ϕ(A) ∩Gi.

Thus, ϕ(Fix(A, i)) is the subgraph of ϕ(Split(s, i)) in which the tokens at ϕ(A)∩Gi remain fixed.

We proved the following proposition with the aid of the SAGE software [19]. For the proof, we
iterated over all (C4,diamond)-free connected graphs and computed the automorphisms groups of them
and their respective token graphs. We then used 2) of Theorem 2.4.

Proposition 6.3. If n ≤ 6, then F is uniquely k-reconstructible as the k-token graph of G.

For the proof of Theorem 6.2, we extend the definition of ψ on certain subgraphs of F . Let F ∗ be an
induced subgraph of F such that the following conditions hold.

(a) We can determine in polynomial time which vertices of F belong to F ∗.

(b) There exists a connected induced subgraph G∗ of G, on at least three and less than |G| vertices,
such that ϕ(F ∗) is generated by moving k∗ ≤ k tokens on the vertices of G∗ while leaving k − k∗
tokens fixed at the vertices of a subset T of V (G \G∗).

(c) We can determine in polynomial time the subgraph J∗ of J such that φ(J, ϕ)(J∗) = G∗; and the
set T ∗ ⊂ V (J) such that

T ∗ = φ(J, ϕ)−1(T ).
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(d) Let W be the set of vertices of F ∗ for which we have defined ψ. We can compute in polynomial
time a family {Γu′}u′∈V (J∗) of Boolean formulas on the set

{B ∈ V (Fk∗(J
∗)) : B = ψ(A) ∩ V (J∗) for some A ∈W},

such that
{u′} = eval(Γu′),

for all u′ ∈ V (J∗).

We call F ∗ a definable subgraph of F , and (F ∗, {Γu′}u′∈V (J∗)) a definable pair. We now show that when
certain conditions are met, we can extend the definition of ψ to every vertex of F ∗.

Lemma 6.4. Let (F ∗, {Γu′}u′∈V (J∗)) be a definable pair. Suppose that one of the following conditions
holds.

(1) k∗ 6= |J∗|/2.

(2) There exists a vertex u′ such that for every g ∈ Aut(J∗), we have that g(u′) = u′.

(3) There exist an induced subgraph F ∗1 of F ∗, and an induced connected subgraph G∗1 of G∗, with the
following properties.

– V (F ∗1 ) ⊂W ;

– |G∗1| ≥ 3; and

– ϕ(F ∗1 ) is generated by moving k∗1 ≤ k∗ tokens on the vertices of G∗1, while leaving the remaining
k − k∗1 tokens fixed.

Then we can define ψ on every vertex of F ∗.

Proof. Let ϕ∗ be the map that sends every vertex X ∈ F ∗ to

ϕ∗(X) := ϕ(X) ∩ V (G∗).

Note that ϕ∗ is an isomorphism from F ∗ to Fk∗(G
∗). We use Theorem 1.2 and induction on Theorem 6.2,

with F ∗ as input, to obtain a graph J ′, and an isomorphism ψ′ : F ∗ → Fk∗(J
′) such that

ϕ∗ = ι
(
φ
(
J ′, ϕ∗

))
◦ ψ′ or ϕ∗ = ι

(
φ
(
J ′, ϕ∗

))
◦ (c ◦ ψ′).

Note that exactly one of ι (φ (J ′, ϕ∗)) ◦ ψ′ and ι (φ (J ′, ϕ∗)) ◦ (c ◦ ψ′) is equal to ϕ∗. Let g :=
φ(J ′, ϕ∗)−1 ◦φ(J, ϕ)(u′) considered as a map from V (J∗) to V (J ′). Note that g ∈ Iso(J∗, J ′). Thus, ι(g)
is an isomorphism from Fk∗(J

∗) to Fk∗(J
′).

For A ∈W , let
ψ∗(A) = ψ(A) ∩ V (J∗).

We have that
ϕ∗(A) = ι (φ (J, ϕ)) ◦ ψ∗(A).

Thus,
ψ′ ◦ ψ∗−1

(A) = ι(g)(A) or (c ◦ ψ′) ◦ ψ∗−1
(A) = ι(g)(A).

By induction on Theorem 1.4, Fk∗(J
∗) is uniquely reconstructible as the k∗-token graph of J∗. By

Proposition 6.1, for every vertex u′ ∈ J∗ we have that

g({u′}) = g(eval(Γu′)) = eval(Γu′(ι(g))).

For every vertex u′ ∈ J∗, let

g1(u) :=

{
the only vertex in eval(Γu′(ψ

′ ◦ ψ∗−1)) if |Γu′(ψ′ ◦ ψ∗−1)| = 1.

undefined otherwise.

g2(u) :=

{
the only vertex in eval(Γu′((c ◦ ψ′) ◦ ψ∗−1)) if |Γu′((c ◦ ψ′) ◦ ψ∗−1)| = 1.

undefined otherwise.

Note that exactly one of g1 and g2 is equal to g. If only one of g1 and g2 defines an isomorphism from
J∗ to J ′, then we have computed g. Suppose that both g1 and g2 are isomorphisms from J∗ to J ′. We
use the conditions of the lemma to determine which of g1 and g2 is equal to g.
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• Suppose that (1) holds.

Since k∗ 6= |G∗|/2, for every vertex A ∈ F ∗, we have that |c ◦ ϕ∗(A)| = |G∗|/2 − k∗ 6= k∗.
Therefore,

ϕ∗ = ι
(
φ
(
J ′, ϕ∗

))
◦ ψ′.

Thus, g = g1 in this case.

• Suppose that (2) holds.

Let A be any vertex in W . Note that g(u′) = g1(u′) = g2(u′). Suppose that u′ ∈ ψ(A). We
have that g(u′) ∈ ι(g)(A). If g(u′) ∈ ψ′ ◦ ψ∗−1(A), then g = g1; and if g(u′) ∈ (c ◦ ψ′) ◦ ψ∗−1(A),
then g = g2. Suppose that u′ /∈ ψ(A). We have that g(u′) /∈ ι(g)(A). If g(u′) ∈ ψ′ ◦ ψ∗−1(A), then
g = g2; and if g(u′) ∈ (c ◦ ψ′) ◦ ψ∗−1(A), then g = g1.

• Suppose that (3) holds.

Let J∗1 be the subgraph of J∗ such that φ(J, ϕ)(J∗1 ) = G∗1. Since V (F ∗1 ) ⊂W , V (J∗1 ) is equal to

{u′ : u′ ∈ ψ(A) \ ψ(B), for some A,B ∈ V (F ∗1 )}.

Thus, we can compute J∗1 in polynomial time. We compute the subgraph J ′1 of J ′ such that ψ′(F ∗1 )
is generated by moving some k′1 tokens on the vertices of J ′1 while leaving the remaining tokens
fixed. We have that k′1 = k∗1 or k′1 = |J∗1 | − k∗1 . Suppose that |J∗1 | is odd. Note that k∗1 6= |J∗1 | − k∗1 .
If k′1 = k∗1 , then

ϕ∗ = ι
(
φ
(
J ′, ϕ∗

))
◦ ψ′ and g = g1.

If k′1 6= k∗1 , then
c ◦ ϕ∗ = ι

(
φ
(
J ′, ϕ∗

))
◦ ψ′ and g = g2.

Suppose that |J∗1 | is even. Let u′ be a vertex of J∗1 such that J∗2 = J∗1 \ u′ is connected. Let F ∗2 be
the subgraph of F ∗1 such that in all vertices of ψ′(F ∗2 ) there is a token at u′. Let G∗2 = ϕ(J∗2 ). Note
that F ∗2 and G∗2 satisfy condition (d). Thus, we may proceed as in the case of when |J∗1 | is odd.

In what follows suppose that we have computed g. If g = g2, then replace ψ′ with c ◦ψ, so that we have

ϕ∗ = ι
(
φ
(
J ′, ϕ∗

))
◦ ψ′.

We now define ψ on every vertex of F ∗. Let A be a vertex of F ∗. Let

ψ(A) := (ι(g−1) ◦ ψ′(A)) ∪ T ∗.

We define π̂(A), accordingly, by setting

π̂(A)(i) = ψ(A) ∩ V (Ji),

for 1 ≤ i ≤ r. We have that

ϕ(A) = ϕ∗(A) ∪ T
= ι
(
φ
(
J ′, ϕ∗

))
◦ ψ′(A) ∪ T

= ι(φ(J, ϕ)) ◦ ι(φ(J, ϕ))−1 ◦ ι
(
φ
(
J ′, ϕ∗

))
◦ ψ′(A) ∪ T

= ι(φ(J, ϕ)) ◦ ι(g−1) ◦ ψ′(A) ∪ T

= ι(φ(J, ϕ))(ι(g−1) ◦ ψ′(A) ∪ T ∗)
= ι(φ(J, ϕ)) ◦ ψ(A).

The result follows.

Lemma 6.5. Let 1 ≤ i ≤ r such that J \ Ji is connected, and with at least three vertices. Suppose that
there exists an integer 0 ≤ s ≤ |Ji| that satisfies the following.

1. There exists a vertex A ∈ F , with |π̂(A)(i)| = s, for which we have defined ψ on all the vertices of
Move(A, i).

2. Let W be the set of vertices of Fix(A, i) for which we have defined ψ.
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a) There exist an induced subgraph F ′ of Fix(A, i), and an induced connected subgraph G′ of
G \Gi, with the following properties.

– V (F ′) ⊂W ;

– |G′| ≥ 3; and

– ϕ(F ′) is generated by moving 1 ≤ k′ ≤ |G′| − 1 tokens on the vertices of G′, while leaving
the remaining tokens fixed.

b) For every vertex u′ ∈ J \ Ji, we can compute in polynomial time a Boolean combination Γu′ of
elements in {ψ(B) : B ∈W}, such that{

u′
}

= V (J \ Ji) ∩ eval(Γu′).

3. If s = 0, then we have defined ψ on all vertices of Split(1, i); and if s = |Ji|, then we have defined
ψ on all vertices of Split(|Ji| − 1, i).

Then we can define ψ on every vertex of Split(s, i).

Proof. Suppose that s = 0 or s = |Ji|. Let

s∗ :=

{
1 if s = 0.

|Ji| − 1 if s = |Ji|.

We use condition (3) of Lemma 6.4, with F ∗ := Split(s, i), G∗ := G \Gi, k∗ := k − s, and

T ∗ :=

{
∅ if s = 0.

V (J1) if s = |Ji|.

Note that we have conditions (b) and (c) and (d) for F ∗ being definable graph of F . Note that every
vertex in Split(s, i) is adjacent only to vertices in Split(s, i)∪Split(s∗, i). Since Split(s, i) is connected
and we have defined ψ on every vertex of Split(s∗, i), we can determine which vertices of F are in
Split(s, i); and we have condition (a).

Assume that 0 < s < |Ji|. Since

V (Split(s, i)) =
⋃

B∈Move(A,i)

V (Fix(B, i)),

it is sufficient to show that for every B ∈Move(A, i), we can define ψ on the vertices of Fix(B, i). Let
B be a vertex of Move(A, i). We use condition (3) Lemma 6.4, with F ∗ := Fix(B, i), G∗ := G \ Gi,
k∗ := k − s, T := π̂(B)(i) and J∗ := J \ Ji. Note that we have conditions (b) and (c) for F ∗ being a
definable graph of F . We show the remaining conditions for F being a definable graph, and condition
(3) of Lemma 6.4. Let

Q := (A =: B1, B2, . . . , Bl := B)

be a closed walk in Move(A, i), such that for every A′ ∈ V (Fs(Ji)) there exists an Bj such that
π̂(Bj)(i) = A′.

• condition (a)

Let EB be the set of edges in Move(B, i) = Move(A, i) incident to B. Let Y be the set of
vertices C of F with the following two properties.

1) No edge of P is in the same ladder as an edge in EB .

2) For every vertex C′ ∈ P there is a closed walk Q′ := (C′ = D1, D2, . . . , Dl = C′) such that for
every 1 ≤ j ≤ l, the edge DjDj+1 is in the same ladder as BjBj+1.

1) and 2) imply that in the path ϕ(P ) no token was placed at or moved from Gi. Therefore, Y is
precisely V (Fix(B, i)).

• condition (d) and condition (3) of Lemma 6.4

For every C ∈ W , we proceed as follows. Let (C =: C1, . . . , Cl =: C′) be the walk in F
starting at C such that for every 1 ≤ j < l, CjCj+1 is in the same ladder as BjBj+1. Note that
ϕ(C′) ∩ Gi = ϕ(B) ∩ Gi, and ϕ(C′) ∩ Gj = ϕ(C) ∩ Gj for all j 6= i. Thus, C′ ∈ Fix(B, i). Let
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u′ ∈ J \ Ji. Let Γ′u′ be the Boolean combination that results from replacing every term ψ(C) in
Γu′ with ψ(C′). We have that {

u′
}

= V (J \ Ji) ∩ eval(Γ′u′).

Thus, we have condition (d). Let F ′B be the graph induced by the set of vertices {C′ : C ∈ F ′}.
Since F ′B is a subgraph of Fix(B, i), we have condition (3) of Lemma 6.4.

Lemma 6.6. Suppose that J \ Ji is connected and with at least three vertices. Let A be a vertex of H,
and let s := |π̂(A)(i)|. Then we can define ψ on every vertex of Split(s, i).

Proof. We use Lemma 6.5 to define ψ on every vertex of Split(s, i). Note that we have condition 1 of
Lemma 6.5. For every vertex x′ ∈ J \ Ji, let

Sx′ := {B ∈ V (H) : π̂(B)(i) = π̂(A)(i) and x′ ∈ ψ(B)}.

Note that Sx′ ⊂ V (Fix(A, i)) and

{x′} = V (J \ Ji) ∩

 ⋂
B∈Sx′

ψ(B)

 .

Thus, we have condition 2b. If some Jj distinct from Ji, has at least three vertices then we have condition
2a. Suppose that all Jj different from Ji are of class 1. Let Jj and Jl be adjacent vertices of P . Let
A ∈ V (H). Let F ∗ be the subgraph of F induced by the set of vertices B ∈ F such that

|ϕ(B) ∩ (Gj ∪Gl)| = 2 and ϕ(B) ∩Gt = ϕ(A) ∩Gt for all t 6= i, j.

Let AB ∈ E(H,F \H)ij such that (AB, i→ j) ∈
−→
D . Note that B ∈ F ∗ and ϕ(B) is obtained from ϕ(A)

by moving a token from Gi to Gj . We define π̂(B)(i) := ∅, π̂(B)(j) := V (Jj) and π̂(B)(t) := π̂(A)(t)

for all t 6= i, j. Let AC ∈ E(H,F \ H)ij such that (AC, j → i) ∈
−→
D . Note that C ∈ F ∗ and ϕ(C) is

obtained from ϕ(A) by moving a token from Gj to Gi. We define π̂(C)(i) := V (Ji), π̂(C)(j) := ∅ and
π̂(C)(t) := π̂(A)(t) for all t 6= i, j. We have defined ψ on all the vertices of F ∗. Since F ∗ is a subgraph
of Fix(A, i), we have condition 2a. Thus, we can define ψ on all the vertices of Split(s, i).

6.2 Proof of Theorem 6.2

We proceed by induction on n. Suppose that Theorem 6.2 holds for smaller values of n. By Proposi-
tion 6.3, we may assume that n ≥ 7. If r = 1, then there is nothing to show since F = H in this case.
Assume that r ≥ 2. We consider two cases: r = 2 and r > 2.

Suppose that r = 2.

Without loss of generality assume that |J1| ≥ |J2|. Since we are assuming that n ≥ 7, J1 is not a triangle
nor an edge. For every 0 ≤ i ≤ min{|J2|, k}, let Fi be the subgraph of F induced by the set of vertices
A ∈ V (F ), such that that

|ϕ(A) ∩ V (G2)| = i.

Let h be such that H = Fh. Let z′1z
′
2 ∈ E(J1, J2). Let

S1 := {X ∈ V (H) : z′1 /∈ π̂(X)(1) and z′2 ∈ π̂(X)(2)},

and
S2 := {X ∈ V (H) : z′1 ∈ π̂(X)(1) and z′2 /∈ π̂(X)(2)}.

For every X ∈ S1 ∪ S2, let X ′ be the vertex in F such that ϕ(X ′) is obtained from ϕ(X) by sliding a
token along z1z2. By Theorem 5.10 we can find X ′ in polynomial time. Let S′1 := {X ′ : X ∈ S1} and
S′2 := {X ′ : X ∈ S2}. For every X ′ in S′1, we define

π̂(X ′)(1) := π̂(X)(1) ∪ {z′1} and π̂(X ′)(2) := π̂(X)(1) \ {z′2}.
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For every X ′ in S′2, we define

π̂(X ′)(1) := π̂(X)(1) \ {z′1} and π̂(X ′)(2) := π̂(X)(1) ∪ {z′2}.

Note that S′1 ⊂ V (Fh−1) and S′2 ⊂ V (Fh+1).
Before proceeding we make the following observations.
If k − (h− 1) < |J1|, we have that

{z′1} =
⋂

X′∈S′1

ψ(X ′); (5)

and for every vertex w′ ∈ J1 \ {z′1},

{w′} =

 ⋂
X′∈S′1,w′∈π̂(X′)(1)

ψ(X ′)

 \ {z′1}. (6)

Since k ≤ n/2 and |J1| ≥ |J2|, we have that if k − (h− 1) = |J1| , then h− 1 = 0. In this case, there is
only one vertex A in Fh−1, and we have defined ψ(A).

If k − (h+ 1) ≥ 1, we have that

{z′1} = V (J1) \
⋃

X′∈S′2

ψ(X ′); (7)

and for every vertex w′ ∈ J1 \ {z′1},

{w′} =
⋂

X′∈S′2,w′∈π̂(X′)(1)

ψ(X ′). (8)

If h+ 1 < |J2|, we have that

{z′2} =
⋂

X′∈S′2

ψ(X ′); (9)

and for every vertex w′ ∈ J2 \ {z′2},

{w′} =

 ⋂
X′∈S′2,w′∈π̂(X′)(1)

ψ(X ′)

 \ {z′2}. (10)

If h− 1 ≥ 1, we have that

{z′2} = V (J2) \
⋃

X′∈S′1

ψ(X ′); (11)

and for every vertex w′ ∈ J2 \ {z′2},

{w′} =
⋂

X′∈S′1,w′∈π̂(X′)(2)

ψ(X ′). (12)

Suppose that k = 2. Thus, H = F1 in this case. We define ψ on all the vertices of F2. If J2 is an
edge, then F2 consists of a single vertex, for which we have already defined ψ. Suppose that |J2| ≥ 3.
We use Lemma 6.4 with F ∗ = F2, J∗ = J2 and T ∗ = ∅ and k∗ = 2. Note that we have conditions (b) and
(c) for F2 being a definable subgraph of F . Since there a no edges from F0 to F2 we also have condition
(a). From (9) and (10) we get condition (d). If |J2| 6= 4 then we have condition (1) of Lemma 6.4.
Suppose that |J2| = 4. If a component of J2 \ {z′2} has three vertices, then we have condition (3) of
Lemma 6.4. Suppose that no component of J2 \ {z′2} has three vertices. Suppose J2 is not a path. Thus,
every automorphism of J2 leaves z′2 fixed; and we have condition (2) of Lemma 6.4. Suppose that J2 is
a path (x′1, x

′
2, x
′
3, x
′
4), such that z′2 is equal to x′2 or x′3. Without loss of generality assume that z′2 = x′2.

Note that we have defined ψ(A) on all vertices A ∈ F2 such that z2 ∈ ϕ(A). Let A ∈ V (F2) be such
that ψ(A) = {x′1, x′2}. Let B be the only neighbor of A in F2. Note that ϕ(B) is obtained from ϕ(A) by
sliding a token along x2x3. We define π̂(B)(1) = ∅ and π̂(B)(2) = {x′1, x′3}. Let C be the only neighbor
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of B in F2 for which we have not defined ψ; that is, ϕ(C) does not contain x2. ϕ(C) is obtained from
ϕ(B) by sliding along x3x4. We define π̂(C)(1) = ∅ and π̂(C)(2) = {x′1, x′4}. Let D be the only vertex
of F2 for which we have not defined ψ. We define π̂(D)(1) = ∅ and π̂(D)(2) = {x′3, x′4}. Thus, we can
define ψ on every vertex of F2. To define ψ on every vertex of F0 we proceed in a similar way.

Assume that k > 2. Our assumption that r = 2 and k > 2 implies that J cannot contain 3 disjoint
edges. Therefore, J1 and J2 are either edges, triangles or stars. Thus, J1 is a star on at least four vertices.
Let u′ be the center of J1. We proceed by cases on whether J2 is an edge, a triangle or a star of at least
three vertices.

• J2 is an edge.

Thus, h = 1 in this case. We use Lemma 6.4 with F ∗ = F0, J∗ = J1 and T ∗ = ∅. Note
that we have conditions (a), (b) and (c) for F0 being a definable subgraph of F . From (5) and
(6) we get condition (d). Since every automorphism of J1 leaves u′ fixed we have condition (2)
of Lemma 6.4. Thus, we can define ψ on every vertex of F0. We use Lemma 6.4 with F ∗ = F2,
J∗ = J1 and T ∗ = V (J2). Note that we have conditions (a), (b) and (c) for F0 being a definable
subgraph of F . From (9) and (10) we get condition (d). Since every automorphism of J1 leaves
u′ fixed we have condition (2) of Lemma 6.4. Thus, we can define ψ on every vertex of F2. Since
V (F ) = V (F0) ∪ V (F1) ∪ V (F2), we are done in this case.

• J2 is triangle.

A leaf of J1 cannot be adjacent to a vertex of J2; otherwise J contains three disjoint edges.
Thus every J1 − J2 edge contains u′ as an endpoint, in particular u′ = z′1. Note that H is equal to
F1 or F2. Suppose that H is equal to F1.

We use Lemma 6.4 with F ∗ = F0, J∗ = J1 and T ∗ = ∅. Note that we have conditions (b)
and (c) for F0 being a definable subgraph of F . Since all vertices in F0 are adjacent to vertices in
either to F0 or F1, we also have condition (a). From (5) and (6) we get condition (d).Since every
automorphism of J1 leaves u′ fixed we have condition (2) of Lemma 6.4. Thus, we can define ψ on
every vertex of F0.

Let w′ and x′ be the vertices of J2 distinct from z′2. Let Fz′2 , Fw′ , Fx′ be subgraphs of F2

induced by the vertices A ∈ F2 such that ϕ(A) does not contain z′2, w′ and x′, respectively. We
use Lemma 6.4 with F ∗ = Fx′ , J

∗ = J1 and T ∗ = {z′2, w′}. Note that we have conditions (b)
and (c) for Fx′ being a definable subgraph of F . From (7) and (8) we get condition (d). Let
A ∈ V (Fx′)∩ S′2. Note that a neighbor B /∈ Fw′ ∪ F1 of A is in Fx′ ∪ Fz′2 . Let C ∈ V (Fw′) be such
that π̂(C)(1) = π̂(A)(1). We have that B is a common neighbor of A and C if and only if B ∈ Fz′2 .
In this way we can determine the remaining vertices of Fx′ and we have condition (a). By condition
(2) of Lemma 6.4 we can define ψ on every vertex of Fx′ . By analogous arguments we can define ψ
on every vertex of Fw′ . Let A1 ∈ V (Fw′) and A2 ∈ V (Fx′) such that π̂(A1)(1) = π̂(A2)(1). Note
that all the neighbors of A1 and A2 are contained in F1 ∪ F2. Let B be a common neighbor of A1

and A2 in F2. We define π̂(B)(1) = π̂(A1)(1) and π̂(B)(2) = {w′, x′}. For every such pair (A1, A2)
we define π̂(B) accordingly. As these accounts for all the vertices of Fz′2 , we have defined ψ on very
vertex of Fz′2 . Thus, we have defined ψ on every vertex of F2.

Let S be the set of vertices A ∈ Fz′2 such that u′ ∈ π̂(A)(1). For every vertex A ∈ S, let A′ be

the vertex such that ϕ(A′) results from ϕ(A) from sliding a token along uv. Note that A′ is the only
neighbor of A not in F2. We define π̂(A′)(1) := π̂(A)(1) \ {u′} and π̂(A′)(2) := V (J3). If k = 3,
then F3 consists of a single vertex and we have defined ψ on all vertices of F3. Suppose that k > 3.
We use Lemma 6.4 with F ∗ = F3, J∗ = J1 and T ∗ = V (J2). Note that we have conditions (b) and
(c) for F3 being a definable subgraph of F . Since all the edges in F3 go either to F2 or to F3, we
also have condition (a). From (7) and (8) we get condition (d). By condition (2) of Lemma 6.4 we
can define ψ on every vertex of F3. Thus, we have defined ψ on every vertex of F . If H = F2, then
we proceed with similar arguments as above. In this case, we first define ψ on every vertex of F3;
afterwards we define ψ on every vertex of F0 ∪ F1.

• J2 is a star on at least three vertices.

Let v′ be the center of J2. A leaf of J1 cannot be adjacent to a leaf of J2; otherwise, J would
contain three disjoint edges. Therefore, all J1 − J2 edges contain u′ as an endpoint or all J1 − J2
edges contain v′ as endpoint. Without loss of generality assume that all J1 − J2 edges contain u′

as an endpoint. Thus, u′ = z′1. No two leaves x′ and y′ of J2 are adjacent simultaneously to u′.
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Otherwise, x′, v′, u′, y′ are the vertices of a 4-cycle in J ; which implies that x′ and y′ are adjacent,
which contradicts the assumption that J2 is a star.

Suppose that we have defined ψ on the vertices of Fi, for some i ≤ k− 1. We show that we can
define ψ on the vertices of Fi−1; the proof that we can define ψ on the vertices of Fi+1 for i ≥ 1,
follows by similar arguments.

Let
S := {X ∈ V (Fi) : u′ /∈ π̂(X)(1) and |π̂(X)(2) ∩N(u′)| = 1}.

Let X ∈ S. Let y′ be the only vertex in π̂(X)(2)∩N(u′). Let X ′ be the vertex of F such that ϕ(X ′)
is obtained from ϕ(X) by sliding a token along y′u′. Thus, X ′ ∈ Fi−1. Note that X ′ is the only
neighbor of X not in Fi. We define π̂(X ′)(1) := π̂(X)(1) ∪ {u′} and π̂(X ′)(2) := π̂(X)(2) \ {y′}.
Let

S′ := {X ′ : X ∈ S}.

Let A ∈ S. We use Lemma 6.4 with F ∗ = Move(A′, 1), J∗ = J1 and T ∗ = π̂(A′)(2). We have
conditions (b) and (c) for Move(A′, 1) being a definable subgraph of F . Note that

{u′} =
⋂

X′∈S′∩Move(A′,1)

ψ(X ′)

and

{x′} =

 ⋂
X′∈S′∩Move(A′,1)′ and

x′∈π̂(X′)(1)

ψ(X ′)

 \ {u′}.
Thus, we have condition (d). Let B be a neighbor of A′, and C′ a neighbor of B such that

(i) B /∈ Fi;
(ii) C ∈ S \ {A}; and

(iii) π̂(C′)(2) = π̂(A′)(2).

Property (i) implies that B ∈ Fi−1. Properties (ii) and (iii) imply that ϕ(B) is obtained from
ϕ(A′) by sliding a token along an edge of G1. Thus B′ ∈Move(A′, 1). By considering all such B
and C′ we can determine which vertices of F belong to Move(A′, 1); and we have condition (a).
By condition (2) of Lemma 6.4 we can define ψ on every vertex of Move(A′, 1).

If i− 1 = 0, then Move(A′, 1) = Fi−1, and we have defined ψ on every vertex of Fi−1. Suppose
that i > 1. Let now B be a vertex of Move(A′, 1). We show that we can define ψ on every vertex
of Move(B, 2). We use Lemma 6.4 with F ∗ = Move(B, 2), J∗ = J2 and T ∗ = π̂(B)(1). We have
conditions (b) and (c) for Move(B, 2) being a definable subgraph of F .

For every A′1 ∈ S′, consider every pair of vertices B1 ∈ Move(A′1, 1) and C /∈ Move(A′, 1) ∪
Fi, such that π̂(B1)(1) = π̂(B)(1) and C is a neighbor of B1. Note that C ∈ Move(B, 2). If
|E(J1, J2)| = 1 then we have determined all the vertices of F that belong to Move(B, 2). Suppose
that |E(J1, J2)| = 2. Let A′1, B1 and C be chosen as above. Let C1 be a neighbor of C, and let
B2 ∈ Move(A′1, 1) be a neighbor of B1, such that B1, B2, C and C1 are in a common induced
4-cycle of F . This implies that ϕ(C1) is obtained from ϕ(C) by moving a token along an edge of
G2. In this case we have that C2 ∈Move(B, 2). By considering all such A′1, B1, C,B2 and C1, we
determine all the vertices of F that belong to Move(B, 2). Thus, we have property (a).

We now show condition (d). For every x′ ∈ J2 not adjacent to u′, let Sx′ be the set of all vertices
X ∈Move(B, 2), for which we have defined ψ, and such that x′ ∈ π̂(X)(2). Note that

{x′} = V (J2) ∩

 ⋂
Y ∈Sx′

ψ(Y )

 .

If |E(J1, J2)| = 1, then

{v′} = V (J2) \
⋃

x′∈V (J2)\{v′}

{x′};

and we have condition (d) in this case.
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Suppose that |E(J1, J2)| = 2, and let w′ the neighbor of u′ in J2 distinct from v′. Let C ∈
Move(B, 2) such that

v, w /∈ ϕ(C).

Note that there exists A1 ∈ S, such that C ∈ Move(A1, 1). Therefore, we have defined ψ(C). If
u′ /∈ ψ(C), let C′ be a neighbor of C in Move(A1, 1) such that u′ ∈ ψ(C); otherwise let C′ := C.
Let D /∈ Fi be a neighbor of C, and D′ a neighbor of C′, such that CD and C′D′ are in the same
ladder. Note that D,D′ ∈ Fi−1 and ϕ(C)4ϕ(D) = ϕ(C′)4ϕ(D′). Let X be neighbor of D′ in
Fi. Let y′ be the only vertex of π̂(C)(2) not in π̂(X)(2). Note that ϕ(D) is obtained from ϕ(C)
by sliding a token along y′v′. We define π̂(D)(1) := π̂(B)(1) and π̂(D)(2) := π̂(C)(2) \ {y′} ∪ {v′}.
Let S1 be the set of all such D for every choice of C as above. We have that

{v′} = V (J2) ∩

( ⋂
D∈S1

ψ(D)

)
,

and
{w′} = V (J2) \

⋃
D∈S1

ψ(D).

We have condition (d) in this case. By condition (2) of Lemma 6.4 we can define ψ on every vertex
of Move(B, 2). Since these accounts for all the vertices in Fi−1 we have defined ψ on every vertex
of Fi−1. Proceeding iteratively in this way we can define ψ on all vertices of F .

This completes the proof for when r = 2.

Suppose that r > 2.

Let P be the graph whose vertex set is {J1, . . . , Jr} and where Ji is adjacent to Jj if and only if
E(Ji, Jj) 6= ∅. Since F is connected, P is connected. Therefore, there exists at least two vertices of P ,
say J1 and J2, such that P \ (J1 ∪ J2) is connected. Without loss of generality assume that |J1| ≤ |J2|.
By Lemma 6.6 we can define ψ on all the vertices of Split(k1, 1) and Split(k2, 2)

Suppose that n− |J1| − |J2| ≥ 3.

for all 0 ≤ s ≤ min{k − 2, |J1|}, we can define ψ on all the vertices of Split(s, 1). (∗)

We claim that:

a) if for some 1 ≤ s ≤ k− 2 we have defined ψ on every vertex of Split(s, 1), then we can define ψ on
every vertex of Split(s− 1, 1); and

b) if for some 1 ≤ s ≤ min{k − 3, |J1| − 1} we have defined ψ on every vertex of Split(s, 1), then we
can define ψ on every vertex of Split(s+ 1, 1).

In both a) and b), we have that

k − s ≤ k − 1

≤ |J |
2
− 1

=
|J | − |J1| − |J2|

2
+
|J1|+ |J2|

2
− 1

≤ |J | − |J1| − |J2|
2

+ |J2| − 1

= (|J | − |J1| − |J2|)−
n− |J1| − |J2|

2
+ |J2| − 1

≤ |J | − |J1| −
5

2
.
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Since k − s is an integer we have that

k − s ≤ |J | − |J1| − 3

We first prove a). Since 2 ≤ k − s ≤ |J | − |J1| − 3 there exist 1 ≤ t′ ≤ n − |J1| − |J2| − 2
and 1 ≤ t ≤ |J2| − 1, such that t′ + t = k − s. We use Lemma 6.5 to define ψ on every vertex of
Split(t, 2). Let A ∈ Split(s, 1) such that |π̂(A)(2)| = t. Since A ∈ Split(s, 1), we have defined ψ on
every vertex of Move(A, 2); thus, we have condition 1 of Lemma 6.5. Since n − |J1| − |J2| ≥ 3 and
1 ≤ t′ ≤ n− |J1| − |J2| − 2, we have condition 2a. For every vertex x′ ∈ J \ {J1}, let

Sx′ := {B ∈ Split(s, 1) ∩ Split(t, 2) : π̂(B)(1) = π̂(A)(1) and x′ ∈ ψ(B)}.

Note that

{x′} = V (J \ J1) ∩

 ⋂
B∈Sx′

ψ(B)

 .

Thus, we have condition 2b and we can define ψ on all the vertices of Split(t, 2).
We now use Lemma 6.5 to define ψ on every vertex of Split(s− 1, 1). Let A ∈ Split(t, 2) such that

|π̂(A)(1)| = s − 1. We have defined ψ on every vertex of Move(A, 1); thus, we have condition 1 of
Lemma 6.5. Let t′′ := k − (s− 1)− t = t′ + 1. Since n− |J1| − |J2| ≥ 3 and 2 ≤ t′′ ≤ n− |J1| − |J2| − 1,
we have condition 2a. For every vertex x′ ∈ J \ {J2}, let

Sx′ := {B ∈ Split(s− 1, 1) ∩ Split(t, 2) : π̂(B)(2) = π̂(A)(2) and x′ ∈ ψ(B)}.

Note that

{x′} = V (J \ J2) ∩

 ⋂
B∈Sx′

ψ(B)

 ;

and we have condition 2b. If s− 1 = 0 then we also have condition 3). Thus, we can define ψ on all the
vertices of Split(s− 1, 1). This proves a).

We now prove b). Since 3 ≤ k − s ≤ |J | − |J1| − 3 , there exist 2 ≤ t′ ≤ n − |J1| − |J2| − 2
and 1 ≤ t ≤ |J2| − 1, such that t′ + t = k − s. We use Lemma 6.5 to define ψ on every vertex of
Split(t, 2). Let A ∈ Split(s, 1) such that |π̂(A)(2)| = t. Since A ∈ Split(s, 1), we have defined ψ on
every vertex of Move(A, 2); thus, we have condition 1 of Lemma 6.5. Since n − |J1| − |J2| ≥ 3 and
2 ≤ t′ ≤ n− |J1| − |J2| − 2, we have condition 2a. For every vertex x′ ∈ J \ {J1}, let

Sx′ := {B ∈ Split(s, 1) ∩ Split(t, 2) : π̂(B)(1) = π̂(A)(1) and x′ ∈ ψ(B)}.

Note that

{x′} = V (J \ J1) ∩

 ⋂
B∈Sx′

ψ(B)

 .

Thus, we have condition 2b and we can define ψ on all the vertices of Split(t, 2).
We now use Lemma 6.5 to define ψ on every vertex of Split(s+ 1, 1). Let A ∈ Split(t, 2) such that

|π̂(A)(1)| = s + 1. We have defined ψ on every vertex of Move(A, 1); thus, we have condition 1 of
Lemma 6.5. Let t′′ := k − (s+ 1)− t = t′ − 1. Since n− |J1| − |J2| ≥ 3 and 1 ≤ t′′ ≤ n− |J1| − |J2| − 3,
we have condition 2a. For every vertex x′ ∈ J \ {J2}, let

Sx′ := {B ∈ Split(s− 1, 1) ∩ Split(t, 2) : π̂(B)(2) = π̂(A)(2) and x′ ∈ ψ(B)}.

Note that

{x′} = V (J \ J2) ∩

 ⋂
B∈Sx′

ψ(B)

 ;

and we have condition 2b. If s + 1 = |J1| then we also have condition 3). Thus, we can define ψ on all
the vertices of Split(s+ 1, 1). This proves b). Statement (∗) now follows from successive applications of
a) and b).
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Suppose that k − 2 ≥ |J1|. We have that

F =

|J1|⋃
s=0

Split(s, 1);

thus, by (∗) we have defined ψ on every vertex of F . Suppose that k − 2 < |J1|. Since,

Split(2, 2) =

k−2⋃
s=max{0,(k−2)−(|J|−|J1|−|J2|)}

Split(s, 1),

we have defined ψ on all the vertices of Split(2, 2). With similar arguments as for the proof of (∗) we
show that we can define ψ on all the vertices of Split(1, 2). Let A ∈ Split(k−2, 1) such that π̂(A)(2) = 1.
We have conditions 1, 2a, 2b and 3 of Lemma 6.5. Thus, we can define ψ on all vertices of Split(1, 2). Let
now A ∈ Split(k− 2, 1) such that π̂(A)(2) = 0. We have conditions 1, 2a, 2b and 3 of Lemma 6.5. Thus,
we can define ψ on all vertices of Split(0, 2). Note that Split(k−1, 1) ⊂ Split(1, 2)∪Split(0, 2); thus, we
have defined ψ on every vertex of Split(k− 1, 1). If k ≤ |J1|, then Split(k, 1) ⊂ Split(1, 2)∪Split(0, 2);
and we have defined ψ on every vertex of Split(k, 1). Since

F =

min{k,|J1|}⋃
s=0

Split(s, 1),

we have defined ψ on every vertex of F .

Suppose that n− |J1| − |J2| = 2.

We have that r = 3 and that J3 is an edge. Let V (J3) =: {x′, y′}. Since we are assuming that n ≥ 7, we
have that |J2| ≥ 3. If E(J1, J2) 6= ∅, then J \ J3 is connected; in this case we may proceed as above with
the roles of J2 and J3 interchanged. Assume that E(J1, J2) = ∅.

Suppose that there exists an edge u′v′1 ∈ E(J1, J3) such that J1 \ u′ contains an edge w′1w
′
2. Let v′2

be the neighbor of v′1 in J3, and let x′1x
′
2 be an edge of J2. Let A ∈ V (F ) such that

v1, w1, x1 ∈ ϕ(A),

and
u, v2, w2, x2 /∈ ϕ(A).

Note that w1w2, x1x2 and v1v2 is a matching in Gϕ(A). Therefore, we may use A for line 5 of Initialize.
Let e1, e2, and e3 be the edges in F that correspond to w1w2, x1x2 and v1v2, respectively. Suppose that
e1, e2 and e3 are chosen in line 6 of initialize, and that the order in which they are chosen is e3, e1, e2.
Let J ′ be the graph isomorphic to G that is obtained by following the previous construction with these
choices. Let J ′1, J

′
2 and J ′3 be its subgraphs such that J ′i corresponds to ei. Let G′i be the subgraph of

G that corresponds to Ji. Note that v1, v2 and u are vertices of G′3. Since E(G1, G2) = ∅, we have that
G′1 is a subgraph of G1 and that G′2 is a subgraph of G2. Therefore, J ′ \ J ′1 and J ′ \ J ′2 are connected.
Since |J ′3| ≥ 3 we may proceed as in the case when n− |J1| − |J2| ≥ 3. To find such an A we iterate over
all vertices of F and over all the orderings of e1, e2 and e3. We may apply similar arguments with J2
instead of J1. Thus, we may assume that

if J1 is not an edge, then J1 is a star whose center u′1 is the only vertex of J1 adjacent to a
vertex of J3; J2 is a star whose center u′2 is the only vertex of J2 adjacent to a vertex of J3.

(∗)

Suppose that for some
0 < s < min{|J1|, k} and t := k − s− 1,

we have defined ψ on all the vertices of Split(s, 1) and Split(t, 2). We show that we can define ψ on all
the vertex of Split(s − 1, 1) and Split(s + 1, 1). Let A ∈ Split(t, 2) such that π̂(A)(1) = s − 1. Since
Move(A, 1) ⊂ Split(t, 2) we have condition 1 of Lemma 6.5. Since |J2| ≥ 3 we have condition 2a. If
s − 1 = 0, then we have condition 3. Similarly, let A ∈ Split(t, 2) such that π̂(A)(1) = s + 1. Since
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Move(A, 1) ⊂ Split(t, 2) we have condition 1 of Lemma 6.5. Since |J2| ≥ 3 we have condition 2a. If
s+ 1 = |J1|, then we have condition 3.

Let v′ ∈ V (J2). Let
Sv′ := {B ∈ V (Split(t, 2)) : v′ ∈ π̂(B)(2)}.

Note that

{v′} := V (J2) ∩

 ⋂
B∈Sv′

ψ(B)

 .

• Suppose that J1 is an edge.

Thus, s = 1.

– Suppose that there exists a vertex u′ ∈ J1 with only one neighbor in J3.
Without loss of generality assume that the neighbor of u′ in J3 is x′. Since G is a

(C4,diamond)-free graph and J3 is an edge, this implies that x′ is the only vertex of J3 adjacent
to a vertex of J1. Let B ∈ V (Split(1, 1)) such that u′ ∈ π̂(B)(1), and π̂(B)(3) = ∅. Let B′

be the only neighbor of B not in Split(1, 1). We have that ϕ(B′) is obtained from ϕ(B) by
sliding a token along ux. We define π̂(B′)(1) := ∅, π̂(B′)(2) := π̂(B)(2) and π̂(B′)(3) = {x′}.
We have that

{x′} := ψ(B′) \ V (J2),

and
{y′} := V (J \ J1) \ ({x′} ∪ V (J2)).

Thus, we have condition 2b of Lemma 6.5. Since we also have condition 3. we can define ψ on
every vertex of Split(s− 1, 1).

Let now B ∈ V (Split(1, 1)) such that u′ /∈ π̂(B)(1), and π̂(B)(3) = {x′, y′}. Let B′ be the
only neighbor of B not in Split(1, 1). We have that ϕ(B′) is obtained from ϕ(B) by sliding a
token along ux. We define π̂(B′)(1) := V (J1), π̂(B′)(2) := π̂(B)(2) and π̂(B′)(3) = {y′}. We
have that

{y′} :=
(
ψ(B′) \ V (J2)

)
∩ V (J \ J1),

and
{x′} := V (J \ J1) \ ({y′} ∪ V (J2)).

Thus, we have condition 2b of Lemma 6.5 and we can define ψ on every vertex of Split(s+1, 1).

– Suppose that every vertex in J1 has two neighbors in J3.
This implies that there is only one edge between J3 and J2. Otherwise, sinceG is (C4,diamond)-

free a vertex of J1 would be adjacent to a vertex of J2; without loss of generality assume that
x′u′2 is the only edge between J3 and J2. Let B ∈ V (Split(t, 2)) ∩ V (Split(0, 1)) such that
u′2 /∈ π̂(B)(2). Let B′ be the only neighbor of B not in Split(t, 2). Note that ϕ(B′) is obtained
from ϕ(B) by sliding a token along x′u′2. We define π̂(B′)(1) := ∅, π̂(B′)(2) := π̂(B)(2)∪{u′2}
and π̂(B′)(3) = {y′}. We have that

{y′} := ψ(B′) \ V (J2),

and
{x′} := V (J \ J1) \ ({y′} ∪ V (J2)).

Thus, we have condition 2b of Lemma 6.5 and we can define ψ on every vertex of Split(s−1, 1).
Let now B ∈ V (Split(t, 2)) ∩ V (Split(2, 1)) such that u′2 ∈ π̂(B)(2). Let B′ be the only

neighbor of B not in Split(t, 2). Note that ϕ(B′) is obtained from ϕ(B) by sliding a token
along u′2x

′. We define π̂(B′)(1) := V (J1), π̂(B′)(2) := π̂(B)(2) \ {u′2} and π̂(B′)(3) = {x′}.
We have that

{x′} := V (J \ J1) ∩ (ψ(B′) \ V (J2)).

and
{y′} := V (J \ J1) \ ({x′} ∪ V (J2)).

Thus, we have condition 2b of Lemma 6.5 and we can define ψ on every vertex of Split(s+1, 1).
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• Suppose that J1 is a star on at least three vertices.

If u′1 and u′2 have both two neighbors in J3, then u′1 and u′2 are adjacent. This contradicts
our assumption E(J1, J2) = ∅. Assume without loss of generality that the only neighbor of u′2 in
J3 is x′. The proof for when u′1 has only one neighbor in J3 follows by similar arguments. Let
B ∈ Split(s, 1) such that u′1 ∈ π̂(B)(1), u′2 ∈ π̂(B)(2) and π̂(B)(3) = ∅.

Suppose that u′1 has only one neighbor z′ in J3. Let B′ be the only neighbor of B not in
Split(s, 1). Note that ϕ(B′) is obtained from ϕ(B) by sliding a token along u′1z

′. Let w′ be
the vertex of J3 distinct from z′. We define π̂(B′)(1) := π̂(B) \ {u′1}, π̂(B′)(2) := π̂(B)(2) and
π̂(B′)(3) = {z′}. We have that

{z′} := V (J \ J1) ∩
(
ψ(B′) \ V (J2)

)
.

and
{w′} := V (J \ J1) \ ({z′} ∪ V (J2)).

Thus, we have condition 2b of Lemma 6.5 and we can define ψ on every vertex of Split(s − 1, 1).
Let now B ∈ Split(s, 1) such that u′1 /∈ π̂(B)(1), u′2 /∈ π̂(B)(2) and π̂(B)(3) = V (J3). Let B′ be
the only neighbor of B not in Split(s, 1). Note that ϕ(B′) is obtained from ϕ(B) by sliding a token
along u′1z

′. We define π̂(B′)(1) := π̂(B) ∪ {u′1}, π̂(B′)(2) := π̂(B)(2) and π̂(B′)(3) = {w′}. We
have that

{w′} := V (J \ J1) ∩
(
ψ(B′) \ V (J2)

)
.

and
{z′} := V (J \ J1) \ ({y′} ∪ V (J2)).

Thus, we have condition 2b of Lemma 6.5 and we can define ψ on every vertex of Split(s+ 1, 1).

Suppose that u′1 has two neighbors in J3. Let C ∈ Split(1, 1) such that ϕ(C) is obtained from
ϕ(B) by sliding a token along u′2x

′. Let B′ /∈ Split(S, 1) be the neighbor of B such that BB′ is not
in the same ladder as BC. Note that ϕ(B′) is obtained from ϕ(B) by sliding a token along u′1x

′.
We define π̂(B′)(1) := π̂(B) \ {u′1}, π̂(B′)(2) := π̂(B)(2) and π̂(B′)(3) = {x′}. We have that

{x′} := V (J \ J1) ∩
(
ψ(B′) \ V (J2)

)
.

and
{y′} := V (J \ J1) \ ({x′} ∪ V (J2)).

Thus, we have condition 2b of Lemma 6.5 and we can define ψ on every vertex of Split(s − 1, 1).
Let now B ∈ Split(s, 1) such that u′1 /∈ π̂(B)(1), u′2 /∈ π̂(B)(2) and π̂(B)(3) = V (J3). Let C ∈
Split(1, 1) such that ϕ(C) is obtained from ϕ(B) by sliding a token along x′u′2. Let B′ /∈ Split(1, 1)
be the neighbor of B such that BB′ is not in the same ladder as BC. Note that in both cases
ϕ(B′) is obtained from ϕ(B) by sliding a token along u′1x

′. We define π̂(B′)(1) := π̂(B) ∪ {u′1},
π̂(B′)(2) := π̂(B)(2) and π̂(B′)(3) = {y′}. We have that

{y′} := V (J \ J1) ∩
(
ψ(B′) \ V (J2)

)
.

and
{x′} := V (J \ J1) \ ({y′} ∪ V (J2)).

Thus, we have condition 2b of Lemma 6.5 and we can define ψ on every vertex of Split(s+ 1, 1).

By similar arguments we can define ψ on every vertex of Split(t − 1, 2) and Split(t + 1, 2). Thus,
starting from s = k1 and t = k2 we can define ψ on all vertices of Split(s, 1) for all

0 ≤ s ≤ min{|J1|, k}.

Since

F =

min{|J1|,k}⋃
s=0

Split(s, 1),

we can define ψ on all vertices of F .
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7 Disconnected Graphs

To finish the paper we consider the case when G is disconnected. The first result in this direction is that
there exist non-isomorphic, disconnected, (C4, diamond)-free graphs G and H, and integers k 6= l such
that Fk(G) ' Fl(H). See Figure 3, for an example. This example was found by Trujillo-Negrete in her
Master’s Thesis [20].

Figure 3: Two non-isomorphic graphs G1 and G2 for which F3(G1) is isomorphic to F2(G2).

On the positive side we have the following.

Theorem 7.1. Let G and H be two (C4, diamond)-free graphs. If Fk(G) is isomorphic to Fk(H), then
G is isomorphic to H.

Proof. We proceed as follows. Suppose that we are given a graph F and an integer k, such that F is
isomorphic to the k-token graph of a (C4, diamond)-free graph. We show that there is a unique G (up
to isomorphism) such that F ' Fk(G). Since Fk(G) is connected if and only if G is connected [8], we
may assume that G is disconnected, as otherwise we are done by Theorem 1.2. Since Fk(G) has

(|G|
k

)
vertices, we can determine n := |G|. We may assume that k ≤ n/2. Let G1, . . . , Gr be the components
of G. Let C be a component of Fk(G). Note that there exist integers k1, . . . , kr, with 0 ≤ ki ≤ |Gi| and
k = k1 + · · ·+ kr, such that C is generated by moving ki tokens on Gi. Moreover, we have that

C ' Fk1(G1)� · · ·�Fkr (Gr).

Note that since Gi is connected, by Corollary 4.7, we have that if 0 < ki < |Gi|, then Fki(Gi) is a prime
graph. Given C, there is a unique Cartesian decomposition (up to the order of the factors) such that

C ' F1� · · ·�Fr,

and every Fi is a non-trivial prime graph [18, 21]. This decomposition can be found in linear time [11].
We compute the Cartesian decompositions of all components of F . Let C∗ be the component with the
largest number, r∗, of terms; and let F1� · · ·�Fr∗ be this decomposition. We proceed by cases depending
on the value of r∗.

• r∗ < k.

Note that G has exactly r∗ non trivial components. Let G1, . . . , Gr∗ be these components. By
Theorem 1.2 we can reconstruct these components in polynomial time. Finally, the number of
isolated vertices of G is given by

n−
r∗∑
i=1

|Gi|.

• r∗ = k.
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Suppose that C∗ is the only component of F having k factors in its decomposition. This implies
that G has exactly k non-trivial components; and we may proceed as in the previous case. Suppose
now that there are at least two components of F having k factors in their decomposition. Thus,
G has more than k non-trivial components. Let CF be the set of components of F with k factors
in its decomposition, and let CG be the set of non-trivial components of G. Let q(F ) := |CF | and
q(G) := |CG|. Since q(F ) =

(
q(G)
k

)
, we can determine the value q(G). Moreover, each Gi ∈ CG is

counted in exactly
(
q(G)−1
k−1

)
components of CF .

For every C ∈ CF , we use Theorem 1.2 to compute a set of graphs H ′1, . . . , H
′
k such that

C ' H ′1� · · ·�H ′k. Let S be the set of all such graphs. By testing for graph isomorphism we obtain
a set of tuples S ′ := {(G′1, t1), . . . , (G′s, ts)}, such that: the G′i are pairwise non-isomorphic; for
every Hi ∈ S there exists a graph G′j such that Hi ' G′j ; and there are exactly tj graphs in S
isomorphic to G′j .

Note that each Gi gives way to
(
q(G)−1
k−1

)
graphs in S. Therefore, for every G′i there are exactly

ti/
(
q(G)−1
k−1

)
components of CG isomorphic to G′i. Thus we can determine the graphs in CG up to

isomorphism. Finally, the number of isolated vertices of G is given by

n−
∑

(G′i,ti)∈S′

ti(
q(G)−1
k−1

) |G′|.

We point out that in contrast with the connected case we are unable to reconstruct G in polynomial
time. The bottleneck of the algorithm implied in the proof of Theorem 7.1 is the Graph Isomorphism
Problem.
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