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Abstract: Let G be a simple graph of order n with vertex set V(G) and edge set E(G), and let k be
an integer such that 1 ≤ k ≤ n− 1. The k-token graph G{k} of G is the graph whose vertices are
the k-subsets of V(G), where two vertices A and B are adjacent in G{k} whenever their symmetric
difference A4B, defined as (A \ B) ∪ (B \ A), is a pair {a, b} of adjacent vertices in G. In this paper
we study the Hamiltonicity of the k-token graphs of some join graphs. We provide an infinite family
of graphs, containing Hamiltonian and non-Hamiltonian graphs, for which their k-token graphs are
Hamiltonian. Our result provides, to our knowledge, the first family of non-Hamiltonian graphs for
which it is proven the Hamiltonicity of their k-token graphs, for any 2 < k < n− 2.

Keywords: token graphs; Hamiltonicity; fan graphs

MSC: 05C76; 05C45

1. Introduction

Let G be a simple graph of order n ≥ 2 with vertex set V(G) and edge set E(G), and
let k be an integer such that 1 ≤ k ≤ n − 1. The k-token graph G{k} of G is the graph
whose vertices are all the k-subsets of V(G), where two vertices A and B are adjacent
in Fk(G) whenever their symmetric difference A4B, defined as (A \ B) ∪ (B \ A), is a
pair {a, b} of adjacent vertices in G. See an example in Figure 1. The token graphs are a
generalization of the Johnson graphs [1]. For n > k ≥ 1, the Johnson graph J(n, k) is the
graph whose vertices are all the k-subsets of the set {1, 2, . . . , n}, where two k-subsets are
adjacent in J(n, k) if they intersect in k− 1 elements. Thus, J(n, k) = Fk(Kn). Token graphs
and k-uniform hypergraphs are also related as follows: consider the complete k-uniform
hypergraph H on {1, 2, . . . , n}. The t-line graph of H is the graph whose vertices are the
edges of H, two being joined if the edges they represent intersect in at least t elements.
Then, the k-token graph of Kn is isomorphic to the (k− 1)-line graph of H.

The 2-token graphs are usually called double vertex graphs and the study of its
combinatorial properties began in the 1990s with the works of Alavi and its coauthors,
see, e.g., [2–5], where they studied the connectivity, planarity, regularity and Hamiltonicity
of some of such graphs. Later, Zhu et al. [6] generalized this concept to the k-tuple
vertex graphs, which are in fact the k-token graphs. In 2002, Rudolph [7,8] redefined the
token graphs, calling them symmetric powers of graphs, with the aim to study the graph
isomorphism problem and for its possible applications to quantum mechanics. Several
authors have continued with the study of the possible applications of token graphs in
physics (see. e.g., [9–11]).

In 2012, Fabila-Monroy et al. [12] reintroduced the concept of k-token graph of G with
the following interpretation. Consider k indistinguishable tokens and place them on the
vertices of G (at most one token per vertex), where each token can be slid from one vertex to
another along the edges of G. Define a new graph whose vertices are all the possible token
configurations, with two of such configurations being adjacent if one configuration can be
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reached from the other by sliding a token along an edge of G. This new graph is isomorphic
to the k-token graph G{k} of G. Figure 2 shows the graph G{2} of Figure 1 but with this
interpretation. Fabila-Monroy et al. [12] began a systematic study of some properties of
G{k} such as connectivity, diameter, clique number, chromatic number and Hamiltonicity.
This line of research has been continued by different authors, see, e.g., [13–21].

Figure 1. A graph G and its 2-token graph G{2}.

Figure 2. A 2-token graph seen as the model of tokens moving on the graph.

1.1. Hamiltonicity in Token Graphs

A Hamiltonian cycle of a graph G is a cycle containing each vertex of G exactly
once. A graph G is Hamiltonian if it contains a Hamiltonian cycle. The Hamiltonian
problem is to determine whether a graph is Hamiltonian. Although the problem has been
widely studied, there is no known non-trivial characterization of Hamiltonian graphs.
On the positive side, several necessary and sufficient conditions have been discovered.
Particularly, the Hamiltonicity problem for bipartite graphs has been studied in depth, see,
e.g., [22]. Regarding the computational complexity of the problem, it is well-known that
the Hamiltonian problem is NP-complete [23].
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It is well known that the Hamiltonicity of G does not imply the Hamiltonicity of
G{k}. For example, Fabila-Monroy et al. [12] showed that if k is even, then K{k}m,m is non-
Hamiltonian. An easier, traditional example is the case of a cycle graph; it is known (see,
e.g., [5]) that if n = 4 or n ≥ 6, then C{2}n is not Hamiltonian. On the other hand, there exist
non-Hamiltonian graphs for which their double vertex graph is Hamiltonian, a simple
example is the graph K1,3, for which K{2}1,3 ' C6, and so K{2}1,3 is Hamiltonian. Some results
about the Hamiltonicity of some double vertex graphs can be found, for example, in the
survey of Alavi et al. [4].

To our knowledge, for any integer k > 2, all the graphs G for which the Hamiltonicity
of G{k} (resp. the existence of a Hamiltonian path in G{k}) has been proven are Hamiltonian
(resp. contain a Hamiltonian path). This fact motivates us to search for a family of non-
Hamiltonian graphs (and without Hamiltonian paths) with Hamiltonian k-token graphs,
where 2 < k < n.

1.2. Basic Definitions and Results

In order to formulate our results, we need the following definitions. Given two
disjoint graphs G and H, the join graph G + H of G and H is the graph whose vertex set is
V(G) ∪V(H) and its edge set is E(G) ∪ E(H) ∪ {xy : x ∈ G and y ∈ H}. The generalized
fan graph, Fm,n, or simply fan graph, is the join graph Fm,n = Km + Pn, where Km denotes
the graph of m isolated vertices and Pn denotes the path graph of n vertices. The graph G
of Figure 1 is isomorphic to F1,4.

The join of graphs is a binary operation that has been widely studied in different con-
texts (see. e.g., [24–26]), including its possible applications, as in quantum information [27].
As was mentioned before, the Hamiltonicity of bipartite graphs has been studied in depth,
in some sense, and hence we are interested in the Hamiltonicity of non-bipartite k-token
graphs G{k}. Due to a result of Fabila-Monroy et al. [12], such graphs come from non-
bipartite graphs G. In this paper we are interested in the join of two graphs in which one of
them contains a Hamiltonian path. These graphs are non-bipartite and may be Hamiltonian
or not.

In 2018, Rivera and Trujillo-Negrete [28] showed the Hamiltonicity of F{k}1,n , for any
integers k and n with 1 < k < n. In this paper, we study the Hamiltonicity of the k-token
graphs of fan graphs Fm,n, for m > 1. The family of fan graphs Fm,n contains an infinite
number of graphs containing no Hamiltonian paths, precisely, when m > n + 1.

Our main result for the case k = 2 is the following

Theorem 1. The double vertex graph of Fm,n is Hamiltonian if and only if n ≥ 2 and 1 ≤ m ≤ 2 n,
or n = 1 and m = 3.

For the general case k ≥ 2, our main result is the following.

Theorem 2. Let k, n, m be positive integers such that 2 ≤ k ≤ n and 1 ≤ m ≤ 2n. Then F{k}m,n
is Hamiltonian.

It is easy to see that if H is a spanning subgraph of G, then Fk(H) is a spanning
subgraph of Fk(G), for any integer k with 1 ≤ k ≤ n− 1. This property and Theorem 2
implies the following:

Corollary 1. Let k, n, m be positive integers such that 2 ≤ k ≤ n and 1 ≤ m ≤ 2n. Let G1
and G2 be two graphs of order m and n, respectively, such that G2 has a Hamiltonian path. Let
G = G1 + G2. Then G{k} is Hamiltonian.

We point out that this corollary provides our desired family of non-Hamiltonian
graphs (and without Hamiltonian paths) with Hamiltonian k-token graphs, for example, if
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n + 1 < m ≤ 2n, then Fm,n contains no Hamiltonian path, while, as we show in Theorem 2,
G{k} is Hamiltonian, for any 2 ≤ k ≤ n + m− 2.

Finally, we give some notation that we use in our proofs. Let V(Pn) := {v1, . . . , vn}
and V(Km) := {w1, . . . , wm}, so V(Fm,n) = {v1, . . . , vn, w1, . . . , wm}. For a path T =

a1a2 . . . al−1al , we denote by
←−
T the reverse path alal−1 . . . a2a1. For a graph G, we denote

by µ(G) the number of connected components of G.
The rest of the paper is organized as follows. In Section 2 we present the proof of

Theorem 1 and in Section 3 the proof of Theorem 2. Our strategy to prove these results
is the following: for k = 2, we show explicit Hamiltonian cycles, and for k > 2, we use
induction on m; we often use the interpretation of the k-token graph of G as the model of
k tokens moving along the edges of G. In Section 4 we give the relationship between the
Hamiltonicity of token graphs and Gray codes for combinations. Finally, in Section 5 we
present the conclusions and suggest three open problems.

2. Proof of Theorem 1

This section is devoted to the proof of Theorem 1. For the case 1 ≤ m ≤ 2n, we
construct an explicit Hamiltonian cycle in F{2}m,n , in which the vertices {w1, v1} and {v1, v2}
are adjacent (this fact is used in the proof of Theorem 2 for the case k > 2).

If n = 1 then Fm,n ' K1,m, and it is known that K{2}1,m is Hamiltonian if and only if
m = 3 (see, e.g., Proposition 5 in [4]). From now on, assume n ≥ 2. We distinguish four
cases: either m = 1, m = 2n, 1 < m < 2n or m > 2n.

• Case m = 1.

For n = 2 we have F{2}1,2 ' F1,2, and so F{2}1,2 is Hamiltonian. Now we work the case
n ≥ 3. For 1 ≤ i < n let

Ti := {vi, w1}{vi, vi+1}{vi, vi+2} . . . {vi, vn}

and let Tn := {vn, w1}. It is clear that every Ti is a path in F{2}1,n and that {T1, . . . , Tn}
is a partition of V

(
F{2}1,n

)
.

Let

C :=

{←−
T1 T2

←−
T3 T4 . . .

←−−
Tn−1 Tn{v1, vn} if n is even,

←−
T1 T2

←−
T3 T4 . . . Tn−1

←−
Tn {v1, vn} if n is odd.

We are going to show that C is a Hamiltonian cycle of F{2}1,n . Suppose that n is even, so

C = {v1, vn} . . . {v1, w1}︸ ︷︷ ︸
←−
T1

{v2, w1} . . . {v2, vn}︸ ︷︷ ︸
T2

. . . {vn, w1}︸ ︷︷ ︸
Tn

{v1, vn}.

For i odd, the final vertex of
←−
Ti is {vi, w1}, while the initial vertex of Ti+1 is {vi+1, w1},

and since these two vertices are adjacent in F{2}1,n , the concatenation
←−
Ti Ti+1 corresponds

to a path in F{2}1,n . Similarly, for i even, the final vertex of Ti is {vi, vn} while the initial

vertex of
←−−
Ti+1 is {vi+1, vn}, so again, the concatenation Ti

←−−
Ti+1 corresponds to a path

in F{2}1,n . We also note that the unique vertex of Tn is {vn, w1}, which is adjacent to

{v1, vn}. As the initial vertex of
←−
T1 is {v1, vn}, we have that C is a cycle in F{2}1,n . As an

example, in Figure 3 we show the Hamiltonian cycle C in F{2}1,5 , which is constructed
as above.
The proof for n odd is analogous.
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Figure 3. Hamiltonian cycle C in the 2-token graph of F1,5.

• Case m = 2n.
Let C be the cycle defined in the previous case depending on the parity of n. Let

P1 := {vn, w1}
C−→ {v1, vn}

be the path obtained from C by deleting the edge between {vn, w1} and {v1, vn}. For
1 < i ≤ n let

Pi :={wi, vn}{wi, w1}{wi, vn−1}{wi, wi+(n−1)}{wi, vn−2}{wi, wi+(n−2)}{wi, vn−3}
{wi, wi+(n−3)} . . . {wi, v2}{wi, wi+2}{wi, v1}{wi, wi+1}.

We can observe that after {wi, w1}, the vertices in the path Pi follows the pattern
{wi, vj}{wi, wi+j}, from j = n− 1 to 1. For n + 1 ≤ i ≤ 2n let

Pi :={wi, vn}{wi, wi+n}{wi, vn−1}{wi, wi+(n−1)}{wi, vn−2}{wi, wi+(n−2)} . . .

{wi, v2}{wi, wi+2}{wi, v1}{wi, wi+1},

where the sums are taken mod 2n with the convention that 2n (mod 2n) = 2n. In
this case, the vertices in Pi after {wi, wi+n} follow the pattern {wi, vj}{wi, wi+j}, from
j = n− 1 to 1.
Let

C2 := P1 P2 . . . P2n{vn, w1}.

Let us show that C2 is a Hamiltonian cycle of F{2}m,n . First we show that

{V(P1), . . . , V(P2n)}

is a partition of V
(

F{2}m,n

)
.
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– {vi, vj} belongs to P1, for any i, j ∈ [n] with i 6= j.
– {wi, vj} belongs to Pi, for any i ∈ [m] and j ∈ [n].
– {wi, w1} belongs to Pi, for any i ∈ [m] with i 6= 1.
– Consider now the vertices of type {wi, wj}, for 1 < i < j ≤ n,

* {wi, wj} belongs to Pi, for any 1 < i ≤ n and i < j ≤ i + n− 1.

* {wi, wj} belongs to Pj, for any 1 < i ≤ n and i + n− 1 < j ≤ 2n.

* {wi, wj} belongs to Pi, for any n < i < 2n and i < j ≤ 2n.

Thus, {V(P1), . . . , V(P2n)} is a partition of V
(

F{2}m,n

)
. Next we show that C2 is a cycle.

We observe that

(1) Pi induces a path in F{2}m,n , for each i ∈ [2n];
(2) the final vertex of P1 is {v1, vn}, while the initial vertex of P2 is {w2, vn}, and

these two vertices are adjacent in F{2}m,n ;
(3) for i with 1 < i < 2n, the final vertex of Pi is {wi, wi+1} while the initial vertex

of Pi+1 is {wi+1, vn}, and these two vertices are adjacent in F{2}m,n ; and
(4) the final vertex of P2n is {w1, wn} while the initial vertex of P1 is {vn, w1}, and

these two vertices are adjacent in F{2}m,n .

Statements (1)–(4) together imply that C2 is a cycle in F{2}m,n . Thus, C2 is a Hamiltonian

cycle of F{2}m,n . Note that the vertices {w1, v1} and {v1, v2} are adjacent in C2, since they
are adjacent in P1.
As an example, in Figure 4 we show the Hamiltonian cycle C2 in the graph F{2}4,2 .

Figure 4. Hamiltonian cycle C2 in the graph F{2}4,2 .
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• Case 1 < m < 2 n.
Consider again the paths P1, . . . , Pm defined in the previous case and let us modify
them slightly in the following way:

– P′1 = P1;
– for 1 < i < m, let P′i be the path obtained from Pi by deleting the vertices of type

{wi, wj}, for each j > m;
– let P′m be the path obtained from Pm by first interchanging the vertices {wm, wm+1}

and {wm, w1} from their current positions in Pm, and then deleting the vertices of
type {wm, wj}, for every j > m.

Given this construction of P′i we have the following:

(A1) P′i induces a path in F{2}m,n ;
(A2) for 1 ≤ i < m the path P′i has the same initial and final vertices as the path Pi,

and P′m has the same initial vertex as Pm, and its final vertex is {wi, w1};
(A3) since we have deleted only the vertices of type {wi, wj} from Pi to obtain P′i ,

for each j > m and i ∈ [m], it follows that {V(P′1), . . . , V(P′m)} is a partition

of V
(

F{2}m,n

)
.

By (A1) and (A2) we can concatenate the paths P′1, . . . , P′m into a cycle C′ as follows:

C′ := P′1 P′2 . . . P′m(vn, w1)

and then by (A3) it follows that C′ is a Hamiltonian cycle in F{2}m,n . Again, the vertices
{w1, v1} and {v1, v2} are adjacent in C′ since they are adjacent in P′1.

• Case m > 2 n.

Here, our aim is to show that F{2}m,n is not Hamiltonian by using the following known
result posed in West’s book [29].

Proposition 1 (Prop. 7.2.3, [29]). If G has a Hamiltonian cycle, then for each nonempty set
S ⊂ V(G), the graph G− S has at most |S| connected components.

Then, we are going to exhibit a subset S ⊂ V
(

F{2}m,n

)
such that

µ
(

F{2}m,n − S
)
> |S|.

Let
S :=

{
{wi, vj} : i ∈ [m] and j ∈ [n]

}
.

Note that for each i, j ∈ [m] with i 6= j, the vertex {wi, wj} has all its neighbors in S,

and so it is an isolated vertex of F{2}m,n − S. Since there are (m
2 ) vertices of this type, we

have this number of connected components of F{2}m,n − S, each of them having an order
of one. On the other hand, the subgraph induced by the vertices of type {vi, vj}, for

i, j ∈ [n] with i 6= j, is a connected component of F{2}m,n − S. Then, F{2}m,n − S has at least
(m

2 ) + 1 connected components. Since m > 2n, it follows that(
m
2

)
=

m(m− 1)
2

≥ m(2n)
2

= mn,

and so

µ
(

F{2}m,n − S
)
≥
(

m
2

)
+ 1 > mn = |S|,

as required. This completes the proof of Theorem 1.
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3. Proof of Theorem 2

Let us first note a well-known property of token graphs that will be used throughout
this section.

Proposition 2. Let G be a graph of order n ≥ 2 and let k be an integer with 1 ≤ k ≤ n− 1. Then
G{k} is isomorphic to G{n−k}.

Proof. Let ψ : V
(

G{k}
)
→ V

(
G{n−k}

)
be the map given by

ψ(A) = V(G) \ A.

Clearly ψ is a bijection. Moreover, for any two vertices A, B ∈ V
(

G{k}
)

we have

A4B = (V(G) \ A)4(V(G) \ B) = ψ(A)4ψ(B).

Therefore, A and B are adjacent in G{k} if and only if ψ(A) and ψ(B) are adjacent in G{n−k}.
Thus, ψ is an isomorphism.

The Hamiltonicity of F{k}1,n was proved in [28]. However, in order to prove Theorem 2

we need a special Hamiltonian cycle in F{k}1,n .

Lemma 1. Let n and k be integers with 1 ≤ k ≤ n. Then F{k}1,n have a Hamiltonian cycle C in
which the vertices {w1, v1, v2, . . . , vk−1} and {v1, v2, . . . , vk} are adjacent.

Proof. We proceed by induction on k. If k = 1, then we want a Hamiltonian cycle C in F{1}1,n
in which the vertices {w1} and {v1} are adjacent in C. We define

C := {w1}{v1}{v2} . . . {vn},

so, clearly, C holds the lemma. The case k = 2 corresponds to Theorem 1, and this is
performed in Section 2. Assume from now on that k > 2.
Assume as induction hypothesis that F{k−1}

1,n′ satisfies the lemma, for all n′ ≥ k− 1 > 1.

For i with k− 1 ≤ i ≤ n, let Hi be the subgraph of F{k}1,n induced by the vertex set

Si :=
{
{vj1 , vj2 , . . . , vjk} ∈ V

(
F{k}1,n

)
: 0 ≤ j1 < j2 < · · · < jk = i

}
.

The subgraph Hi can be understood as the subgraph of F{k}1,n induced by all the k-token
configurations in which there is a token fixed at vertex vi and the remaining k− 1 tokens
are moving on the subgraph induced by {v0, v1, . . . , vi−1} (which is isomorphic to F1,i−1).

With this in mind, note that Hi ' F{k−1}
1,i−1 . Further, we have the following.

Remark 1. {Sk−1, Sk, . . . , Sn} is a partition of V
(

F{k}1,n

)
.

For i with k + 1 ≤ i ≤ n, we know that Hi ' F{k−1}
1,i−1 , then taking n′ = i− 1 we have

n′ = i− 1 ≥ k− 1 > 1. Thus, by induction hypothesis, there is a Hamiltonian cycle Ci in
Hi where the vertices

Xi := {v0, v1, v2, . . . , vk−2, vi} and Yi := {v1, v2, . . . , vk−1, vi}

are adjacent in Ci. Let Pi be the path obtained from Ci by deleting the edge XiYi. Assume,
without loss of generality, that the initial vertex of Pi is Xi and its final vertex is Yi. Thus,
we have the following.
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Remark 2. For i with k + 1 ≤ i ≤ n, Pi is a Hamiltonian path of Hi.

Let us now proceed by cases depending on the parity of n− k.

• n − k is odd:
In this case note that n− k ≥ 1 and so n ≥ k + 1. Consider the vertex sets Sk−1 and Sk.
For 0 ≤ j ≤ k, let

Zj := {v0, v1, . . . , vk} \ {vj}.

Then, Sk−1 = {Zk} and Sk = {Z0, Z1, . . . , Zk−1}, with the following adjacencies (in
F{k}1,n ): Z0 is adjacent to Z`, for each ` with 1 ≤ ` ≤ k, and Zt is adjacent to Zt−1, for
each t with 1 < t ≤ k. Let

Pk := Zk−1Zk−2 . . . Z1Z0Zk.

By the adjacencies among vertices Z0, Z1, . . . , Zk−1 we have the following.

Remark 3. Pk is a Hamiltonian path of the subgraph induced by Sk−1 ∪ Sk.

Let
C :=

←−
Pk Pk+1

←−−
Pk+2 Pk+3 . . .

←−−
Pn−1 Pn.

We show that C is a Hamiltonian cycle of F{k}1,n . Observe the following:

(1) the final vertex of
←−
Pk is the vertex Zk−1 = {v0, v1, . . . , vk−2, vk}, while the ini-

tial vertex of Pk+1 is the vertex Xk+1 = {v0, v1, . . . , vk−2, vk+1}, and these two
vertices are adjacent in F{k}1,n ;

(2) for i with k + 1 ≤ i ≤ n − 1, the final vertex of Pi is the vertex Yi =

{v1, v2, . . . , vk−1, vi}, while the initial vertex of
←−−
Pi+1 is the vertex Yi+1 =

{v1, v2, . . . , vk−1, vi+1}, and these two vertices are adjacent in F{k}1,n ;

(3) for i with k + 1 ≤ i ≤ n− 1, the final vertex of
←−
Pi is Xi = {v0, v1, . . . , vk−2, vi},

while the initial vertex of Pi+1 is Xi+1 = {v0, v1, . . . , vk−2, vi+1}, and these two
vertices are adjacent in F{k}1,n ;

(4) finally, the final vertex of Pn is the vertex Yn = {v1, v2, . . . , vk−1, vn} while the

initial vertex of
←−
Pk is the vertex Zk = {v0, v1, . . . , vk−1}, and these two vertices

are adjacent in F{k}1,n .

Statements (1)–(4) together imply that C is a cycle of F{k}1,n , and Remarks 1, 2 and 3
together imply that the cycle C is Hamiltonian. Finally, note that the vertices Zk =
{v0, v1, v2, . . . , vk−1} = {w1, v1, v2, . . . , vk−1} and Z0 = {v1, v2, . . . , vk} are adjacent in
C (since they are adjacent in Pk), as required.

• n − k is even:
Suppose first that n − k = 0, then n = k. In this case we have that {Sk−1, Sk} is a
partition of V

(
F{k}1,n

)
. Here, consider the path Pk defined in the previous case as

Pk = Zk−1Zk−2 . . . Z1Z0Zk,

where Zj = {v0, v1, . . . , vk} \ {vj}, for j ∈ {0, 1, . . . , k}. Then, by the adjacencies

among the vertices Z0, Z1, . . . , Zk, it follows that Pk induces a cycle in F{k}1,n , where
the vertices Zk = {v0, v1, . . . , vk−1} and Z0 = {v1, v2, . . . , vk} are adjacent in Pk. Since
{Sk−1, Sk} is a partition of V(F{k}1,n ), we have that Pk is our desired Hamiltonian cycle.

Assume n− k ≥ 2, so n ≥ k + 2. Let H be the subgraph of F{k}1,n induced by the vertex
set Sk−1 ∪ Sk ∪ Sk+1. H can be understood as the subgraph induced by all the k-token
configurations in which the k tokens are placed on k vertices of {v0, v1, . . . , vk+1}.
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Since the subgraph induced by the vertex set {v0, v1, . . . , vk+1} is isomorphic to F1,k+1,

it follows that H is isomorphic to F{k}1,k+1.

By Proposition 2 we have that H ' F{k}1,k+1 ' F{2}1,k+1. We are going to construct a
Hamiltonian path P of H.
For i, j ∈ {0, 1, . . . , k + 1} with i 6= j, let Ai,j = {v0, v1, . . . , vk+1} \ {vi, vj}. Then, two
vertices Ai,j and Ar,t are adjacent in H if and only if {vi, vj} and {vr, vt} are adjacent

in F{2}1,k+1.
For 1 ≤ t ≤ k, let

Rt :=


A1,k A1,k+1 A1,0 A1,k−1 A1,k−2 A1,k−3 . . . A1,2 if t = 1,
At,0 At,k+1 At,k At,k−1 At,k−2 . . . At,t+1 if 1 < t < k, and
Ak,0 if t = k.

Note that R1, R2, . . . , Rk are paths in H, and the concatenation R := R1 R2 . . . Rk is a
cycle in H, where the vertices Ak−1,k and Ak,0 are adjacent in R (since Ak−1,k is the
final vertex of Rk−1 and Ak,0 is the initial vertex of Rk). Let R′ be the path obtained
from R by deleting the edge (Ak−1,k, Ak,0), and assume, without loss of generality,
that the initial vertex of R′ is Ak,0 and its final vertex is Ak−1,k. Now, let

P := Ak,k+1 A0,k+1 R′.

We have the following.

Remark 4. P is a Hamiltonian path of H with initial vertex Ak,k+1 = {v0, . . . , vk−1}
and final vertex Ak−1,k = {v0, . . . , vk−2, vk+1}. Moreover, A0,k+1 = {v1, v2, . . . , vk} and
Ak,k+1 = {v0, v1, . . . , vk−1} are adjacent in P.

Here we use the paths Pk+2, Pk+3, . . . , Pn defined above. Let

C := P Pk+2
←−−
Pk+3 Pk+4 . . .

←−−
Pn−1 Pn.

Proceeding similarly to the previous case it can be shown that C is a cycle.
Remarks 1, 2 and 4 together imply that C is a Hamiltonian cycle of F{k}1,n . Finally, by
Remark 4 we know that vertices Ak,k+1 = {v0, v1, . . . , vk−1} = {w1, v1, . . . , vk−1} and
A0,k+1 = {v1, v2, . . . , vk} are adjacent in C, as required.

Thus, in both cases, we have our desired Hamiltonian cycle.

In Figure 5 is shown a Hamiltonian cycle of F{3}1,5 constructed as in the proof of
Lemma 1.

Now, we prove our main result for the fan graph Fm,n, with m ≥ 1.

Proof of Theorem 2. We claim that F{k}m,n has a Hamiltonian cycle C in which the vertices

{w1, v1, v2, . . . , vk−1} and {v1, v2, . . . , vk}

are adjacent. Clearly, this claim implies the theorem. To show the claim, we use induction
on m. The case m = 1 is proved in Lemma 1.

Assume as an induction hypothesis that the claim holds for all F{k
′}

m−1,n with 2 ≤ k′ ≤ n
and 1 ≤ m− 1 ≤ 2n.

Note that the case k = 2 corresponds to Theorem 1, so that we assume k > 2.
Let

S1 := {A ∈ F{k}m,n : w1 ∈ A} and S2 := {B ∈ F{k}m,n : w1 /∈ B}.
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Clearly, {S1, S2} is a partition of V
(

F{k}m,n

)
. Let H1 and H2 be the subgraphs of F{k}m,n induced

by S1 and S2, respectively.

Figure 5. Hamiltonian cycle in F{3}1,5 .
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Note that H1 ' F{k−1}
m−1,n and H2 ' F{k}m−1,n. By the induction hypothesis, there are cycles

C1 and C2 such that

(i) C1 is a Hamiltonian cycle of H1, where the vertices X1 := {w1, w2, v1, v2, . . . , vk−2}
and Y1 := {w1, v1, v2, . . . , vk−1} are adjacent in C1;

(ii) C2 is a Hamiltonian cycle of H2, where the vertices X2 := {w2, v1, v2, . . . , vk−1}
and Y2 := {v1, v2, . . . , vk} are adjacent in C2.

For i = 1, 2, let Pi be the subpath of Ci, obtained by deleting the edge XiYi. Note that
Pi is a Hamiltonian path of Hi joining the vertices Xi and Yi, and let us assume that the
initial vertex of Pi is Xi and its final vertex is Yi. On the other hand, note that X1 is adjacent
to X2 and Y1 is adjacent to Y2, these two facts together imply that the concatenation

C := P1
←−
P2

is a cycle in F{k}m,n . Since {S1, S2} is a partition of V
(

F{k}m,n

)
, it follows that C is Hamiltonian.

Finally, note that the vertices

Y1 = {w1, v1, v2, . . . , vk−1} and Y2 = {v1, v2, . . . , vk}

are adjacent in C, since Y1 is the final vertex of P1 and Y2 is the initial vertex of
←−
P2 . This

completes the proof.

4. A Relationship between Gray Codes for Combinations and the Hamiltonicity of
Token Graphs

There are several applications of token graphs to physics and coding theory; see,
e.g., [1,9,10,18].

Regarding the Hamiltonicity, there is a direct relationship between the Hamiltonicity
of token graphs and Gray codes for combinations.

Consider the problem of generating all the subsets of an n-set, which can be reduced
to the problem of generating all possible binary strings of length n (since each k-subset
can be transformed into a n-binary string by placing a 1 in the j-th entry if j belongs to the
subset, and 0 otherwise). The most straightforward way of generating all these n-binary
strings is counting in binary; however, many elements may change from one string to the
next. Thus, it is desirable that only a few elements change between successive strings. The
case when successive strings differ by a single bit, is commonly known as Gray codes.
Similarly, the problem of generating all the k-subsets of an n-set is reduced to the problem
of generating all the n-binary strings of constant weight k (with exactly k 1’s).

Gray codes are known to have applications in different areas, such as cryptography,
circuit testing, statistics and exhaustive combinatorial searches. For a more detailed infor-
mation on Gray codes, we refer the reader to [30–32]. Next, we present a formal definition
of Gray codes.

Let S be a set of n combinatorial objects and C a relation on S, C is called the closeness
relation. A Combinatorial Gray Code (or simply Gray code) for S is a sequence s1, s2, . . . , sn
of the elements of S such that (si, si+1) ∈ C, for i = 1, 2, . . . , n − 1. Additionally, if
(sn, s1) ∈ C, the Gray code is said to be cyclic. In other words, a Gray code for S with
respect to C is a listing of the elements of S in which successive elements are close (with
respect to C). There is a digraph G(S, C), the closeness graph, associated to S with respect
to C, where the vertex set and edge set of G(S, C) are S and C, respectively. If the closeness
relation is symmetric, G(S, C) is an undirected graph. A Gray code (resp. cyclic Gray code)
for S with respect to C is a Hamiltonian path (resp. a Hamiltonian cycle) in G(S, C).

We are interested in Gray codes for combinations. A k-combination of the set [n] is a
k-subset of [n], which in turn, can be thought as a binary string of lenght n and constant
weight k (it has k 1’s and n− k 0’s). Consider the set S = S(n, k) of all the k-combinations of
[n]. Next, we mention three closeness relations that can be applied to S; for other closeness
relations we refer to [31].
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(1) The transposition condition: two k-subsets are close if they differ in exactly two
elements. Example: {1, 2, 5} and {2, 4, 5} are close, while {1, 2, 5} and {1, 3, 4} are not.

(2) The adjacent transposition condition: two k-subsets are close if they differ in exactly
two consecutive elements i and i + 1. Example: {1, 2, 5} and {1, 3, 5} are close, while
{1, 2, 5} and {1, 4, 5} are not.

(3) The one or two apart transposition condition: two k-subsets are close if they differ in
exactly two elements i and j, with |i− j| ≤ 2. Example: {1, 2, 5} and {1, 4, 5} are close,
while {1, 2, 5} and {2, 4, 5} are not.

The relationship between the closeness graph associated to S with respect to these
closeness conditions and some token graphs are showed in the following propositions.

Proposition 3. If C is the transposition condition, then the closeness graph G(S, C) is isomorphic
to K{k}n , where Kn denotes the complete graph of order n.

Proof. Let V(Kn) := {1, 2, . . . , n}. Then, S = V(K{k}n ). Note that two k-subsets A and B
are adjacent in G(S, C) if and only if they differ in exactly two elements, that is, |A4B| = 2,
and this holds if and only if A and B (as vertices of K{k}n ) are adjacent in K{k}n .

Proposition 4. If C is the adjacent transposition condition, then the closeness graph G(S, C) is
isomorphic to P{k}n , where Pn denotes the path graph of order n.

Proof. Let V(Pn) := {1, 2, . . . , n} with i and i + 1 adjacent for each i ∈ [n − 1]. Then
S = V(P{k}n ). Two k-subsets A and B are adjacent in G(S, C) if and only if they differ in
exactly two consecutive elements i and i + 1, that is, A4B = {i, i + 1}, and this holds if
and only if A and B are adjacent in P{k}n .

Given a graph G, the square G2 of G is the graph on V(G) in which two vertices are
adjacent in G2 if they are at a distance of at most two in G.

Proposition 5. If C is the one or two apart transposition condition, then the closeness graph

G(S, C) is isomorphic to
(

P2
n
){k}, where P2

n denotes the square of the path graph of order n.

Proof. Let V(Pn) := {1, 2, . . . , n} with i and j adjacent whenever |i − j| ≤ 2. Then S =
V((Pn){k}). Any two k-subsets A and B are adjacent in G(S, C) if and only if they differ in
exactly two elements i and j with |i− j| ≤ 2, that is, A4B = {i, j}with i 6= j and |i− j| ≤ 2,
and this holds if and only if A and B are adjacent in (Pn){k}.

Note that when the closeness graph G(S, C) associated to S with respect to C is
isomorphic to the k-token graph of some graph G, then a Gray code and a cyclic Gray
code for S with respect to C correspond to a Hamiltonian path and a Hamiltonian cycle,
respectively, of the k-token graph of G.

5. Conclusions

The study of token graphs began in the 1990s, and since then, several connections of
token graphs with other research areas have been discovered, such as quantum mechanics
and coding theory; several researchers are currently exploring more applications of token
graphs to physics. The study of token graphs is a current line of research for several
researchers around the world. In this paper we study the Hamiltonicity of token graphs
of join graphs. Our main results are the following: we provide necessary and sufficient
conditions for the Hamiltonicity of the 2-token graphs of fan graphs Fm,n. For the k-token
graph of the fan graph Fm,n, we provide sufficient conditions on the parameters m, n and k,
with 2 < k < m + n− 2, for having F{k}m,n Hamiltonian. As a corollary of this last result, and
using a simple property of token graphs, we provide sufficient conditions on the graphs
G1 and G2 such that the k-token graph of the join graph G = G1 + G2 is Hamiltonian. Our
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results provides, to our knowledge, the first family of non-Hamiltonian graphs G with
Hamiltonian k-token graphs G{k}, where 2 < k < |G| − 2. Before this work, only a finite
number of graphs satisfying this property were known.

There are several open lines of research regarding the Hamiltonicity of token graphs.
We would like to suggest some open problems for future research.

1. To find other families of graphs with Hamiltonian k-token graphs.

2. Given two graphs G and H, consider the Cartesian product G� H of G and H. To
study the Hamiltonicity of (G� H){k} in terms of the Hamiltonicity of G and H.
Similarly for other products of graphs as the corona of two graphs.

For k = 2, it is known that the smallest Hamiltonian graph G for which G{2} is
Hamiltonian, is a cycle with an odd chord. Then, a natural problem is the following.

3. For k > 2, to find the smallest Hamiltonian graph G for which G{k} is Hamiltonian.
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