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Abstrakt

Slovenský abstrakt v rozsahu 100-500 slov, jeden odstavec. Abstrakt stručne suma-
rizuje výsledky práce. Mal by byť pochopiteľný pre bežného informatika. Nemal by
teda využívať skratky, termíny alebo označenie zavedené v práci, okrem tých, ktoré sú
všeobecne známe.

Kľúčové slová: jedno, druhé, tretie (prípadne štvrté, piate)
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guage).

Keywords:

vii



viii



Contents

Introduction 1

1 Preliminaries 3
1.1 Causal Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Forward and Inverse Models . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Model Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Sequence Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Related Work 9
2.1 Causal Learning in Robotic Applications . . . . . . . . . . . . . . . . . 9
2.2 Planning as a Sequence Modelling Problem . . . . . . . . . . . . . . . . 10

3 Aims and Task Formulation 11

4 Methods 13
4.1 Synthetic Data Generation . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Forward and Inverse Models . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Knowledge Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4 Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Experiments and Results 15
5.1 Learning Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Simple Intuitive Physics . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.3 Task Solving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Conclusion 19

ix



x



List of Figures

1.1 Diagram of robot causal cognition categorization. . . . . . . . . . . . . 4

4.1 General forward model architecture. . . . . . . . . . . . . . . . . . . . . 13
4.2 General monolithic inverse model architecture. . . . . . . . . . . . . . . 14
4.3 Inverse model architecture with θ(t+ 1) pre-computation pre-network. 14

5.1 Error of the forward model during mental simulation 10 steps ahead. . 15
5.2 Contribution heat map generated by Deep SHAP method. . . . . . . . 16
5.3 A sample of partial dependence plots generated by Deep SHAP method. 17

xi



xii



List of Tables

xiii



xiv



List of Abbreviations

C1, C2 robot causal cognition categories . . . . . . . . . 4
FM forward model . . . . . . . . . . . . . . . . . . . . 5
HIM hindsight information matching . . . . . . . . . . 10
IM inverse model . . . . . . . . . . . . . . . . . . . . 5
LSTM long short-term memory . . . . . . . . . . . . . . 8
MDP Markov decision process . . . . . . . . . . . . . . 8
MLP multilayer perceptron . . . . . . . . . . . . . . . . 6
RCSL return-conditioned supervised learning . . . . . . 10
RL reinforcement learning . . . . . . . . . . . . . . . 8
RNN recurrent neural network . . . . . . . . . . . . . . 8
RvS reinforcement learning via supervised learning . . 10
XAI explainable artificial intelligence . . . . . . . . . . 7

xv



xvi



List of Symbols

x scalar
v vector
M matrix
u ⊆ v subvector of vector v

u ⊂ v proper subvector of vector v

v \ u vector v without its subvector u

v ++ u vector concatenation
P(A) power set of set A

|A| cardinality of set A

E [· ] expected value

xvii



xviii



Introduction

Observing and learning causal relations in a given environment is an essential ele-
ment of cognition in humans and other higher animals. Thanks to this ability, agents
can assemble their intuitive knowledge (such as intuitive physics and psychology) about
the world in which they operate from multiple observations and use them to further
predict the environment’s behaviour, mainly in response to their actions. Such abil-
ity is principal to common sense understanding – a concept mastered even by young
children while having proven to be highly inapprehensible for artificial intelligence.

In this thesis, we were inspired by causal learning and other mechanisms observed
in human cognition, leveraging them in the construction and study of a system solving
robotic manipulation tasks in a simulated environment. Specifically, we use forward
and inverse models to learn the effects of actions performed by an agent (simulated
robotic arm). These actions are a product of simple motor babbling or other strategies
allowing the agent to interact with the environment and observe its behaviour.

Further, as a by-product of this approach, we hypothesize that these models trained
on a sufficient amount of observations contain knowledge about the environment and
the task the agent was performing. We argue that this knowledge is similar to intuitive
theories assembled by humans from causal experience collected since an early age. As
such knowledge can be helpful in the analysis of the environment, the task, and their
properties, we explore methods for extracting this information by analyzing the trained
forward model using explainable artificial intelligence methods.

Finally, we propose a system for solving more complex robotic manipulation tasks.
We use sequence modelling for preliminary trajectory generation, subsequently post-
processed with the aid of the trained forward and inverse models. We were inspired
by imitation learning, utilizing it for the sequence modelling optimization within su-
pervised learning paradigm instead of in robotics more commonly used reinforcement
learning approach.

[Short overview of the following chapters]

1



2 Introduction



Chapter 1

Preliminaries

In this chapter, serving as a theoretical overview, we summarize methods, ap-
proaches and technologies used in the thesis. Specifically, we provide an overview
of causality and causal learning from both human cognition and machine intelligence
point of view as we use causal learning as a central concept in our proposed methods
(Chapter 4).

We further describe the biological and robotic backgrounds of forward and inverse
models used as facilitators for causal learning as well as artificial neural networks
used for their implementation. In addition, as we leverage the models’ analysis, we
summarize the principles behind the family of analysis methods used.

Lastly, we describe the principal components of sequence modelling and reinforce-
ment learning used for the proposed planning method.

1.1 Causal Learning

Causal learning refers to capturing and learning causal relationships from observa-
tions of the behaviour of an environment in which the agent (e.g., human or robot)
operates. This ability allows agents to form intuitive theories and use them to predict
the environment’s behaviour in response to their actions (Gerstenberg & Tenenbaum,
2017) establishing common sense understanding including the knowledge of intuitive
physics and psychology (Lake et al., 2016).

Human Causal Cognition

Causal cognition has been studied extensively on both human and machine in-
telligence levels. Regarding human cognition, Gärdenfors and Lombard (2018; 2017)
propose a causal cognition evolution model categorizing levels of causal understanding
varying in complexity. This model’s grades range from understanding the perceived
effects of the agent’s motor actions to understanding interactions between entities of

3



4 CHAPTER 1. PRELIMINARIES

only certain grades, all according to their stage in evolu-
tion. Our categorization defines eight categories that relate
to these grades; however, with several important differ-
ences as discussed in Section 3.2. The categories describe
causal cognition mainly at the sense–plan–act level.⁵ The
secondpart of the analysis describes the usage of causation
in robotics, beyond the sense–plan–act level covered in the
first part.

Throughout the section, we review related earlier
work in robotics and also identify connections between
the previously described work in philosophy, statistics,
computer science, and cognitive psychology.

3.1 Causation for sense–plan–act

Our categorization comprises eight categories of robot
causal cognition at the sense–plan–act level. The under-
lying causal mechanisms are illustrated in Figure 1, with
a robot, a human, and the (rest of the) world, affecting
themselves and each other causally, illustrated by the
arrows, and with numbers referring to the corresponding
categories. The categories are illustrated in more detail in
Figure 2. An interacting human’s internal causal pro-
cesses are included since they are important for the
robot’s causal reasoning. The top row shows the human
Mind initiating (i.e., causing) Motor Forces (e.g., muscle
activations) that result inMotorActions, (e.g., limbmotions).
Motor Actions may in turn cause World Effects since the
human is situated in the environment. The robot’s mind is
modeled in a similar way, with additional World Effects
added to model non-animate causal relations. For both
the human and the robot, the term “mind” denotes the
mechanism that, for one reason or another, causes Motor
Forces. In a deterministic world, the activation of such a
mechanism, of course, also has a cause. The usage of the
word “mind,” with its associations to free will and non-
determinism, indicates that we here regard the mind as
“the ultimate cause.”

In the figure, all causal relations are illustrated by
thick arrows. Inference of causes is illustrated by thin
arrows pointing toward the inferred entity.

Categories 1–3 have to do with Causal Learning, i.e.,
how a robot learns causal relations involving itself, inter-
acting humans, and the world. Categories 4–6 have to do

with the important cases of inference of causes related to
an interacting human. Categories 7–8 have to do with how
the robot decides how to act, with more or less sophis-
ticated usage of causal reasoning.

Category 1. Sensory–motor learning

This causal skill is about learning a mapping from Motor
Forces to Motor Actions (Figure 2). The former are acti-
vated by the robot’s Mind, as a result of some decision
activity, to be further described as categories 7 and 8. This
causal mechanism is also illustrated by arrow 1 in Figure 1.

Sensory–motor learning is strongly related to motor
babbling, which is the method supposedly used by infants
to learn the mapping betweenmuscle movements and the
resulting change in body pose and limb positions [65].
Motor babbling has also been suggested as a plausible
model of humans’ acquisition of more complex beha-
viors, such as movements along trajectories for avoiding
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Figure 1: Causal mechanisms between a robot, a human, and the
(rest of the) world. The arrows go from cause to effect, and the
numbers refer to the corresponding category further described in
the text.

Mind Motor

Forces

Motor

Actions

World

Effect

7. Planning

8. Innovation

1. Sensory-

Motor

Learning

2. Learning 

About How the 

Robot Affects 

the World

Human

Mind
Motor

Forces

Motor

Actions

World

Effect

World

Effect

Robot

3. Learning 

About the 

Causal World

4. Dyadic Causal 

Understanding

5
. 
M

in
d
 

R
ea

d
in

g
 

6
. 
D

et
ac

h
ed

 

M
in

d
 

R
ea

d
in

g

Figure 2: The functions of the eight categories of robot causal cog-
nition. Categories 1–3 refer to learning of causal relations (bold
arrows). Categories 4–6 refer to inference of causes (thin solid
arrows) related to an interacting human, while categories 7–8 refer
to how the robot decides how to act.



5 In this context the term planning refers to all sort of low- or high-
level mappings between sensing and acting and not only planning
in its original meaning in robotics.

244  Thomas Hellström

Figure 1.1: Diagram of robot causal cognition categorization. Bold arrows refer to
learning causal relations, while thin solid arrows refer to “inference of causes related
to an interacting human”. Adjacent categories are required to facilitate the agent’s
understanding of respective relationships (Hellström, 2021).

the environment and the ability to extrapolate from this knowledge.

Causality in Robotics

Regarding machine intelligence, Lake et al. (2014; 2016) argue that causality might
be one of three central “ingredients” needed to replicate rapid learning akin to human
learning. The argument supports the current effort to transfer causal cognition to
robotics, involving embodied agents interacting with the world. Analogically to the
model of the evolution of human causal cognition mentioned above, Hellström (2021)
proposes a categorization of robot causal cognition ranging in difficulty from simple
sensory-motor learning to the ability to plan and beyond. These grades are divided into
three groups: learning causal relations, inferring the causes related to an interacting
human, and robot deciding how to act (Figure 1.1).

In this work, we focus on low-level causality regarding two categories: sensorimotor
self-learning (abbr. C1) and learning the consequences of agent’s own actions on objects
in the environment (abbr. C2).

Causality in Machine Learning

Besides applications in robotics, causality is also studied as part of the machine
learning research as Zhang et al. (2017) and Zhu et al. (2020) argue that causality
understanding can be beneficial toward building more robust models with common
sense.

Causal learning is predominantly part of the symbolic paradigm (Kotseruba &
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Tsotsos, 2018) as it mainly operates with symbolic representations on different lev-
els (Schölkopf, 2022). This is in contrast with the sub-symbolic models and systems
(Rosenblatt, 1958) generally following the parallel distributed processing paradigm
(McClelland et al., 1987, 1988) inspired by low-level brain mechanisms and neural
structures.

For a further comprehensive overview of causal cognition in humans, in robots, and
causality research in machine learning, see (Gärdenfors & Lombard, 2018), (Hellström,
2021), and (Schölkopf, 2022; Zhang et al., 2017), respectively.

1.2 Forward and Inverse Models

Causal and especially sensorimotor knowledge produced by causal learning per-
formed by a robotic system, solving C1 and C2 tasks in our case, can be represented
by a pair of complementary internal models: the forward model (abbr. FM) and the
inverse model (abbr. IM) (Wolpert & Kawato, 1998).

While the FM (Dearden & Demiris, 2005) unambiguously predicts perceivable con-
sequences of the agent’s actions, the IM predicts actions needed to reach the desired
state from the initial state. In contrast to the FM, the IM is mathematically ill-defined
in general, as the IM also models inverse kinematics, which is ill-posed in redundant
robots (Nguyen-Tuong & Peters, 2011).

Forward and inverse models in robotics take inspiration from the internal model
principle of control theory (Francis & Wonham, 1976) modelling physiological internal
models (Miall & Wolpert, 1996; Sperry, 1950; von Holst & Mittelstaedt, 1950; Wolpert
& Flanagan, 2001). It is generally acknowledged (Dogge et al., 2019) that humans use
a forward internal model to predict the outcomes of their motor actions. Dogge et al.
(2019) describe “[physiological] forward models [. . .] as simulations of the motor system
that use a copy of the motor command, known as an efference copy [. . .], to predict the
sensory consequences of the action in question (known as corollary discharge)”.

It should be noted that while in this thesis we use forward models to predict
environment-related outcomes beyond body-related outcomes, Dogge et al. (2019) ar-
gue that involvement of biological motor-based forward models to such extent is “limited
and hitherto unjustified”.
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Artificial Neural Networks

As both models represent functions, modelling (learning) can be performed by ar-
tificial neural networks as universal function approximators (Hornik et al., 1989). For
the forward and inverse modelling in this work, we specifically use multilayer percep-
trons (abbr. MLP) (Minsky & Papert, 2017; Rosenblatt, 1958; Rosenblatt et al., 1962)
as universal regressors.

The topology of MLP models consists of L layers of neural units with layers l = 1,
l = L and 1 < l < L defined as an input layer, output layer and hidden layers, respec-
tively. Each layer is composed of dl neural units, with d1 = dim(x) and dL = dim(y)

where x and y are real input and output vectors of a function f being approximated.
MLP is fully connected, meaning that each unit i of each layer l except the output
layer is connected with every neuron j of the subsequent layer l + 1 using oriented
synapse with assigned weight w

(l)
ij ∈ R. Then, activation of i-th neuron in l-th layer

can be computed as

h
(l)
i = φl

(
dl−1+1∑
j=1

w
(l)
ij h

(l−1)
j

)
, (1.1)

where φl denotes activation function of the l-th layer. Additionally, h(L) ≡ ŷ where ŷ

is a predicted output. To reformulate, considering layer a function

h(l)(v) ≜ φl

(
W (l)v

)
(1.2)

where W (l) is the weight matrix of the l-th layer, the approximation of sought function
f can be defined as

f̂(x) ≜
(
h(L) ◦ h(L−1) ◦ · · · ◦ h(2) ◦ h(1)

)
(x). (1.3)

In order to train the regressor, the model’s weights are commonly optimized in a
supervised learning scheme where the error of generated predictions ŷ is computed
against the ground-truth targets y using an error function L (ŷ,y). The computed
error is further backpropagated (Rumelhart et al., 1986) through the whole network,
with new weights being calculated as

w
(l)
ij (t+ 1) = w

(l)
ij (t) + ∆w

(l)
ij , (1.4)

where ∆w
(l)
ij denotes weight adjustment defined as

∆w
(l)
ij = −η

∂L
∂w

(l)
ij

(1.5)

with η designating learning rate constant.
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1.3 Model Analysis

In this thesis, we analyze neural models using explainable AI (abbr. XAI) methods.
Specifically, we study feature importance, evaluating the significance of a specific input
feature on the prediction of a specific output feature.

Shapley Values

Feature importance is commonly computed using Shapley values (Shapley, 1953)
while interpreting the prediction task for a single data point x as a cooperative game.
Input features are interpreted as players belonging to possible coalitions S ∈ P(F ),
where F is the set of all features. Then, interpreting a model f trained on a set of
features as a value function evaluating the worth of coalition, Shapley value ϕi defines
the marginal contribution of feature i for the input x for the model f :

ϕi(x) =
∑

S⊆F\{i}

|S|! (|F | − |S| − 1)!

|F |!
∆i(S,x), (1.6)

where |S| and |F | denote number of features in the coalition and the total number
of feature, respectively. ∆i(S,x) denotes the marginal contribution of feature i to
coalition S defined as

∆i(S,x) = fS∪{i}
(
xS∪{i}

)
− fS (xS) (1.7)

with fS and fS∪{i} denoting trained models on the feature subset S and S including
the feature i, respectively, and xS denoting values of the input features from S.

SHAP Methods

As computing Shapley values is generally NP-hard (Matsui & Matsui, 2001), various
methods for estimating them have been developed, with the most popular being SHAP
(Lundberg & Lee, 2017), which unifies different additive feature attribution methods.
Here, we were experimenting with two variants: KernelSHAP and DeepSHAP.

KernelSHAP is a model-agnostic kernel-based method utilizing the idea of local
surrogate models (Ribeiro et al., 2016) to estimate Shapley values. However, since it
does not make any assumptions about the analyzed model, it is generally slower than
model-specific methods on account of its combinatorial nature. DeepSHAP, on the
other hand, is applicable only to neural models as it uses attribution rules of DeepLIFT
method (Shrikumar et al., 2017) to propagate SHAP values from the output layer back
to the input layer.

SHAP methods are local, providing an explanation for one prediction. However,
thanks to their properties, these local explanations can be aggregated across the set of
instances, providing global feature importance within the analyzed model.

For further comprehensive review of XAI methods, see (Gilpin et al., 2018).
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1.4 Sequence Modelling

[Definition]
[RNN/LSTM + Transformers]

1.5 Reinforcement Learning

Reinforcement learning (abbr. RL) is a machine learning paradigm of algorithms
learning by interacting with a given environment. The principal objective of agents
controlled by these algorithms is to perform actions maximizing the cumulative reward.
Although methods proposed in this work operate beyond the RL paradigm, we reuse
some of its principles and nomenclature.

Problems solvable by RL methods are most commonly modelled as Markov decision
processes (abbr. MDP) (Bellman, 1957). Discrete-time MDP can be defined as a tuple

MDP: (S,A, T, R, γ) , (1.8)

where S and A denote discrete or continuous state and action space, respectively.
Then, in a discrete timestep t, an action a(t) ∈ A transitions state s(t) to s(t + 1),
with s(t), s(t+ 1) ∈ S, with probability

P (s(t+ 1) | s(t),a(t)) ≡ T (s(t),a(t), s(t+ 1)) , (1.9)

where T denotes a state transition function. Performing action a(t) at state s(t) is
evaluated by reward function r(t) = R (s(t),a(t)).

The process of taking action in a particular state produces a trajectory

τ = [s(0),a(0), r(0), s(1),a(1), r(1), . . .] (1.10)

which can be evaluated by computing its discounted cumulative return

G =
∞∑
t=0

γtr(t) (1.11)

where 0 ≤ γ ≤ 1 is a discount factor. The goal of RL algorithms is to learn optimal
policy π∗ such that

π∗ = argmax
π

V π [s(0)] (1.12)

where V π denotes a state-value function defined as

V π(s(0)) = E [G | s(0), π] (1.13)

providing the expected cumulative return of a trajectory produced by an agent starting
in state s(0) and taking action a(t) ∼ π(s(t)) with stochastic policy π(s(t)) ≡ P (a(t) |
s(t)).



Chapter 2

Related Work

In this chapter, we provide an overview of existing full or partial solutions alter-
native to the main contribution points of this thesis: learning causality in robotics
(Section 2.1) and planning using sequence modelling aided by causal models (Sec-
tion 2.2).

2.1 Causal Learning in Robotic Applications

Albeit causal learning (for an overview, see Section 1.1) and causality-based ap-
proaches in the context of robotics are presently deemed under-explored (T. E. Lee
et al., 2023; Stocking et al., 2022), it has been demonstrated that they can be helpful
for multiple applications. In many robotics and reinforcement learning applications,
causality acts as an attention mechanism revealing relationships between state and
action variables regarding a given environment or task. This information is often used
to reduce the complexity of either space or identify relevant or important variables.

Our work, especially the knowledge extraction part (Section 4.3), was inspired by
CREST (T. E. Lee et al., 2021), where authors used causal reasoning in simulation
to learn the relevant state space variables for a robot manipulation policy. In their
approach, they conduct causal interventions (in a scheme akin to the randomized con-
trolled trials (Fisher, 1925)) to elicit the relationships between action and state vari-
ables. This allows them to reduce the complexity of neural network policies using only
state variables relevant to the task being solved.

Leveraging the research on CREST, SCALE approach (T. E. Lee et al., 2023) for
discovering and learning diverse robot skills has been proposed. SCALE uses CREST
in a pipeline to identify sets of relevant variables related to individual skills.

A method proposed by Diehl and Ramirez-Amaro (2023) concerns a causal Bayesian
network (Pearl, 1985) learning causal relationships between task executions and their
consequences. They then utilize this model to allow a robot to “conjecture” whether

9
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and why the action executed in its current state will succeed or fail.
Furthermore, Sontakke et al. (2021) introduce causal curiosity, an intrinsic reward

allowing the agent to discover latent causal factors in the dynamics of the environment
it operates in. Wang et al. (2022) use the causal dynamics model to remove unnecessary
dependencies between the state and action variables and subsequently use the dynamics
model to yield state abstractions. Sonar et al. (2021) utilize causality to learn invariant
policies.

2.2 Planning as a Sequence Modelling Problem

As stated in Section 1.5, planning is predominantly a reinforcement learning prob-
lem. However, as recently demonstrated by Chen et al. (2021) and Janner et al. (2021),
planning can also be achieved beyond the RL paradigm. The mentioned approaches
use sequence modelling (for an overview, see Section 1.4) in combination with imitation
learning to generate trajectories needed to complete a given task. As such, the problem
of online RL is being shifted to the domain of supervised learning. Specifically, RL
components are often entirely replaced with offline behavioural cloning (Furuta et al.,
2021).

Inspired by the prior research, Wen et al. (2022) propose their own Transformer
architecture for solving cooperative multi-agent RL problems.

Furuta et al. (2021) further demonstrate that these approaches perform hindsight
information matching (abbr. HIM). They define HIM as a method concerning “training
policies that can output the rest of trajectory that matches some statistics of future
state information” and propose a Generalized Decision Transformer capable of solving
any HIM problem.

The paradigm covering these approaches has been coined as return-conditioned
supervised learning (abbr. RCSL), whose central idea “is to learn the return-conditional
distribution of actions in each state, and then define a policy by sampling from the
distribution of actions that receive high return” (Brandfonbrener et al., 2022). A related
broader concept has been referred to as reinforcement learning via supervised learning
(abbr. RvS) (Emmons et al., 2021).

Planning leveraging the trajectory modelling in a supervised learning scheme inher-
ently requires a training dataset. For this reason, most approaches mentioned above
employ imitation learning (Mandlekar et al., 2021; Zare et al., 2023), a process in which
an expert demonstrates a desired behaviour and an agent learns by imitation from the
collected observations of expert demonstrations. Alternatively, Oh et al. (2018) propose
self-imitation learning during which the agent imitates its own past good experiences.



Chapter 3

Aims and Task Formulation

11



12 CHAPTER 3. AIMS AND TASK FORMULATION



Chapter 4

Methods

4.1 Synthetic Data Generation

4.2 Forward and Inverse Models

Figure 4.1: General forward model architecture.

4.3 Knowledge Extraction

4.4 Planning
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Figure 4.2: General monolithic inverse model architecture.

Figure 4.3: Inverse model architecture with θ(t+ 1) pre-computation pre-network.



Chapter 5

Experiments and Results

5.1 Learning Kinematics

Figure 5.1: Error of the forward model during mental simulation 10 steps ahead.

5.2 Simple Intuitive Physics

5.3 Task Solving
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Figure 5.2: Contribution heat map generated by Deep SHAP method on the forward
model showing magnitude of contribution of specific actions to output features.
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Figure 5.3: A sample of partial dependence plots generated by Deep SHAP method
applied to the forward model showing correlation between a value of a specific action
component and its contribution to an output variable.
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