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Abstract

Humans and other higher animals are able to observe
and learn the causal relationships between the actions
they take and their perceptual consequences in the envi-
ronment. This concept has inspired the field of robotics
with an argument that understanding causal relations as
a fundamental ability is a prerequisite for building ad-
vanced AI systems with common sense. In this work,
we study and evaluate low-level causal mechanisms re-
lated to a robotic arm that learns the sensorimotor de-
pendencies as well as the effects of its motor actions on
the environment.

1 Introduction

Observing and learning causal relations in an environ-
ment is essential to human cognition (Gerstenberg and
Tenenbaum, 2017). Thanks to this ability, humans can
form intuitive theories from multiple observations and
use them to predict the environment behaviour in re-
sponse to their actions (Gerstenberg and Tenenbaum,
2017). This common sense understanding includes the
knowledge of intuitive physics, a key ingredient of early
cognitive development (Lake et al., 2016).

In this paper, we take inspiration from causal learn-
ing in humans (Lombard and Gärdenfors, 2017) and ap-
ply it in the field of robotics (Hellström, 2021). We
focus on a low-level approach using a robotic arm in
a simulated environment, where the arm (an artificial
agent) performs random actions and learns by observing
their subsequent effects. This process is implemented
by training two complementary models that implement
learned knowledge. Then, we use methods to interpret
that knowledge in terms of causal relations.

2 Problem formulation

We understand a low-level causality as a (transition)
function T : [s(t), a(t)] 7→ s(t + 1), where s(t), s(t +
1) ∈ S are the current (pre-action) and the next (post-
action) state of the environment, respectively, from a
state space S, and a(t) ∈ A is an action from an action
space A performed at time t. We refer to ∆sa(t+ 1) =
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s(t + 1) − s(t) as an effect of action a, reflected in
changes of some features of the environment state. Ad-
ditionally, we understand T as a low-level intuitive the-
ory encapsulating the accumulated knowledge of causal
relations in a given environment.

3 Methods

The methods we use involve two components: causal
learning and subsequent knowledge extraction. Both are
described below.

3.1 Causal learning

Causal cognition in robots has been proposed to include
a range of categories, varying in terms of complexity
(Hellström, 2021). Here, we focus on the lower end
of this spectrum and discuss low-level causality regard-
ing two categories: sensorimotor self-learning (C1) and
learning the consequences of one’s own actions on ob-
jects in the environment (C2). Both categories naturally
imply embodied knowledge, reflected in arm geometry
and kinematics.

Learning of both categories of causality required
first offline collection of observation data using motor
babbling in a simulated environment for which we used
myGym toolkit (Vavrečka et al., 2021). In each step, the
agent (robotic arm) executes a randomly selected action
a and observes a new state s(t + 1). Motor babbling
is a natural process observed in infants during their first
months. In the case of interaction with objects, the con-
cept of intuitive physics becomes relevant.

In the case of C1, the arm performs motor babbling
and records its joint configuration and Cartesian effec-
tor position before and after the execution of action a.
In the case of C2, an object is added on the table in
the simulated environment, and the arm has the possi-
bility to interact with it using constrained motor bab-
bling. During an episode, the agent observes potential
changes in position, rotation and other defined features
of the object, arm and environment in response to the
arm actions.

Observations before and after executed action along
with the action vector (as per definition of T ) collected
from the data generation stage are subsequently used for



the training of two standard models in robotics:

• forward model FM: [s(t), a(t)] 7→ s(t+ 1) and
• inverse model IM: [s(t), s(t+ 1)] 7→ a(t).

We implemented both models using supervised
feed-forward neural networks. FM is a well-defined,
causal model trying to approximate T . In contrast, IM
is non-causal since it reverses effects and causes in time.
The FM contributes to causal knowledge and provides
the agent with predictions of the next state caused by a
current action. A trained FM can be utilized for chained
inference of several steps ahead (mental simulation) if
provided with a sequence of actions.

3.2 Knowledge extraction

Trained causal models can be analyzed by extracting in-
formation about the original environment and a learning
session. Our primary focus is on analyzing feature im-
portance, which allows us to highlight state features that
cannot be manipulated by the agent actions and thus can
be removed, hence reducing the dimensionality of the
state space.

Recent related work by Lee et al. (2021), which
served as an inspiration, focused on determining rele-
vant state features by conducting intervention on one
feature at a time and testing whether the same policy
execution led to successful task completion or not. This
way, causal dependencies were found.

On the contrary, we do not study causality by direct
interaction with an environment but by using trained
causal models as proxies containing this information.
Using the learned FM we can determine the relevance
of state features in relation to action features by analyz-
ing the feature importance within the FM.

To do this, we take a sample of generated causal
data and explain the prediction made by the FM for each
instance using Deep SHAP method (Lundberg and Lee,
2017). This method uses attribution rules of DeepLIFT
(Shrikumar et al., 2017) analysis technique to approx-
imate Shapley value of each input feature in relation
to an output feature. Shapley value represents an in-
put feature contribution to the output feature prediction.
This way, we can determine a contribution of each ac-
tion variable to each state variable. Local explanations
are then aggregated across the data sample.

The resulting global contribution heatmap gener-
ated from the FM trained on the C2 task is shown in
Figure 1. The task consisted of a robotic arm randomly
switching its magnetic endpoint. Upon turning the mag-
net on, the arm navigated to the cube on the table, pick-
ing it up and randomly manoeuvring with it in the space.
Here, the y-axis denotes the action of each joint and a
magnetic endpoint of the arm. The x-axis then contains
defined environment state features. The colour of each
square corresponds to the magnitude of contributions of
action features to the state features averaged across 200

Fig. 1: A heatmap generated by Deep SHAP method
on the FM showing the contributions of action features’
to the state features (object position and rotation, joint
angles, effector position and rotation, and magnet state).

samples. The figure shows, for instance, that joint 6
is not used in the sampled observation data. In addi-
tion, the colour of an object (obj{R,G,B}) is irrelevant
in this case as no action can affect it, and thus could be
removed (or ignored). On the other hand, all action fea-
tures affect most object features. This low-level knowl-
edge can be useful for causal analysis at higher levels.
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