
Identification and visualization
of software architectures

Author: Bc. Marek Dinka
Supervisors: Ing. Martin Marko
 doc. Ing. Ivan Polášek, PhD.

Aim

Design and create a prototype of the toolset capable of reverse engineering large and real software

systems to classify and identify architecturally important component and their relations.

Propose methods and implement basic concept to use extracted information and derived relations.

Document extracted information in the form of textual and visual architectural views.

Analysis of Architecture Recovery Techniques [5]

[5] Joshua Garcia, Igor Ivkovic, and Nenad Medvidovic. A comparative analysis of software architecture recovery techniques. 2013 28th IEEE/ACM International Conference on Automated Software Engineering (ASE), pages
486–496, 2013.

Comparative analysis of six automated architecture recovery techniques - ACDC, ARC, Bunch, LIMBO,

WCA, ZBR

MoJoFM - distance measure between two architectures expressed as a percentage.

Architecture Recovery using Cluster Ensembles [4]

[4] Choongki Cho, Ki-Seong Lee, Minsoo Lee, and Chan-Gun Lee. Software architecture module-view recovery using cluster ensembles. IEEE Access, 7:72872–72884, 2019.

Cluster ensemble is an approach of combining different clustering results into a single consolidated result

Analysis of multiple clustering techniques, comparison of their results, methods for consolidation

Review of Architecture Visualization Techniques [33]

[29] Mojtaba Shahin, Peng Liang, and Muhammad Ali Babar. A systematic review of software architecture visualization techniques. Journal of Systems and Software, 94:161–185, 2014.

Overview of recent works in software architecture visualization

Categorization of architecture visualization techniques and purposes

Categorization of architecture visualization purposes Categorization of architecture visualization techniques

Obtaining Interclass References

A simple starting point

Use a parsing tool for the java language to identify

all classes referenced in a file.

Helps with recognizing relations, dependencies,

path of execution, …

Classes referenced in the Report class of Jasperreports project

Parsed deconstruction of a java class named A

Modular Decomposition

A module is a self-contained unit of code with well defined interfaces and specific task(s) [31]

Idea: Class should not reference a
class from another module, unless
this class is an API of said module
and API classes should be few

Clustering based on common
class references

[31] D. L. Parnas. On the criteria to be used in decomposing systems into modules. Commun. ACM, 15(12):1053–1058, December 1972.

A diagram illustrating the ideal modular architecture

Modular Decomposition

1. Use references from previous method

2. Perform hierarchical clustering

3. Find best hierarchical level

4. Assign modules to files

Archimate model describing the architecture behind clustering of modules

Modular Decomposition

Coupling describes connectivity among subsystems.
Cohesion describes connectivity within subsystems.

Designs with low coupling and high cohesion lead
to products that are both, more reliable and more
maintainable. [20]

Best clustering level = best combination of coupling
and cohesion + reasonable amount of modules
(i.e. not 1)

[20] Martin Hitz and Behzad Montazeri. Measuring coupling and cohesion in object oriented systems..

Coupling and Cohesion graph for the Jenkins project

Modular Decomposition

Visualization of standalone modules - difficult

Further investigation of visualization methods

required

Further investigation of ways for identifying

module’s function required

All classes of the Jenkins project divided into modules

Relations of a Module drawn using archimate visualizer

Design Structure Matrix

Design structure matrix is a network

modeling tool used to represent the elements

compromising a system and their

interactions, thereby highlighting the

system’s architecture [16].

A visualization method used for judging the

quality of modules (in context of cohesion

and coupling)

[16] SD Eppinger. Design Structure Matrix Methods and Applications. MIT Press,
2012.

Design Structure Matrix of a module in the Jenkins project, displaying its internal and
external class relations

Archimate CLI API

We use Archimate’s scripting plugin (JArchi) to

create a CLI interface for interacting with it’s

models

Dependencies of the web package of the Jasperreports project, generated using Archi
Api

Archimate diagram displaying the architecture of Archi API

File Diversity Chart

Comparison of different
groupings (e.g. modules,
java packages, build
structure) based on the
diversity of files within
said grouping

Interactive chart
generated using
Shannon’s or Simpson’s
diversity index

Diversity chart comparing modules and packages for the Jasperreports project

File Descriptors as Genomes

Each file analyzed by Cinderella can be described
by a list of detectors, each detector can additionally
be described by a list of attributes

We will run clustering based on these attributes

Files of the Jenkins project together with detectors triggered on each of themExtract from the documentation of detectors

File Descriptors as Genomes

Multiple sequence alignment is
a way of arranging the
sequences of DNA, RNA, or
protein to identify regions of
similarity [36].

Clustal omega is a tool which
can be used for performing fast
MSAs of potentially large
sequences

Genomes generated for files in the Jenkins project (in FASTA format)

[36] Fabian Sievers and Desmond G Higgins. Clustal Omega, accurate alignment of very large numbers of sequences. Springer, 2014.

File Descriptors as Genomes

Archimate diagram displaying the architecture of genome clustering

1. Generate genomes

2. Run Clustal omega

3. Extract clusters

4. Visualize clusters

File Descriptors as Genomes

Visualization:

1. Take all commonly occurring attributes in a cluster

2. Translate these attributes into archimate elements

3. Draw the elements, thus linking files to ‘components’

Elements generated from clustered attributes (note: not all attributes have yet been mapped)

Extract from JSON array responsible for mapping attributes to elements

Abstraction Context

Problem:
- Some attributes are more common than others
- The less common attributes might be drowned out by the more common ones
- The more important attributes are usually less common

Elements generated from all attributes (note: not all attributes have yet been mapped)

Abstraction Context

Solution:

- Introduce concept of abstraction context (or detector context)

- Attributes will be assigned into groups based on the abstractions which they describe

- e.g. Build context, Technology context, UI context, …

Build context view extracted from the Jasperreports project

Technology context view extracted from the Jasperreports project

UI context view extracted from the Jenkins project

